JP3998645B2 - リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法 - Google Patents

リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法 Download PDF

Info

Publication number
JP3998645B2
JP3998645B2 JP2004033376A JP2004033376A JP3998645B2 JP 3998645 B2 JP3998645 B2 JP 3998645B2 JP 2004033376 A JP2004033376 A JP 2004033376A JP 2004033376 A JP2004033376 A JP 2004033376A JP 3998645 B2 JP3998645 B2 JP 3998645B2
Authority
JP
Japan
Prior art keywords
pattern
resist
substrate
illumination light
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004033376A
Other languages
English (en)
Other versions
JP2005228791A (ja
Inventor
亜矢子 中野
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004033376A priority Critical patent/JP3998645B2/ja
Priority to TW094103212A priority patent/TWI259515B/zh
Priority to US11/052,841 priority patent/US7534533B2/en
Publication of JP2005228791A publication Critical patent/JP2005228791A/ja
Application granted granted Critical
Publication of JP3998645B2 publication Critical patent/JP3998645B2/ja
Priority to US12/385,509 priority patent/US7859665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/398Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明はリソグラフィ技術に係り、特にリソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法に関する。
近年の半導体デバイスの高集積化及び高速化に伴い、デバイスパターンのパターン形成に対する要求精度は非常に厳しいものとなっている。またMOSトランジスタの製造工程においては、これまで比較的寸法要求精度が低いとされてきたイオン注入工程においても、ゲート電極の微細化が進み、要求精度も高くなってきている。一般に、MOSトランジスタのゲート電極等の配線パターンはウェハ上に段差として存在する。このため、基板上の段差を有するパターンと直交するレジストパターンをウェハ上にリソグラフィ法で形成すると、直交部においてレジストの裾引きが生じる、あるいはレジストパターンの寸法が設計値より減少するという問題があった。このレジストパターンの寸法が減少する問題に対しては、露光工程において基板上の段差パターンが延伸する方向に対して垂直な方向に照射光の偏光方向を揃えることにより、寸法減少を抑制する方法が提案されていた(例えば、特許文献1参照。)。
特開平5-226226号公報
しかし、基板上の段差パターンとレジストパターンの直交部に生じるレジストの裾引きに対処する方法は提案されていなかった。また、レジストパターンの設計上の寸法と仕上がり寸法との差を補正する方法としては、他に光近接効果補正(OPC)法等がある。しかし、レジストパターンが形成される下地が平坦である場合はOPC法は有効であるものの、基板上の段差パターンと直交するレジストパターンの形状を補正する有効な方法はなかった。
本発明はこのような従来技術の問題点を解決するために成されたものであり、その目的は、ウェハ上の段差を有するパターンと直交するレジストパターンを形成する場合に、設計寸法により近いレジストパターンを形成可能なリソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法を提供することである。
上記目的を達成するために本発明の第1の特徴は、(イ)一定の方向に延伸する段差を有する基板上のパターンとレジストパターンの直交部に残留する、レジストパターンの裾引き量と、レジストパターンの線幅に対するレジストパターンの間隔の比との関係を、電気ベクトルの振動方向が基板上のパターンと平行方向及び垂直方向にそれぞれ揃えられた照明光でそれぞれ露光された場合について取得する裾引き量取得部と、(ロ)線幅に対する間隔の比に応じて、裾引き量を抑制する照明光の偏光方向を決定する偏光方向決定部とを備えるリソグラフィ補正システムであることを要旨とする。
本発明の第2の特徴は、(イ)一定の方向に延伸する段差を有する基板上のパターンと直交する第1レジストパターンを電気ベクトルの振動方向が基板上のパターンと平行方向に揃えられた照明光で露光し、直交部に残留する第1レジストパターンの裾引き量と、第1レジストパターンの線幅に対する第1レジストパターンの間隔の比との第1の関係を取得するステップと、(ロ)基板上のパターンと直交する第2レジストパターンを電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光で露光し、第2レジストパターンの裾引き量と、第2レジストパターンの線幅に対する第2レジストパターンの間隔の比との第2の関係を取得するステップと、(ハ)第1及び第2の関係を比較し、裾引き量を抑制する偏光を決定するステップとを含むリソグラフィ補正方法であることを要旨とする。
本発明の第3の特徴は、(イ)形状予測部が、一定の方向に延伸する段差を有する基板上のパターンと直交し、電気ベクトルの振動方向が基板上のパターンと平行方向及び垂直方向にそれぞれ揃えられた照明光のそれぞれで形成される第1及び第2レジストパターンの形状を予測し、データ記憶装置に格納するステップと、(ロ)裾引き量取得部が、データ記憶装置に格納された第1及び第2レジストパターンの形状から、基板上のパターンとの直交部に残留する第1及び第2レジストパターンの裾引き量と、第1及び第2レジストパターンの線幅に対する第1及び第2レジストパターンの間隔の比とのそれぞれ第1及び第2の関係を取得し、データ記憶装置に格納するステップと、(ハ)偏光方向決定部が、データ記憶装置に格納された第1及び第2の関係を比較し、裾引き量を抑制する偏光を決定するステップとを含むリソグラフィ補正方法であることを要旨とする。
本発明の第4の特徴は、(イ)一定の方向に延伸する段差を有する基板上のパターンをそれぞれ有する第1及び第2ウェハを用意するステップと、(ロ)第1及び第2ウェハ上に第1及び第2レジストをそれぞれ塗布し、それぞれを露光装置に格納するステップと、(ハ)レチクルを露光装置に格納し、レチクルの像を電気ベクトルの振動方向が基板上のパターンと平行方向に揃えられた照明光で第1レジストに、電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光で第2レジストにそれぞれ投影して基板上のパターンと直交する第1及び第2レジストパターンを形成するステップと、(ニ)基板上のパターンとの直交部に残留する第1及び第2レジストパターンの裾引き量と、第1及び第2レジストパターンのパターン密度との関係から、裾引き量を抑制する偏光を決定するステップと、(ホ)基板上のパターンを有する第3ウェハを用意するステップと、(ヘ)第3ウェハ上に第3レジストを塗布するステップと、(ト)第3ウェハを露光装置に格納し、決定された偏光で回路パターンを第3レジストに投影するステップとを有する半導体装置の製造方法であることを要旨とする。
本発明の第5の特徴は、(イ)形状予測部に、一定の方向に延伸する段差を有する基板上のパターンと直交し、電気ベクトルの振動方向が基板上のパターンと平行方向及び垂直方向にそれぞれ揃えられた照明光のそれぞれで形成される第1及び第2レジストパターンの形状を予測させ、データ記憶装置に格納させるステップと、(ロ)裾引き量取得部に、データ記憶装置に格納された第1及び第2レジストパターンの形状から、基板上のパターンとの直交部に残留する第1及び第2レジストパターンの裾引き量と、第1及び第2レジストパターンの線幅に対する第1及び第2レジストパターンの間隔の比とのそれぞれ第1及び第2の関係を取得し、データ記憶装置に格納させるステップと、(ハ)偏光方向決定部に、データ記憶装置に格納された第1及び第2の関係を比較し、裾引き量を抑制する偏光を決定させるステップと、(ニ)基板上のパターンを有し、レジストが塗布されたウェハを露光装置に格納し、決定された偏光で回路パターンをレジストに投影するステップとを有する半導体装置の製造方法であることを要旨とする。
本発明によれば、ウェハ上の段差を有するパターンと直交するレジストパターンを形成する場合に、設計寸法により近いレジストパターンを形成可能なリソグラフィ補正システム、リソグラフィ補正方法、及び半導体装置の製造方法を提供することができる。
次に図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお以下の示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において種々の変更を加えることができる。
図1に示すように、本発明の実施の形態に係るリソグラフィ補正システムは、中央処理装置(CPU)100、露光装置300、形状予測部301、顕微鏡装置332、偏光方向記憶装置336、露光条件記憶装置338、入力装置312、出力装置313、プログラム記憶装置330及びデータ記憶装置331を備える。さらにCPU100は、裾引き量取得部323、偏光方向決定部324及び露光装置制御部326を備える。
露光装置300は、図2に示すように、波長248nmのフッ化クリプトン(KrF)エキシマレーザ等の照明光を照射する光源3、光源3から照射された照明光を受けるフライアイレンズ4、周辺光線を遮断する照明アパーチャ5、照明光を偏光にする偏光子を保持する偏光子ホルダ6、照明光の露光範囲を画定するレチクルブラインド7、照明光の進行方向を変える反射鏡8、反射鏡8で反射された照明光を集光するコンデンサレンズ9、コンデンサレンズ9の下部に配置されるレチクルステージ11、レチクルステージ11の下部に配置され照明光を受ける投影レンズ13、投影レンズ13の下部に配置されるウェハステージ15を備える。
光源3から照射された照明光はフライアイレンズ4を構成する複数のレンズ104a, 104b, 104c, 104dのそれぞれに入射する。複数のレンズ104a〜104dのそれぞれを透過した照明光は、偏光子ホルダ6に保持される偏光子、反射鏡8及びコンデンサレンズ9を介してレチクルステージ11上に配置されるレチクルの露光領域の全面に照射される。よってレチクル上においては、フライアイレンズ4の複数のレンズ104a〜104dのそれぞれを透過した照明光が重なり合い、均一な照明がなされる。
偏光子ホルダ6に保持される偏光子は、例えば図3に示すように、照明光を矢印で示した一定方向の偏光にする偏光部42を備える。あるいは図4に示すように、偏光部41の中心部にさらに遮光部40を備えるものでもよい。図2に示す偏光子ホルダ6には偏光子ホルダ駆動部66が接続される。偏光子ホルダ駆動部66は偏光子ホルダ6を駆動することにより、偏光子ホルダ6に保持される図3又は図4に示した偏光子を回転させ、図2に示した光源3から照射される照明光を任意の方向の偏光にする。
レチクルステージ11にはレチクルステージ駆動部111が接続される。レチクルステージ駆動部111はレチクルステージ11を駆動し、レチクルステージ11の配置位置を決定する。また、レチクルステージ11上には実施の形態に係るレジストの裾引き量を検査するための検査用レチクルが配置される。
ここで、「裾引き量」について図5及び図5の斜視図である図6を用いて説明する。図5及び図6においては、第1ウェハ14上に一定方向に延伸する段差を有する基板上のパターン16が配置され、さらにパターン16と直交する第1レジストパターン77aが配置されている。また、パターン16と第1レジストパターン77aの直交部の近傍には第1レジストパターン77aを形成するリソグラフィ工程で残留したレジストである裾引き部57a, 57b, 57c, 57dのそれぞれが配置される。図5に示すように、第1レジストパターン77aの側面から垂直方向に向かって裾引き部57aの末端までの距離を裾引き量d1とする。同様に裾引き部57bの末端までの距離を裾引き量d2、裾引き部57cの末端までの距離を裾引き量d4、裾引き部57dの末端までの距離を裾引き量d4とする。
検査用レチクルの一例を図7乃至図9の上面図に示す。図7に示す第1の検査用レチクルは、石英等を材料とする透明なマスク基板90、マスク基板90上に配置された複数の光透過部80a, 80b, 80c, 80d, 80e, 80fを有するクロム(Cr)等を材料とする遮光膜70を備える。光透過部80a〜80fのそれぞれは、総て同じ幅W1で遮光膜70に設けられた互いに合同である長方形の開口であり、光透過部80a〜80fのそれぞれを介してマスク基板90が表出する。光透過部80a〜80fのそれぞれは、W1と同じ寸法の間隔T1をおいて平行に設けられている。
図8に示す第2の検査用レチクルは、マスク基板91、マスク基板91上に配置された複数の光透過部81a, 81b, 81c, 81d, 81eを有する遮光膜71を備える。光透過部81a〜81eのそれぞれは、総て同じ幅W2で間隔T1をおいて遮光膜71に設けられた互いに合同である長方形の開口であり、光透過部81a〜81eのそれぞれを介してマスク基板91が表出する。光透過部81a〜81eのそれぞれの幅W2は間隔T1の2倍の寸法である。
図9に示す第3の検査用レチクルは、マスク基板92、マスク基板92上に配置された複数の光透過部82a, 82b, 82c, 82dを有する遮光膜72を備える。光透過部82a〜82dのそれぞれは、総て同じ幅W3で間隔T1をおいて遮光膜72に設けられた互いに合同である長方形の開口であり、光透過部82a〜82dのそれぞれを介してマスク基板92が表出する。光透過部82a〜82dのそれぞれの幅W3は間隔T1の6倍の寸法である。
図2に示すウェハステージ15にはウェハステージ駆動部115が接続される。ウェハステージ駆動部115はウェハステージ15を駆動し、ウェハステージ15の配置位置を決定する。またウェハステージ15上には、レチクルステージ11に配置されるレチクルの像を投影される第1ウェハ14が配置される。図10に示すように、第1ウェハ14上には一定の方向Yに延伸するゲート電極等の段差を有する基板上のパターン16及び第1レジスト30が配置される。
電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で図7に示した第1の検査用レチクルの像を投影後、現像処理された第1ウェハ14の上面図が図11である。第1ウェハ14上に段差を有するパターン16及びパターン16と直交する方向Xに延伸する複数の第1レジストパターン77a, 77b, 77c, 77d, 77e, 77fが配置される。第1レジストパターン77a〜77fのそれぞれの線幅はLであり、互いに線幅Lと同じ寸法の間隔S1をおいて配置される。
また、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で図8に示した第2の検査用レチクルの像を投影後、現像処理された第1ウェハ14の上面図が図12である。第1ウェハ14上に段差を有するパターン16及びパターン16と直交する方向Xに延伸する複数の第1レジストパターン87a, 87b, 87c, 87dが配置される。第1レジストパターン87a〜87dのそれぞれの線幅はLであり、互いに線幅Lの3倍の寸法である間隔S2をおいて配置される。
