JP3788350B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3788350B2
JP3788350B2 JP2002000805A JP2002000805A JP3788350B2 JP 3788350 B2 JP3788350 B2 JP 3788350B2 JP 2002000805 A JP2002000805 A JP 2002000805A JP 2002000805 A JP2002000805 A JP 2002000805A JP 3788350 B2 JP3788350 B2 JP 3788350B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
exhaust
amount
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002000805A
Other languages
Japanese (ja)
Other versions
JP2003201886A (en
Inventor
靖久 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002000805A priority Critical patent/JP3788350B2/en
Priority to EP02026949A priority patent/EP1326010A3/en
Priority to US10/315,079 priority patent/US6698185B2/en
Publication of JP2003201886A publication Critical patent/JP2003201886A/en
Application granted granted Critical
Publication of JP3788350B2 publication Critical patent/JP3788350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、特に、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒を備えるものに関する。
【0002】
【従来の技術】
従来の技術として、特許第2600492号公報に、機関の排気通路に、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒を配置し、このNOxトラップ触媒の還元浄化時期に排気空燃比をリッチにしてNOxの浄化を行う技術が開示されている。
【0003】
【発明が解決しようとする課題】
上記従来の技術において、NOxトラップ触媒でのNOxの還元浄化は、排気空燃比をリッチ化すること、すなわち、還元剤としてのHC、COをNOxトラップ触媒へ供給し、それらとNOxとが還元雰囲気で反応することにより行われる。
【0004】
しかしながら、排気空燃比がリッチであっても排気中に酸素が存在する場合がある。排気中に酸素が存在する場合、先にHC、COの酸化反応で酸素を消費して触媒近傍に還元雰囲気を作り出さないと、還元雰囲気におけるNOxと還元剤(HC、CO)との反応が起こらない。このため、同じリッチ状態(同一の排気空燃比)でも排気中の酸素量が大きいほど、還元剤とNOxとの還元反応が起こり難くなる。
【0005】
すなわち、NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きいときは、NOxトラップ触媒で還元剤と酸素との反応の割合が大きくなり、還元剤とNOxとの反応がほとんど行われないため、NOxトラップ触媒の単位時間当たりのNOx浄化率が低下する。
このように、上記従来の技術では、NOxを還元浄化するリッチ状態において排気中の酸素の存在を考慮していないため、NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きいときには、NOxを十分に浄化できず排気を悪化させるといった問題点があった。
【0006】
本発明は、このような従来の問題点を解決することのできる内燃機関の排気浄化装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、請求項1の発明では、機関の排気通路に配置され、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒と、前記NOxトラップ触媒の還元浄化時期を判定する還元浄化時期判定手段と、前記還元浄化時期に、排気空燃比をリッチにする第1空燃比リッチ化方法と、排気空燃比を前記第1空燃比リッチ化方法と同じ値にすると共に排気中の酸素量を前記第1空燃比リッチ化方法より小さくする第2空燃比リッチ化方法とを選択的に切換可能であり、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が小さいときに前記第1空燃比リッチ化方法を選択し、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きいときは前記第2空燃比リッチ化方法を選択する空燃比リッチ化手段と、を備えることを特徴とする。
【0008】
請求項2の発明では、排気空燃比をリッチにする目標リッチ空燃比を設定する目標リッチ空燃比設定手段を備え、前記空燃比リッチ化手段は、排気空燃比をリッチにする際、前記第1空燃比リッチ化方法及び第2空燃比リッチ化方法のいずれにおいても、排気空燃比を前記目標リッチ空燃比にすることを特徴とする。
請求項3の発明では、前記空燃比リッチ化手段は、排気の空間速度が大きいとき、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きくなるとみなすことを特徴とする。
【0009】
請求項4の発明では、前記空燃比リッチ化手段は、吸入空気量、エンジン回転数及び燃料噴射量のうちの少なくとも1つに基づいて前記空間速度を推定する空間速度推定手段を備えることを特徴とする。
請求項5の発明では、機関の排気通路から排気の一部を吸気通路に還流するEGR通路に配置されたEGR弁と、機関の吸気通路に配置された吸気絞り弁と、を備え、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともEGR弁で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする。
請求項6の発明では、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、EGRを行う条件であれば、EGRを続行したまま、吸気絞り弁の制御により吸入空気量を制御して排気空燃比をストイキに制御し、前記第2空燃比リッチ化方法を選択しているとき、EGRを行う条件であれば、EGRを中止し、吸気絞り弁の制御により吸入空気量を制御して排気空燃比をストイキに制御することを特徴とする。
【0010】
請求項7の発明では、メイン噴射の後に少量の燃料を噴射するポスト噴射を可能とする燃料噴射装置と、機関の吸気通路に配置された吸気絞り弁と、を構え、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする。
請求項8の発明では、前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、ポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁開度を小さくして吸入空気量を減少させることで排気中の酸素量を低減し、それによって空気過剰率が低下する分、ポスト噴射量を減少ないしポスト噴射を停止することを特徴とする。
【0011】
【発明の効果】
請求項1の発明によれば、NOxトラップ触媒のリッチスパイクによる還元浄化を行う際に、NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きいときは、排気中の残存酸素によって還元剤(HC、CO)が消費されて、NOxを十分に還元浄化できなくなるおそれがあるため、排気中の酸素量を小さくすることのできる空燃比リッチ化方法で排気空燃比をリッチ化することにより、NOx浄化性能を維持することが可能となる。
【0012】
請求項2の発明によれば、いずれの空燃比リッチ化方法においても、排気空燃比を同じ設定手段による同じ目標リッチ空燃比にすることにより、排気空燃比の変動を防止して、NOx、HC、CO等のエミッションの変動を抑制することが可能となる。
請求項3の発明によれば、NOxトラップ触媒を通過するガス量が多くなるにつれて、還元剤と酸素又はNOxとの反応時間が短くなり、触媒での反応が十分期待できなくなる傾向があることから、空間速度が高い場合はNOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きくなるとみなすことで、空間速度に基づいて制御可能となる。
【0013】
請求項4の発明によれば、空間速度を、吸入空気量、エンジン回転数及び燃料噴射量のうちの少なくとも1つに基づいて推定することで、既存のパラメータで制御可能となる。
請求項5、6の発明によれば、通常のリッチスパイクを行うときにEGRを行いつつ排気空燃比をリッチ化している場合、リッチスパイク時に排気中の酸素量を小さくするときは、EGRを中止して、吸気絞り弁で排気空燃比をリッチ化することで、燃焼で消費されるべき酸素を全てを燃焼させることができ、排気中の酸素量を確実に低減できる。
【0014】
請求項7、8の発明によれば、通常のリッチスパイクを行うときにポスト噴射により排気空燃比をリッチ化している場合、リッチスパイク時に排気中の酸素量を小さくするときは、ポスト噴射を中止又は低減して、吸気絞り弁で排気空燃比をリッチ化することで、排気中の酸素量を確実に低減できる。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関(ここではディーゼルエンジン)のシステム図である。
ディーゼルエンジン1の吸気通路2には可変ノズル型のターボチャージャ3の吸気コンプレッサが備えられ、吸入空気は吸気コンプレッサによって過給され、インタークーラ4で冷却され、吸気絞り弁5を通過した後、コレクタ6を経て、各気筒の燃焼室内へ流入する。燃料は、コモンレール式燃料噴射装置により、すなわち、高圧燃料ポンプ7により高圧化されてコモンレール8に送られ、各気筒の燃料噴射弁9から燃焼室内へ直接噴射される。燃焼室内に流入した空気と噴射された燃料はここで圧縮着火により燃焼し、排気は排気通路10へ流出する。
【0016】
排気通路10へ流出した排気の一部は、EGRガスとして、EGR通路11によりEGR弁12を介して吸気側へ還流される。排気の残りは、可変ノズル型のターボチャージャ3の排気タービンを通り、これを駆動する。
ここで、排気通路10の排気タービン下流には、排気浄化のため、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒13を配置してある。また、このNOxトラップ触媒13には、貴金属を担持させて、排気中のHC、COを酸化する機能を持たせ、酸化機能付きNOxトラップ触媒としてある。
【0017】
コントロールユニット20には、エンジン1の制御のため、エンジン回転数Ne検出用の回転数センサ21、アクセル開度APO検出用のアクセル開度センサ22、吸入空気量Qa検出用のエアフローメータ23から、信号が入力されている。
また、NOxトラップ触媒13の温度(触媒温度)Tcを検出する触媒温度センサ24、排気通路10のNOxトラップ触媒13の出口側にて排気空燃比を検出する空燃比センサ25が設けられ、これらの信号もコントロールユニット20に入力されている。但し、NOxトラップ触媒13の温度はその近傍(特に下流側)の排気温度より検出するようにしてもよい。
【0018】
コントロールユニット20は、これらの入力信号に基づいて、燃料噴射弁9によるメイン噴射及び所定の運転条件においてメイン噴射後(膨張行程又は排気行程)に行うポスト噴射の燃料噴射量及び噴射時期制御のための燃料噴射弁9への燃料噴射指令信号、吸気絞り弁5への開度指令信号、EGR弁12への開度指令信号等を出力する。
【0019】
ここにおいて、コントロールユニット20では、NOxトラップ触媒13にトラップされて堆積したNOxの還元浄化のための排気浄化制御を行うようにしており、かかる排気浄化制御について、以下に詳細に説明する。
図2〜図4はコントロールユニット20にて実行される排気浄化制御のフローチャートである。
【0020】
S1−1では、回転数センサ、アクセル開度センサ、エアフローメータ、触媒温度センサからの信号に基づいて、エンジン回転数Ne、アクセル開度APO、吸入空気量Qa、触媒温度Tcを検出する。
S1−2では、エンジン回転数Neとアクセル開度APOとをパラメータとするマップを参照するなどして、メイン噴射用の燃料噴射量Qfを演算する。
【0021】
S1−3では、NOxトラップ触媒にトラップされて堆積したNOx堆積量を検出する。但し、NOx堆積量を直接検出することは難しいので、エンジン回転数Neと燃料噴射量Qfとから単位時間当たりのNOx発生量を予測し、トラップ率を考慮して、単位時間当たりのNOx堆積量を求め、これを積算することで、間接的に検出する。又は、エンジン回転数の積算値から、NOx堆積量を推定するようにしてもよい。
【0022】
S1−4では、触媒活性時のリッチスパイクモード中であることを示すreg1フラグが立っているか否かを判定する。reg1フラグ=1の場合は、S2−1以降(図3)の触媒活性時のリッチスパイクモードの制御へ進む。
S1−5では、触媒活性が低い時のリッチスパイクモード中であることを示すreg2フラグが立っているか否かを判定する。reg2フラグ=1の場合は、S3−1以降(図4)の触媒活性が低い時のリッチスパイクモードの制御へ進む。
【0023】
S1−6では、NOxトラップ触媒の再生時期(還元浄化時期)か否かの判定のため、S1−3で検出したNOx堆積量が所定値NOx1より大きくなったか否かを判定する。
NOx堆積量が所定値NOx1以下であれば、再生時期ではないので、処理を終了し、NOx堆積量が所定値NOx1を超えていれば、再生時期と判断して、S1−7へ進む。
【0024】
S1−7では、NOxトラップ触媒の活性を判断する。ここで、図5に示すように、触媒のNOx浄化性能はライトオフ温度T2から発現し始めるが未だ十分ではないので、NOx浄化率が十分に大きくなる温度T1より高くなれば、活性していると判断する。T1〜T2の間は活性が低いと判断し、T2より低い温度では活性がないと判断する。
【0025】
このため、S1−7では、触媒温度TcがT1を超えているか否かを判断し、Tc>T1の場合に、S1−8で、触媒が活性していると判断して、触媒活性時のリッチスパイクモードに入るため、reg1フラグを1とする。
Tc≦T1の場合は、S1−9で、触媒温度TcがT2を超えているか否か、すなわち触媒温度TcがT1〜T2の間にあるか否かを判断し、Tc>T2の場合に、S1−10で、活性が低いと判断して、触媒活性が低い時のリッチスパイクモードに入るため、reg2フラグを1とする。
【0026】
Tc≦T2の場合は、活性がなく、浄化性能が全く期待できないことから、暖機されるまで再生処理を待つこととして、処理を終了する。
次にreg1フラグ=1となった場合のS2−1以降の触媒活性時のリッチスパイクモードについて説明する。
S2−1では、排気の触媒での空間速度SVを推定する。ここでは、吸入空気量Qaを用い、これを触媒容量で割った値を空間速度SVとする。但し、触媒容量はエンジンの機種毎に一定であるので、吸入空気量Qaをそのまま空間速度の指標として用いてもよい。また、このように吸入空気量Qaを用いる他、エンジン回転数Ne、燃料噴射量Qfなどを用いることもできる。
【0027】
ここで、図6に示すように、排気λ<1(リッチ)で酸素がない状態ではNOxトラップ触媒において、NOxが排気中の還元成分(HC、CO)と反応して、NOxを浄化できるが、図7又は図8に示すように、排気λ<1(リッチ)であっても酸素が存在する場合は、まず酸素を消費して還元雰囲気を作り出し、その還元雰囲気においてNOxを浄化することになる。
【0028】
図7、図8は共に排気λ<1(リッチ)で酸素がある場合であるが、図7は排気の触媒での空間速度SVが小さい条件、図8は空間速度SVが大きい条件である。
図7のように、空間速度SVが小さい条件では、反応時間が長いため、排気中に酸素が残っていても酸素を消費して還元雰囲気にすることが可能となり、還元雰囲気下でNO2を三元機能で還元可能である。すなわち、SVが小さい状態では、酸素を消費して還元雰囲気を作り出し、さらにその還元雰囲気でトラップしたNOxを浄化する反応時間が確保可能となる。
【0029】
一方、図8のように、空間速度SVが大きい条件では、反応時間が短いため、排気中に酸素が残っている場合は酸素を消費するのに大半の時間を費やしてしまうので、還元雰囲気となる時間が少なくなる。このため、NOx浄化性能が低下してしまう。
また、図9に示すように、ディーゼルエンジンにおいてリッチ運転を実現した場合、EGRを実施していると燃焼がやや不安定となり、EGRを実施していない条件に比べ同一の排気λで排気中の残酸素量が多くなる(酸素が多い分、CO、HCの排出量も多い)。
【0030】
従って、空間速度SVが大きい状態では、反応時間が短くなることから、酸素を消費するのに反応時間(触媒通過時間)の大半を費やしてしまうため、還元雰囲気となる時間が少なくなり、排気中に残酸素量が多いと、排気λ<1(リッチ)であってもNOx浄化率が低下してしまうことから、リッチスパイク時の排気中の残酸素量を少なくしてやる必要がある。
【0031】
方法としては、例えば、EGRを行っている条件ではEGRを行わないことで残酸素量を減らすことが可能である。
このため、S2−2以降では次のように制御する。
S2−2では、空間速度SVが所定値SV1より大きいか否かを判定する。
空間速度SV≦SV1の場合は、S2−3へ進み、排気空燃比をリッチにする第1空燃比リッチ化方法を選択して、排気空燃比をリッチにする。具体的には、EGRを行う運転条件であれば、EGRを続行したまま、リッチスパイク時の目標λを所定の値λ1に設定し、吸気絞り弁の制御により、図10に示す目標吸入空気量に制御して、目標λ=λ1を達成する。また、誤差については、触媒出口側の空燃比センサからの信号に基づいてフィードバック制御を行う。
【0032】
空間速度SV>SV1の場合は、S2−4へ進み、排気中の酸素量を前記第1空燃比リッチ化方法より小さくすると共に排気空燃比をリッチにする第2空燃比リッチ化方法を選択して、排気空燃比をリッチ化する。具体的には、EGRを行う運転条件であれば、EGRを中止し、リッチスパイク時の目標λを所定の値λ1に設定し、吸気絞り弁の制御により、図11に示すEGRを行わない場合の目標吸入空気量に制御して、目標λ=λ1を達成する。また、誤差については、触媒出口側の空燃比センサからの信号に基づいてフィードバック制御を行う。
【0033】
この場合、リッチスパイク時の目標λを、残酸素量を減らしてもS2−3で設定するλ1と同じ値にすることで、過剰なスパイクによるエミッションの悪化、及びスパイクが浅くなることによるNOx浄化性能の低下を抑制可能となる。
空燃比リッチ化方法について補足すれば、通常のリッチスパイク、すなわち酸素量を低減させる必要がないときのリッチスパイク(第1空燃比リッチ化方法)は、EGR、吸気絞り弁、ポスト噴射のうち少なくとも1つを用いて行う。
【0034】
EGRを用いる場合、通常のリッチスパイクを行うときは、EGR率が大きくなるようEGR弁開度を大きくすると共に、吸気絞り弁開度を小さくして空気過剰率を小さくする。
ところで、シリンダ内に吸入されたEGRガスの分布(シリンダ内の酸素濃度)は一様でないため、噴射された燃料が燃焼する際、EGRガス濃度の高い(酸素濃度の低い)領域に存在した燃料は燃え難くHCとして排出される。すなわち、燃焼すべき燃料が燃焼しないため、その分、燃焼で消費されるべき酸素が消費されずにそのまま排出されることを意味する。
【0035】
従って、リッチスパイク時に酸素量を低減させたいときは(第2空燃比リッチ化方法では)、EGRなしで目標空気過剰率を実現させることで、燃焼で消費されるべき酸素を全てを燃焼させることができ、結果として排気中の酸素量を低減することができる。
すなわち、酸素量を低減させる必要がないときのリッチスパイクがEGRと吸気絞りで行われる場合、酸素量を低減させるときのリッチスパイクは、吸気絞りのみ(EGRなし)で行うことになる。
【0036】
また、酸素量を低減させる必要がないときのリッチスパイクがポスト噴射のみで行われる場合(図12にリッチスパイクのためのポスト噴射量の特性図を示す)、酸素量を低減させるときのリッチスパイクは、吸気絞り弁開度を小さくして吸入空気量を低減させることで排気中の醸素量を低減し、それによって空気過剰率が低下する分だけポスト噴射量を減らすことで実現できる。
【0037】
すなわち、ポスト噴射等の噴射量の制御によって(未燃燃料を増やすことで)排気λの制御を行っている場合は、未燃燃料の制御による排気λ制御から、空気量の制御による排気λ制御に切換えることで排気中の残酸素量を減らすことが可能となる。
さらに、酸素量を低減させる必要がないときのリッチスパイクがEGRと吸気絞りとポスト噴射で行われる場合、酸素量を低減させるときのリッチスパイクは、吸気絞りのみ(EGRなし、ポスト噴射なし)か、或いは、吸気絞りとポスト噴射量低減(低減量は吸気絞り量に応じて行う)で行うことができる。
【0038】
リッチスパイク開始後は、S2−5へ進む。
S2−5では、リッチスパイクを開始してからの経過時間(リッチスパイク時間)tが所定時間t1を超えたか否かを判定し、超えた場合に、触媒の再生が完了したとみなし、S2−6でNOx堆積量の積算値をクリアすると共に、S2−7でreg1フラグを0にする。
【0039】
次にreg2フラグ=1となった場合のS3−1以降の触媒活性が低い時のリッチスパイクモードについて説明する。触媒活性が低い場合は、NOxトラップ触媒のNOx浄化率自体が低下しているため例外的処置をとることにする。すなわち、活性状態が低くNOxトラップ触媒のNOx浄化率が低い場合、SVが大きいときには、第2空燃比リッチ化方法を選択しても十分なNOx浄化性能が得られないため、リッチスパイクを見送る。その一方、SVが小さいときには、NOx浄化性能が低いことをNOxと反応する還元剤(HC、CO)の増量によって補うべく、排気中の残存酸素が第1空燃比リッチ化手段より小さい第2空燃比リッチ化方法を選択する。これにより、NOx浄化率の低下によるNOx浄化性能の低下を抑制することが可能となる。
【0040】
S3−1では、S2−1と同様に、排気の触媒での空間速度SVを推定する。
S3−2では、空間速度SVが所定値SV1より大きいか否かを判定する。
空間速度SV≦SV1の場合は、S3−3へ進み、排気中の酸素量を前記第1空燃比リッチ化方法より小さくすると共に排気空燃比をリッチにする第2空燃比リッチ化方法を選択して、排気空燃比をリッチ化する。具体的には、EGRを行う運転条件であれば、EGRを中止し、リッチスパイク時の目標λを所定の値λ1に設定し、吸気絞り弁の制御により、図11に示すEGRを行わない場合の目標吸入空気量に制御して、目標λ=λ1を達成する。また、誤差については、触媒出口側の空燃比センサからの信号に基づいてフィードバック制御を行う。この場合も前述の他の方法で排気中の酸素量を少なくするようにしてもよい。
【0041】
S3−4では、リッチスパイクを開始してからの経過時間(リッチスパイク時間)tが所定時間t1を超えたか否かを判定し、超えた場合に、触媒の再生が完了したとみなし、S3−5でNOx堆積量の積算値をクリアすると共に、S3−6でreg2フラグを0にする。
その一方、S3−2での判定で、SV>SV1の場合は、触媒の活性が低くいことからスパイクを行っても十分なNOx浄化性能が得られないため、スパイクの実施を見送り、S3−6でreg2フラグを0にして、処理を終了する。
【0042】
尚、本実施形態においては、図2のS1−6の部分が還元浄化時期判定手段に相当し、図3のS2−1の部分が空間速度推定手段に相当し、図3のS2−2〜S2−4の部分が目標リッチ空燃比設定手段を含む空燃比リッチ化手段に相当する。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すエンジンのシステム図
【図2】 排気浄化制御のフローチャート(その1)
【図3】 排気浄化制御のフローチャート(その2)
【図4】 排気浄化制御のフローチャート(その3)
【図5】 温度と触媒活性との関係を示す図
【図6】 排気λ<1での酸素が無い状態での反応を示す図
【図7】 排気λ<1で酸素がありSVが小さい状態での反応を示す図
【図8】 排気λ<1で酸素がありSVが大きい状態での反応を示す図
【図9】 EGRの有無による排気中の成分変化を示す図
【図10】 リッチスパイク時の目標吸入空気量を示す図
【図11】 EGR無しでのリッチスパイク時の目標吸入空気量を示す図
【図12】 リッチスパイク時のポスト噴射量を示す図
【符号の説明】
1 エンジン
2 吸気通路
5 吸気絞り弁
8 コモンレール
9 燃料噴射弁
10 排気通路
11 EGR通路
12 EGR弁
13 NOxトラップ触媒
20 コントロールユニット
21 回転数センサ
22 アクセル開度センサ
23 エアフローメータ
24 触媒温度センサ
25 空燃比センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, traps NOx in exhaust when the air-fuel ratio of inflowing exhaust is lean, and reduces and purifies NOx trapped when the air-fuel ratio of inflowing exhaust is rich. It is related with what is provided with the NOx trap catalyst.
[0002]
[Prior art]
As a conventional technique, Japanese Patent No. 2600492 discloses trapping NOx in exhaust when the air-fuel ratio of inflowing exhaust is lean and trapping when the air-fuel ratio of inflowing exhaust is rich in the exhaust passage of the engine. A technology is disclosed in which a NOx trap catalyst for reducing and purifying NOx is disposed, and the exhaust air-fuel ratio is made rich at the reduction and purification timing of the NOx trap catalyst to purify NOx.
[0003]
[Problems to be solved by the invention]
In the above prior art, the reduction and purification of NOx by the NOx trap catalyst enriches the exhaust air-fuel ratio, that is, supplies HC and CO as reducing agents to the NOx trap catalyst, and these and NOx are in a reducing atmosphere. By reacting with
[0004]
However, oxygen may be present in the exhaust gas even when the exhaust air-fuel ratio is rich. If oxygen is present in the exhaust, the reaction between NOx and the reducing agent (HC, CO) in the reducing atmosphere will occur unless oxygen is consumed by the oxidation reaction of HC and CO to create a reducing atmosphere near the catalyst. Absent. For this reason, even in the same rich state (the same exhaust air-fuel ratio), the greater the amount of oxygen in the exhaust, the less the reduction reaction between the reducing agent and NOx occurs.
[0005]
That is, when the amount of oxygen in the exhaust gas per unit time flowing into the NOx trap catalyst is large, the ratio of the reaction between the reducing agent and oxygen increases in the NOx trap catalyst, and the reaction between the reducing agent and NOx is almost performed. Therefore, the NOx purification rate per unit time of the NOx trap catalyst decreases.
As described above, the conventional technique does not consider the presence of oxygen in the exhaust gas in the rich state in which NOx is reduced and purified. Therefore, when the amount of oxygen in the exhaust gas per unit time flowing into the NOx trap catalyst is large, There was a problem that NOx could not be sufficiently purified and exhaust was deteriorated.
[0006]
An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can solve such a conventional problem.
[0007]
[Means for Solving the Problems]
For this reason, according to the first aspect of the present invention, the NOx in the exhaust gas is trapped when the air-fuel ratio of the exhaust gas flowing into the engine is lean, and trapped when the air-fuel ratio of the exhaust gas flowing in is rich. A NOx trap catalyst for reducing and purifying NOx, a reduction and purification timing determination means for determining a reduction and purification timing of the NOx trap catalyst, a first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio at the reduction and purification timing, It is possible to selectively switch between the second air-fuel ratio enrichment method in which the exhaust air-fuel ratio is made the same value as in the first air-fuel ratio enrichment method and the amount of oxygen in the exhaust gas is smaller than that in the first air-fuel ratio enrichment method. Yes, when the amount of oxygen in the exhaust gas per unit time flowing into the NOx trap catalyst is small, the first air-fuel ratio enrichment method is selected and the unit time flowing into the NOx trap catalyst When the amount of oxygen in the exhaust gas or large, characterized in that it comprises, and the air-fuel ratio enrichment means for selecting the second air-fuel ratio enrichment methods.
[0008]
According to a second aspect of the present invention, there is provided target rich air-fuel ratio setting means for setting a target rich air-fuel ratio that makes the exhaust air-fuel ratio rich, and the air-fuel ratio enrichment means is configured to set the first rich air-fuel ratio when the exhaust air-fuel ratio is made rich. In both the air-fuel ratio enrichment method and the second air-fuel ratio enrichment method, the exhaust air-fuel ratio is set to the target rich air-fuel ratio.
According to a third aspect of the present invention, the air-fuel ratio enrichment means considers that the amount of oxygen in the exhaust per unit time flowing into the NOx trap catalyst increases when the space velocity of the exhaust is large.
[0009]
According to a fourth aspect of the present invention, the air-fuel ratio enriching unit includes a space velocity estimating unit that estimates the space velocity based on at least one of an intake air amount, an engine speed, and a fuel injection amount. And
According to a fifth aspect of the present invention, the engine includes an EGR valve disposed in an EGR passage that recirculates part of the exhaust gas from an engine exhaust passage to the intake passage, and an intake throttle valve disposed in the intake passage of the engine, When the first air-fuel ratio enrichment method is selected, the air-fuel ratio enrichment means enriches the exhaust air-fuel ratio at least with the EGR valve, and when the second air-fuel ratio enrichment method is selected, the intake throttle valve The exhaust air-fuel ratio is made rich.
According to a sixth aspect of the present invention, the air-fuel ratio enrichment means controls the intake throttle valve while continuing the EGR if the EGR is performed when the first air-fuel ratio enrichment method is selected. When the second air-fuel ratio enrichment method is selected when the intake air amount is controlled by controlling the intake air amount and the second air-fuel ratio enrichment method is selected, EGR is stopped and the intake throttle valve is controlled by controlling the intake throttle valve. The exhaust air / fuel ratio is stoichiometrically controlled by controlling the amount of intake air.
[0010]
According to a seventh aspect of the present invention, the air-fuel ratio enrichment means includes a fuel injection device that enables post injection that injects a small amount of fuel after main injection, and an intake throttle valve that is disposed in an intake passage of the engine. When the first air-fuel ratio enrichment method is selected, the exhaust air-fuel ratio is enriched by at least post injection, and when the second air-fuel ratio enrichment method is selected, the exhaust air-fuel ratio is selected by the intake throttle valve. It is characterized by enriching.
In the invention of claim 8, the air-fuel ratio enrichment means enriches the exhaust air-fuel ratio by post injection and selects the second air-fuel ratio enrichment method when the first air-fuel ratio enrichment method is selected. In this case, the amount of oxygen in the exhaust gas is reduced by reducing the intake air amount by reducing the intake throttle valve opening, thereby reducing the post-injection amount or post-injection as the excess air ratio decreases. It is characterized by stopping.
[0011]
【The invention's effect】
According to the first aspect of the present invention, when the amount of oxygen in the exhaust gas per unit time flowing into the NOx trap catalyst is large when performing reduction purification by the rich spike of the NOx trap catalyst, the reduction is performed by the residual oxygen in the exhaust gas. By enriching the exhaust air / fuel ratio with an air / fuel ratio enrichment method that can reduce the amount of oxygen in the exhaust gas, the agent (HC, CO) may be consumed and NOx may not be sufficiently reduced and purified. , NOx purification performance can be maintained.
[0012]
According to the invention of claim 2, in any of the air-fuel ratio enrichment methods, by making the exhaust air-fuel ratio the same target rich air-fuel ratio by the same setting means, fluctuations in the exhaust air-fuel ratio can be prevented, and NOx, HC It is possible to suppress fluctuations in emissions such as CO.
According to the invention of claim 3, as the amount of gas passing through the NOx trap catalyst increases, the reaction time between the reducing agent and oxygen or NOx tends to be short, and the reaction at the catalyst tends not to be expected sufficiently. When the space velocity is high, it is possible to control based on the space velocity by assuming that the amount of oxygen in the exhaust gas per unit time flowing into the NOx trap catalyst becomes large.
[0013]
According to the fourth aspect of the present invention, the space velocity can be controlled with the existing parameters by estimating the space velocity based on at least one of the intake air amount, the engine speed, and the fuel injection amount.
According to the fifth and sixth aspects of the invention, when the exhaust air-fuel ratio is enriched while performing EGR when performing a normal rich spike, the EGR is stopped when reducing the oxygen amount in the exhaust during the rich spike. Then, by enriching the exhaust air-fuel ratio with the intake throttle valve, it is possible to combust all the oxygen that should be consumed by combustion, and to reliably reduce the amount of oxygen in the exhaust.
[0014]
According to the inventions of claims 7 and 8 , when the exhaust air-fuel ratio is enriched by post-injection when normal rich spike is performed, post-injection is stopped when reducing the amount of oxygen in the exhaust at the time of rich spike Alternatively, the amount of oxygen in the exhaust gas can be reliably reduced by reducing and enriching the exhaust air / fuel ratio with the intake throttle valve.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an internal combustion engine (here, a diesel engine) showing an embodiment of the present invention.
The intake passage 2 of the diesel engine 1 is provided with an intake compressor of a variable nozzle type turbocharger 3. The intake air is supercharged by the intake compressor, cooled by the intercooler 4, passed through the intake throttle valve 5, and then the collector 6 and then flows into the combustion chamber of each cylinder. The fuel is increased in pressure by the common rail type fuel injection device, that is, by the high pressure fuel pump 7, sent to the common rail 8, and directly injected from the fuel injection valve 9 of each cylinder into the combustion chamber. The air that has flowed into the combustion chamber and the injected fuel are combusted by compression ignition, and the exhaust gas flows out to the exhaust passage 10.
[0016]
Part of the exhaust gas flowing into the exhaust passage 10 is recirculated to the intake side via the EGR valve 12 through the EGR passage 11 as EGR gas. The remainder of the exhaust passes through the exhaust turbine of the variable nozzle type turbocharger 3 and drives it.
Here, downstream of the exhaust turbine in the exhaust passage 10, for exhaust purification, NOx in the exhaust is trapped when the air-fuel ratio of the inflowing exhaust is lean, and trapped when the air-fuel ratio of the inflowing exhaust is rich A NOx trap catalyst 13 for reducing and purifying NOx is disposed. Further, the NOx trap catalyst 13 carries a noble metal and has a function of oxidizing HC and CO in the exhaust gas, and serves as a NOx trap catalyst with an oxidation function.
[0017]
In order to control the engine 1, the control unit 20 includes a rotation speed sensor 21 for detecting the engine rotation speed Ne, an accelerator opening sensor 22 for detecting the accelerator opening APO, and an air flow meter 23 for detecting the intake air amount Qa. A signal is being input.
Further, a catalyst temperature sensor 24 for detecting the temperature (catalyst temperature) Tc of the NOx trap catalyst 13 and an air / fuel ratio sensor 25 for detecting the exhaust air / fuel ratio on the outlet side of the NOx trap catalyst 13 in the exhaust passage 10 are provided. A signal is also input to the control unit 20. However, the temperature of the NOx trap catalyst 13 may be detected from the exhaust temperature in the vicinity (especially the downstream side).
[0018]
Based on these input signals, the control unit 20 controls the fuel injection amount and the injection timing of the main injection by the fuel injection valve 9 and the post injection performed after the main injection (expansion stroke or exhaust stroke) under predetermined operating conditions. The fuel injection command signal to the fuel injection valve 9, the opening command signal to the intake throttle valve 5, the opening command signal to the EGR valve 12, etc. are output.
[0019]
Here, the control unit 20 performs exhaust purification control for reducing and purifying NOx trapped and accumulated in the NOx trap catalyst 13, and the exhaust purification control will be described in detail below.
2 to 4 are flowcharts of exhaust purification control executed by the control unit 20.
[0020]
In S1-1, the engine speed Ne, the accelerator opening APO, the intake air amount Qa, and the catalyst temperature Tc are detected based on signals from the rotation speed sensor, accelerator opening sensor, air flow meter, and catalyst temperature sensor.
In S1-2, the fuel injection amount Qf for main injection is calculated by referring to a map using the engine speed Ne and the accelerator opening APO as parameters.
[0021]
In S1-3, the NOx deposition amount trapped and deposited on the NOx trap catalyst is detected. However, since it is difficult to directly detect the NOx accumulation amount, the NOx generation amount per unit time is predicted from the engine speed Ne and the fuel injection amount Qf, and the NOx accumulation amount per unit time is considered in consideration of the trap rate. It is detected indirectly by calculating and accumulating these. Alternatively, the NOx accumulation amount may be estimated from the integrated value of the engine speed.
[0022]
In S1-4, it is determined whether or not the reg1 flag indicating that the rich spike mode is active when the catalyst is active is set. When the reg1 flag = 1, the control proceeds to the rich spike mode control when the catalyst is active after S2-1 (FIG. 3).
In S1-5, it is determined whether or not the reg2 flag indicating that the rich spike mode when the catalyst activity is low is set. When the reg2 flag = 1, the control proceeds to the rich spike mode control when the catalyst activity is low after S3-1 (FIG. 4).
[0023]
In S1-6, it is determined whether or not the NOx accumulation amount detected in S1-3 is greater than a predetermined value NOx1 in order to determine whether or not it is the NOx trap catalyst regeneration timing (reduction purification timing).
If the NOx accumulation amount is equal to or less than the predetermined value NOx1, it is not the regeneration time, so the process is terminated. If the NOx accumulation amount exceeds the predetermined value NOx1, it is determined as the regeneration time, and the process proceeds to S1-7.
[0024]
In S1-7, the activity of the NOx trap catalyst is determined. Here, as shown in FIG. 5, the NOx purification performance of the catalyst starts to appear from the light-off temperature T2, but is not yet sufficient. Therefore, the catalyst is activated when the temperature becomes higher than the temperature T1 at which the NOx purification rate becomes sufficiently high. Judge. It is determined that the activity is low between T1 and T2, and it is determined that there is no activity at a temperature lower than T2.
[0025]
Therefore, in S1-7, it is determined whether or not the catalyst temperature Tc exceeds T1, and when Tc> T1, it is determined in S1-8 that the catalyst is active, In order to enter the rich spike mode, the reg1 flag is set to 1.
In the case of Tc ≦ T1, it is determined in S1-9 whether or not the catalyst temperature Tc exceeds T2, that is, whether or not the catalyst temperature Tc is between T1 and T2, and if Tc> T2, In S1-10, it is determined that the activity is low, and the reg2 flag is set to 1 to enter the rich spike mode when the catalyst activity is low.
[0026]
In the case of Tc ≦ T2, since there is no activity and no purification performance can be expected, the process is terminated by waiting for the regeneration process until it is warmed up.
Next, the rich spike mode at the time of catalyst activation after S2-1 when the reg1 flag = 1 is described.
In S2-1, the space velocity SV at the exhaust catalyst is estimated. Here, the amount of intake air Qa is used, and a value obtained by dividing this by the catalyst capacity is defined as a space velocity SV. However, since the catalyst capacity is constant for each engine model, the intake air amount Qa may be used as it is as an index of space velocity. In addition to using the intake air amount Qa in this way, the engine speed Ne, the fuel injection amount Qf, and the like can also be used.
[0027]
Here, as shown in FIG. 6, in the state where the exhaust λ <1 (rich) and no oxygen, NOx can be purified by the NOx trap catalyst by reacting with the reducing components (HC, CO) in the exhaust. As shown in FIG. 7 or FIG. 8, when oxygen is present even if the exhaust λ <1 (rich), first, oxygen is consumed to create a reducing atmosphere, and NOx is purified in the reducing atmosphere. Become.
[0028]
FIGS. 7 and 8 both show the case where exhaust λ <1 (rich) and oxygen is present, but FIG. 7 shows a condition where the space velocity SV of the exhaust catalyst is small, and FIG. 8 shows a condition where the space velocity SV is large.
As shown in FIG. 7, when the space velocity SV is low, the reaction time is long. Therefore, even if oxygen remains in the exhaust gas, it is possible to consume oxygen and create a reducing atmosphere. The original function can be reduced. That is, when SV is small, it is possible to secure a reaction time for consuming oxygen to create a reducing atmosphere and purifying NOx trapped in the reducing atmosphere.
[0029]
On the other hand, as shown in FIG. 8, when the space velocity SV is large, the reaction time is short. Therefore, when oxygen remains in the exhaust gas, most of the time is consumed to consume oxygen. The time to become less. For this reason, NOx purification performance will fall.
In addition, as shown in FIG. 9, when rich operation is realized in a diesel engine, combustion is slightly unstable when EGR is performed, and the exhaust gas is exhausted with the same exhaust λ as compared to the condition where EGR is not performed. The amount of residual oxygen increases (the more oxygen, the more CO and HC emissions).
[0030]
Therefore, when the space velocity SV is large, the reaction time is shortened, so that most of the reaction time (catalyst passage time) is consumed to consume oxygen. In addition, if the amount of residual oxygen is large, the NOx purification rate decreases even if the exhaust λ <1 (rich), so it is necessary to reduce the amount of residual oxygen in the exhaust during a rich spike.
[0031]
As a method, for example, it is possible to reduce the amount of residual oxygen by not performing EGR under conditions where EGR is performed.
For this reason, control is performed as follows from S2-2.
In S2-2, it is determined whether the space velocity SV is greater than a predetermined value SV1.
When the space velocity SV ≦ SV1, the process proceeds to S2-3, and the first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio is selected to enrich the exhaust air-fuel ratio. Specifically, if the operating condition is to perform EGR, the target λ during rich spike is set to a predetermined value λ1 while continuing the EGR, and the target intake air amount shown in FIG. To achieve the target λ = λ1. As for the error, feedback control is performed based on the signal from the air-fuel ratio sensor on the catalyst outlet side.
[0032]
When the space velocity SV> SV1, the process proceeds to S2-4, and the second air-fuel ratio enrichment method is selected in which the amount of oxygen in the exhaust gas is made smaller than that in the first air-fuel ratio enrichment method and the exhaust air-fuel ratio is made rich. To enrich the exhaust air-fuel ratio. Specifically, if the operating condition is to perform EGR, EGR is stopped, the target λ at the time of rich spike is set to a predetermined value λ1, and the EGR shown in FIG. 11 is not performed by the control of the intake throttle valve To achieve the target λ = λ1. As for the error, feedback control is performed based on the signal from the air-fuel ratio sensor on the catalyst outlet side.
[0033]
In this case, by setting the target λ during rich spike to the same value as λ1 set in S2-3 even if the residual oxygen amount is reduced, NOx purification due to emission deterioration due to excessive spikes and shallow spikes A decrease in performance can be suppressed.
Supplementing the air-fuel ratio enrichment method, the normal rich spike, that is, the rich spike when there is no need to reduce the oxygen amount (first air-fuel ratio enrichment method) is at least one of EGR, intake throttle valve, and post injection. Use one.
[0034]
When using EGR, when performing a normal rich spike, the EGR valve opening is increased so as to increase the EGR ratio, and the intake throttle valve opening is decreased to reduce the excess air ratio.
By the way, since the distribution of the EGR gas sucked into the cylinder (oxygen concentration in the cylinder) is not uniform, when the injected fuel burns, the fuel that exists in the region where the EGR gas concentration is high (low oxygen concentration) Is difficult to burn and is discharged as HC. That is, since the fuel to be combusted does not combust, the oxygen to be consumed by the combustion is discharged as it is without being consumed.
[0035]
Therefore, when it is desired to reduce the amount of oxygen during the rich spike (in the second air-fuel ratio enrichment method), by realizing the target excess air ratio without EGR, all the oxygen that should be consumed by combustion is burned. As a result, the amount of oxygen in the exhaust gas can be reduced.
That is, when the rich spike when there is no need to reduce the oxygen amount is performed by the EGR and the intake throttle, the rich spike when reducing the oxygen amount is performed only by the intake throttle (no EGR).
[0036]
Further, when the rich spike when there is no need to reduce the oxygen amount is performed only by the post injection (the characteristic diagram of the post injection amount for the rich spike is shown in FIG. 12), the rich spike when the oxygen amount is reduced. This can be realized by reducing the intake air amount by reducing the intake throttle valve opening to reduce the amount of brew in the exhaust, and thereby reducing the post injection amount by the amount that the excess air ratio decreases.
[0037]
That is, when controlling the exhaust λ by controlling the injection amount such as post injection (by increasing the unburned fuel), the exhaust λ control by controlling the air amount is changed from the exhaust λ control by controlling the unburned fuel. By switching to, it becomes possible to reduce the amount of residual oxygen in the exhaust.
Furthermore, if the rich spike when there is no need to reduce the oxygen amount is performed by EGR, intake throttle and post injection, is the rich spike when reducing the oxygen amount only the intake throttle (no EGR, no post injection)? Alternatively, it can be performed by reducing the intake throttle and the post injection amount (the reduction amount depends on the intake throttle amount).
[0038]
After the rich spike starts, the process proceeds to S2-5.
In S2-5, it is determined whether or not the elapsed time (rich spike time) t from the start of the rich spike has exceeded a predetermined time t1, and if so, it is considered that the regeneration of the catalyst has been completed. The accumulated value of the NOx accumulation amount is cleared at 6 and the reg1 flag is set to 0 at S2-7.
[0039]
Next, the rich spike mode when the catalyst activity after S3-1 when the reg2 flag is 1 is low will be described. When the catalytic activity is low, an exceptional measure is taken because the NOx purification rate itself of the NOx trap catalyst is lowered. That is, when the active state is low and the NOx purification rate of the NOx trap catalyst is low, when the SV is large, a sufficient NOx purification performance cannot be obtained even if the second air-fuel ratio enrichment method is selected, so a rich spike is forgotten. On the other hand, when SV is small, the remaining oxygen in the exhaust gas is smaller than the first air-fuel ratio enrichment means in order to compensate for the low NOx purification performance by increasing the amount of reducing agents (HC, CO) that react with NOx. Select the fuel enrichment method. As a result, it is possible to suppress a decrease in NOx purification performance due to a decrease in the NOx purification rate.
[0040]
In S3-1, as in S2-1, the space velocity SV at the exhaust catalyst is estimated.
In S3-2, it is determined whether or not the space velocity SV is greater than a predetermined value SV1.
When the space velocity SV ≦ SV1, the process proceeds to S3-3, and the second air-fuel ratio enrichment method is selected in which the amount of oxygen in the exhaust gas is made smaller than that in the first air-fuel ratio enrichment method and the exhaust air-fuel ratio is made rich. To enrich the exhaust air-fuel ratio. Specifically, if the operating condition is to perform EGR, EGR is stopped, the target λ at the time of rich spike is set to a predetermined value λ1, and the EGR shown in FIG. 11 is not performed by controlling the intake throttle valve To achieve the target λ = λ1. As for the error, feedback control is performed based on the signal from the air-fuel ratio sensor on the catalyst outlet side. Also in this case, the oxygen amount in the exhaust gas may be reduced by the other method described above.
[0041]
In S3-4, it is determined whether or not the elapsed time (rich spike time) t from the start of the rich spike has exceeded a predetermined time t1, and if so, it is considered that the regeneration of the catalyst has been completed. The accumulated value of the NOx accumulation amount is cleared at 5 and the reg2 flag is set to 0 at S3-6.
On the other hand, if SV> SV1 in the determination in S3-2, since the catalyst activity is low, sufficient NOx purification performance cannot be obtained even if the spike is performed. In step 6, the reg2 flag is set to 0 and the process is terminated.
[0042]
In this embodiment, the portion S1-6 in FIG. 2 corresponds to the reduction purification timing determination means, the portion S2-1 in FIG. 3 corresponds to the space velocity estimation means, and S2-2 to S2-2 in FIG. S2-4 corresponds to air-fuel ratio enrichment means including target rich air-fuel ratio setting means.
[Brief description of the drawings]
FIG. 1 is a system diagram of an engine showing an embodiment of the present invention. FIG. 2 is a flowchart of exhaust purification control (part 1).
FIG. 3 is a flowchart of exhaust purification control (part 2).
FIG. 4 is a flowchart of exhaust purification control (part 3).
FIG. 5 is a diagram showing the relationship between temperature and catalytic activity. FIG. 6 is a diagram showing a reaction in the absence of oxygen at exhaust λ <1. FIG. 7 is a state where oxygen is present at exhaust λ <1 and SV is small. FIG. 8 is a diagram showing a reaction in a state where exhaust λ <1 and oxygen is present and SV is large. FIG. 9 is a diagram showing a change in components in exhaust with and without EGR. FIG. 10 is a rich spike. FIG. 11 is a diagram showing a target intake air amount at the time of rich spike without EGR. FIG. 12 is a diagram showing a post injection amount at the time of rich spike.
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake passage 5 Intake throttle valve 8 Common rail 9 Fuel injection valve 10 Exhaust passage 11 EGR passage 12 EGR valve 13 NOx trap catalyst 20 Control unit 21 Rotational speed sensor 22 Acceleration opening degree sensor 23 Air flow meter 24 Catalyst temperature sensor 25 Air-fuel ratio Sensor

Claims (8)

機関の排気通路に配置され、流入する排気の空燃比がリーンのときに排気中のNOxをトラップし、流入する排気の空燃比がリッチのときにトラップしたNOxを還元浄化するNOxトラップ触媒と、
前記NOxトラップ触媒の還元浄化時期を判定する還元浄化時期判定手段と、
前記還元浄化時期に、排気空燃比をリッチにする第1空燃比リッチ化方法と、排気空燃比を前記第1空燃比リッチ化方法と同じ値にすると共に排気中の酸素量を前記第1空燃比リッチ化方法より小さくする第2空燃比リッチ化方法とを選択的に切換可能であり、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が小さいときに前記第1空燃比リッチ化方法を選択し、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きいときは前記第2空燃比リッチ化方法を選択する空燃比リッチ化手段と、
を備えることを特徴とする内燃機関の排気浄化装置。
An NOx trap catalyst that is disposed in the exhaust passage of the engine and traps NOx in the exhaust when the air-fuel ratio of the inflowing exhaust is lean and reduces and purifies NOx trapped when the air-fuel ratio of the inflowing exhaust is rich;
Reduction purification timing determination means for determining the reduction purification timing of the NOx trap catalyst;
The first air-fuel ratio enrichment method for enriching the exhaust air-fuel ratio and the exhaust air-fuel ratio at the same value as the first air-fuel ratio enrichment method and the amount of oxygen in the exhaust are reduced to the first air-fuel ratio at the reduction purification timing. ratio is a second air-fuel ratio enrichment method of less than enrichment methods can selectively switching, the first air-fuel ratio rich when the oxygen content in the exhaust gas per unit time flowing into the NOx trap catalyst is smaller An air-fuel ratio enrichment means that selects the second air-fuel ratio enrichment method when the oxygen amount in the exhaust gas per unit time flowing into the NOx trap catalyst is large,
An exhaust emission control device for an internal combustion engine, comprising:
排気空燃比をリッチにする目標リッチ空燃比を設定する目標リッチ空燃比設定手段を備え、
前記空燃比リッチ化手段は、排気空燃比をリッチにする際、前記第1空燃比リッチ化方法及び第2空燃比リッチ化方法のいずれにおいても、排気空燃比を前記目標リッチ空燃比にすることを特徴とする請求項1記載の内燃機関の排気浄化装置。
A target rich air-fuel ratio setting means for setting a target rich air-fuel ratio that makes the exhaust air-fuel ratio rich;
When the exhaust air-fuel ratio is made rich, the air-fuel ratio enriching means makes the exhaust air-fuel ratio the target rich air-fuel ratio in both the first air-fuel ratio enrichment method and the second air-fuel ratio enrichment method. The exhaust emission control device for an internal combustion engine according to claim 1.
前記空燃比リッチ化手段は、排気の空間速度が大きいとき、前記NOxトラップ触媒に流入する単位時間当たりの排気中の酸素量が大きくなるとみなすことを特徴とする請求項1又は請求項2記載の内燃機関の排気浄化装置。  3. The air-fuel ratio enrichment means considers that the amount of oxygen in the exhaust per unit time flowing into the NOx trap catalyst increases when the space velocity of the exhaust is large. An exhaust purification device for an internal combustion engine. 前記空燃比リッチ化手段は、吸入空気量、エンジン回転数及び燃料噴射量のうちの少なくとも1つに基づいて前記空間速度を推定する空間速度推定手段を備えることを特徴とする請求項3記載の内燃機関の排気浄化装置。The air-fuel ratio enrichment means, intake air amount, based on at least one of the engine speed and the fuel injection amount according to claim 3, characterized in that it comprises a space velocity estimating means for estimating the spatial velocity An exhaust purification device for an internal combustion engine. 機関の排気通路から排気の一部を吸気通路に還流するEGR通路に配置されたEGR弁と、機関の吸気通路に配置された吸気絞り弁と、を備え、
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともEGR弁で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気浄化装置。
An EGR valve disposed in an EGR passage that recirculates part of the exhaust from the exhaust passage of the engine to the intake passage, and an intake throttle valve disposed in the intake passage of the engine,
The air-fuel ratio enrichment means enriches the exhaust air-fuel ratio with at least an EGR valve when the first air-fuel ratio enrichment method is selected, and selects the intake air when the second air-fuel ratio enrichment method is selected. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust air-fuel ratio is enriched by a throttle valve.
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、EGRを行う条件であれば、EGRを続行したまま、吸気絞り弁の制御により吸入空気量を制御して排気空燃比をストイキに制御し、前記第2空燃比リッチ化方法を選択しているとき、EGRを行う条件であれば、EGRを中止し、吸気絞り弁の制御により吸入空気量を制御して排気空燃比をストイキに制御することを特徴とする請求項5記載の内燃機関の排気浄化装置。  The air-fuel ratio enrichment means controls the intake air amount by controlling the intake throttle valve while continuing the EGR if the condition for performing the EGR is selected when the first air-fuel ratio enrichment method is selected. When the exhaust air-fuel ratio is controlled to stoichiometric and the second air-fuel ratio enrichment method is selected, if the EGR is performed, EGR is stopped and the intake air amount is controlled by controlling the intake throttle valve. 6. The exhaust emission control device for an internal combustion engine according to claim 5, wherein the exhaust air-fuel ratio is controlled to stoichiometric. メイン噴射の後に少量の燃料を噴射するポスト噴射を可能とする燃料噴射装置と、機関の吸気通路に配置された吸気絞り弁と、を構え、
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、少なくともポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁で排気空燃比をリッチ化することを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気浄化装置。
A fuel injection device that enables post injection that injects a small amount of fuel after the main injection, and an intake throttle valve that is arranged in the intake passage of the engine,
The air-fuel ratio enrichment means enriches the exhaust air-fuel ratio by at least post injection when the first air-fuel ratio enrichment method is selected, and selects the intake air when the second air-fuel ratio enrichment method is selected. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the exhaust air-fuel ratio is enriched by a throttle valve.
前記空燃比リッチ化手段は、前記第1空燃比リッチ化方法を選択しているとき、ポスト噴射で排気空燃比をリッチ化し、前記第2空燃比リッチ化方法を選択しているとき、吸気絞り弁開度を小さくして吸入空気量を減少させることで排気中の酸素量を低減し、それによって空気過剰率が低下する分、ポスト噴射量を減少ないしポスト噴射を停止することを特徴とする請求項7記載の内燃機関の排気浄化装置。  The air-fuel ratio enriching means enriches the exhaust air-fuel ratio by post injection when the first air-fuel ratio enrichment method is selected, and selects the intake air throttle when the second air-fuel ratio enrichment method is selected. The amount of oxygen in the exhaust gas is reduced by reducing the valve opening and reducing the amount of intake air, thereby reducing the post-injection amount or stopping post-injection as the excess air ratio decreases. The exhaust emission control device for an internal combustion engine according to claim 7.
JP2002000805A 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3788350B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002000805A JP3788350B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine
EP02026949A EP1326010A3 (en) 2002-01-07 2002-12-04 Exhaust gas purification apparatus and process for internal combustion engine
US10/315,079 US6698185B2 (en) 2002-01-07 2002-12-10 Exhaust gas purification apparatus and process for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002000805A JP3788350B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003201886A JP2003201886A (en) 2003-07-18
JP3788350B2 true JP3788350B2 (en) 2006-06-21

Family

ID=19190546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002000805A Expired - Fee Related JP3788350B2 (en) 2002-01-07 2002-01-07 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
US (1) US6698185B2 (en)
EP (1) EP1326010A3 (en)
JP (1) JP3788350B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040123588A1 (en) * 2002-12-30 2004-07-01 Stanglmaier Rudolf H. Method for controlling exhaust gas temperature and space velocity during regeneration to protect temperature sensitive diesel engine components and aftertreatment devices
FR2856432B1 (en) * 2003-06-23 2005-09-30 Renault Sa METHOD FOR CONTROLLING A DIESEL ENGINE MOTORIZATION SYSTEM AND NITROGEN OXIDE TRAP
JP4055670B2 (en) * 2003-07-30 2008-03-05 日産自動車株式会社 Engine exhaust purification system
US7155331B1 (en) 2003-12-15 2006-12-26 Donaldson Company, Inc. Method of prediction of NOx mass flow in exhaust
JP4208012B2 (en) * 2004-06-25 2009-01-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
FR2873404B1 (en) * 2004-07-20 2006-11-17 Peugeot Citroen Automobiles Sa DEVICE FOR DETERMINING THE NOx MASS STOCKETED IN A NOx TRAP AND SYSTEM FOR SUPERVISING THE REGENERATION OF A NOx TRAP COMPRISING SUCH A DEVICE
JP2006132392A (en) * 2004-11-04 2006-05-25 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
US8261535B2 (en) * 2005-06-30 2012-09-11 GM Global Technology Operations LLC Enhanced post injection control system for diesel particulate filters
JP2007016655A (en) * 2005-07-06 2007-01-25 Toyota Industries Corp Exhaust emission control device for internal combustion engine
US20070079598A1 (en) * 2005-10-06 2007-04-12 Bailey Brett M Gaseous fuel engine charge density control system
US7913675B2 (en) * 2005-10-06 2011-03-29 Caterpillar Inc. Gaseous fuel engine charge density control system
JP4349423B2 (en) * 2007-03-01 2009-10-21 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP5590640B2 (en) * 2007-08-01 2014-09-17 日産自動車株式会社 Exhaust gas purification system
DE102007041321A1 (en) * 2007-08-31 2009-03-05 Volkswagen Ag Method for operating an internal combustion engine
US8474258B2 (en) * 2008-09-24 2013-07-02 Deere & Company Stoichiometric compression ignition engine with increased power output
JP5284245B2 (en) * 2009-11-05 2013-09-11 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP6217398B2 (en) * 2014-01-09 2017-10-25 マツダ株式会社 Fuel injection control device for diesel engine
JP6477088B2 (en) * 2015-03-20 2019-03-06 いすゞ自動車株式会社 NOx storage amount estimation device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374515A (en) * 1989-08-12 1991-03-29 Mazda Motor Corp Exhaust gas purification device for engine
JP2600492B2 (en) 1991-10-03 1997-04-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
ES2104943T5 (en) 1991-10-03 2005-04-16 Toyota Jidosha Kabushiki Kaisha PURIFICATION DEVICE OF EXHAUST GASES OF AN INTERNAL COMBUSTION ENGINE.
DE19636790A1 (en) * 1996-09-11 1998-03-12 Volkswagen Ag NOx emission control process
US5842340A (en) * 1997-02-26 1998-12-01 Motorola Inc. Method for controlling the level of oxygen stored by a catalyst within a catalytic converter
JPH10288065A (en) * 1997-04-17 1998-10-27 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
US6237330B1 (en) * 1998-04-15 2001-05-29 Nissan Motor Co., Ltd. Exhaust purification device for internal combustion engine
DE19852240A1 (en) * 1998-11-12 2000-05-18 Volkswagen Ag Monitoring method for NOx storage catalytic converters and exhaust gas purification device for carrying out this method
EP1087119B1 (en) * 1999-04-06 2004-10-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device of internal combustion engines
DE10010855A1 (en) * 2000-03-06 2001-09-20 Emitec Emissionstechnologie Regeneration of nitrogen oxide storage unit is controlled in duration and/or hydrocarbon supply rate as function of exhaust velocity within honeycomb
US6374597B1 (en) * 2000-03-17 2002-04-23 Ford Global Technologies, Inc. Method and apparatus for accessing ability of lean NOx trap to store exhaust gas constituent
JP2002000805A (en) 2000-06-23 2002-01-08 Sankyo Kk Slot machine

Also Published As

Publication number Publication date
EP1326010A3 (en) 2006-05-03
JP2003201886A (en) 2003-07-18
EP1326010A2 (en) 2003-07-09
US6698185B2 (en) 2004-03-02
US20030126857A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
JP3788350B2 (en) Exhaust gas purification device for internal combustion engine
EP1419309B1 (en) Exhaust gas purification system and method for internal combustion engine
JP4120523B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP3613676B2 (en) Exhaust gas purification device for internal combustion engine
JP4044908B2 (en) Exhaust gas purification device for internal combustion engine
JP4029795B2 (en) Combustion control device for internal combustion engine
US7320214B2 (en) Exhaust gas purifier for internal combustion engine
US7334398B2 (en) Combustion control apparatus and method for internal combustion engine
JP2005048715A (en) Exhaust emission control device for internal combustion engine
US10443525B2 (en) Exhaust emission control system of engine
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
JP2005042662A (en) Combustion control device for internal combustion engine
JP3820990B2 (en) Exhaust gas purification device for internal combustion engine
JP5125298B2 (en) Fuel supply control device for internal combustion engine
EP1512848B1 (en) Exhaust purifying apparatus and method for purifying exhaust gas
JP2003035131A (en) Exhaust emission control device for internal combustion engine
JP3551790B2 (en) Internal combustion engine
JP3622612B2 (en) Exhaust gas purification device for internal combustion engine
JP6244626B2 (en) Diesel engine exhaust aftertreatment system
JP3656496B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device
JP6447214B2 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP3807209B2 (en) Operation control device for internal combustion engine
JP2004346844A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees