JP3820990B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3820990B2
JP3820990B2 JP2002000806A JP2002000806A JP3820990B2 JP 3820990 B2 JP3820990 B2 JP 3820990B2 JP 2002000806 A JP2002000806 A JP 2002000806A JP 2002000806 A JP2002000806 A JP 2002000806A JP 3820990 B2 JP3820990 B2 JP 3820990B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust
nox
enrichment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002000806A
Other languages
Japanese (ja)
Other versions
JP2003201890A (en
Inventor
靖久 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002000806A priority Critical patent/JP3820990B2/en
Publication of JP2003201890A publication Critical patent/JP2003201890A/en
Application granted granted Critical
Publication of JP3820990B2 publication Critical patent/JP3820990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、特に、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒を備えるものに関する。
【0002】
【従来の技術】
従来の技術として、特許第2600492号公報に、機関の排気通路に、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒を配置し、このNOxトラップ触媒の還元浄化時期に排気空燃比をリッチにしてNOxの浄化を行う技術が開示されている。
【0003】
【発明が解決しようとする課題】
上記従来の技術において、NOxトラップ触媒でのNOxの還元浄化は、排気空燃比をリッチ化すること、すなわち、還元剤としてのHC、COをNOxトラップ触媒へ供給し、それらとNOxとが還元雰囲気で反応することにより行われる。
【0004】
しかしながら、排気空燃比がリッチであっても排気中に酸素が存在する場合がある。排気中に酸素が存在する場合、先にHC、COの酸化反応で酸素を消費して触媒近傍に還元雰囲気を作り出さないと、還元雰囲気におけるNOxと還元剤(HC、CO)との反応が起こらない。このため、同じリッチ状態(同一の排気空燃比)でも排気中の酸素量が大きいほど、HC、COとNOxとの還元反応が起こり難くなる。
【0005】
従って、NOxトラップ触媒の活性状態が悪いとき、すなわちNOxトラップ触媒の担体温度が低いときに、排気中に酸素が存在すると、NOxトラップ触媒でNOxを十分に浄化できなくなる。
つまり、上記従来の技術では、NOxを還元浄化するリッチ状態において排気中の酸素の存在を考慮していないため、NOxトラップ触媒の温度が低いときには、NOxを十分に浄化できず排気を悪化させるといった問題点があった。
【0006】
本発明は、このような従来の問題点を解決することのできる内燃機関の排気浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明では、機関の排気通路に配置され、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒と、前記NOxトラップ触媒の還元浄化時期を判定する還元浄化時期判定手段と、前記還元浄化時期に、排気空燃比をリッチにする第1空燃比リッチ化方法と、排気中の酸素量を前記第1空燃比リッチ化方法より小さくすると共に排気空燃比をリッチにする第2空燃比リッチ化方法とを選択的に切換可能であり、前記NOxトラップ触媒の温度が高いときに前記第1空燃比リッチ化方法を選択し、前記NOxトラップ触媒の温度が低いときに前記第2空燃比リッチ化方法を選択する空燃比リッチ化手段と、を備えることを特徴とする。
【0008】
請求項2の発明では、排気空燃比をリッチにする目標リッチ空燃比を設定する目標リッチ空燃比設定手段を備え、前記空燃比リッチ化手段は、排気空燃比をリッチにする際、前記第1空燃比リッチ化方法及び第2空燃比リッチ化方法のいずれにおいても、排気空燃比を前記目標リッチ空燃比設定手段による同じ目標リッチ空燃比にすることを特徴とする。
請求項3の発明では、前記空燃比リッチ化手段は、前記NOxトラップ触媒の温度を直接検出、又は排気温度、触媒近傍温度、機関の運転状態のうち少なくとも1つに基づいて推定する手段を備えることを特徴とする。
【0009】
請求項4の発明では、機関の排気通路から排気の一部を吸気通路に還流するEGR通路に配置されたEGR弁と、機関の吸気通路に配置された吸気絞り弁と、を備え、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともEGR弁で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする。
【0010】
請求項5の発明では、メイン噴射の後に少量の燃料を噴射するポスト噴射を可能とする燃料噴射装置と、機関の吸気通路に配置された吸気絞り弁と、を構え、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする。
【0011】
【発明の効果】
請求項1の発明によれば、NOxトラップ触媒のリッチスパイクによる還元浄化を行う際に、NOxトラップ触媒の温度が低いときは、NOx浄化率が低いため、リッチスパイク時の排気中に酸素量が多いとNOxを十分に還元浄化できなくなるおそれがあることから、排気中の酸素量を小さくすることのできる空燃比リッチ化方法で排気空燃比をリッチ化することにより、触媒の活性が低くてもNOx浄化性能を維持することが可能となる。
【0012】
請求項2の発明によれば、いずれの空燃比リッチ化方法においても、排気空燃比を同じ設定手段による同じ目標リッチ空燃比にすることにより、排気空燃比の変動を防止して、NOx、HC、CO等のエミッションの変動を抑制することが可能となる。
請求項3の発明によれば、NOxトラップ触媒の温度を直接検出、又は推定する手段を備えることで、NOxトラップ触媒の温度に依存するNOx浄化率を正確に把握することができる。
【0013】
請求項4の発明によれば、通常のリッチスパイクを行うときにEGRを行いつつ排気空燃比をリッチ化している場合、リッチスパイク時に排気中の酸素量を小さくするときは、EGRを中止して、吸気絞り弁で排気空燃比をリッチ化することで、燃焼で消費されるべき酸素を全てを燃焼させることができ、排気中の酸素量を確実に低減できる。
【0014】
請求項5の発明によれば、通常のリッチスパイクを行うときにポスト噴射により排気空燃比をリッチ化している場合、リッチスパイク時に排気中の酸素量を小さくするときは、ポスト噴射を中止又は低減して、吸気絞り弁で排気空燃比をリッチ化することで、排気中の酸素量を確実に低減できる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関(ここではディーゼルエンジン)のシステム図である。
ディーゼルエンジン1の吸気通路2には可変ノズル型のターボチャージャ3の吸気コンプレッサが備えられ、吸入空気は吸気コンプレッサによって過給され、インタークーラ4で冷却され、吸気絞り弁5を通過した後、コレクタ6を経て、各気筒の燃焼室内へ流入する。燃料は、コモンレール式燃料噴射装置により、すなわち、高圧燃料ポンプ7により高圧化されてコモンレール8に送られ、各気筒の燃料噴射弁9から燃焼室内へ直接噴射される。燃焼室内に流入した空気と噴射された燃料はここで圧縮着火により燃焼し、排気は排気通路10へ流出する。
【0016】
排気通路10へ流出した排気の一部は、EGRガスとして、EGR通路11によりEGR弁12を介して吸気側へ還流される。排気の残りは、可変ノズル型のターボチャージャ3の排気タービンを通り、これを駆動する。
ここで、排気通路10の排気タービン下流には、排気浄化のため、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒13を配置してある。また、このNOxトラップ触媒13には、貴金属を担持させて、排気中のHC、COを酸化する機能を持たせ、酸化機能付きNOxトラップ触媒としてある。
【0017】
コントロールユニット20には、エンジン1の制御のため、エンジン回転数Ne検出用の回転数センサ21、アクセル開度APO検出用のアクセル開度センサ22、吸入空気量Qa検出用のエアフローメータ23から、信号が入力されている。
また、NOxトラップ触媒13の温度(触媒温度)Tcを検出する触媒温度センサ24、排気通路10のNOxトラップ触媒13の出口側にて排気空燃比を検出する空燃比センサ25が設けられ、これらの信号もコントロールユニット20に入力されている。但し、NOxトラップ触媒13の温度は、NOxトラップ触媒13の出口側に排気温度センサを設けて、その信号に基づいて間接的に検出(推定)するようにしてもよいし、これ以外の触媒近傍温度から推定したり、あるいはエンジンの運転状態から推定するようにしてもよい。
【0018】
コントロールユニット20は、これらの入力信号に基づいて、燃料噴射弁9によるメイン噴射及び所定の運転条件においてメイン噴射後(膨張行程又は排気行程)に行うポスト噴射の燃料噴射量及び噴射時期制御のための燃料噴射弁9への燃料噴射指令信号、吸気絞り弁5への開度指令信号、EGR弁12への開度指令信号等を出力する。
【0019】
ここにおいて、コントロールユニット20では、NOxトラップ触媒13にトラップされて堆積したNOxの還元浄化のための排気浄化制御を行うようにしており、かかる排気浄化制御について、以下に詳細に説明する。
図2〜図3はコントロールユニット20にて実行される排気浄化制御のフローチャートである。
【0020】
S1−1では、回転数センサ、アクセル開度センサ、エアフローメータ、触媒温度センサからの信号に基づいて、エンジン回転数Ne、アクセル開度APO、吸入空気量Qa、触媒温度Tcを検出する。
S1−2では、エンジン回転数Neとアクセル開度APOとをパラメータとするマップを参照するなどして、メイン噴射用の燃料噴射量Qfを演算する。
【0021】
S1−3では、NOxトラップ触媒にトラップされて堆積したNOx堆積量を検出する。但し、NOx堆積量を直接検出することは難しいので、エンジン回転数Neと燃料噴射量Qfとから単位時間当たりのNOx発生量を予測し、トラップ率を考慮して、単位時間当たりのNOx堆積量を求め、これを積算することで、間接的に検出する。又は、エンジン回転数の積算値から、NOx堆積量を推定するようにしてもよい。
【0022】
S1−4では、触媒活性時のリッチスパイクモード中であることを示すreg1フラグが立っているか否かを判定する。reg1フラグ=1の場合は、S2−1以降(図3)の触媒活性時のリッチスパイクモードの制御へ進む。
S1−5では、触媒活性が低い時のリッチスパイクモード中であることを示すreg2フラグが立っているか否かを判定する。reg2フラグ=1の場合は、S3−1以降(図3)の触媒活性が低い時のリッチスパイクモードの制御へ進む。
【0023】
S1−6では、NOxトラップ触媒の再生時期(還元浄化時期)か否かの判定のため、S1−3で検出したNOx堆積量が所定値NOx1より大きくなったか否かを判定する。
NOx堆積量が所定値NOx1以下であれば、再生時期ではないので、処理を終了し、NOx堆積量が所定値NOx1を超えていれば、再生時期と判断して、S1−7へ進む。
【0024】
S1−7では、NOxトラップ触媒の活性を判断する。ここで、図4に示すように、触媒のNOx浄化性能はライトオフ温度T2から発現し始めるが未だ十分ではないので、NOx浄化率が十分に大きくなる温度T1より高くなれば、活性していると判断する。T1〜T2の間は活性が低いと判断し、T2より低い温度では活性がないと判断する。
【0025】
このため、S1−7では、触媒温度TcがT1を超えているか否かを判断し、Tc>T1の場合に、S1−8で、触媒が活性していると判断して、触媒活性時のリッチスパイクモードに入るため、reg1フラグを1とする。
Tc≦T1の場合は、S1−9で、触媒温度TcがT2を超えているか否か、すなわち触媒温度TcがT1〜T2の間にあるか否かを判断し、Tc>T2の場合に、S1−10で、活性が低いと判断して、触媒活性が低い時のリッチスパイクモードに入るため、reg2フラグを1とする。
【0026】
Tc≦T2の場合は、活性がなく、浄化性能が全く期待できないことから、暖機されるまで再生処理を待つこととして、処理を終了する。
次にreg1フラグ=1となった場合のS2−1以降の触媒活性時のリッチスパイクモードについて説明する。
S2−1では、排気空燃比をリッチにする第1空燃比リッチ化方法を選択して、排気空燃比をリッチにする。
【0027】
第1空燃比リッチ化方法は、具体的には、次の(1)〜(3)のいずれかによる。
(1)EGRを行う運転条件であれば、EGRを続行したまま、リッチスパイク時の目標λを所定の値λ1に設定し、吸気絞り弁の制御(開度減少側への制御)により、図5に示す目標吸入空気量に制御して、目標λ=λ1を達成する(フロー中に記載)。また、誤差については、触媒出口側の空燃比センサからの信号に基づいてフィードバック制御を行う。
【0028】
(2)ポスト噴射により燃焼に寄与しない燃料を供給することで、リッチ化する。この場合、図10に示すリッチスパイクのためのポスト噴射量に制御することで、目標λ=λ1を達成する。
(3)EGRと吸気絞りとポスト噴射とによりリッチ化して、目標λ=λ1を達成する。
【0029】
S2−2では、リッチスパイクを開始してからの経過時間(リッチスパイク時間)tが所定時間t1を超えたか否かを判定し、超えた場合に、触媒の再生が完了したとみなし、S2−3でNOx堆積量の積算値をクリアすると共に、S2−4でreg1フラグを0にする。
次にreg2フラグ=1となった場合のS3−1以降の触媒活性が低い時のリッチスパイクモードについて説明する。
【0030】
S3−1では、排気中の酸素量を前記第1空燃比リッチ化方法より小さくすると共に排気空燃比をリッチにする第2空燃比リッチ化方法を選択して、排気空燃比をリッチ化する。
第2空燃比リッチ化方法は、第1空燃比リッチ化方法での(1)〜(3)に対応して、次の(1)〜(3)による。
【0031】
(1)通常のリッチスパイクがEGRと吸気絞りとによる場合、EGRを中止し、リッチスパイク時の目標λを所定の値λ1に設定し、吸気絞り弁の制御により、図6に示すEGRを行わない場合の目標吸入空気量に制御して、目標λ=λ1を達成する(フロー中に記載)。また、誤差については、触媒出口側の空燃比センサからの信号に基づいてフィードバック制御を行う。
【0032】
(2)通常のリッチスパイクがポスト噴射による場合、吸気絞り弁開度を小さくし、その分ポスト噴射量を減少させ、目標λ=λ1を達成する。
(3)通常のリッチスパイクがEGRと吸気絞りとポスト噴射とによる場合、吸気絞りのみ(EGRなし、ポスト噴射なし)、又は、吸気絞りとポスト噴射量低減(EGRなし)により制御し、目標λ=λ1を達成する。
【0033】
いずれの場合でも、リッチスパイク時の目標λを、残酸素量を減らしてもS2−1で設定するλ1と同じ値にすることで、過剰なスパイクによるエミッションの悪化、及びスパイクが浅くなることによるNOx浄化性能の低下を抑制可能となる。
S3−2では、リッチスパイクを開始してからの経過時間(リッチスパイク時間)tが所定時間t2を超えたか否かを判定し、超えた場合に、触媒の再生が完了したとみなし、S3−3でNOx堆積量の積算値をクリアすると共に、S3−4でreg2フラグを0にする。尚、EGRを中止しての空燃比リッチ化においては、EGR中止の直後においてEGRガスが抜けるのに時間がかかるため、t2>t1とすることで、酸素の少ないリッチガスが触媒に十分供給され、リッチスパイクによる再生効果が十分に得られる。
【0034】
上記の制御について更に詳細に説明する。
図7に示すように、ディーゼルエンジンにおいてリッチ運転を実現した場合、EGRを実施していると燃焼がやや不安定となり、EGRを実施していない条件に比べ同一の排気λで排気中の残酸素量が多くなる(酸素が多い分、CO、HCの排出量も多い)。また、ポスト噴射の制御によって燃焼に寄与しない燃料を付加することで排気λをリッチにする場合も、上記EGRを行った時と同様に残酸素量が多くなる。
【0035】
ここで、図8に示すように、排気λ<1(リッチ)で酸素がない状態では、NOxトラップ触媒において、NOxが排気中の還元成分(HC、CO)と反応して、NOxを浄化できるが、図9に示すように、排気λ<1(リッチ)であっても酸素が存在する場合は、まず酸素を消費して還元雰囲気を作り出し、その還元雰囲気においてNOxを浄化することになる。特に、排気λ<1で酸素が残存し触媒温度が低いために活性が低い場合は、反応時間は十分にあるものの、触媒の活性が低いために、酸化反応だけにその大半の時間が費やされてしまい、その結果還元雰囲気でのNOx浄化が期待できない。
【0036】
従って、触媒の温度が低い場合は、酸素残量が多いと酸化活性が低いことから使える反応時間の大半を酸素の消費に費やさなければならないので、排気中の残酸素量を減らしてやることでNOxを浄化できなくなることを防止する。
このため、触媒の温度から触媒活性(NOx浄化率)が低いと判定された場合は、排気中の酸素量を小さくできる方法で空燃比をリッチ化するのである。
【0037】
空燃比リッチ化方法について補足すれば、通常のリッチスパイク、すなわち酸素量を低減させる必要がないときのリッチスパイク(第1空燃比リッチ化方法)は、EGR、吸気絞り弁、ポスト噴射のうち少なくとも1つを用いて行う。
EGRを用いる場合、通常のリッチスパイクを行うときは、EGR率が大きくなるようEGR弁開度を大きくすると共に、吸気絞り弁開度を小さくして空気過剰率を小さくする。
【0038】
ところで、シリンダ内に吸入されたEGRガスの分布(シリンダ内の酸素濃度)は一様でないため、噴射された燃料が燃焼する際、EGRガス濃度の高い(酸素濃度の低い)領域に存在した燃料は燃え難くHCとして排出される。すなわち、燃焼すべき燃料が燃焼しないため、その分、燃焼で消費されるべき酸素が消費されずにそのまま排出されることを意味する。
【0039】
従って、リッチスパイク時に酸素量を低減させたいときは(第2空燃比リッチ化方法では)、EGRなしで目標空気過剰率を実現させることで、燃焼で消費されるべき酸素を全てを燃焼させることができ、結果として排気中の酸素量を低減することができる。
すなわち、酸素量を低減させる必要がないときのリッチスパイクがEGRと吸気絞りで行われる場合、酸素量を低減させるときのリッチスパイクは、吸気絞りのみ(EGRなし)で行うことになる。
【0040】
また、酸素量を低減させる必要がないときのリッチスパイクがポスト噴射のみで行われる場合(図10にリッチスパイクのためのポスト噴射量の特性図を示す)、酸素量を低減させるときのリッチスパイクは、吸気絞り弁開度を小さくして吸入空気量を低減させることで排気中の醸素量を低減し、それによって空気過剰率が低下する分だけポスト噴射量を減らすことで実現できる。
【0041】
すなわち、ポスト噴射等の噴射量の制御によって(未燃燃料を増やすことで)排気λの制御を行っている場合は、未燃燃料の制御による排気λ制御から、空気量の制御による排気λ制御に切換えることで排気中の残酸素量を減らすことが可能となる。
さらに、酸素量を低減させる必要がないときのリッチスパイクがEGRと吸気絞りとポスト噴射で行われる場合、酸素量を低減させるときのリッチスパイクは、吸気絞りのみ(EGRなし、ポスト噴射なし)か、或いは、吸気絞りとポスト噴射量低減(低減量は吸気絞り量に応じて行う)で行うことができる。
【0042】
尚、本実施形態においては、図2のS1−6の部分が還元浄化時期判定手段に相当し、図2のS1−7〜S1−10及び図3のS2−1、S3−1の部分が目標リッチ空燃比設定手段を含む空燃比リッチ化手段に相当する。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すエンジンのシステム図
【図2】 排気浄化制御のフローチャート(その1)
【図3】 排気浄化制御のフローチャート(その2)
【図4】 温度と触媒活性との関係を示す図
【図5】 リッチスパイク時の目標吸入空気量を示す図
【図6】 EGR無しでのリッチスパイク時の目標吸入空気量を示す図
【図7】 EGRの有無による排気中の成分変化を示す図
【図8】 排気λ<1で酸素が無い状態での反応を示す図
【図9】 排気λ<1で酸素がある状態での反応を示す図
【図10】 リッチスパイク時のポスト噴射量を示す図
【符号の説明】
1 エンジン
2 吸気通路
5 吸気絞り弁
8 コモンレール
9 燃料噴射弁
10 排気通路
11 EGR通路
12 EGR弁
13 NOxトラップ触媒
20 コントロールユニット
21 回転数センサ
22 アクセル開度センサ
23 エアフローメータ
24 触媒温度センサ
25 空燃比センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, traps NOx in exhaust when the air-fuel ratio of inflowing exhaust is lean, and reduces and purifies NOx trapped when the air-fuel ratio of inflowing exhaust is rich. It is related with what is provided with the NOx trap catalyst.
[0002]
[Prior art]
As a conventional technique, Japanese Patent No. 2600492 discloses trapping NOx in exhaust when the air-fuel ratio of inflowing exhaust is lean and trapping when the air-fuel ratio of inflowing exhaust is rich in the exhaust passage of the engine. A technology is disclosed in which a NOx trap catalyst for reducing and purifying NOx is disposed, and the exhaust air-fuel ratio is made rich at the reduction and purification timing of the NOx trap catalyst to purify NOx.
[0003]
[Problems to be solved by the invention]
In the above prior art, the reduction and purification of NOx by the NOx trap catalyst enriches the exhaust air-fuel ratio, that is, supplies HC and CO as reducing agents to the NOx trap catalyst, and these and NOx are in a reducing atmosphere. By reacting with
[0004]
However, oxygen may be present in the exhaust gas even when the exhaust air-fuel ratio is rich. If oxygen is present in the exhaust, the reaction between NOx and the reducing agent (HC, CO) in the reducing atmosphere will occur unless oxygen is consumed by the oxidation reaction of HC and CO to create a reducing atmosphere near the catalyst. Absent. For this reason, even in the same rich state (the same exhaust air-fuel ratio), the greater the amount of oxygen in the exhaust, the less the reduction reaction between HC, CO and NOx occurs.
[0005]
Therefore, when the NOx trap catalyst is in a poor active state, that is, when the carrier temperature of the NOx trap catalyst is low, if NO exists in the exhaust gas, the NOx trap catalyst cannot sufficiently purify NOx.
In other words, the above conventional technique does not consider the presence of oxygen in the exhaust gas in the rich state in which NOx is reduced and purified. Therefore, when the temperature of the NOx trap catalyst is low, NOx cannot be sufficiently purified and exhaust gas is deteriorated. There was a problem.
[0006]
An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can solve such a conventional problem.
[0007]
[Means for Solving the Problems]
For this reason, according to the first aspect of the present invention, the NOx in the exhaust gas is trapped when the air-fuel ratio of the exhaust gas flowing into the engine is lean, and trapped when the air-fuel ratio of the exhaust gas flowing in is rich. A NOx trap catalyst for reducing and purifying NOx; a reduction and purification timing determining means for determining a reduction and purification timing of the NOx trap catalyst; a first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio at the reduction and purification timing; It is possible to selectively switch between the second air-fuel ratio enrichment method that makes the oxygen amount in the exhaust gas smaller than the first air-fuel ratio enrichment method and the exhaust air-fuel ratio rich, and the temperature of the NOx trap catalyst is high. Air-fuel ratio enrichment means that sometimes selects the first air-fuel ratio enrichment method and selects the second air-fuel ratio enrichment method when the temperature of the NOx trap catalyst is low. It is characterized in.
[0008]
According to a second aspect of the present invention, there is provided target rich air-fuel ratio setting means for setting a target rich air-fuel ratio that makes the exhaust air-fuel ratio rich. In any of the air-fuel ratio enrichment method and the second air-fuel ratio enrichment method, the exhaust air-fuel ratio is set to the same target rich air-fuel ratio by the target rich air-fuel ratio setting means .
According to a third aspect of the present invention, the air-fuel ratio enriching means includes means for directly detecting the temperature of the NOx trap catalyst or estimating the temperature based on at least one of an exhaust temperature, a temperature in the vicinity of the catalyst, and an operating state of the engine. It is characterized by that.
[0009]
According to a fourth aspect of the present invention, there is provided an EGR valve disposed in an EGR passage that recirculates part of the exhaust gas from an exhaust passage of the engine to the intake passage, and an intake throttle valve disposed in the intake passage of the engine. When the first air-fuel ratio enrichment method is selected, the air-fuel ratio enrichment means enriches the exhaust air-fuel ratio at least with the EGR valve, and when the second air-fuel ratio enrichment method is selected, the intake throttle valve The exhaust air-fuel ratio is made rich.
[0010]
According to a fifth aspect of the present invention, the air-fuel ratio enrichment means includes a fuel injection device that enables post injection that injects a small amount of fuel after main injection, and an intake throttle valve that is disposed in an intake passage of the engine. When the first air-fuel ratio enrichment method is selected, the exhaust air-fuel ratio is enriched by at least post injection, and when the second air-fuel ratio enrichment method is selected, the exhaust air-fuel ratio is selected by the intake throttle valve. It is characterized by enriching.
[0011]
【The invention's effect】
According to the first aspect of the present invention, when the reduction purification by the rich spike of the NOx trap catalyst is performed, when the temperature of the NOx trap catalyst is low, the NOx purification rate is low. If there is a large amount, NOx may not be sufficiently reduced and purified. Therefore, by enriching the exhaust air / fuel ratio by an air / fuel ratio enrichment method that can reduce the amount of oxygen in the exhaust, even if the catalyst activity is low. The NOx purification performance can be maintained.
[0012]
According to the invention of claim 2, in any of the air-fuel ratio enrichment methods, by making the exhaust air-fuel ratio the same target rich air-fuel ratio by the same setting means, fluctuations in the exhaust air-fuel ratio can be prevented, and NOx, HC It is possible to suppress fluctuations in emissions such as CO.
According to the invention of claim 3, by providing the means for directly detecting or estimating the temperature of the NOx trap catalyst, the NOx purification rate depending on the temperature of the NOx trap catalyst can be accurately grasped.
[0013]
According to the invention of claim 4, when the exhaust air-fuel ratio is enriched while performing EGR when performing a normal rich spike, when reducing the oxygen amount in the exhaust during the rich spike, the EGR is stopped. By enriching the exhaust air-fuel ratio with the intake throttle valve, it is possible to burn all the oxygen that should be consumed by combustion, and to reliably reduce the amount of oxygen in the exhaust.
[0014]
According to the invention of claim 5, when the exhaust air-fuel ratio is enriched by post-injection when performing normal rich spike, post-injection is stopped or reduced when reducing the amount of oxygen in the exhaust during rich spike. Thus, the amount of oxygen in the exhaust can be reliably reduced by enriching the exhaust air-fuel ratio with the intake throttle valve.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an internal combustion engine (here, a diesel engine) showing an embodiment of the present invention.
The intake passage 2 of the diesel engine 1 is provided with an intake compressor of a variable nozzle type turbocharger 3. The intake air is supercharged by the intake compressor, cooled by the intercooler 4, passed through the intake throttle valve 5, and then the collector. 6 and then flows into the combustion chamber of each cylinder. The fuel is increased in pressure by the common rail type fuel injection device, that is, by the high pressure fuel pump 7, sent to the common rail 8, and directly injected from the fuel injection valve 9 of each cylinder into the combustion chamber. The air that has flowed into the combustion chamber and the injected fuel are combusted by compression ignition, and the exhaust gas flows out to the exhaust passage 10.
[0016]
Part of the exhaust gas flowing into the exhaust passage 10 is recirculated to the intake side via the EGR valve 12 through the EGR passage 11 as EGR gas. The remainder of the exhaust passes through the exhaust turbine of the variable nozzle type turbocharger 3 and drives it.
Here, downstream of the exhaust turbine in the exhaust passage 10, for exhaust purification, NOx in the exhaust is trapped when the air-fuel ratio of the inflowing exhaust is lean, and trapped when the air-fuel ratio of the inflowing exhaust is rich A NOx trap catalyst 13 for reducing and purifying NOx is disposed. Further, the NOx trap catalyst 13 carries a noble metal and has a function of oxidizing HC and CO in the exhaust gas, and serves as a NOx trap catalyst with an oxidation function.
[0017]
In order to control the engine 1, the control unit 20 includes a rotation speed sensor 21 for detecting the engine rotation speed Ne, an accelerator opening sensor 22 for detecting the accelerator opening APO, and an air flow meter 23 for detecting the intake air amount Qa. A signal is being input.
Further, a catalyst temperature sensor 24 for detecting the temperature (catalyst temperature) Tc of the NOx trap catalyst 13 and an air / fuel ratio sensor 25 for detecting the exhaust air / fuel ratio on the outlet side of the NOx trap catalyst 13 in the exhaust passage 10 are provided. A signal is also input to the control unit 20. However, the temperature of the NOx trap catalyst 13 may be detected (estimated) indirectly based on the signal by providing an exhaust temperature sensor on the outlet side of the NOx trap catalyst 13, or in the vicinity of other catalysts. It may be estimated from the temperature or estimated from the operating state of the engine.
[0018]
Based on these input signals, the control unit 20 controls the fuel injection amount and the injection timing of the main injection by the fuel injection valve 9 and the post injection performed after the main injection (expansion stroke or exhaust stroke) under predetermined operating conditions. The fuel injection command signal to the fuel injection valve 9, the opening command signal to the intake throttle valve 5, the opening command signal to the EGR valve 12, etc. are output.
[0019]
Here, the control unit 20 performs exhaust purification control for reducing and purifying NOx trapped and accumulated in the NOx trap catalyst 13, and the exhaust purification control will be described in detail below.
2 to 3 are flowcharts of exhaust purification control executed by the control unit 20.
[0020]
In S1-1, the engine speed Ne, the accelerator opening APO, the intake air amount Qa, and the catalyst temperature Tc are detected based on signals from the rotation speed sensor, accelerator opening sensor, air flow meter, and catalyst temperature sensor.
In S1-2, the fuel injection amount Qf for main injection is calculated by referring to a map using the engine speed Ne and the accelerator opening APO as parameters.
[0021]
In S1-3, the NOx deposition amount trapped and deposited on the NOx trap catalyst is detected. However, since it is difficult to directly detect the NOx accumulation amount, the NOx generation amount per unit time is predicted from the engine speed Ne and the fuel injection amount Qf, and the NOx accumulation amount per unit time is considered in consideration of the trap rate. It is detected indirectly by calculating and accumulating these. Alternatively, the NOx accumulation amount may be estimated from the integrated value of the engine speed.
[0022]
In S1-4, it is determined whether or not the reg1 flag indicating that the rich spike mode is active when the catalyst is active is set. When the reg1 flag = 1, the control proceeds to the rich spike mode control when the catalyst is active after S2-1 (FIG. 3).
In S1-5, it is determined whether or not the reg2 flag indicating that the rich spike mode when the catalyst activity is low is set. When the reg2 flag = 1, the control proceeds to the rich spike mode control when the catalyst activity is low after S3-1 (FIG. 3).
[0023]
In S1-6, it is determined whether or not the NOx accumulation amount detected in S1-3 is greater than a predetermined value NOx1 in order to determine whether or not it is the NOx trap catalyst regeneration timing (reduction purification timing).
If the NOx accumulation amount is equal to or less than the predetermined value NOx1, it is not the regeneration time, so the process is terminated. If the NOx accumulation amount exceeds the predetermined value NOx1, it is determined as the regeneration time, and the process proceeds to S1-7.
[0024]
In S1-7, the activity of the NOx trap catalyst is determined. Here, as shown in FIG. 4, the NOx purification performance of the catalyst starts to develop from the light-off temperature T2, but is not yet sufficient. Therefore, if the NOx purification rate becomes higher than the temperature T1 at which the NOx purification rate becomes sufficiently high, the catalyst is active. Judge. It is determined that the activity is low between T1 and T2, and it is determined that there is no activity at a temperature lower than T2.
[0025]
Therefore, in S1-7, it is determined whether or not the catalyst temperature Tc exceeds T1, and when Tc> T1, it is determined in S1-8 that the catalyst is active, In order to enter the rich spike mode, the reg1 flag is set to 1.
In the case of Tc ≦ T1, it is determined in S1-9 whether or not the catalyst temperature Tc exceeds T2, that is, whether or not the catalyst temperature Tc is between T1 and T2, and if Tc> T2, In S1-10, it is determined that the activity is low, and the reg2 flag is set to 1 to enter the rich spike mode when the catalyst activity is low.
[0026]
In the case of Tc ≦ T2, since there is no activity and no purification performance can be expected, the process is terminated by waiting for the regeneration process until it is warmed up.
Next, the rich spike mode at the time of catalyst activation after S2-1 when the reg1 flag = 1 is described.
In S2-1, the first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio is selected to enrich the exhaust air-fuel ratio.
[0027]
Specifically, the first air-fuel ratio enrichment method is one of the following (1) to (3).
(1) If the operating condition is to perform EGR, the target λ at the time of rich spike is set to a predetermined value λ1 while the EGR is continued, and the intake throttle valve control (control to the opening decrease side) 5 to achieve the target λ = λ1 (described in the flow). As for the error, feedback control is performed based on the signal from the air-fuel ratio sensor on the catalyst outlet side.
[0028]
(2) Enrichment is achieved by supplying fuel that does not contribute to combustion by post injection. In this case, the target λ = λ1 is achieved by controlling the post injection amount for the rich spike shown in FIG.
(3) The target λ = λ1 is achieved by enriching with EGR, intake throttle and post-injection.
[0029]
In S2-2, it is determined whether or not the elapsed time (rich spike time) t from the start of the rich spike has exceeded a predetermined time t1, and if so, it is considered that the regeneration of the catalyst has been completed. The accumulated value of the NOx accumulation amount is cleared at 3 and the reg1 flag is set to 0 at S2-4.
Next, the rich spike mode when the catalyst activity after S3-1 when the reg2 flag is 1 is low will be described.
[0030]
In S3-1, the exhaust air / fuel ratio is enriched by selecting the second air / fuel ratio enrichment method that makes the amount of oxygen in the exhaust gas smaller than the first air / fuel ratio enrichment method and also makes the exhaust air / fuel ratio rich.
The second air-fuel ratio enrichment method is based on the following (1) to (3) corresponding to (1) to (3) in the first air-fuel ratio enrichment method.
[0031]
(1) When the normal rich spike is caused by EGR and the intake throttle, EGR is stopped, the target λ at the time of the rich spike is set to a predetermined value λ1, and the EGR shown in FIG. 6 is performed by controlling the intake throttle valve The target λ = λ1 is achieved by controlling the target intake air amount when there is not (described in the flow). As for the error, feedback control is performed based on the signal from the air-fuel ratio sensor on the catalyst outlet side.
[0032]
(2) When the normal rich spike is caused by post injection, the opening of the intake throttle valve is decreased, and the post injection amount is decreased by that amount, thereby achieving the target λ = λ1.
(3) When the normal rich spike is caused by EGR, intake throttle and post-injection, control is performed by intake throttle only (no EGR, no post-injection) or intake throttle and post-injection amount reduction (no EGR), and the target λ = Λ1 is achieved.
[0033]
In any case, by setting the target λ at the time of rich spike to the same value as λ1 set in S2-1 even if the residual oxygen amount is reduced, the emission deteriorates due to excessive spikes, and the spike becomes shallower. It is possible to suppress a decrease in NOx purification performance.
In S3-2, it is determined whether or not the elapsed time (rich spike time) t from the start of the rich spike has exceeded a predetermined time t2, and if so, it is considered that the regeneration of the catalyst has been completed. The accumulated value of the NOx accumulation amount is cleared at 3 and the reg2 flag is set to 0 at S3-4. In addition, in the air-fuel ratio enrichment after stopping the EGR, it takes time for the EGR gas to escape immediately after the EGR is stopped. Therefore, by setting t2> t1, a rich gas with less oxygen is sufficiently supplied to the catalyst. The reproduction effect by the rich spike can be sufficiently obtained.
[0034]
The above control will be described in more detail.
As shown in FIG. 7, when the rich operation is realized in the diesel engine, the combustion becomes slightly unstable when the EGR is performed, and the residual oxygen in the exhaust gas with the same exhaust λ as compared with the condition where the EGR is not performed. The amount increases (the more oxygen, the more CO and HC emissions). Further, when the exhaust λ is made rich by adding fuel that does not contribute to combustion by controlling post injection, the amount of residual oxygen increases as in the case of performing the EGR.
[0035]
Here, as shown in FIG. 8, in the state where the exhaust λ <1 (rich) and no oxygen, NOx can be purified by reacting with the reducing components (HC, CO) in the exhaust in the NOx trap catalyst. However, as shown in FIG. 9, when oxygen is present even if the exhaust λ <1 (rich), first, oxygen is consumed to create a reducing atmosphere, and NOx is purified in the reducing atmosphere. In particular, when the exhaust gas λ <1 and oxygen remains and the activity is low because the catalyst temperature is low, the reaction time is sufficient, but since the activity of the catalyst is low, most of the time is spent only on the oxidation reaction. As a result, NOx purification in a reducing atmosphere cannot be expected.
[0036]
Therefore, when the temperature of the catalyst is low, since the oxidation activity is low when the oxygen remaining amount is large, most of the usable reaction time must be consumed for oxygen consumption. Therefore, NOx can be reduced by reducing the amount of oxygen remaining in the exhaust gas. To prevent it from being purified.
For this reason, when it is determined from the catalyst temperature that the catalyst activity (NOx purification rate) is low, the air-fuel ratio is enriched by a method capable of reducing the amount of oxygen in the exhaust gas.
[0037]
Supplementing the air-fuel ratio enrichment method, the normal rich spike, that is, the rich spike when there is no need to reduce the oxygen amount (first air-fuel ratio enrichment method) is at least one of EGR, intake throttle valve, and post injection. Use one.
When using EGR, when performing a normal rich spike, the EGR valve opening is increased so as to increase the EGR ratio, and the intake throttle valve opening is decreased to reduce the excess air ratio.
[0038]
By the way, since the distribution of the EGR gas sucked into the cylinder (oxygen concentration in the cylinder) is not uniform, when the injected fuel burns, the fuel that exists in the region where the EGR gas concentration is high (low oxygen concentration) Is difficult to burn and is discharged as HC. That is, since the fuel to be combusted does not combust, the oxygen to be consumed by the combustion is discharged as it is without being consumed.
[0039]
Therefore, when it is desired to reduce the amount of oxygen during the rich spike (in the second air-fuel ratio enrichment method), by realizing the target excess air ratio without EGR, all the oxygen that should be consumed by combustion is burned. As a result, the amount of oxygen in the exhaust gas can be reduced.
That is, when the rich spike when there is no need to reduce the oxygen amount is performed by the EGR and the intake throttle, the rich spike when reducing the oxygen amount is performed only by the intake throttle (no EGR).
[0040]
Further, when the rich spike when there is no need to reduce the oxygen amount is performed only by the post injection (FIG. 10 shows a characteristic diagram of the post injection amount for the rich spike), the rich spike when the oxygen amount is reduced. This can be realized by reducing the intake air amount by reducing the intake throttle valve opening to reduce the amount of brew in the exhaust, and thereby reducing the post injection amount by the amount that the excess air ratio decreases.
[0041]
That is, when controlling the exhaust λ by controlling the injection amount such as post injection (by increasing the unburned fuel), the exhaust λ control by controlling the air amount is changed from the exhaust λ control by controlling the unburned fuel. By switching to, it becomes possible to reduce the amount of residual oxygen in the exhaust.
Furthermore, when the rich spike when there is no need to reduce the oxygen amount is performed by EGR, intake throttle and post injection, is the rich spike when reducing the oxygen amount only the intake throttle (no EGR, no post injection)? Alternatively, it can be performed by reducing the intake throttle and the post injection amount (the reduction amount depends on the intake throttle amount).
[0042]
In the present embodiment, the portion S1-6 in FIG. 2 corresponds to the reduction purification timing determination means, and the portions S1-7 to S1-10 in FIG. 2 and S2-1 and S3-1 in FIG. This corresponds to air-fuel ratio enrichment means including target rich air-fuel ratio setting means.
[Brief description of the drawings]
FIG. 1 is a system diagram of an engine showing an embodiment of the present invention. FIG. 2 is a flowchart of exhaust purification control (part 1).
FIG. 3 is a flowchart of exhaust purification control (part 2).
FIG. 4 is a diagram showing the relationship between temperature and catalyst activity. FIG. 5 is a diagram showing a target intake air amount during rich spike. FIG. 6 is a diagram showing a target intake air amount during rich spike without EGR. 7] Fig. 8 is a graph showing changes in components in exhaust with and without EGR. Fig. 8 is a diagram showing reactions in the absence of oxygen at exhaust λ <1. Fig. 9 is a reaction in the presence of oxygen at exhaust λ <1. Figure [Figure 10] Figure showing the post injection amount during rich spike [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake passage 5 Intake throttle valve 8 Common rail 9 Fuel injection valve 10 Exhaust passage 11 EGR passage 12 EGR valve 13 NOx trap catalyst 20 Control unit 21 Rotational speed sensor 22 Acceleration opening degree sensor 23 Air flow meter 24 Catalyst temperature sensor 25 Air-fuel ratio Sensor

Claims (5)

機関の排気通路に配置され、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒と、
前記NOxトラップ触媒の還元浄化時期を判定する還元浄化時期判定手段と、
前記還元浄化時期に、排気空燃比をリッチにする第1空燃比リッチ化方法と、排気中の酸素量を前記第1空燃比リッチ化方法より小さくすると共に排気空燃比をリッチにする第2空燃比リッチ化方法とを選択的に切換可能であり、前記NOxトラップ触媒の温度が高いときに前記第1空燃比リッチ化方法を選択し、前記NOxトラップ触媒の温度が低いときに前記第2空燃比リッチ化方法を選択する空燃比リッチ化手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
An NOx trap catalyst that is disposed in the exhaust passage of the engine and traps NOx in the exhaust when the air-fuel ratio of the inflowing exhaust is lean and reduces and purifies NOx trapped when the air-fuel ratio of the inflowing exhaust is rich;
Reduction purification timing determination means for determining the reduction purification timing of the NOx trap catalyst;
A first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio at the reduction purification time, and a second air-fuel ratio enrichment for reducing the amount of oxygen in the exhaust gas as compared to the first air-fuel ratio enrichment method and enriching the exhaust air-fuel ratio. The first air-fuel ratio enrichment method is selected when the temperature of the NOx trap catalyst is high, and the second air-fuel ratio enrichment method is selected when the temperature of the NOx trap catalyst is low. An air-fuel ratio enrichment means for selecting a fuel ratio enrichment method;
An exhaust emission control device for an internal combustion engine, comprising:
排気空燃比をリッチにする目標リッチ空燃比を設定する目標リッチ空燃比設定手段を備え、
前記空燃比リッチ化手段は、排気空燃比をリッチにする際、前記第1空燃比リッチ化方法及び第2空燃比リッチ化方法のいずれにおいても、排気空燃比を前記目標リッチ空燃比設定手段による同じ目標リッチ空燃比にすることを特徴とする請求項1記載の内燃機関の排気浄化装置。
A target rich air-fuel ratio setting means for setting a target rich air-fuel ratio that makes the exhaust air-fuel ratio rich;
When the exhaust air-fuel ratio is made rich, the air-fuel ratio enrichment means sets the exhaust air-fuel ratio to the target rich air-fuel ratio setting means in both the first air-fuel ratio enrichment method and the second air-fuel ratio enrichment method. 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the same target rich air-fuel ratio is set.
前記空燃比リッチ化手段は、前記NOxトラップ触媒の温度を直接検出、又は排気温度、触媒近傍温度、機関の運転状態のうち少なくとも1つに基づいて推定する手段を備えることを特徴とする請求項1又は請求項2記載の内燃機関の排気浄化装置。The air-fuel ratio enriching means includes means for directly detecting the temperature of the NOx trap catalyst or estimating the temperature based on at least one of an exhaust temperature, a temperature in the vicinity of the catalyst, and an operating state of the engine. The exhaust emission control device for an internal combustion engine according to claim 1 or 2. 機関の排気通路から排気の一部を吸気通路に還流するEGR通路に配置されたEGR弁と、機関の吸気通路に配置された吸気絞り弁と、を備え、
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともEGR弁で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気浄化装置。
An EGR valve disposed in an EGR passage that recirculates part of the exhaust from the exhaust passage of the engine to the intake passage, and an intake throttle valve disposed in the intake passage of the engine,
The air-fuel ratio enrichment means enriches the exhaust air-fuel ratio with at least an EGR valve when the first air-fuel ratio enrichment method is selected, and selects the intake air when the second air-fuel ratio enrichment method is selected. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust air-fuel ratio is enriched by a throttle valve.
メイン噴射の後に少量の燃料を噴射するポスト噴射を可能とする燃料噴射装置と、機関の吸気通路に配置された吸気絞り弁と、を構え、
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気浄化装置。
A fuel injection device that enables post injection that injects a small amount of fuel after the main injection, and an intake throttle valve that is arranged in the intake passage of the engine,
The air-fuel ratio enrichment means enriches the exhaust air-fuel ratio by at least post injection when the first air-fuel ratio enrichment method is selected, and selects the intake air when the second air-fuel ratio enrichment method is selected. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the exhaust air-fuel ratio is enriched by a throttle valve.
JP2002000806A 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3820990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002000806A JP3820990B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000806A JP3820990B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003201890A JP2003201890A (en) 2003-07-18
JP3820990B2 true JP3820990B2 (en) 2006-09-13

Family

ID=27641089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000806A Expired - Lifetime JP3820990B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3820990B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050031526A (en) * 2003-09-30 2005-04-06 현대자동차주식회사 Device of purifying exhaust gas for vehicle and method for improving fuel ratio using it
JP4730175B2 (en) * 2006-04-03 2011-07-20 日産自動車株式会社 Internal combustion engine
JP4428442B2 (en) 2007-11-08 2010-03-10 トヨタ自動車株式会社 Spark ignition internal combustion engine
JP4905327B2 (en) 2007-11-13 2012-03-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2012108043A1 (en) * 2011-02-10 2012-08-16 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2003201890A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
US6962045B2 (en) Exhaust gas apparatus and method for purifying exhaust gas in internal combustion engine
EP1419309B1 (en) Exhaust gas purification system and method for internal combustion engine
JP3788350B2 (en) Exhaust gas purification device for internal combustion engine
US7340884B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP3767483B2 (en) Exhaust gas purification device for internal combustion engine
JP3508691B2 (en) Exhaust gas purification device for internal combustion engine
US7841169B2 (en) Regeneration controller for exhaust purification apparatus of internal combustion engine
JP2003120369A (en) Exhaust emission control device for internal combustion engine
US7334398B2 (en) Combustion control apparatus and method for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
US10443521B2 (en) Exhaust emission control system of engine
US10443525B2 (en) Exhaust emission control system of engine
US20060168939A1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP4857220B2 (en) Exhaust gas purification device for internal combustion engine
JP3820990B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042662A (en) Combustion control device for internal combustion engine
JP2003035131A (en) Exhaust emission control device for internal combustion engine
JP2009209898A (en) Exhaust emission control device and method for internal combustion engine
JP2009036175A (en) Fuel supply control device of internal combustion engine
JP3551790B2 (en) Internal combustion engine
JP3622612B2 (en) Exhaust gas purification device for internal combustion engine
JP2001164968A (en) Exhaust emission control device for diesel engine
JP2010229916A (en) Exhaust emission control device of internal combustion engine
JP6270248B1 (en) Engine exhaust purification system
JP3807209B2 (en) Operation control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3820990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

EXPY Cancellation because of completion of term