図13は、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で図9に示した第3の検査用レチクルの像を投影後、現像処理された第1ウェハ14の上面図である。第1ウェハ14上に段差を有するパターン16及びパターン16と直交する方向Xに延伸する複数の第1レジストパターン97a, 97b, 97cが配置される。第1レジストパターン97a〜97cのそれぞれの線幅はLであり、互いに線幅Lの6倍の寸法の間隔S3をおいて配置される。
また図10と同様の段差を有するパターンを有する第2ウェハ上に第2レジストを塗布したものを用意し、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光により図7乃至図9に示した検査用レチクルのそれぞれの像を投影後、現像することにより形成される第2レジストパターンの図も図11乃至図13と同様であるので、図面は省略する。
ここで、図11に示した段差を有するパターン16と第1レジストパターン77aの直交部には、図5及び図6に示したように、裾引き部57a, 57b, 57c, 57dのそれぞれが配置される。また図示は省略するが、図11に示した他の第1レジストパターン77b〜77fのそれぞれと段差を有するパターン16との直交部、図12に示した第1レジストパターン87a〜87dと段差を有するパターン16のそれぞれの直交部、及び図13に示した第1レジストパターン97a〜97cと段差を有するパターン16のそれぞれの直交部においても、同様に裾引き部が配置される。電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光により形成される第2レジストパターンにおいても同様である。
図1に示す露光条件記憶装置338は、露光装置300の投影レンズ13の開口数(NA)、コヒーレンスファクタ(σ)、輪帯遮蔽率等の照明条件等を保存する。また露光条件記憶装置338は、露光装置300のレチクルステージ11に配置されるレチクルのレチクルパターンの設計データを保存する。
図1に示す顕微鏡装置332としては原子間力顕微鏡(AFM)や走査型電子顕微鏡(SEM)等が使用可能である。顕微鏡装置332は、露光装置300で露光後、現像処理された図11乃至図13に示した第1ウェハ14及び第2ウェハの表面像を撮影する。
形状予測部301は、露光投影像の光強度を算出するフーリエ変換プログラム、及び現像後のレジストパターンの表面形状を算出するストリングモデル等のリソグラフィーシミュレーションプログラム等を格納する。形状予測部301は、図7乃至図9に示した第1乃至第3の検査用レチクルの像を、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で図10に示した第1レジスト30に投影し、現像することにより得られる図11乃至図13に示す第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cの形状を予測する。同様に、第1乃至第3の検査用レチクルの像を、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で第2レジストに投影し、現像することにより得られる第2レジストパターンの形状も予測する。
図1に示す裾引き量取得部323は、顕微鏡装置332により撮影された図11に示した第1ウェハ14の表面像、あるいは形状予測部301が予測した第1ウェハ14の表面形状を解析し、パターン16と第1レジストパターン77a〜77fのそれぞれとの直交部におけるレジストの裾引き量d1〜d4を測定する。例えば顕微鏡装置332に3次元画像取得可能なAFM及びSEMを用いた場合には、画像の高さ情報のヒストグラムからパターン16及び第1レジストパターン77a〜77fをパターン認識し、パターン16と第1レジストパターン77a〜77fのそれぞれとの直交部において第1レジストパターン77a〜77fの側面から垂直方向に表面高さを計測していき、表面高さが第1ウェハ14表面と等しくなるまでの垂直方向距離を取得することにより行う。図11に示した他の第1レジストパターン77b〜77fのそれぞれとパターン16との直交部についても同様に裾引き量d1〜d4を測定し、総ての直交部における裾引き量d1〜d4の平均値を第1レジストパターン77a〜77fそれぞれの線幅Lに対する間隔S1の寸法比が1の場合の裾引き量と定義する。
裾引き量取得部323は図12に示したパターン16と第1レジストパターン87a〜87dのそれぞれの直交部についても解析し、第1レジストパターン87a〜87dの線幅Lに対する間隔S2の寸法比が3の場合の裾引き量d1〜d4の平均値を算出する。同様に、図13からパターン16と第1レジストパターン97a〜97cのそれぞれの直交部についても解析し、第1レジストパターン97a〜97cの線幅Lに対する間隔S3の寸法比が6の場合の裾引き量d1〜d4の平均値を算出する。また、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光により形成された第2レジストパターンについても同様に裾引き量d1〜d4の平均値を算出する。なお、図11乃至図13に示したレジストパターンの線幅Lに対する間隔S1〜S3の寸法比は一例であり、これらに限定されることはない。
さらに裾引き量取得部323は、図14に示すように、レジストパターンの線幅Lに対する間隔Sの寸法比と、裾引き量d1〜d4の平均値との関係を、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光を用いた場合と、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光を用いた場合のそれぞれについて求める。図14においては、レジストパターンの線幅Lに対する間隔Sの寸法比が6未満である場合、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で形成された第2レジストパターンの裾引き量d1〜d4の平均値の方が電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光を用いて形成された第1レジストパターンの裾引き量d1〜d4の平均値よりも小さい。これに対し、レジストパターンの線幅Lに対する間隔Sの寸法比が6以上である場合、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光を用いて形成された第1レジストパターンの方が、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で形成された第2レジストパターンに対して裾引き量d1〜d4の平均値が小さくなっている。
なお図14に示した測定結果は、開口数(NA)0.68、コヒーレンスファクタ(σ)0.75の露光条件による一例であるが、露光条件が変化すれば、レジストパターンの裾引き量d1〜d4が小さくなる偏光方向が、基板上のパターン16と垂直方向から平行方向に変わるレジストパターンの線幅Lに対する間隔Sの寸法比も変化する。
図1に示す偏光方向決定部324は、裾引き量取得部323が測定した裾引き量d1〜d4を基に、それぞれのレジストパターンの線幅Lに対する間隔Sの寸法比と、最適な偏光方向の関係を決定する。図14のグラフに示した例においては、偏光方向決定部324はレジストパターンの線幅Lに対する間隔Sの寸法比が6未満の場合は基板上のパターン16と垂直な方向が最適な偏光方向であり、レジストパターンの線幅Lに対する間隔Sの寸法比が6以上の場合は、基板上のパターン16と平行な方向が最適な偏光方向であると決定する。
偏光方向記憶装置336は、偏光方向決定部324が決定したレジストパターンの線幅Lに対する間隔Sの比と、最適な偏光方向との組み合わせを保存する。
露光装置制御部326は、露光装置300に露光条件に合った露光環境を設定する。例えば図2に示したレチクルステージ駆動部111及びウェハステージ駆動部115を駆動してレチクルステージ11及びウェハステージ15を移動させ、それぞれの配置位置、走査方向及び走査速度等を設定する。また、偏光子ホルダ駆動部66を駆動することにより、光源3から照射される照明光の偏光方向を設定する。
入力装置312としては、キーボード、マウス等が使用可能である。出力装置313としては液晶表示装置(LCD)、発光ダイオード(LED)等によるモニタ画面等が使用可能である。プログラム記憶装置330は、CPU100に接続された装置間のデータ送受信等をCPU100に実行させるためのプログラムを保存している。データ記憶装置331は、CPU100の演算過程でのデータを一時的に保存する。
次に図15に示すフローチャートを用いて実施の形態に係るリソグラフィ補正方法及び半導体装置の製造方法について説明する。
(a) ステップS10で、図10に示した段差を有する基板上のパターン16を有する第1ウェハ14上に第1レジスト30を塗布したものを複数用意する。ステップS11で図2に示した露光装置300に、用意した第1ウェハ14を格納する。ステップS12で用意した複数の第1ウェハ14のそれぞれに図7乃至図9に示した第1乃至第3の検査用レチクルをレチクルステージ11にそれぞれの光透過部80a〜80f、81a〜81e、82a〜82dが延伸する方向がパターン16が延伸する方向と垂直になるよう配置し、検査用レチクルの像をそれぞれ電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で投影する。ステップS13で現像処理を行い、図11乃至図13に示した線幅Lに対する間隔がそれぞれS1, S2, S3である第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cのそれぞれをパターン16と直交するように第1ウェハ14上に形成させる。
(b) ステップS14で、図1に示した顕微鏡装置332で、図11乃至図13に示した第1ウェハ14のそれぞれの表面画像を取得する。さらに裾引き量取得部323はパターン16と第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cのそれぞれとの直交部における図5に示した裾引き量d1〜d4を測定し、第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cの線幅Lに対するそれぞれの間隔S1, S2, S3の寸法比との第1の関係を取得する。
(c) ステップS15で図10と同様の段差を有するパターンを有する第2ウェハ上に第2レジストを塗布したものを複数用意する。ステップS16で図2に示した露光装置300に、用意した第2ウェハを格納する。ステップS17で用意した複数の第2ウェハのそれぞれに図7乃至図9に示した第1乃至第3の検査用レチクルの像を、それぞれ電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で投影する。ステップS18で現像処理を行い、図11乃至図13に示した線幅Lに対する間隔がそれぞれS1, S2, S3である第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cと同様の第2レジストパターンを段差を有する基板上のパターンと直交するように第2ウェハ上に形成させる。
(d) ステップS19で、図1に示した顕微鏡装置332で、第2ウェハのそれぞれの表面画像を取得し、裾引き量取得部323は段差を有する基板上のパターンと第2レジストパターンのそれぞれとの直交部における図5に示した裾引き量d1〜d4を第1レジストパターンの場合と同様に測定し、第2レジストパターンの線幅Lに対するそれぞれの間隔Sの寸法比との第2の関係を取得する。ステップS20で、偏光方向決定部324は第1及び第2の関係を比較し、図5に示した裾引き量d1〜d4を抑制する偏光方向を決定し、偏光方向記憶装置336に保存する。
(e) ステップS100で、段差を有する基板上のパターンを有する第3ウェハに第3レジストを塗布したものを用意し、ステップS101で図2に示した露光装置のウェハステージ15に第3ウェハを配置する。ステップS102で、露光装置制御部326は露光条件記憶装置338に保存されているレチクルのレチクルパターンから段差を有するパターンと直交して形成されるレジストパターンの線幅Lに対する間隔Sの寸法比をからパターン密度を抽出し、抽出されたパターン密度において、段差を有する基板上のパターンとレジストパターンの直交部に生じ得る裾引き量d1〜d4を抑制する偏光方向を偏光方向記憶装置336から読み出す。
(f) ステップS103で、露光装置制御部326は偏光子ホルダ6を駆動し、ステップS102で最適と判断された偏光方向に照明光が偏光になるよう設定する。ステップS104で半導体回路パターンを有するレチクルの像を第3ウェハ上の第3レジストに投影した後、ステップS105で現像液等で第3レジストをエッチング処理し、第3ウェハ上に段差を有する基板上のパターンと直交するレジストパターンを形成させる。
次に図16に示すフローチャートを用いて図1に示した形状予測部301を使用する場合の実施の形態に係るリソグラフィ補正方法及び半導体装置の製造方法について説明する。
(a) ステップS40で、図1に示した形状予測部301は、図10に示した第1レジスト30に図7乃至図9に示した第1乃至第3の検査用レチクルの像をそれぞれ電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で投影し、現像後に形成される図11乃至図13に示した線幅Lに対する間隔がそれぞれS1, S2, S3である第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cのそれぞれの形状を予測し、図1に示したデータ記憶装置331に予測された形状を保存する。
(b) ステップS41で、裾引き量取得部323は形状予測部301が予測した、段差を有するパターン16と第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cのそれぞれとの直交部における形状から、図5に示した裾引き量d1〜d4を抽出し、第1レジストパターン77a〜77f, 87a〜87d, 97a〜97cの線幅Lに対するそれぞれの間隔S1, S2, S3の寸法比との第1の関係を取得する。
(c) ステップS42で、図1に示した形状予測部301は、第2レジストに図7乃至図9に示した第1乃至第3の検査用レチクルの像を、それぞれ電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で投影し、現像後に形成される第2レジストパターンのそれぞれの形状を予測し、図1に示したデータ記憶装置331に予測された形状を保存する。
(d) ステップS43で裾引き量取得部323は形状予測部301が予測した形状から第2レジストパターンの裾引き量d1〜d4を抽出し、第2レジストパターンの線幅Lに対するそれぞれの間隔Sの寸法比との第2の関係を取得する。ステップS44で、偏光方向決定部324は第1及び第2の関係を比較し、図5に示した裾引き量d1〜d4を抑制する偏光方向を決定し、偏光方向記憶装置336に保存する。以下、ステップS100〜S105は図15を同じであるので、説明は省略する。
以上示した実施の形態に係るリソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法によれば、露光工程において第3ウェハ上に配置された段差を有する基板上のパターンと直交するレジストパターンを形成する場合に、形成されるレジストパターンの線幅Lに対する間隔Sの寸法比で表されるレジストパターンのパターン密度に応じて適切な方向に照明光を偏光にすることにより、パターンとレジストパターンとの直交部に生じる図5に示した裾引き量d1〜d4を効果的に低減することが可能となる。
従来においては、段差を有する基板上のパターンが存在するウェハ上のレジストを露光する場合には、電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光で露光すると、ウェハ上での照明光の乱反射が抑制されると考えられ、一律に電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光でレジストを露光する方法があった。
これに対し、実施の形態に係るリソグラフィ補正システム及びリソグラフィ補正方法によれば、一律に電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光を用いるのではなく、形成されるレジストパターンの線幅Lに対する間隔Sの寸法比に応じて電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光をも選択することにより、パターンとの直交部においても設計寸法により近いレジストパターンを形成することが可能となる。
また図1に示した偏光方向記憶装置336に、各照明条件下におけるレジストパターンの線幅Lに対する間隔Sの寸法比と最適な偏光方向の組み合わせをデータベースとして保存することにより、レチクルの像を投影する際に照明光の最適な偏光方向を瞬時に選択することも可能となる。なお、実施の形態に係るリソグラフィ補正方法及び半導体装置の製造方法は、図15及び図16に示したフローチャートの順序には限られないのは勿論である。

(変形例)
実施の形態においては、図2に示した偏光子ホルダ6に図3及び図4に示した偏光子を配置したが、偏光子の形状はこれらに限定されず、図17及び図18に示す偏光子も使用可能である。ここで図17に示す偏光子は、遮光板44に円形の複数の偏光窓45a, 45b, 45c, 45d, 45e, 45f, 45g, 45hが円状に配置されている。偏光窓45a〜45hのそれぞれを透過した照明光は、図17の矢印に示した照明光の進行方向に対して放射状の方向にそれぞれ揃えられた複数の偏光に変わる。
また図18に示す偏光子は、遮光板44に円形の複数の偏光窓46a, 46b, 46c, 46d, 46e, 46f, 46g, 46hが円状に配置されている。偏光窓46a〜46hのそれぞれを透過した照明光は、図18の矢印に示すように、照明光の進行方向に対して円周方向にそれぞれ複数の揃えられた偏光に変わる。
図17に示した偏光子を利用した場合の光学的な効果を図19を用いて説明する。図19に示す投影光学系においては、偏光窓45a〜45hのそれぞれが配置された遮光板44を有する偏光子60、偏光子60の下部に複数のレチクルパターン50a, 50b, 50c, 55a, 55b, 55cを有するレチクル10、レチクル10の下部に投影レンズ13、及び投影レンズ13の下部にレジスト22が塗布されたウェハ20のそれぞれが配置される。
レチクル10上のレチクルパターン50a〜50cのそれぞれは、一定の方向Xに延伸する。一方レチクルパターン55a〜55cのそれぞれは、方向Xと直交する方向Yに延伸する。
この場合、一定の方向Xに延伸するレチクルパターン50a〜50cのそれぞれをレジスト22上に投影し、投影像150a, 150b, 150cのそれぞれを形成するのに寄与するのは、主にY方向上に配置された偏光窓45a及び偏光窓45eを透過した照明光である。他の偏光窓45b〜45d, 45f〜45hのそれぞれを透過した照明光は0次光としてバイアス成分となるが強度が弱く、投影像150a〜150cそれぞれの形成に与える影響は小さい。
一方、一定の方向Yに延伸するレチクルパターン55a〜55cのそれぞれをレジスト22上に投影し、投影像155a, 155b, 155cのそれぞれを形成するのに寄与するのは、X方向上に配置された偏光窓45c及び偏光窓45gを透過した照明光である。ここでも、他の偏光窓45a, 45b, 45d〜45f, 45hのそれぞれを透過した照明光は強度が弱く、投影像155a〜155cそれぞれの形成に与える影響は小さい。
したがって、X方向に延伸する投影像150a〜150のそれぞれはY方向と平行方向の偏光にされた照明光により形成され、Y方向に延伸する投影像155a〜155cのそれぞれは、X方向と平行方向の偏光にされた照明光により形成されることとなる。そのため、投影像150a〜150の下部にY方向に延伸する段差を有する基板上のパターンが配置され、投影像155a〜155cの下部にX方向に延伸する段差を有する基板上のパターンが配置されている場合においても、投影像150a〜150及び投影像155a〜155cのいずれもが、電気ベクトルの振動方向が基板上のパターンと平行方向に揃えられた照明光により形成されることとなる。結果として、投影像150a〜150及び投影像155a〜155cのいずれもが電気ベクトルの振動方向が基板上のパターンと平行方向に揃えられた照明光で裾引き量が抑制される間隔Sで配置されている場合には、ウェハ20上に異なる方向に延伸する段差を有するパターンが配置されている場合にも、偏光子60を用いることによって、効果的に裾引き量を抑制することが可能となる。
なお、投影像150a〜150及び投影像155a〜155cのいずれもが電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光で裾引き量が抑制される間隔Sで配置されている場合には、図19に示した偏光子を用いることによって、投影像150a〜150及び投影像155a〜155cのそれぞれを電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光で形成することが可能となり、同様の効果を得ることが可能となる。
次に、実施の形態の変形例に係る半導体装置の製造方法を図20を用いて説明する。
(a) ステップS201で、段差を有するパターンを有するウェハにレジストを塗布したものを用意し、ステップS202で図2に示した露光装置のウェハステージ15にウェハを配置する。さらにステップS203でレチクルを図2に示したレチクルステージ11に配置する。ステップS204で、露光装置制御部326は露光条件記憶装置338に保存されているレチクルのレチクルパターンから、段差を有するパターンと直交して形成されるレジストパターンの線幅Lに対する間隔Sの寸法比からパターン密度を抽出し、抽出されたパターン密度において、段差を有する基板上のパターンとレジストパターンの直交部に生じ得る裾引き量d1〜d4を抑制する偏光方向を偏光方向記憶装置336から読み出す。ステップS204で電気ベクトルの振動方向が基板上のパターンと平行方向に揃えられた照明光が選択された場合、ステップS205で図2に示した偏光子ホルダ6に図17に示した偏光子を配置し、光源3から照射される照明光を、放射状の複数の偏光方向にそれぞれ揃えられた複数の偏光に分割する。
(b) ステップS204で電気ベクトルの振動方向が基板上のパターンと垂直方向に揃えられた照明光が選択された場合、ステップS206で図2に示した偏光子ホルダ6に図18に示した偏光子を配置し、光源3から照射される照明光を、照明光の進行方向に対し、円周方向にそれぞれ揃えられた複数の偏光に分割する。ステップS207及びS208は図15に示したステップS104及びS105とそれぞれ同様であるので説明は省略する。
以上示した実施の形態の変形例に係る半導体装置の製造方法によれば、図19に示すようにレチクル10上に延伸する方向が異なるレチクルパターン50a〜50c及び55a〜55cのそれぞれが配置されている場合においても、レチクルパターン50a〜50c及び55a〜55cの両方を、電気ベクトルの振動方向が基板上のパターンと垂直方向あるいは平行方向に揃えられた照明光のいずれか一方でウェハ20上のレジスト22に投影することが可能となる。

(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。
例えば、図15に示したステップS102からS105において、レチクルパターンから段差を有する基板上のパターンと直交するレジストパターンの線幅Lに対する間隔Sの寸法比を抽出し、抽出された寸法比において、段差を有するパターンとレジストパターンとの直交部に生じ得る裾引きを抑制する偏光方向を決定し、決定された偏光方向に偏光にされた照明光でレチクルの像を投影すると説明した。
この場合において、段差を有する基板上のパターンと直交するレジストパターンの線幅Lに対する間隔Sの寸法比が一様でなく、局所的に電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で露光した方が裾引きが抑制される部分と、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で露光した方が裾引きが抑制される部分の両方が存在する場合がある。
このような場合には、レチクルパターンの設計データを、電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で露光した方が裾引きが抑制されるパターンと、電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で露光した方が裾引きが抑制されるパターンとに分割し、さらに、それぞれのパターンを有する基板上のパターン16と垂直方向に揃えられた偏光露光用レチクル、及び基板上のパターン16と平行方向に揃えられた偏光露光用レチクルを準備すればよい。さらに、ウェハ上のレジストに、基板上のパターン16と垂直方向に揃えられた偏光露光用レチクルの像を電気ベクトルの振動方向が基板上のパターン16と垂直方向に揃えられた照明光で投影した後、ウェハ上のレジストの同じ場所に基板上のパターン16と平行方向に揃えられた偏光露光用レチクルの像を電気ベクトルの振動方向が基板上のパターン16と平行方向に揃えられた照明光で投影することにより、段差を有する基板上のパターンと直交するレジストパターンの線幅Lに対する間隔Sの寸法比が一様でない場合においても、裾引き量を効果的に抑制することが可能となる。なお、基板上のパターン16と平行方向に揃えられた偏光露光用レチクルの像を先に投影し、次に基板上のパターン16と垂直方向に揃えられた偏光露光用レチクルの像を投影してもよいことは勿論である。
また、基板上のパターン16と垂直方向に揃えられた偏光露光用レチクル及び基板上のパターン16と平行方向に揃えられた偏光露光用レチクルの2枚のレチクルを準備するのではなく、同一レチクル上に、基板上のパターン16と垂直方向に揃えられた偏光露光用及び基板上のパターン16と平行方向に揃えられた偏光露光用のレチクルパターンをそれぞれ設け、図2に示したレチクルステージ駆動部111でレチクルステージ11を駆動することにより、基板上のパターン16と垂直方向に揃えられた偏光露光用及び基板上のパターン16と平行方向に揃えられた偏光露光用のレチクルパターンの像をそれぞれをウェハ上のレジストに投影してもよい。
以上示したように、この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は上記の説明からは妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
本発明の実施の形態に係るリソグラフィ補正システムを示すブロック図である。 本発明の実施の形態に係る露光装置を示す模式図(その1)である。 本発明の実施の形態に係る偏光子の上面図(その1)である。 本発明の実施の形態に係る偏光子の上面図(その2)である。 本発明の実施の形態にウェハの拡大上面図である。 本発明の実施の形態に係るウェハの斜視図(その2)である。 本発明の実施の形態に係るレチクルの拡大上面図(その1)である。 本発明の実施の形態に係るレチクルの拡大上面図(その2)である。 本発明の実施の形態に係るレチクルの拡大上面図(その3)である。 本発明の実施の形態に係るウェハの斜視図(その1)である。 本発明の実施の形態にウェハの上面図(その1)である。 本発明の実施の形態にウェハの上面図(その2)である。 本発明の実施の形態にウェハの上面図(その3)である。 本発明の実施の形態に係るレジストパターンの線幅に対する比と裾引き量の関係を示すグラフである。 本発明の実施の形態に係る半導体装置の製造方法を示すフローチャート(その1)である。 本発明の実施の形態に係る半導体装置の製造方法を示すフローチャート(その2)である。 本発明の実施の形態の変形例に係る偏光子の上面図(その1)である。 本発明の実施の形態の変形例に係る偏光子の上面図(その2)である。 本発明の実施の形態の変形例に係る露光装置を示す模式図である。 本発明の実施の形態の変形例に係る半導体装置の製造方法を示すフローチャートである。
符号の説明
3…光源
4…フライアイレンズ
5…照明アパーチャ
6…偏光子ホルダ
7…レチクルブラインド
8…反射鏡
9…コンデンサレンズ
10…レチクル
11…レチクルステージ
13…投影レンズ
14…ウェハ
15…ウェハステージ
16…パターン
30…レジスト
40…遮光部
41, 42…偏光部
44…遮光板
45a, 45b, 45c, 45d, 45e, 45f, 45g, 45h, 46a, 46b, 46c, 46d, 46e, 46f, 46g, 46h…偏光窓
50a, 50b, 50c, 55a, 55b, 55c…レチクルパターン
57a, 57b, 57c, 57d…裾引き部
60…偏光子
66…偏光子ホルダ駆動部
70, 71, 72…遮光膜
77a, 77b, 77c, 77d, 77d, 77f, 87a, 87b, 87c, 87d, 97a, 97b, 97c…第1レジストパターン
80a, 80b, 80c, 80d, 80e, 80f, 81a, 81b, 81c, 81d, 81e, 82a, 82b, 82c, 82d…光透過部
90, 91, 92…マスク基板
104a, 104b, 104c, 104d…レンズ
111…レチクルステージ駆動部
115…ウェハステージ駆動部
100…中央処理装置(CPU)
150a, 150b, 150c, 155a, 155b, 155c…投影像
300…露光装置
301…形状予測部
312…入力装置
313…出力装置
323…裾引き量測定部
324…偏光方向決定部
326…露光装置制御部
330…プログラム記憶装置
331…データ記憶装置
332…顕微鏡装置
336…偏光方向記憶装置
338…露光条件記憶装置

Claims (8)

  1. 基板上で一定の方向に延伸する段差を有するパターンと前記段差を有するパターンに直交するレジストパターンの直交部に残留する前記レジストパターンの裾引き量、前記レジストパターンの線幅に対する前記レジストパターンの間隔の比に応じて、電気ベクトルの振動方向が前記基板上の段差を有するパターンと平行方向及び垂直方向にそれぞれ揃えられた照明光で露光することにより前記レジストパターンを形成した場合について取得する裾引き量取得部と、
    前記線幅に対する前記間隔の比に応じて、前記裾引き量を抑制する前記照明光の偏光方向が、前記基板上の段差を有するパターンと平行又は垂直のいずれかであると決定する偏光方向決定部
    とを備えることを特徴とするリソグラフィ補正システム。
  2. 基板上で一定の方向に延伸する段差を有するパターンと直交する第1レジストパターンを電気ベクトルの振動方向が前記基板上の段差を有するパターンと平行方向に揃えられた照明光で露光することにより形成し、前記段差を有するパターンとの直交部に残留する前記第1レジストパターンの裾引き量と、前記第1レジストパターンの線幅に対する前記第1レジストパターンの間隔の比との第1の関係を取得するステップと、
    前記基板上の段差を有するパターンと直交する第2レジストパターンを前記電気ベクトルの振動方向が前記基板上の段差を有するパターンと垂直方向に揃えられた前記照明光で露光することにより形成し、前記段差を有するパターンとの直交部に残留する前記第2レジストパターンの裾引き量と、前記第2レジストパターンの線幅に対する前記第2レジストパターンの間隔の比との第2の関係を取得するステップと、
    前記第1及び第2の関係を比較し、前記裾引き量を抑制する前記照明光の偏光方向が、前記基板上の段差を有するパターンと平行又は垂直のいずれかであると決定するステップ
    とを含むことを特徴とするリソグラフィ補正方法。
  3. 基板上で一定の方向に延伸する段差を有するパターンをそれぞれ有する第1及び第2ウェハを用意するステップと、
    前記第1及び第2ウェハ上に第1及び第2レジストをそれぞれ塗布し、それぞれを露光装置に格納するステップと、
    レチクルを前記露光装置に格納し、前記レチクルの像を電気ベクトルの振動方向が前記基板上の段差を有するパターンと平行方向に揃えられた照明光で前記第1レジストに、前記電気ベクトルの振動方向が前記基板上の段差を有するパターンと垂直方向に揃えられた前記照明光で前記第2レジストにそれぞれ投影して前記基板上の段差を有するパターンと直交する第1及び第2レジストパターンを形成するステップと、
    前記基板上の段差を有するパターンとの直交部に残留する前記第1及び第2レジストパターンの裾引き量と、前記第1及び第2レジストパターンのパターン密度との関係から、前記裾引き量を抑制する前記照明光の偏光方向が、前記基板上の段差を有するパターンと平行又は垂直のいずれかであると決定するステップと、
    前記基板上の段差を有するパターンを有する第3ウェハを用意するステップと、
    前記第3ウェハ上に第3レジストを塗布するステップと、
    前記第3ウェハを前記露光装置に格納し、前記決定された偏光方向に偏光された照明光で回路パターンを前記第3レジストに投影するステップ
    とを有することを特徴とする半導体装置の製造方法。
  4. 前記第1及び第2レジストパターンを形成するステップは、光透過部を有する前記レチクルを、前記光透過部が延伸する方向を前記一定の方向と垂直にして前記露光装置に格納する手順を含むことを特徴とする請求項3に記載の半導体装置の製造方法。
  5. 前記回路パターンを前記第3レジストに投影するステップは、前記照明光を放射状の複数の偏光方向にそれぞれ揃えられた複数の偏光に分割する手順を含むことを特徴とする請求項3に記載の半導体装置の製造方法。
  6. 前記回路パターンを前記第3レジストに投影するステップは、前記照明光を、前記照明光の進行方向に対して円周方向にそれぞれ揃えられた複数の偏光に分割する手順を含むことを特徴とする請求項3に記載の半導体装置の製造方法。
  7. 基板上で一定の方向に延伸する段差を有する第1パターンと前記段差を有する第1パターンに直交する第1レジストパターンとの直交部に残留する前記第1レジストパターンの裾引き量を、前記第1レジストパターンの線幅に対する前記第1レジストパターンの間隔の比に応じて、電気ベクトルの振動方向が前記基板上の段差を有する第1パターンと平行方向及び垂直方向にそれぞれ揃えられた照明光で露光することにより前記第1レジストパターンを形成した場合について取得し、前記第1レジストパターンの線幅に対する前記第1レジストパターンの間隔の比に応じて、前記裾引き量を抑制する前記照明光の偏光方向が前記基板上の段差を有する第1パターンと平行又は垂直のいずれであるかを予め保存したデータベースを用意するステップと、
    基板上で一定の方向に延伸する段差を有する第2パターンを有するウェハを用意するステップと、
    前記ウェハ上にレジストを塗布し、露光装置に格納するステップと、
    照明光により前記レジストに前記段差を有する第2パターンと直交するように第2レジストパターンを投影する際に、前記データベースを参照し、投影する前記第2レジストパターンの線幅に対する前記第2レジストパターンの間隔の比に応じて、前記段差を有する第2パターンと前記第2レジストパターンの直交部に残留する裾引き量を抑制する前記照明光の偏光方向が前記段差を有する第2パターンと平行又は垂直のいずれであるかを決定するステップ
    とを含むことを特徴とするリソグラフィ補正方法。
  8. 基板上で一定の方向に延伸する段差を有するパターンをそれぞれ有する第1及び第2ウェハを用意するステップと、
    前記第1及び第2ウェハ上に第1及び第2レジストをそれぞれ塗布し、それぞれを露光装置に格納するステップと、
    レチクルを前記露光装置に格納し、前記レチクルの像を電気ベクトルの振動方向が前記基板上の段差を有するパターンと平行方向に揃えられた照明光で前記第1レジストに、前記電気ベクトルの振動方向が前記基板上の段差を有するパターンと垂直方向に揃えられた前記照明光で前記第2レジストにそれぞれ投影して前記基板上の段差を有するパターンと直交する第1及び第2レジストパターンを形成するステップと、
    前記基板上の段差を有するパターンとの直交部に残留する前記第1及び第2レジストパターンの裾引き量と、前記第1及び第2レジストパターンのパターン密度との関係から、前記裾引き量を抑制する前記照明光の偏光方向が、前記基板上の段差を有するパターンと平行又は垂直のいずれかであると決定し、データベースに保存するステップと、
    基板上の段差を有するパターンを有する第3ウェハを用意するステップと、
    前記第3ウェハ上に第3レジストを塗布するステップと、
    前記第3ウェハを前記露光装置に格納し、前記データベースに保存された偏光方向に偏光された照明光で回路パターンを前記第3レジストに投影するステップ
    とを有することを特徴とする半導体装置の製造方法。
JP2004033376A 2004-02-10 2004-02-10 リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法 Expired - Fee Related JP3998645B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004033376A JP3998645B2 (ja) 2004-02-10 2004-02-10 リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法
TW094103212A TWI259515B (en) 2004-02-10 2005-02-02 Lithography correction system, lithography correction method, and method of manufacturing semiconductor device
US11/052,841 US7534533B2 (en) 2004-02-10 2005-02-09 Polarization analyzing system, exposure method, and method for manufacturing semiconductor device
US12/385,509 US7859665B2 (en) 2004-02-10 2009-04-09 Polarization analyzing system, exposure method, and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004033376A JP3998645B2 (ja) 2004-02-10 2004-02-10 リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2005228791A JP2005228791A (ja) 2005-08-25
JP3998645B2 true JP3998645B2 (ja) 2007-10-31

Family

ID=34986323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033376A Expired - Fee Related JP3998645B2 (ja) 2004-02-10 2004-02-10 リソグラフィ補正システム、リソグラフィ補正方法及び半導体装置の製造方法

Country Status (3)

Country Link
US (2) US7534533B2 (ja)
JP (1) JP3998645B2 (ja)
TW (1) TWI259515B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081326A (ja) * 2005-09-16 2007-03-29 Dainippon Screen Mfg Co Ltd 配線形成システムおよびその方法
US7525642B2 (en) * 2006-02-23 2009-04-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006032810A1 (de) 2006-07-14 2008-01-17 Carl Zeiss Smt Ag Beleuchtungsoptik für eine Mikrolithografie-Projektionsbelichtungsanlage, Beleuchtungssystem mit einer derartigen Beleuchtungsoptik, mikrolithografie-Projektionsbelichtungsanlage mit einem derartigen Beleuchtungssystem, mikrolithografisches Herstellungsverfahren für Bauelemente sowie mit diesem Verfahren hergestelltes Bauelement
US8107819B2 (en) * 2007-05-31 2012-01-31 Industrial Technology Research Institute Systems and methods for interference prediction
EP4137850A1 (en) * 2012-10-15 2023-02-22 ImagineOptix Corporation Optical element
US20140236337A1 (en) * 2013-02-15 2014-08-21 Kabushiki Kaisha Toshiba Pattern inspection method and manufacturing control system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2866243B2 (ja) 1992-02-10 1999-03-08 三菱電機株式会社 投影露光装置及び半導体装置の製造方法
JP3287014B2 (ja) 1992-07-03 2002-05-27 株式会社ニコン 投影露光装置、及びその露光装置により製造されたデバイス
JP3234084B2 (ja) * 1993-03-03 2001-12-04 株式会社東芝 微細パターン形成方法
JPH07235474A (ja) 1994-02-24 1995-09-05 Nec Corp 露光方法および露光装置
JPH088177A (ja) 1994-04-22 1996-01-12 Canon Inc 投影露光装置及びそれを用いたデバイスの製造方法
US5815247A (en) 1995-09-21 1998-09-29 Siemens Aktiengesellschaft Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
JP3406957B2 (ja) 1995-12-06 2003-05-19 キヤノン株式会社 光学素子及びそれを用いた露光装置
TW479276B (en) 2001-05-08 2002-03-11 Macronix Int Co Ltd Method of optical proximity correction
JP2004077824A (ja) 2002-08-19 2004-03-11 Toshiba Corp パターン形成方法、パターン形成プログラム、及び半導体装置の製造方法

Also Published As

Publication number Publication date
TWI259515B (en) 2006-08-01
US20090202136A1 (en) 2009-08-13
US7534533B2 (en) 2009-05-19
US7859665B2 (en) 2010-12-28
TW200540953A (en) 2005-12-16
JP2005228791A (ja) 2005-08-25
US20050207637A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US7386830B2 (en) Method for designing an illumination light source, method for designing a mask pattern, method for manufacturing a photomask, method for manufacturing a semiconductor device and a computer program product
KR100714480B1 (ko) 포토마스크의 테스트 패턴 이미지로부터 인쇄된 테스트피쳐들을 이용하는 포토리소그래피 공정에 있어서 초점변화를 측정하는 시스템 및 방법
US20070121090A1 (en) Lithographic apparatus and device manufacturing method
US8372565B2 (en) Method for optimizing source and mask to control line width roughness and image log slope
JP2917879B2 (ja) フォトマスク及びその製造方法
KR100763222B1 (ko) 향상된 포토리소그래피 공정 윈도우를 제공하는 포토마스크구조 및 그 제조 방법
KR100700367B1 (ko) 리소그래피 장치 및 디바이스 제조방법
US20080158529A1 (en) Lithographic apparatus and device manufacturing method
CN1862385B (zh) 使用测试特征检测光刻工艺中的焦点变化的系统和方法
CN1908812A (zh) 执行双重曝光光刻的方法、程序产品和设备
US8949748B2 (en) Recording medium recording program for generating mask data, method for manufacturing mask, and exposure method
US6363296B1 (en) System and method for automated defect inspection of photomasks
US5801821A (en) Photolithography method using coherence distance control
KR100674964B1 (ko) 포토마스크 교정 방법 및 시스템 장치
US8247141B2 (en) Method of generating reticle data, memory medium storing program for generating reticle data and method of producing reticle
US7859665B2 (en) Polarization analyzing system, exposure method, and method for manufacturing semiconductor device
US20060256311A1 (en) Lithographic apparatus and device manufacturing method
JP4166166B2 (ja) 露光投影像予測システム及び露光投影像予測方法
US7528934B2 (en) Lithographic apparatus and device manufacturing method
US20080057410A1 (en) Method of repairing a photolithographic mask
Petersen Optical proximity strategies for desensitizing lens aberrations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees