JP2001059440A - Exhaust emission control device for cylinder injection type internal combustion engine - Google Patents

Exhaust emission control device for cylinder injection type internal combustion engine

Info

Publication number
JP2001059440A
JP2001059440A JP2000213996A JP2000213996A JP2001059440A JP 2001059440 A JP2001059440 A JP 2001059440A JP 2000213996 A JP2000213996 A JP 2000213996A JP 2000213996 A JP2000213996 A JP 2000213996A JP 2001059440 A JP2001059440 A JP 2001059440A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
internal combustion
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213996A
Other languages
Japanese (ja)
Other versions
JP3582582B2 (en
Inventor
Yasuki Tamura
保樹 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP02569398A external-priority patent/JP3334592B2/en
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000213996A priority Critical patent/JP3582582B2/en
Publication of JP2001059440A publication Critical patent/JP2001059440A/en
Application granted granted Critical
Publication of JP3582582B2 publication Critical patent/JP3582582B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To quickly regenerate an occluded type NOx catalyst without causing torque variations or unintentional discharge of NOx in an exhaust emission control device provided with an occluded type NOx catalyst. SOLUTION: When the quantity of NOx of an occluded type NOx catalyst or SOx reaches a specified quantity, and a switching command to the operation at a stoichiometric air fuel ratio or at a rich air fuel ratio is generated (moment A in (a)), the air fuel ratio is slowly changed toward a specified stoichiometric air fuel ratio or rich air fuel ratio, and the air fuel ratio is slowly changed toward a lean air fuel ratio until the switching command is stopped after the specified stoichiometric air fuel ratio or rich air fuel ratio is held for a specified time (b). Further, while the switching command is generated, the fuel quantity is additionally supplied into the cylinder by a sub-injection means in an expansion stroke of an internal combustion engine based on the air fuel ratio (b).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、筒内噴射型内燃機
関の排気浄化装置に係り、特に吸蔵型NOx触媒を備え
た排気浄化装置のNOx或いはSOxパージ技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for a direct injection type internal combustion engine, and more particularly to a NOx or SOx purging technique for an exhaust gas purifying apparatus having a storage type NOx catalyst.

【0002】[0002]

【関連する背景技術】内燃機関が所定運転状態にある時
に空燃比を理論空燃比(値14.7)よりも燃料希薄側
(リーン側)の目標値(例えば、値22以上)に制御し
て、エンジンの燃費特性等を改善する空燃比制御方法が
知られている。このようなリーン空燃比制御方法におい
て、従来の三元触媒では排ガス中のNOx(窒素酸化
物)が充分に浄化できないという問題がある。
2. Related Art When the internal combustion engine is in a predetermined operating state, the air-fuel ratio is controlled to a target value (for example, a value of 22 or more) leaner (lean) than the stoichiometric air-fuel ratio (value 14.7). An air-fuel ratio control method for improving the fuel efficiency characteristics of an engine and the like is known. In such a lean air-fuel ratio control method, there is a problem that NOx (nitrogen oxide) in exhaust gas cannot be sufficiently purified by the conventional three-way catalyst.

【0003】この問題を解決するために、酸素過剰状態
(酸化雰囲気)において排ガス中のNOxを硝酸塩X−
NO3として付着させて吸蔵し、吸蔵したNOxをCO
(一酸化炭素)過剰状態(還元雰囲気)でN2(窒素)
に還元させる特性(同時に炭酸塩X−CO3が生成され
る)を有した排気浄化触媒、所謂吸蔵型NOx触媒を使
用して、大気へのNOx排出量を低減させることが知ら
れている。この吸蔵型NOx触媒では、上記のようにリ
ーン空燃比制御時にNOxを吸蔵するのであるが、リー
ン燃焼運転を長時間連続して行うと、触媒のNOx吸蔵
量には限度があるために、NOx吸蔵量が飽和量に達し
た時点で排ガス中のNOxが触媒に吸蔵されずに大気に
排出されることになる。
[0003] In order to solve this problem, NOx in exhaust gas is converted to nitrate X- in an oxygen-excess state (oxidizing atmosphere).
NO 3 is absorbed and stored, and the stored NOx is CO 2
N 2 (nitrogen) in excess (carbon monoxide) (reducing atmosphere)
(Simultaneously carbonate X-CO 3 generated) characteristic of reducing the exhaust gas purifying catalyst having a using a so-called occlusion-type NOx catalyst, it is known to reduce NOx emissions to the atmosphere. In this storage type NOx catalyst, NOx is stored during the lean air-fuel ratio control as described above. However, if the lean combustion operation is continuously performed for a long time, the NOx storage amount of the catalyst is limited, so that the NOx storage amount is limited. When the storage amount reaches the saturation amount, NOx in the exhaust gas is discharged to the atmosphere without being stored in the catalyst.

【0004】そこで、吸蔵型NOx触媒の吸蔵量が飽和
に達する前に、空燃比を理論空燃比またはその近傍値に
制御するリッチ空燃比運転に定期的に切換え(これをリ
ッチスパイクという)、COの多い還元雰囲気(リッチ
状態)でNOxの浄化還元(NOxパージ)を行い吸蔵型
NOx触媒を再生する構成の排気浄化装置が、特開平7
−166913号公報等により知られている。
Therefore, before the storage amount of the storage NOx catalyst reaches saturation, the air-fuel ratio is periodically switched to a rich air-fuel ratio operation for controlling the air-fuel ratio to a stoichiometric air-fuel ratio or a value close to the stoichiometric air-fuel ratio (this is referred to as a rich spike). Japanese Patent Application Laid-Open No. Hei 7 (1994) discloses an exhaust gas purification apparatus configured to perform purification and reduction of NOx (NOx purge) in a reducing atmosphere (rich state) with a large amount to regenerate a storage-type NOx catalyst.
This is known from, for example, JP-A-166913.

【0005】また、排ガス中には硫黄成分(S成分)が
含まれており、吸蔵型NOx触媒がNOxを吸蔵する際に
硫黄酸化物(SOx)も吸蔵してしまい、故に触媒担体
が被毒して触媒の浄化効率が低下するという問題があ
る。このため、NOx触媒からSOxを離脱させ触媒の浄
化効率を再生させるべくNOxパージと同様に空燃比を
リッチ状態にする必要がある。この一例として、硫黄の
吸着量を推定し、所定時間に亘って触媒温度を電気ヒー
タ等によって高温とし且つ空燃比をリッチ状態に変更す
る技術が特開平6−66129号等により知られてい
る。
Further, the exhaust gas contains a sulfur component (S component), and when the storage NOx catalyst stores NOx, it also stores sulfur oxides (SOx), so that the catalyst carrier is poisoned. Therefore, there is a problem that the purification efficiency of the catalyst is reduced. Therefore, it is necessary to make the air-fuel ratio rich as in the case of the NOx purge in order to release SOx from the NOx catalyst and regenerate the purification efficiency of the catalyst. As an example of this, Japanese Patent Application Laid-Open No. 6-66129 discloses a technique of estimating the amount of sulfur adsorbed, setting the catalyst temperature to a high temperature by an electric heater or the like, and changing the air-fuel ratio to a rich state over a predetermined time.

【0006】[0006]

【発明が解決しようとする課題】ところで、空燃比をリ
ーン空燃比から理論空燃比またはリッチ空燃比に切り換
える際、上記後者の公報のように当該切換を行い燃料量
を一気に増大させると、筒内圧が急激に上昇して内燃機
関の出力トルクが一時的に大きく変動するという問題が
ある。そこで、上記前者の公報では、燃料噴射量を徐々
に増加させて空燃比を所望のリッチ空燃比まで極力緩や
かにテーリングさせるようにしており、これにより出力
トルク変動を抑えるようにしている。また、これとは別
に、燃料噴射量を増加させるとともに吸入空気量を適宜
変化させて空燃比を徐々にリッチ空燃比に移行させ出力
トルク変動を抑えることも行われている。
When the air-fuel ratio is switched from a lean air-fuel ratio to a stoichiometric air-fuel ratio or a rich air-fuel ratio, if the switching is performed to increase the fuel amount at a stretch as in the latter publication, the in-cylinder pressure is reduced. And the output torque of the internal combustion engine temporarily fluctuates greatly. Therefore, in the former publication, the air-fuel ratio is tailed as slowly as possible to a desired rich air-fuel ratio by gradually increasing the fuel injection amount, thereby suppressing output torque fluctuation. Apart from this, the fuel injection amount is increased and the intake air amount is appropriately changed to gradually shift the air-fuel ratio to the rich air-fuel ratio to suppress output torque fluctuation.

【0007】ところが、このように空燃比をテーリング
させた場合、そのテーリングが出力トルク変動を抑える
のに好ましいほど緩やかであると、空燃比が所望のリッ
チ空燃比となるまでに時間を要し、このテーリング期間
においては、COの生成量は少なくNOxパージが良好
に行われず、つまりNOxパージの開始が遅れることに
なり好ましいことではない。つまり、テーリングが緩や
かであるほど全体としてNOxパージに要する時間が長
くなり、内燃機関本来の運転状態に影響を与え好ましい
ことではない。
However, when the air-fuel ratio is tailed in this way, if the tailing is gentle enough to suppress fluctuations in output torque, it takes time for the air-fuel ratio to reach a desired rich air-fuel ratio. During this tailing period, the amount of generated CO is small and the NOx purge is not performed well, that is, the start of the NOx purge is delayed, which is not preferable. In other words, the slower the tailing, the longer the time required for NOx purging as a whole, which affects the original operating state of the internal combustion engine, which is not preferable.

【0008】また、NOxは空燃比が値16近傍である
ときに最も多く発生するものであり、空燃比を上記のよ
うにリーン空燃比からリッチ空燃比に切り換えるときに
は必ずこの値16近傍を経るのであるが、このように空
燃比のテーリング期間が長いと、必然的に空燃比が値1
6近傍である期間が長くなり空燃比の切換中にNOxが
多量に発生し(これをNOxスパイクという)、故にこ
の間に多くのNOxが浄化されずに排出されてしまうと
いう問題もある。
Further, NOx is most frequently generated when the air-fuel ratio is near the value 16. When the air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio as described above, the NOx always passes near this value 16. However, if the air-fuel ratio tailing period is long as described above, the air-fuel ratio inevitably becomes the value 1
There is also a problem that a large amount of NOx is generated during the switching of the air-fuel ratio (this is referred to as a NOx spike), and a large amount of NOx is discharged without being purified during this period.

【0009】また、吸蔵NOx量が多いと空燃比が理論
空燃比近傍である場合において吸蔵型NOx触媒から多
量にNOxが放出されることがあるが、当該理論空燃比
近傍ではNOxを還元するための還元剤(CO,HC
等)が少なく、故に上記のようにテーリングが緩やかで
あって理論空燃比近傍である期間が長くなると、当該N
Oxの放出量が必然的に増加し、これにより大気中に排
出されるNOx量が増加するという問題もある。
When the stored NOx amount is large, a large amount of NOx may be released from the storage NOx catalyst when the air-fuel ratio is near the stoichiometric air-fuel ratio. However, NOx is reduced near the stoichiometric air-fuel ratio. Reducing agents (CO, HC
And the like, the tailing is gradual and the period near the stoichiometric air-fuel ratio becomes longer as described above.
There is also a problem that the amount of released Ox is necessarily increased, thereby increasing the amount of NOx discharged into the atmosphere.

【0010】本発明はこのような問題点を解決するため
になされたもので、その目的とするところは、吸蔵型N
Ox触媒を備えた排気浄化装置において、吸蔵型NOx触
媒をトルク変動や不用意なNOxの排出なく迅速に再生
可能な筒内噴射型内燃機関の排気浄化装置を提供するこ
とにある。
The present invention has been made to solve such a problem, and an object thereof is to provide a storage type N.
It is an object of the present invention to provide an exhaust purification device for an in-cylinder injection type internal combustion engine that can quickly regenerate an occluded NOx catalyst without torque fluctuation or inadvertent emission of NOx.

【0011】[0011]

【課題を解決するための手段】上記した目的を達成する
ために、請求項1の発明は、吸気行程または圧縮行程で
筒内に燃料を直接に供給する主噴射手段を有した内燃機
関に装備された吸蔵型NOx触媒を再生する際に空燃比
切換手段により内燃機関の空燃比をリーン空燃比と理論
空燃比またはリッチ空燃比との間で徐々に変化させると
共に、この空燃比制御中にNOxが多量に発生する空燃
比を含む空燃比域において副噴射手段により燃料を筒内
に追加供給するものとなっている。
In order to achieve the above-mentioned object, the invention of claim 1 is provided in an internal combustion engine having main injection means for directly supplying fuel into a cylinder in an intake stroke or a compression stroke. When the stored NOx catalyst is regenerated, the air-fuel ratio of the internal combustion engine is gradually changed between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio by the air-fuel ratio switching means. The fuel is additionally supplied into the cylinder by the sub-injection means in the air-fuel ratio region including the air-fuel ratio in which a large amount of air is generated.

【0012】この発明によれば、触媒再生に係る空燃比
切換えに際して空燃比が徐々に変化し、空燃比変化に起
因する機関出力トルクの変動が抑制される。その一方
で、副噴射手段により筒内に燃料が追加供給されて空燃
比がリッチ化され、吸蔵型NOx触媒の還元が促進さ
れ、これにより触媒再生に要するNOxパージ期間(空
燃比リッチ化期間)が短縮する。しかも、NOxが多量
に発生する空燃比を含む空燃比域において副噴射手段に
よる燃料の追加供給が実施されることによって、筒内の
空燃比は、NOxが多量に発生する空燃比を含む空燃比
域を短時間内に通過し、従ってNOx排出量が大幅に低
減する。
According to the present invention, the air-fuel ratio is gradually changed when the air-fuel ratio is switched for the catalyst regeneration, and the fluctuation of the engine output torque caused by the air-fuel ratio change is suppressed. On the other hand, the fuel is additionally supplied into the cylinder by the sub-injection means to enrich the air-fuel ratio, and the reduction of the storage NOx catalyst is promoted, whereby the NOx purge period required for catalyst regeneration (air-fuel ratio enrichment period) Is shortened. Moreover, the additional supply of fuel by the sub-injection means is performed in the air-fuel ratio range including the air-fuel ratio where a large amount of NOx is generated, so that the air-fuel ratio in the cylinder becomes the air-fuel ratio including the air-fuel ratio where a large amount of NOx is generated. Area within a short period of time, and therefore the NOx emissions are greatly reduced.

【0013】請求項2の発明は、内燃機関に装備された
吸蔵型NOx触媒の再生時に空燃比切換手段により内燃
機関の空燃比をリーン空燃比と理論空燃比またはリッチ
空燃比との間で徐々に変化させる一方、触媒から放出さ
れるNOxの還元に供し得る還元剤が少なくなる空燃比
を含む空燃比域において副噴射手段により燃料を筒内に
追加供給するものとなっている。
According to a second aspect of the present invention, the air-fuel ratio of the internal combustion engine is gradually changed between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the stoichiometric air-fuel ratio by the air-fuel ratio switching means during regeneration of the storage NOx catalyst provided in the internal combustion engine. The fuel is additionally supplied into the cylinder by the sub-injection means in the air-fuel ratio range including the air-fuel ratio where the reducing agent that can be used for the reduction of NOx released from the catalyst is reduced.

【0014】この発明によれば、触媒再生に係る空燃比
切換えに際して空燃比が徐々に変化して機関出力トルク
の変動が抑制され、また、副噴射手段により筒内に燃料
が追加供給されて吸蔵型NOx触媒の還元が促進され、
NOxパージ期間が短縮する。しかも、空燃比切換制御
下で変化する空燃比がNOxの還元に供される還元剤が
不足する空燃比を含む空燃比域において、副噴射手段に
より燃料が追加供給され、筒内の空燃比は還元剤が不足
する空燃比を含む空燃比域を短時間内に通過し、NOx
排出量が大幅に低減する。
According to the present invention, when the air-fuel ratio is switched during the regeneration of the catalyst, the air-fuel ratio gradually changes to suppress the fluctuation of the engine output torque, and the fuel is additionally supplied into the cylinder by the auxiliary injection means to store the fuel. The reduction of the type NOx catalyst is promoted,
The NOx purge period is shortened. In addition, in the air-fuel ratio range in which the air-fuel ratio that changes under the air-fuel ratio switching control includes the air-fuel ratio in which the reducing agent supplied for NOx reduction is insufficient, the fuel is additionally supplied by the sub-injection means, and the air-fuel ratio in the cylinder is reduced. NOx passes through the air-fuel ratio range including the air-fuel ratio in which the reducing
Emissions are significantly reduced.

【0015】請求項3の発明は、燃料を筒内に直接に供
給する主噴射手段を有した内燃機関の空燃比が空燃比制
御手段により理論空燃比またはリッチ空燃比に制御され
る間、この空燃比制御に係る目標空燃比と所定のリッチ
空燃比との差分に相当する量の燃料が内燃機関の膨張行
程において副噴射手段により筒内に追加供給するものと
なっている。
According to a third aspect of the present invention, while the air-fuel ratio of the internal combustion engine having the main injection means for directly supplying fuel into the cylinder is controlled to the stoichiometric air-fuel ratio or the rich air-fuel ratio by the air-fuel ratio control means, An amount of fuel corresponding to the difference between the target air-fuel ratio related to the air-fuel ratio control and a predetermined rich air-fuel ratio is additionally supplied into the cylinder by the sub-injection means during the expansion stroke of the internal combustion engine.

【0016】この発明によれば、内燃機関が理論空燃比
またはリッチ空燃比で運転されている状態で副噴射手段
により燃料が追加供給されると、筒内の全体空燃比が所
定のリッチ空燃比になり、触媒から放出されたNOxを
十分還元することができ、ひいては触媒の再生が促進さ
れる。しかも、燃料の追加供給が膨張行程で行われるの
で、この燃料供給は機関出力トルクの増大に寄与せず、
従って、トルク変動を来すことなしに触媒再生が行われ
る。
According to the present invention, when fuel is additionally supplied by the sub-injection means while the internal combustion engine is operating at the stoichiometric air-fuel ratio or the rich air-fuel ratio, the overall air-fuel ratio in the cylinder becomes the predetermined rich air-fuel ratio. Thus, NOx released from the catalyst can be sufficiently reduced, and thus regeneration of the catalyst is promoted. Moreover, since the additional supply of fuel is performed during the expansion stroke, this fuel supply does not contribute to an increase in engine output torque,
Therefore, catalyst regeneration is performed without causing torque fluctuation.

【0017】[0017]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づき説明する。図1を参照すると、車両に搭載
された本発明に係る筒内噴射型内燃機関の排気浄化装置
の概略構成図が示されており、以下同図に基づいて本発
明に係る排気浄化装置の構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the accompanying drawings. Referring to FIG. 1, there is shown a schematic configuration diagram of an exhaust purification device of a direct injection internal combustion engine according to the present invention mounted on a vehicle, and the configuration of the exhaust purification device according to the present invention will be described based on the drawing. Will be described.

【0018】同図に示すように、エンジン本体(以下、
単にエンジンという)1としては、例えば、燃料噴射モ
ード(運転モード)を切換えることで吸気行程での燃料
噴射または圧縮行程での燃料噴射(主噴射手段)を実施
可能な筒内噴射型火花点火式直列4気筒ガソリンエンジ
ンが適用される。この筒内噴射型のエンジン1は、容易
にして理論空燃比(ストイキオ)での運転やリッチ空燃
比での運転(リッチ空燃比運転)の他、リーン空燃比で
の運転(リーン空燃比運転)が実現可能とされている。
As shown in FIG.
For example, the in-cylinder injection type spark ignition system 1 is capable of performing fuel injection in an intake stroke or fuel injection in a compression stroke (main injection means) by switching a fuel injection mode (operation mode). An in-line four-cylinder gasoline engine is applied. The in-cylinder injection type engine 1 can be easily operated at a stoichiometric air-fuel ratio (stoichiometric ratio), at a rich air-fuel ratio (rich air-fuel ratio operation), or at a lean air-fuel ratio (lean air-fuel ratio operation). Is feasible.

【0019】同図に示すように、エンジン1のシリンダ
ヘッド2には、各気筒毎に点火プラグ4とともに電磁式
の燃料噴射弁6が取り付けられており、これにより、燃
焼室内に燃料を直接噴射可能とされている。点火プラグ
4には高電圧を出力する点火コイル8が接続されてい
る。また、燃料噴射弁6には、燃料パイプ7を介して燃
料タンクを擁した燃料供給装置(図示せず)が接続され
ている。より詳しくは、燃料供給装置には、低圧燃料ポ
ンプと高圧燃料ポンプとが設けられており、これによ
り、燃料タンク内の燃料を燃料噴射弁6に対し低燃圧或
いは高燃圧で供給し、該燃料を燃料噴射弁6から燃焼室
内に向けて所望の燃圧で噴射可能とされている。この
際、燃料噴射量は高圧燃料ポンプの燃料吐出圧と燃料噴
射弁6の開弁時間、即ち燃料噴射時間Tinjとから決定
される。
As shown in FIG. 1, the cylinder head 2 of the engine 1 is provided with an electromagnetic fuel injection valve 6 together with a spark plug 4 for each cylinder, whereby fuel is directly injected into the combustion chamber. It is possible. An ignition coil 8 that outputs a high voltage is connected to the ignition plug 4. Further, a fuel supply device (not shown) having a fuel tank is connected to the fuel injection valve 6 via a fuel pipe 7. More specifically, the fuel supply device is provided with a low-pressure fuel pump and a high-pressure fuel pump, whereby the fuel in the fuel tank is supplied to the fuel injection valve 6 at a low fuel pressure or a high fuel pressure. From the fuel injection valve 6 into the combustion chamber at a desired fuel pressure. At this time, the fuel injection amount is determined from the fuel discharge pressure of the high-pressure fuel pump and the opening time of the fuel injection valve 6, that is, the fuel injection time Tinj.

【0020】シリンダヘッド2には、各気筒毎に略直立
方向に吸気ポートが形成されており、各吸気ポートと連
通するようにして吸気マニホールド10の一端がそれぞ
れ接続されている。また、シリンダヘッド2には、各気
筒毎に略水平方向に排気ポートが形成されており、各排
気ポートと連通するようにして排気マニホールド12の
一端がそれぞれ接続されている。
An intake port is formed in the cylinder head 2 in a substantially upright direction for each cylinder, and one end of an intake manifold 10 is connected to communicate with each intake port. An exhaust port is formed in the cylinder head 2 in a substantially horizontal direction for each cylinder, and one end of an exhaust manifold 12 is connected to communicate with each exhaust port.

【0021】なお、当該筒内噴射型のエンジン1は既に
公知であり、その構成の詳細についてはここでは説明を
省略する。同図に示すように、吸気マニホールド10に
は排気管(排気通路)14が接続されており、この排気
管14には排気浄化触媒装置20を介してマフラー(図
示せず)が接続されている。また、排気管14にはO2
センサ18が設けられている。該O2センサ18は、排
気中のO2量に基づいて主として燃焼室内の空燃比A/
Fを検出するものである。
The in-cylinder injection type engine 1 is already known, and a detailed description of its configuration is omitted here. As shown in FIG. 1, an exhaust pipe (exhaust passage) 14 is connected to the intake manifold 10, and a muffler (not shown) is connected to the exhaust pipe 14 via an exhaust purification catalyst device 20. . In addition, O 2
A sensor 18 is provided. The O 2 sensor 18 mainly detects the air / fuel ratio A / in the combustion chamber based on the amount of O 2 in the exhaust gas.
F is to be detected.

【0022】排気浄化触媒装置20は、吸蔵型NOx触
媒20aと三元触媒20bとの2つの触媒を備えて構成
されており、三元触媒20bの方が吸蔵型NOx触媒2
0aよりも下流側に配設されている。吸蔵型NOx触媒
20aは、酸化雰囲気においてNOxを一旦吸蔵させ、
主としてCOの存在する還元雰囲気中においてNOxを
2(窒素)等に還元させる機能を持つものである。詳
しくは、吸蔵型NOx触媒20aは、貴金属として白金
(Pt),ロジウム(Rh)等を有した触媒として構成
されており、吸蔵材としてはバリウム(Ba)等のアル
カリ金属、アルカリ土類金属が採用されている。
The exhaust purification catalyst device 20 is provided with two catalysts, that is, a storage NOx catalyst 20a and a three-way catalyst 20b, and the three-way catalyst 20b uses the storage NOx catalyst 2a.
0a is disposed downstream. The storage NOx catalyst 20a temporarily stores NOx in an oxidizing atmosphere,
It has a function of reducing NOx to N 2 (nitrogen) or the like mainly in a reducing atmosphere where CO is present. Specifically, the storage NOx catalyst 20a is configured as a catalyst having platinum (Pt), rhodium (Rh), or the like as a noble metal, and an alkali metal such as barium (Ba) or an alkaline earth metal as a storage material. Has been adopted.

【0023】さらに、入出力装置、記憶装置(ROM、
RAM、不揮発性RAM等)、中央処理装置(CP
U)、タイマカウンタ等を備えたECU(電子コントロ
ールユニット)30が設置されており、このECU30
により、エンジン1を含めた本発明に係る排気浄化装置
の総合的な制御が行われる。ECU30の入力側には、
上述したO2センサ18等の各種センサ類が接続されて
おり、これらセンサ類からの検出情報が入力する。ま
た、入力側には、車両の走行距離を検出する距離計32
も接続されている。
Further, an input / output device, a storage device (ROM,
RAM, nonvolatile RAM, etc.), central processing unit (CP
U), an ECU (electronic control unit) 30 including a timer counter and the like is installed.
Thereby, comprehensive control of the exhaust gas purification apparatus according to the present invention including the engine 1 is performed. On the input side of the ECU 30,
Various sensors such as the above-described O 2 sensor 18 are connected, and detection information from these sensors is input. In addition, a distance meter 32 for detecting the traveling distance of the vehicle is provided on the input side.
Is also connected.

【0024】一方、出力側には、上述の燃料噴射弁6や
点火コイル8等が接続されており、これら燃料噴射弁
6、点火コイル8等には、各種センサ類からの検出情報
に基づき演算された燃料噴射量や点火時期等の最適値が
それぞれ出力される。これにより、燃料噴射弁6から適
正量の燃料が噴射され、点火プラグ4によって適正なタ
イミングで点火が実施される。
On the other hand, the above-mentioned fuel injection valve 6, ignition coil 8 and the like are connected to the output side, and these fuel injection valve 6, ignition coil 8 and the like are operated based on detection information from various sensors. Optimum values such as the determined fuel injection amount and ignition timing are output. As a result, an appropriate amount of fuel is injected from the fuel injection valve 6, and ignition is performed at an appropriate timing by the ignition plug 4.

【0025】次に、上述のように構成された本発明に係
る排気浄化装置の作用を説明する。なお、ここではエン
ジン1が圧縮行程で燃料噴射(主噴射)が行われ且つリ
ーン空燃比運転とされている場合を例に説明する。先ず
一般的な作用について説明する。エンジン1がリーン空
燃比運転とされている場合にはNOxの発生量が増大し
ている。しかしながら、ここでは上記のように吸蔵型N
Ox触媒20aと三元触媒20bとが直列に配設されて
おり、三元触媒20bがNOxを浄化できない分、吸蔵
型NOx触媒20aがNOxを浄化することになる。故に
全体の排ガス浄化特性としてHC,COのみならずNO
xが洩れなく略完全に浄化される。
Next, the operation of the exhaust gas purifying apparatus according to the present invention configured as described above will be described. Here, an example in which the engine 1 performs the fuel injection (main injection) in the compression stroke and is in the lean air-fuel ratio operation will be described. First, the general operation will be described. When the engine 1 is operated at the lean air-fuel ratio, the amount of generated NOx is increasing. However, here, as described above, the storage type N
The Ox catalyst 20a and the three-way catalyst 20b are arranged in series, and the occluded NOx catalyst 20a purifies NOx to the extent that the three-way catalyst 20b cannot purify NOx. Therefore, not only HC and CO but also NO
x is almost completely purified without leakage.

【0026】ところが、吸蔵型NOx触媒20aについ
ては、酸化雰囲気で吸蔵したNOxが飽和量に達すると
NOx吸蔵能力が低下するため、該吸蔵させたNOxを上
述の如く還元雰囲気中においてN2等に還元除去してや
る必要がある。そこで、当該吸蔵型NOx触媒20aを
有した排気浄化装置では、例えば予め設定された所定周
期で目標空燃比(主噴射用空燃比)を小さくし燃料噴射
量(主噴射量)を一旦増量して所定時間に亘りリッチ空
燃比運転を行い(これをリッチスパイクという)、これ
により吸蔵型NOx触媒20a内にCO過剰状態、即ち
還元雰囲気を強制的に生起させ、吸蔵したNOxを放出
し還元除去(NOxパージ)するようにしている。
However, as for the storage type NOx catalyst 20a, when the NOx stored in the oxidizing atmosphere reaches the saturation amount, the NOx storage capacity is reduced. Therefore, the stored NOx is converted to N 2 or the like in the reducing atmosphere as described above. It needs to be reduced and removed. Therefore, in the exhaust gas purifying apparatus having the storage type NOx catalyst 20a, for example, the target air-fuel ratio (main-injection air-fuel ratio) is reduced and the fuel injection amount (main injection amount) is increased once at a predetermined cycle. A rich air-fuel ratio operation is performed for a predetermined time (this is referred to as a rich spike), thereby forcibly generating a CO excess state, that is, a reducing atmosphere, in the occlusion type NOx catalyst 20a, and releasing the stored NOx to reduce and remove it ( (NOx purge).

【0027】実際には、ECU30内のタイマカウンタ
によって上記所定周期が計時され、ECU30により当
該所定周期毎に燃料噴射弁6の開弁時間、即ち燃料噴射
時間Tinjが所定量増大するよう制御される。これによ
り、吸蔵型NOx触媒20aが再生されて常時NOxを浄
化可能な状態に保持され、NOxの浄化が安定して継続
実施されることになる。
Actually, the predetermined period is measured by a timer counter in the ECU 30, and the ECU 30 controls the valve opening time of the fuel injection valve 6, ie, the fuel injection time Tinj, to increase by a predetermined amount at each predetermined period. . As a result, the storage NOx catalyst 20a is regenerated and NOx is constantly maintained in a state capable of purifying NOx, and NOx purification is stably and continuously performed.

【0028】なお、上記所定周期は、通常の運転によっ
て吸蔵型NOx触媒20aに吸蔵されたNOxが飽和量に
達したと推定される時間に基づき予め設定されている
が、その他にも、例えば距離計32によって検出される
車両の走行距離に基づいて推定することもできる。つま
り、所定距離走行したら上記リッチ空燃比運転を行うよ
うにしてもよい。
The predetermined period is set in advance based on the time when it is estimated that the NOx occluded in the occlusion type NOx catalyst 20a has reached the saturation amount during normal operation. It can also be estimated based on the traveling distance of the vehicle detected by the total 32. That is, the rich air-fuel ratio operation may be performed after traveling a predetermined distance.

【0029】ところで、本発明では、上記NOxパージ
する際において、出力トルク変動を抑制することを目的
として目標空燃比をリーン空燃比からリッチ空燃比、及
びリッチ空燃比からリーン空燃比に向けてテーリングさ
せており、さらに、この目標空燃比のテーリングに合わ
せてエンジン1の膨張行程において燃料を燃焼室内に噴
射(副噴射)するようにしている(副噴射手段)。以
下、図2のタイムチャートに基づき、本発明に係る空燃
比切換制御(リッチスパイク制御)について説明する。
ここでは、主として目標空燃比がリーン空燃比からリッ
チ空燃比に切り換わる場合について説明する。
In the present invention, the target air-fuel ratio is tailed from the lean air-fuel ratio to the rich air-fuel ratio and from the rich air-fuel ratio to the lean air-fuel ratio for the purpose of suppressing the fluctuation of the output torque during the NOx purging. Further, the fuel is injected (sub-injection) into the combustion chamber during the expansion stroke of the engine 1 in accordance with the tailing of the target air-fuel ratio (sub-injection means). Hereinafter, the air-fuel ratio switching control (rich spike control) according to the present invention will be described with reference to the time chart of FIG.
Here, the case where the target air-fuel ratio switches from the lean air-fuel ratio to the rich air-fuel ratio will be mainly described.

【0030】上記所定周期が計時されると、図2(a)
に示すように、A時点においてECU30内部で空燃比
切換指令が発せられ(空燃比切換手段)、空燃比モード
(A/Fモード)がリーン空燃比モードからリッチ空燃
比モードに切り換えられる。これにより、目標空燃比
(目標A/F)がリーン空燃比から所定のリッチ空燃比
(例えば、A/F=12)に切り換わることになるので
あるが、このとき、(b)に示すように、目標空燃比は
上述したようにテーリングされて徐々にリッチ空燃比と
される(空燃比切換手段または空燃比制御手段)。な
お、このテーリングの度合(傾き)、即ちテーリング係
数は、予め出力トルク変動が発生しない程度に設定され
たものである。
When the above-mentioned predetermined period is timed, FIG.
As shown in (2), at time A, an air-fuel ratio switching command is issued inside the ECU 30 (air-fuel ratio switching means), and the air-fuel ratio mode (A / F mode) is switched from the lean air-fuel ratio mode to the rich air-fuel ratio mode. As a result, the target air-fuel ratio (target A / F) switches from the lean air-fuel ratio to a predetermined rich air-fuel ratio (for example, A / F = 12). At this time, as shown in FIG. Then, the target air-fuel ratio is tailed as described above and gradually becomes a rich air-fuel ratio (air-fuel ratio switching means or air-fuel ratio control means). The degree (tilt) of the tailing, that is, the tailing coefficient is set in advance to such an extent that the output torque does not fluctuate.

【0031】そして、さらに、このテーリングに合わ
せ、(c)に示すように、エンジン1が膨張行程にある
ときにおいて燃料噴射弁6から燃料が副噴射される。こ
の副噴射では、(d)に示すように、目標空燃比のテー
リングの度合に応じ、全体の空燃比(全A/F)が所定
のリッチ空燃比(例えば、A/F=12)となるように
燃料が噴射される。つまり、当該副噴射では、テーリン
グにより変化する目標空燃比と所定のリッチ空燃比(例
えば、A/F=12)との差分に相当する量の燃料がE
CU30において演算され、この差分に相当する量の燃
料がテーリングにより変化する目標空燃比を補うよう燃
料噴射弁6より噴射される。なお、 全A/FはO2セン
サ18によって常時検出されており、また、この副噴射
の時期は、膨張行程の間であれば任意とされる。
Further, in accordance with the tailing, as shown in (c), when the engine 1 is in the expansion stroke, the fuel is injected from the fuel injection valve 6 in a sub-injection manner. In this sub-injection, as shown in (d), the overall air-fuel ratio (all A / F) becomes a predetermined rich air-fuel ratio (for example, A / F = 12) according to the degree of tailing of the target air-fuel ratio. Fuel is injected as follows. That is, in the sub-injection, the amount of fuel corresponding to the difference between the target air-fuel ratio changed by tailing and a predetermined rich air-fuel ratio (for example, A / F = 12) is equal to E.
The CU 30 calculates the amount of fuel, and the amount of fuel corresponding to the difference is injected from the fuel injection valve 6 so as to supplement the target air-fuel ratio that changes due to tailing. Note that the total A / F is constantly detected by the O 2 sensor 18, and the timing of this sub-injection is arbitrary during the expansion stroke.

【0032】このように空燃比切換時に膨張行程におい
て最終的に全A/Fが所定のリッチ空燃比(例えば、A
/F=12)となるよう副噴射が行われると、副噴射さ
れた燃料の一部が燃焼室内の残存O2の存在によって燃
焼するものの、燃料過剰状態であるために、副噴射を行
わない通常の主噴射の噴射量を増量した場合と同様にH
CやCOが多く排出される。
As described above, at the time of switching the air-fuel ratio, all the A / Fs finally become the predetermined rich air-fuel ratio (for example, A
/ F = 12), the sub-injection is not performed because a part of the sub-injected fuel burns due to the presence of residual O 2 in the combustion chamber, but is in an excessive fuel state. As in the case where the injection amount of the normal main injection is increased, H
Large amounts of C and CO are emitted.

【0033】つまり、副噴射を行うことにより、空燃比
切換指令が発せられたA時点からすぐにNOxの還元に
必要なCOが吸蔵型NOx触媒20aに供給され始める
ことになり、NOxパージが遅れなく速やかに開始され
ることになる。このようにNOxパージが遅れなく開始
されると、結果としてNOxパージの実施期間を短くで
きることになり、これにより、NOxパージが内燃機関
の通常の運転状態に与える影響を極力少なく抑えること
ができる。
That is, by performing the sub-injection, the CO required for NOx reduction starts to be supplied to the storage NOx catalyst 20a immediately after the point A at which the air-fuel ratio switching command is issued, and the NOx purge is delayed. It will be started immediately without any. If the NOx purge is started without delay as described above, the execution period of the NOx purge can be shortened as a result, whereby the influence of the NOx purge on the normal operation state of the internal combustion engine can be suppressed as small as possible.

【0034】ところで、このように膨張行程において副
噴射を行う場合には、該副噴射はピストンが下降を開始
した後に燃料を追加供給することになるため、(e)に
示すように、その燃焼は筒内圧Pe、即ちエンジン1の
出力トルクに殆ど寄与することなく行われることにな
る。従って、副噴射によってエンジン1の出力トルクが
不用意に変動することはない。
When the sub-injection is performed in the expansion stroke as described above, the sub-injection additionally supplies fuel after the piston starts descending, and as shown in FIG. Is performed without substantially contributing to the in-cylinder pressure Pe, that is, the output torque of the engine 1. Therefore, the output torque of the engine 1 does not fluctuate carelessly due to the sub-injection.

【0035】また、このように副噴射すると、瞬時にし
て全A/Fが所定のリッチ空燃比(例えば、A/F=1
2)となるので、空燃比がNOxが最も多く発生する空
燃比(A/F=16近傍)及び吸蔵されたNOxを放出
するが十分に還元できない空燃比( A/F=14.5
近傍)に滞留することがなく、故に、(f)に示すよう
に、空燃比切換時にNOx量の変動、即ちNOxスパイク
が発生することがなく、NOxが不用意に大気中に排出
されることもない。もっとも、NOxパージが実施され
ている間にはエンジン1から排出されるNOxを吸蔵型
NOx触媒20aで処理することはできないことになる
のであるが、この間は上述のように確実に空燃比がリッ
チ空燃比とされることになるので、NOxは三元触媒2
0bによって良好に浄化処理されることとなる。
When the sub-injection is performed in this manner, all the A / Fs instantaneously change to a predetermined rich air-fuel ratio (for example, A / F = 1).
2), the air-fuel ratio is the air-fuel ratio at which NOx is generated most (A / F = around 16) and the air-fuel ratio that releases the stored NOx but cannot reduce it sufficiently (A / F = 14.5)
(NO), and therefore, as shown in (f), the NOx amount does not fluctuate when the air-fuel ratio is switched, that is, NOx spike does not occur, and NOx is inadvertently discharged into the atmosphere. Nor. However, while the NOx purge is being performed, the NOx exhausted from the engine 1 cannot be processed by the storage NOx catalyst 20a, but during this time the air-fuel ratio is surely rich as described above. Since it is assumed that the air-fuel ratio is set, the three-way catalyst 2
By 0b, the purification process is favorably performed.

【0036】つまり、本発明に係る筒内噴射型内燃機関
の排気浄化装置にあっては、吸蔵型NOx触媒20aの
NOxパージを行う際、該NOxパージをエンジン1の出
力変動なく空燃比切換指令が発せられた直後からすぐに
良好に実施することができ、故に車両の乗員にトルクシ
ョック等の違和感を与えないようにしながら、NOxパ
ージ時をも含め常に良好にNOxの排出を抑えることが
可能となる。
That is, in the exhaust gas purifying apparatus for a direct injection type internal combustion engine according to the present invention, when the NOx purge of the storage type NOx catalyst 20a is performed, the NOx purge is executed without changing the output of the engine 1 without changing the air-fuel ratio. Immediately after the issuance of the vehicle, the NOx emission can always be satisfactorily suppressed even when purging the NOx, while preventing the occupants of the vehicle from feeling uncomfortable such as torque shock. Becomes

【0037】なお、目標空燃比が所定のリッチ空燃比
(例えば、A/F=12)となってNOxパージが実施
された後所定期間が経過すると、目標空燃比は今度は空
燃比切換指令が停止されるまで所定のリッチ空燃比から
リーン空燃比に向けてテーリングすることになり、この
場合においても上記同様にして副噴射が行われることと
なる。
When a predetermined period elapses after the target air-fuel ratio has become a predetermined rich air-fuel ratio (for example, A / F = 12) and the NOx purge has been performed, the target air-fuel ratio is changed to an air-fuel ratio switching command. Until the engine is stopped, tailing is performed from a predetermined rich air-fuel ratio toward a lean air-fuel ratio. In this case, the sub-injection is performed in the same manner as described above.

【0038】ところで、最近ではHCをCOに変換し易
い触媒が開発されており、図3に示すように、このよう
な触媒20cを吸蔵型NOx触媒20aの上流に設ける
ことでさらに良好な効果が得られる。このHCをCOに
変換し易い触媒としては、例えば特開平6−22114
0号公報に開示されているものがある。以下、当該HC
をCOに変換し易い触媒20cを用いた場合の作用及び
効果について説明する。
By the way, recently, a catalyst which easily converts HC into CO has been developed. As shown in FIG. 3, by providing such a catalyst 20c upstream of the occlusion type NOx catalyst 20a, a better effect can be obtained. can get. Examples of the catalyst that easily converts HC into CO include, for example, JP-A-6-22114.
No. 0 discloses this. Hereinafter, the HC
The operation and effect when the catalyst 20c that easily converts CO into CO will be described.

【0039】膨張行程で副噴射を行う際に当該副噴射を
膨張行程の後半に実施するようにすると、噴射された燃
料は排気行程が近いことからその殆どが燃焼に至らずに
未燃燃料、即ちHCのままに排出されることになる。こ
のとき、触媒20cがHCをCOに変換し易い触媒であ
ると、当該燃焼せずエンジン1から排出されたHCはそ
の殆どがCOに変換されることになる。そして、このよ
うに変換されたCOは、吸蔵型NOx触媒20aにおい
てNOxパージに良好に使用されることになる。
When the sub-injection is performed in the latter half of the expansion stroke when performing the sub-injection in the expansion stroke, most of the injected fuel is unburned fuel without being burned because the exhaust stroke is close. That is, it is discharged as HC. At this time, if the catalyst 20c is a catalyst that easily converts HC into CO, most of the HC discharged from the engine 1 without being burned is converted into CO. Then, the CO thus converted is favorably used for NOx purging in the storage NOx catalyst 20a.

【0040】つまり、当該COを発生し易い触媒を用い
且つ副噴射を膨張行程の後半に実施するようにすると、
主噴射のみでリーン空燃比からリッチ空燃比に空燃比切
換した場合や上記実施形態のように副噴射を行った場合
よりも多くのCOを存在させてNOxパージを実施で
き、吸蔵型NOx触媒20aに吸蔵されたNOxを早期に
して略完全に還元除去するようにできる。故に、NOx
パージの時間を極力短縮することができ、NOxパージ
がエンジン1の本来の運転状態に与える影響をより一層
少なくすることができることになる。
That is, if a catalyst that easily generates CO is used and the sub-injection is performed in the latter half of the expansion stroke,
The NOx purge can be performed with more CO present than when the air-fuel ratio is switched from the lean air-fuel ratio to the rich air-fuel ratio only with the main injection or when the sub-injection is performed as in the above-described embodiment. NOx occluded in the tank can be reduced and removed almost completely at an early stage. Therefore, NOx
The purge time can be reduced as much as possible, and the influence of the NOx purge on the original operating state of the engine 1 can be further reduced.

【0041】なお、上記実施形態では、NOxパージ時
の空燃比を所定のリッチ空燃比(例えば、A/F=1
2)としたが、該所定のリッチ空燃比を必要に応じて変
化させるようにしてもよい。また、上記実施形態では、
副噴射量をテーリングにより変化する目標空燃比と所定
のリッチ空燃比との差分に相当する燃料量としたが、該
燃料量をエンジン回転速度、筒内圧Pe、A/N、エン
ジン冷却水温、吸気温、触媒温度、排気温等に応じて補
正するようにしてもよい。これにより、より一層良好に
NOxパージを行うことができる。
In the above embodiment, the air-fuel ratio at the time of NOx purge is set to a predetermined rich air-fuel ratio (for example, A / F = 1).
Although 2) has been described, the predetermined rich air-fuel ratio may be changed as necessary. In the above embodiment,
Although the sub-injection amount is a fuel amount corresponding to a difference between a target air-fuel ratio that changes by tailing and a predetermined rich air-fuel ratio, the fuel amount is defined as an engine speed, an in-cylinder pressure Pe, A / N, an engine cooling water temperature, and an intake air amount. The correction may be made according to the air temperature, the catalyst temperature, the exhaust gas temperature, or the like. Thereby, the NOx purge can be performed even more favorably.

【0042】また、上記実施形態では、リーン空燃比運
転時においてNOxパージを行い、副噴射を実施するよ
うにしたが、理論空燃比運転時やリッチ空燃比運転時に
おいてNOxパージを行ってもよく、これに併せて副噴
射を実施するようにしてもよい。また、上記実施形態で
は、吸蔵型NOx触媒20aに吸蔵されたNOxのパージ
に関してのみ言及したが、さらに、本発明を吸蔵型NO
x触媒20aに吸蔵されるSOxのパージ時に適用するこ
ともできる。つまり、SOxのパージは、吸蔵型NOx触
媒20aに吸蔵されたSOx量を推定し、該SOx量が所
定量を超えたときに電気ヒータ等で触媒温度を上昇させ
て空燃比をリーン空燃比からリッチ空燃比に切り換える
ものであるが、この空燃比切換の際に上記同様の副噴射
を実施するようにしてもよい。
In the above-described embodiment, the NOx purge is performed during the lean air-fuel ratio operation and the sub-injection is performed. However, the NOx purge may be performed during the stoichiometric air-fuel ratio operation or the rich air-fuel ratio operation. The sub-injection may be performed in conjunction with this. Further, in the above embodiment, only the purging of the NOx stored in the storage NOx catalyst 20a has been described.
It can also be applied at the time of purging SOx stored in the x catalyst 20a. In other words, the SOx purge estimates the amount of SOx stored in the storage type NOx catalyst 20a, and when the SOx amount exceeds a predetermined amount, raises the catalyst temperature with an electric heater or the like to increase the air-fuel ratio from the lean air-fuel ratio. Although the air-fuel ratio is switched to the rich air-fuel ratio, the same sub-injection as described above may be performed when the air-fuel ratio is switched.

【0043】これにより、SOxのパージの際において
も、エンジン1の出力トルク変動を抑止でき、所謂NO
xスパイクを防止して不用意にNOxを排出しないように
できる。また、上記実施形態では、1本の噴射弁で主噴
射と副噴射とを実施するようにしているが、主噴射用と
副噴射用の噴射弁をそれぞれ設け、主噴射及び副噴射を
当該それぞれの噴射弁で実施するようにしてもよい。
Thus, even when purging SOx, fluctuations in the output torque of the engine 1 can be suppressed.
It is possible to prevent x-spikes and prevent inadvertent emission of NOx. In the above embodiment, the main injection and the sub-injection are performed by one injection valve. However, the main injection and the sub-injection injection valves are provided, and the main injection and the sub-injection are respectively performed. The injection valve may be used.

【0044】[0044]

【発明の効果】以上詳細に説明したように、本発明の請
求項1及び2の筒内噴射型内燃機関の排気浄化装置によ
れば、触媒再生に係る空燃比切換えに際して空燃比を徐
々に変化させると共に副噴射手段により燃料を追加供給
するので、機関出力トルクの変動を来すことなしに触媒
再生を短期間で実施できる。しかも、NOxが多量に発
生する空燃比またはNOxの還元に供し得る還元剤が少
なくなる空燃比を含む空燃比域において上記燃料の追加
供給を行うので、NOx排出量を低減できる。
As described above in detail, according to the exhaust gas purifying apparatus for a direct injection type internal combustion engine of the first and second aspects of the present invention, the air-fuel ratio is gradually changed when the air-fuel ratio is switched in the regeneration of the catalyst. In addition, since the fuel is additionally supplied by the sub-injection means, the regeneration of the catalyst can be performed in a short period of time without fluctuation of the engine output torque. In addition, since the additional fuel is supplied in an air-fuel ratio range including an air-fuel ratio in which a large amount of NOx is generated or an air-fuel ratio in which a reducing agent capable of reducing NOx is reduced, the amount of NOx emission can be reduced.

【0045】また、請求項3の発明では、理論空燃比ま
たはリッチ空燃比への制御中にこの空燃比制御に係る目
標空燃比と所定のリッチ空燃比との差分に相当する量の
燃料を副噴射手段により膨張行程で追加供給するので、
機関出力トルクを増大させることなしに空燃比をリッチ
化して触媒からのNOxの放出およびNOxの還元を促
進することができ、従って、トルク変動なしに触媒を再
生できる。
According to the third aspect of the invention, during the control to the stoichiometric air-fuel ratio or the rich air-fuel ratio, the amount of fuel corresponding to the difference between the target air-fuel ratio related to the air-fuel ratio control and the predetermined rich air-fuel ratio is reduced. Since it is additionally supplied in the expansion stroke by the injection means,
The air-fuel ratio can be enriched without increasing the engine output torque to promote the release of NOx from the catalyst and the reduction of NOx, and therefore the catalyst can be regenerated without torque fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る筒内噴射型内燃機関の排気浄化装
置を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an exhaust gas purification device for a direct injection internal combustion engine according to the present invention.

【図2】本発明に係るリッチスパイク制御を行いNOx
パージを実施したときの目標A/F及び副噴射量と全A
/Fとの関係並びに効果を示すタイムチャートである。
FIG. 2 is a graph showing that the rich spike control according to the present invention is performed to perform NOx.
Target A / F and sub-injection amount when purging is performed and total A
6 is a time chart showing a relationship with / F and effects.

【図3】吸蔵型NOx触媒の上流にHCをCOに変換し
易い触媒を設けた場合の排気浄化装置を示す概略構成図
である。
FIG. 3 is a schematic configuration diagram showing an exhaust gas purification device in a case where a catalyst that easily converts HC into CO is provided upstream of a storage NOx catalyst.

【符号の説明】[Explanation of symbols]

1 エンジン本体(筒内噴射型内燃機関) 6 燃料噴射弁 14 排気管(排気通路) 18 O2センサ 20a 吸蔵型NOx触媒 20b 三元触媒 20c 触媒 30 電子制御ユニット(ECU)DESCRIPTION OF SYMBOLS 1 Engine body (in-cylinder injection type internal combustion engine) 6 Fuel injection valve 14 Exhaust pipe (exhaust passage) 18 O 2 sensor 20a Storage type NOx catalyst 20b Three-way catalyst 20c Catalyst 30 Electronic control unit (ECU)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/24 R 3/20 3/28 301C 3/24 F02D 41/02 301A 3/28 301 B01D 53/36 ZAB F02D 41/02 301 101B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/08 F01N 3/24 R 3/20 3/28 301C 3/24 F02D 41/02 301A 3/28 301 B01D 53/36 ZAB F02D 41/02 301 101B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配設され、前記内
燃機関がリーン空燃比運転状態にあるとき排気中のNO
xを吸蔵させ、理論空燃比運転またはリッチ空燃比運転
状態にあるとき前記吸蔵させたNOxを還元する吸蔵型
NOx触媒と、 機関運転状態に基づき前記内燃機関の吸気行程及び圧縮
行程のいずれかにおいて燃料を直接筒内に供給する主噴
射手段と、 前記吸蔵型NOx触媒の再生時に、前記内燃機関の空燃
比を前記リーン空燃比と前記理論空燃比または前記リッ
チ空燃比との間で徐々に変化させるように制御する空燃
比切換手段と、 前記空燃比切換手段による空燃比の制御中に、NOxが
多量に発生する空燃比を含む空燃比域において燃料を前
記筒内に追加供給する副噴射手段と、 を備えたことを特徴とする筒内噴射型内燃機関の排気浄
化装置。
1. An exhaust passage disposed in an exhaust passage of an internal combustion engine, the NO in the exhaust when the internal combustion engine is in a lean air-fuel ratio operating state.
a storage type NOx catalyst that stores x and reduces the stored NOx when in a stoichiometric air-fuel ratio operation or a rich air-fuel ratio operation state; and in any one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operation state. Main injection means for directly supplying fuel into the cylinder; and, during regeneration of the storage NOx catalyst, gradually changing the air-fuel ratio of the internal combustion engine between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio. Air-fuel ratio switching means for controlling the air-fuel ratio, and sub-injection means for additionally supplying fuel into the cylinder in an air-fuel ratio range including an air-fuel ratio where a large amount of NOx is generated during the air-fuel ratio control by the air-fuel ratio switching means. An exhaust purification device for a direct injection internal combustion engine, comprising:
【請求項2】 内燃機関の排気通路に配設され、前記内
燃機関がリーン空燃比運転状態にあるとき排気中のNO
xを吸蔵させ、理論空燃比運転またはリッチ空燃比運転
状態にあるとき前記吸蔵させたNOxを還元する吸蔵型
NOx触媒と、 機関運転状態に基づき前記内燃機関の吸気行程及び圧縮
行程のいずれかにおいて燃料を直接筒内に供給する主噴
射手段と、 前記吸蔵型NOx触媒の再生時に、前記内燃機関の空燃
比を前記リーン空燃比と前記理論空燃比または前記リッ
チ空燃比との間で徐々に変化させるように制御する空燃
比切換手段と、 前記空燃比切換手段による空燃比の制御中に、前記吸蔵
型NOx触媒から前記吸蔵させたNOxが放出されるが
還元剤が少なく十分に還元できない空燃比を含む空燃比
域において燃料を前記筒内に追加供給する副噴射手段
と、 を備えたことを特徴とする筒内噴射型内燃機関の排気浄
化装置。
2. An exhaust gas passage disposed in an exhaust passage of an internal combustion engine, the NOx being exhausted when the internal combustion engine is in a lean air-fuel ratio operating state.
a storage type NOx catalyst that stores x and reduces the stored NOx when in a stoichiometric air-fuel ratio operation or a rich air-fuel ratio operation state; and in any one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operation state. Main injection means for directly supplying fuel into the cylinder; and, during regeneration of the storage NOx catalyst, gradually changing the air-fuel ratio of the internal combustion engine between the lean air-fuel ratio and the stoichiometric air-fuel ratio or the rich air-fuel ratio. Air-fuel ratio switching means for controlling the air-fuel ratio; and controlling the air-fuel ratio by the air-fuel ratio switching means, wherein the stored NOx is released from the storage-type NOx catalyst, but the reducing agent is small and cannot be sufficiently reduced. And an auxiliary injection means for additionally supplying fuel into the cylinder in an air-fuel ratio range including:
【請求項3】 内燃機関の排気通路に配設され、前記内
燃機関がリーン空燃比運転状態にあるとき排気中のNO
xを吸蔵させ、理論空燃比運転またはリッチ空燃比運転
状態にあるとき前記吸蔵させたNOxを還元する吸蔵型
NOx触媒と、 機関運転状態に基づき前記内燃機関の吸気行程及び圧縮
行程のいずれかにおいて燃料を直接筒内に供給する主噴
射手段と、 機関運転状態に基づき、前記内燃機関の空燃比を前記理
論空燃比または前記リッチ空燃比に制御する空燃比制御
手段と、 前記空燃比制御手段による空燃比の制御中に、前記空燃
比制御手段により制御された目標空燃比と所定のリッチ
空燃比との差分に相当する量の燃料を前記内燃機関の膨
張行程において前記筒内に追加供給する副噴射手段と、 を備えたことを特徴とする筒内噴射型内燃機関の排気浄
化装置。
3. An exhaust passage disposed in an exhaust passage of the internal combustion engine, the NO in the exhaust when the internal combustion engine is in a lean air-fuel ratio operating state.
a storage type NOx catalyst that stores x and reduces the stored NOx when in a stoichiometric air-fuel ratio operation or a rich air-fuel ratio operation state; and in any one of an intake stroke and a compression stroke of the internal combustion engine based on an engine operation state. Main injection means for supplying fuel directly into the cylinder, air-fuel ratio control means for controlling the air-fuel ratio of the internal combustion engine to the stoichiometric air-fuel ratio or the rich air-fuel ratio based on the engine operating state, and the air-fuel ratio control means During the control of the air-fuel ratio, an auxiliary fuel is additionally supplied into the cylinder during the expansion stroke of the internal combustion engine with an amount of fuel corresponding to the difference between the target air-fuel ratio controlled by the air-fuel ratio control means and a predetermined rich air-fuel ratio. An exhaust purification device for a direct injection internal combustion engine, comprising: an injection unit.
JP2000213996A 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine Expired - Fee Related JP3582582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213996A JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP02569398A JP3334592B2 (en) 1998-02-06 1998-02-06 Exhaust gas purification device for in-cylinder injection internal combustion engine
JP2000213996A JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02569398A Division JP3334592B2 (en) 1998-02-06 1998-02-06 Exhaust gas purification device for in-cylinder injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001059440A true JP2001059440A (en) 2001-03-06
JP3582582B2 JP3582582B2 (en) 2004-10-27

Family

ID=33436365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213996A Expired - Fee Related JP3582582B2 (en) 1998-02-06 2000-07-14 Exhaust purification system for in-cylinder injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3582582B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792751B2 (en) 2001-10-12 2004-09-21 Nissan Motor Co., Ltd. Exhaust gas purification device and method for diesel engine
WO2004097200A1 (en) * 2003-04-30 2004-11-11 Hitachi, Ltd. Internal combustin engine control device
KR100482050B1 (en) * 2001-11-07 2005-04-13 현대자동차주식회사 Method for exhaust gas reduction controlling after cold-start of engine in vehicle
JP2007278070A (en) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd Internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6792751B2 (en) 2001-10-12 2004-09-21 Nissan Motor Co., Ltd. Exhaust gas purification device and method for diesel engine
KR100482050B1 (en) * 2001-11-07 2005-04-13 현대자동차주식회사 Method for exhaust gas reduction controlling after cold-start of engine in vehicle
WO2004097200A1 (en) * 2003-04-30 2004-11-11 Hitachi, Ltd. Internal combustin engine control device
US7246486B2 (en) 2003-04-30 2007-07-24 Hitachi, Ltd. Combination of selected opioids with other active substances for use in the therapy of urinary incontinence
JP2007278070A (en) * 2006-04-03 2007-10-25 Nissan Motor Co Ltd Internal combustion engine
JP4730175B2 (en) * 2006-04-03 2011-07-20 日産自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP3582582B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
EP1067277B1 (en) Exhaust emission control device for internal combustion engines
EP1065351B1 (en) Exhaust gas purifying apparatus of internal combustion engine
JP3446815B2 (en) Exhaust gas purification device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP3584798B2 (en) Exhaust gas purification device for in-vehicle internal combustion engine
JP3582582B2 (en) Exhaust purification system for in-cylinder injection internal combustion engine
JP3334592B2 (en) Exhaust gas purification device for in-cylinder injection internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP4492776B2 (en) Exhaust gas purification device for internal combustion engine
US11028757B2 (en) Exhaust purification system of internal combustion engine
JP3747693B2 (en) Exhaust gas purification device for internal combustion engine
JP3539286B2 (en) Exhaust gas purification device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP4492414B2 (en) Control device for internal combustion engine
JP3661464B2 (en) Exhaust gas purification device for internal combustion engine
JP2001304016A (en) Exhaust emission control device for internal combustion engine
JP4061817B2 (en) Exhaust gas purification device for internal combustion engine
JP3334636B2 (en) Exhaust gas purification device for internal combustion engine
JP3661461B2 (en) Exhaust gas purification device for internal combustion engine
JP3334634B2 (en) Exhaust gas purification device for internal combustion engine
JP2000080914A (en) Internal combustion engine
JP3972620B2 (en) Exhaust gas purification device for internal combustion engine
JP4867694B2 (en) Engine exhaust purification system
JP3468139B2 (en) Exhaust gas purification device for internal combustion engine
JP2000153132A (en) Exhaust gas purifying apparatus of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040720

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees