JP3995928B2 - Power module joint structure - Google Patents

Power module joint structure Download PDF

Info

Publication number
JP3995928B2
JP3995928B2 JP2001385432A JP2001385432A JP3995928B2 JP 3995928 B2 JP3995928 B2 JP 3995928B2 JP 2001385432 A JP2001385432 A JP 2001385432A JP 2001385432 A JP2001385432 A JP 2001385432A JP 3995928 B2 JP3995928 B2 JP 3995928B2
Authority
JP
Japan
Prior art keywords
power module
solder
plate
power
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001385432A
Other languages
Japanese (ja)
Other versions
JP2003188328A (en
Inventor
尚紀 小川
崇 小島
靖 山田
雄二 八木
昭二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2001385432A priority Critical patent/JP3995928B2/en
Publication of JP2003188328A publication Critical patent/JP2003188328A/en
Application granted granted Critical
Publication of JP3995928B2 publication Critical patent/JP3995928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/3703Stacked arrangements
    • H01L2224/37033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パワーモジュールの接合構造に関し、詳しくは、電力素子を有し、該電力素子の一方の面に熱伝導性の高い材料により形成された熱伝導部材をはんだにより接合してなるパワーモジュールの接合構造に関する。
【0002】
【従来の技術】
従来、この種のパワーモジュールの接合構造としては、電力素子に導電性の材料(金属など)からなる導電部材をはんだ接合されてなるものが提案されている。このパワーモジュールの接合構造によれば、導電部材を介して電力素子に電力を供給することができるから、ワイヤボンディングを不要とすることができる。
【0003】
【発明が解決しようとする課題】
しかしながら、一般的に電力素子は熱膨張率が低く、金属板などの導電部材は熱膨張率が高いから、電力素子と熱伝導部材との熱膨張率差によりはんだに作用する熱応力が大きくなり、はんだの劣化を招く。このはんだの劣化により、電力素子と熱伝導部材との熱的、電気的な接合が弱くなり、パワーモジュールとしての信頼性が低下してしまう。
【0004】
本発明のパワーモジュールの接合構造は、こうした問題を解決し、パワーモジュールの接合に関する信頼性をより向上させることを目的の一つとする。また、本発明のパワーモジュールの接合構造は、はんだに作用する熱応力をより低く抑えることを目的の一つとする。
【0005】
【課題を解決するための手段およびその作用・効果】
本発明のパワーモジュールの接合構造は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0006】
本発明のパワーモジュールの接合構造は、
電力素子を有し、該電力素子に電力を供給可能に少なくとも一部が導電性の材料により形成された導電部材を該電力素子にはんだ接合してなるパワーモジュールの接合構造であって、
前記はんだと前記導電部材の少なくとも該はんだに接触する部位は、該はんだの降伏応力と該導電部材の降伏応力との差が所定の範囲内となる材料により各々形成されてなり、前記導電部材の少なくとも該はんだに接触する部位は、アルミニウム及び/又は鉛により形成されることを要旨とする。
【0007】
この本発明のパワーモジュールの接合構造では、電力素子に電力供給する導電部材を電力素子にはんだ接合した接合構造において、はんだと導電部材の少なくともはんだと接触する部位を、はんだの降伏応力と導電部材の少なくともはんだに接触する部位の降伏応力との差が所定の範囲内となる材料により各々形成したから、電力素子からの発熱に基づく導電部材のはんだと接触する部位の塑性変形により、はんだに過度の熱応力が作用するのを抑制することができる。この結果、はんだ接合の信頼性をより向上させることができる。
【0008】
こうした本発明のパワーモジュールの接合構造において、前記所定の範囲内は、前記差が約70MPaの範囲内であるものとすることもできる。
【0009】
また、本発明のパワーモジュールの接合構造において、前記導電部材は、熱伝導性の高い材料により形成されてなるものとすることもできる。こうすれば、電力素子からの熱を導電部材により放熱することができる。
【0010】
更に、本発明のパワーモジュールの接合構造において、前記導電部材は、少なくとも、前記差が所定の範囲内となる材料により形成された導電性の第1の板材と、該第1の板材における前記はんだとの接触面とは反対の面から該第1の板材の熱膨張を規制する第2の板材とが積層された積層体であるものとすることもできる。この態様の本発明のパワーモジュールの接合構造において、前記積層体は、前記第2の板材を前記第1の板材とでサンドイッチ構造とする第3の板材を備えるものとすることもできる。
【0011】
また、導電部材が積層体である態様の本発明のパワーモジュールの接合構造において、前記第2の板材は、その熱膨張率と前記電力素子の熱膨張率とが略同一となる材料により形成されてなるものとすることもできる。
【0012】
上記各態様の本発明のパワーモジュールの接合構造において、前記電力素子を跨いで前記導電部材が接合された面とは異なる面に配置され、該異なる面から冷却媒体を用いて冷却する冷却手段を備えるものとすることもできる。
【0013】
【発明の実施の形態】
次に、本発明の実施の形態について実施例を用いて説明する。図1は、本発明の一実施例のパワーモジュール20の構成の概略を示す構成図である。実施例のパワーモジュール20は、図示するように、絶縁基板22にはんだ24により実装された2つの電力素子26,27と、電力素子26,27にはんだ28により接合され電力素子26,27に電力を供給する積層板30と、絶縁基板22の下部にはんだ29で取り付けられた放熱板40とを備える。
【0014】
電力素子26,27は、例えば、IGBTやパワーMOS,パワートランジスタなどのトランジスタや、ダイオードなどが該当する。
【0015】
積層板30は、電力素子26,27の線膨張係数(例えば、約3ppm/℃)と略同一の範囲内の線膨張係数(例えば、約1〜5.5ppm/℃)で剛性の高い材料(例えば、窒化アルミニウム(AlN)やNi−Fe合金(例えば、Ni30〜40%−Fe70〜60%、好ましくはNi36%−Fe64%の重量%)、Ni−Co−Fe合金(例えば、Ni29〜32%−Co4〜17%−Fe51〜67%、好ましくは、Ni32%−Co5.5%−Fe62.5%や、Ni32%−Co4%−Fe64%、Ni29%−Co16.7%−Fe54.3%、Ni29%−Co17%−Fe54%の重量%)など)により形成された支持板32と、はんだ28との高い親和性をもち降伏応力が低い材料により形成され支持板32を両側から狭持する導電性を有する2枚の導電板34,36(例えば、アルミニウムや鉛などの金属など)とからなるサンドイッチ構造の積層体として構成されている。この積層板30は、線膨張係数の低い支持板32により線膨張係数が高い導電板34,36(例えば、アルミニウムでは約25ppm/℃)の膨張を規制するから、積層板30全体の線膨張係数としてはほぼ支持板32の特性(線膨張係数)によって定まる値に抑えられる。したがって、積層板30の線膨張係数と電力素子26,27の線膨張係数とは略同一とみなせ、これによりパワーモジュール20の反りを抑制することができる。しかも、導電板34の導電性により、ワイヤボンディングを必要とすることなく電力素子26,27に電力を供給することができる。なお、積層板30を熱伝導性の高い材料により形成すれば、電力素子26,27からの熱を電力素子26,27の上面から放熱することができる。また、導電板36は、製造上の観点から導電板34と同一の材料により形成することが好ましいが、必ずしも同一の材料により形成する必要はない。また、導電板36を設けないものとしても差し支えない。
【0016】
放熱板40は、熱伝導性の高い材料、例えば、CuやCuMo合金などの金属やAlSiCなどの複合材料などにより形成されており、放熱板40の内部に形成された流路内あるいは放熱板40の下部に別個に形成された流路内の冷却媒体(例えば、空気や水など)との熱交換により電力素子26,27からの熱を放出できるようになっている。
【0017】
こうして構成された実施例のパワーモジュール20の接合構造に関して説明する。例えば、電力素子26,27と積層板30とを接合するはんだ28を、−40℃で約40MPa程度の降伏応力をもつ材料(例えば、Sn50%−Pb50%の重量%の材料)により形成し、積層板30のうちはんだ28と接触する導電板34を、−40℃で約100MPa程度の降伏応力をもつ材料(例えば、アルミニウム)により形成したとき、−40℃の冷却と105℃の加熱とを繰り返す冷熱サイクルを3500サイクル実施したときでも、はんだ28に亀裂等生じることなく電気的,熱的な接合が維持された。これは、電力素子26,27の駆動に伴う発熱により生じる熱応力ではんだ28と共に導電板32も塑性変形するから、はんだ28に作用する熱応力が緩和されたものと考えられる。
【0018】
別の例として、上記構成において、積層板30の導電板34の材料を鉛(Pb)に代えたときでも、低い降伏応力をもつ鉛は、電力素子26,27からの熱によりはんだ28と共に塑性変形するから、はんだ28に作用する熱応力を緩和でき、はんだ28の劣化を抑制することができる。実際、上記冷熱サイクル試験を3000サイクル程度実施したときでも、電気的,熱的な接合が維持され、はんだ28に劣化は生じなかった。
【0019】
更に、別の例として、上記構成おいて、電力素子26,27と積層板30(導電板34)とを接合するはんだ28を、−40℃で約35MPa程度の降伏応力をもつ材料(例えば、Sn96.5%−Ag3.5%の重量%の材料)に代えたときでも、上記冷熱サイクル試験の3500サイクルの実施に対して、電気的,熱的な接合が維持され、はんだ28に劣化は生じなかった。
【0020】
一方、積層板30の導電板34の−40℃における降伏応力が約100MPaに対して、はんだ28を−40℃における降伏応力が約20MPa程度の材料(例えば、Sn10%−Pb90%の重量%の材料)により形成したときには、電力素子26,27の発熱により導電板34が塑性変形せずにはんだ28に熱応力が集中し、上記冷熱サイクル実験では、約2000サイクル程度で劣化した。
【0021】
以上の実験により、導電板32の降伏応力とはんだ28の降伏応力との差が−40℃で約70MPaの範囲内(好ましくは、−40℃で約60MPaの範囲内)であれば、接合の信頼性が保持されることがわかった。
【0022】
以上説明した実施例のパワーモジュール20によれば、電力素子26,27に電力供給する積層板30の導電板34と、電力素子26,27と積層板30とを接合するはんだ28とを、電力素子26,27の発熱による熱応力により両者が共に変形可能な程度の降伏応力の差となる材料により各々形成したから、電力素子26,27の発熱によりはんだ28に作用する熱応力を緩和でき、接合の信頼性をより向上させることができる。
【0023】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明のこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例であるパワーモジュール20の構成の概略を示す構成図である。
【符号の説明】
20 パワーモジュール、22 絶縁基板、24,28,29 はんだ、26,27 電力素子、30 積層板、32 支持板、34,36 導電板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power module joining structure, and more specifically, a power module having a power element and a heat conducting member formed of a material having high thermal conductivity on one surface of the power element by soldering. This relates to the joint structure.
[0002]
[Prior art]
Conventionally, as a joining structure of this type of power module, a structure obtained by soldering a conductive member made of a conductive material (metal or the like) to a power element has been proposed. According to the joining structure of the power module, power can be supplied to the power element through the conductive member, so that wire bonding can be made unnecessary.
[0003]
[Problems to be solved by the invention]
However, in general, power elements have a low coefficient of thermal expansion, and conductive members such as metal plates have a high coefficient of thermal expansion. Therefore, the thermal stress acting on the solder increases due to the difference in coefficient of thermal expansion between the power element and the heat conductive member. Incurs solder deterioration. Due to the deterioration of the solder, the thermal and electrical connection between the power element and the heat conducting member becomes weak, and the reliability as a power module is lowered.
[0004]
The power module joint structure of the present invention is one of the objects to solve such problems and to further improve the reliability of the power module joint. In addition, the power module joint structure of the present invention has an object of further reducing the thermal stress acting on the solder.
[0005]
[Means for solving the problems and their functions and effects]
The power module joint structure of the present invention employs the following means in order to achieve at least a part of the above-described object.
[0006]
The joint structure of the power module of the present invention is
A power module joining structure comprising a power element and soldering a conductive member formed of a conductive material at least partially to be able to supply power to the power element.
Site in contact with at least the solder of the solder and the conductive member, Ri Na are respectively formed of a material difference between the yield stress of the solder yield stress and the conductive member is within a predetermined range, the conductive member In summary , at least a portion in contact with the solder is formed of aluminum and / or lead .
[0007]
In the joining structure of the power module of the present invention, in the joining structure in which the conductive member for supplying power to the power element is soldered to the power element, at least a portion of the solder and the conductive member in contact with the solder is set to the yield stress of the solder and the conductive member. Since the difference between the yield stress at the part in contact with the solder is within a predetermined range, the solder is excessively applied to the solder due to the plastic deformation of the part in contact with the solder of the conductive member based on the heat generated from the power element. It is possible to suppress the action of thermal stress. As a result, the reliability of solder joint can be further improved.
[0008]
In such a power module joint structure of the present invention, the difference may be within a range of about 70 MPa within the predetermined range.
[0009]
In the power module joint structure of the present invention, the conductive member may be formed of a material having high thermal conductivity. In this way, heat from the power element can be radiated by the conductive member.
[0010]
Furthermore, in the joining structure of the power module of the present invention, the conductive member includes at least a conductive first plate material formed of a material in which the difference falls within a predetermined range, and the solder in the first plate material. It can also be a laminate in which a second plate that regulates the thermal expansion of the first plate is laminated from the surface opposite to the contact surface. In the power module joint structure according to this aspect of the present invention, the laminate may include a third plate member having a sandwich structure between the second plate member and the first plate member.
[0011]
Further, in the power module joint structure of the present invention in which the conductive member is a laminate, the second plate member is formed of a material whose thermal expansion coefficient and the thermal expansion coefficient of the power element are substantially the same. It can also be.
[0012]
In the joint structure of the power module of the present invention according to each of the above aspects, cooling means that is disposed on a surface different from the surface to which the conductive member is joined across the power element and cools from the different surface using a cooling medium. It can also be provided.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing an outline of a configuration of a power module 20 according to an embodiment of the present invention. As shown in the figure, the power module 20 according to the embodiment includes two power elements 26 and 27 mounted on an insulating substrate 22 with solder 24, and joined to the power elements 26 and 27 with solder 28 and power to the power elements 26 and 27. And a heat radiating plate 40 attached to the lower portion of the insulating substrate 22 with solder 29.
[0014]
The power elements 26 and 27 correspond to, for example, transistors such as IGBTs, power MOSs, and power transistors, and diodes.
[0015]
The laminated plate 30 is made of a material having a high rigidity and a linear expansion coefficient (for example, about 1 to 5.5 ppm / ° C.) substantially in the same range as that of the power elements 26 and 27 (for example, about 3 ppm / ° C.). For example, aluminum nitride (AlN), Ni-Fe alloy (for example, Ni 30-40% -Fe 70-60%, preferably Ni 36% -Fe 64% by weight), Ni-Co-Fe alloy (for example, Ni 29-32%) -Co4-17% -Fe51-67%, preferably Ni32% -Co5.5% -Fe62.5%, Ni32% -Co4% -Fe64%, Ni29% -Co16.7% -Fe54.3%, Ni 29% -Co 17% -Fe 54% weight%)) and the like, and the solder 28 is formed of a material having a low yield stress and sandwiching the support plate 32 from both sides. Two conductive plates 34, 36 (e.g., aluminum or the like metal, such as lead) having conductivity is formed as a laminate of a sandwich structure consisting of a. Since the laminated plate 30 regulates the expansion of the conductive plates 34 and 36 (for example, about 25 ppm / ° C. in the case of aluminum) having a high linear expansion coefficient by the support plate 32 having a low linear expansion coefficient, the linear expansion coefficient of the entire laminated plate 30. As described above, the value can be suppressed to a value almost determined by the characteristic (linear expansion coefficient) of the support plate 32. Accordingly, the linear expansion coefficient of the laminated plate 30 and the linear expansion coefficients of the power elements 26 and 27 can be regarded as substantially the same, thereby suppressing the warpage of the power module 20. Moreover, due to the conductivity of the conductive plate 34, power can be supplied to the power elements 26 and 27 without the need for wire bonding. If the laminated plate 30 is formed of a material having high thermal conductivity, heat from the power elements 26 and 27 can be radiated from the upper surfaces of the power elements 26 and 27. The conductive plate 36 is preferably formed from the same material as the conductive plate 34 from the viewpoint of manufacturing, but it is not always necessary to form the conductive plate 36 from the same material. Further, the conductive plate 36 may not be provided.
[0016]
The heat radiating plate 40 is made of a material having high thermal conductivity, for example, a metal such as Cu or CuMo alloy, or a composite material such as AlSiC. The heat radiating plate 40 is formed in a flow path formed inside the heat radiating plate 40 or the heat radiating plate 40. The heat from the power elements 26 and 27 can be released by heat exchange with a cooling medium (for example, air, water, etc.) in a flow path formed separately at the lower part.
[0017]
The joining structure of the power module 20 of the embodiment configured in this way will be described. For example, the solder 28 that joins the power elements 26 and 27 and the laminated plate 30 is formed of a material having a yield stress of about 40 MPa at −40 ° C. (for example, a material of 50% by weight of Sn50% -Pb50%), When the conductive plate 34 in contact with the solder 28 in the laminated plate 30 is formed of a material (for example, aluminum) having a yield stress of about 100 MPa at −40 ° C., cooling at −40 ° C. and heating at 105 ° C. are performed. Even when 3500 repeated cooling and heating cycles were performed, the electrical and thermal bonding was maintained without causing cracks in the solder 28. This is presumably because the thermal stress acting on the solder 28 is relaxed because the conductive plate 32 is plastically deformed together with the solder 28 due to the thermal stress generated by the heat generated by driving the power elements 26 and 27.
[0018]
As another example, in the above configuration, even when the material of the conductive plate 34 of the laminated plate 30 is replaced with lead (Pb), lead having a low yield stress is plastic together with the solder 28 due to heat from the power elements 26 and 27. Since it is deformed, the thermal stress acting on the solder 28 can be relaxed and the deterioration of the solder 28 can be suppressed. In fact, even when the above-mentioned cooling / heating cycle test was carried out for about 3000 cycles, the electrical and thermal bonding was maintained and the solder 28 did not deteriorate.
[0019]
Furthermore, as another example, in the above configuration, the solder 28 for joining the power elements 26 and 27 and the laminated plate 30 (conductive plate 34) is made of a material having a yield stress of about 35 MPa at −40 ° C. (for example, Even when the material is replaced with Sn96.5% -Ag3.5% by weight of material), the electrical and thermal bonding is maintained and the solder 28 is not deteriorated with respect to the implementation of the above-mentioned 3500 cycles of the thermal cycle test. Did not occur.
[0020]
On the other hand, the yield stress at −40 ° C. of the conductive plate 34 of the laminate 30 is about 100 MPa, whereas the solder 28 is made of a material having a yield stress of about 20 MPa at −40 ° C. (for example, Sn 10% -Pb 90% by weight%). When the material is formed of the material, the conductive plate 34 is not plastically deformed due to the heat generated by the power elements 26 and 27, and the thermal stress is concentrated on the solder 28. In the above-described thermal cycle experiment, the thermal cycle deteriorates in about 2000 cycles.
[0021]
From the above experiment, if the difference between the yield stress of the conductive plate 32 and the yield stress of the solder 28 is within a range of about 70 MPa at −40 ° C. (preferably within a range of about 60 MPa at −40 ° C.), It was found that reliability was maintained.
[0022]
According to the power module 20 of the embodiment described above, the conductive plate 34 of the laminated plate 30 that supplies power to the power elements 26 and 27 and the solder 28 that joins the power elements 26 and 27 and the laminated plate 30 are connected to the power module 20. Since each of the elements 26 and 27 is formed of a material that has a difference in yield stress to the extent that both can be deformed by the heat stress due to the heat generation of the elements 26 and 27, the heat stress acting on the solder 28 due to the heat generation of the power elements 26 and 27 can be relieved. The reliability of joining can be further improved.
[0023]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a configuration of a power module 20 according to an embodiment of the present invention.
[Explanation of symbols]
20 Power module, 22 Insulating substrate, 24, 28, 29 Solder, 26, 27 Power element, 30 Laminated plate, 32 Support plate, 34, 36 Conductive plate.

Claims (8)

電力素子を有し、該電力素子に電力を供給可能に少なくとも一部が導電性の材料により形成された導電部材を該電力素子にはんだ接合してなるパワーモジュールの接合構造であって、
前記はんだと前記導電部材の少なくとも該はんだに接触する部位は、該はんだの降伏応力と該導電部材の降伏応力との差が所定の範囲内となる材料により各々形成されてなり、前記導電部材の少なくとも該はんだに接触する部位は、アルミニウム及び/又は鉛により形成されるパワーモジュールの接合構造。
A power module joining structure comprising a power element and soldering a conductive member formed of a conductive material at least partially to be able to supply power to the power element.
Site in contact with at least the solder of the solder and the conductive member, Ri Na are respectively formed of a material difference between the yield stress of the solder yield stress and the conductive member falls within the predetermined range, the conductive member At least a portion that contacts the solder is a power module joint structure formed of aluminum and / or lead .
請求項1記載のパワーモジュールの接合構造であって、
前記所定の範囲内は、前記差が約70MPaの範囲内であるパワーモジュールの接合構造。
The power module joint structure according to claim 1,
The power module joining structure in which the difference is within a range of about 70 MPa within the predetermined range.
請求項1または2記載のパワーモジュールの接合構造であって、
前記導電部材は、熱伝導性の高い材料により形成されてなるパワーモジュールの接合構造。
The power module joint structure according to claim 1 or 2,
The conductive member is a power module joint structure formed of a material having high thermal conductivity.
請求項1ないし3いずれか記載のパワーモジュールの接合構造であって、
前記導電部材は、少なくとも、前記差が所定の範囲内となるアルミニウム及び/又は鉛により形成された導電性の第1の板材と、該第1の板材における前記はんだとの接触面とは反対の面から該第1の板材の熱膨張を規制する第2の板材とが積層された積層体であるパワーモジュールの接合構造。
A power module joint structure according to any one of claims 1 to 3,
The conductive member is at least opposite to the contact surface between the first plate material made of aluminum and / or lead , the difference of which falls within a predetermined range, and the solder in the first plate material. A power module joining structure, which is a laminate in which a second plate that regulates thermal expansion of the first plate from the surface is laminated.
電力素子を有し、該電力素子に電力を供給可能に少なくとも一部が導電性の材料により形成された導電部材を該電力素子にはんだ接合してなるパワーモジュールの接合構造であって、
前記はんだと前記導電部材の少なくとも該はんだに接触する部位は、該はんだの降伏応力と該導電部材の降伏応力との差が所定の範囲内となる材料により各々形成されてなり、
前記導電部材は、少なくとも、前記差が所定の範囲内となる材料により形成された導電性の第1の板材と、該第1の板材における前記はんだとの接触面とは反対の面から該第1の板材の熱膨張を規制する第2の板材とが積層された積層体であるパワーモジュールの接合構造。
A power module joining structure comprising a power element and soldering a conductive member formed of a conductive material at least partially to be able to supply power to the power element.
The portions of the solder and the conductive member that are in contact with the solder are each formed of a material in which the difference between the yield stress of the solder and the yield stress of the conductive member is within a predetermined range,
The conductive member includes at least a first conductive plate formed of a material having the difference within a predetermined range, and a surface opposite to the contact surface of the first plate with the solder. A power module joining structure, which is a laminate in which a second plate material that regulates thermal expansion of one plate material is laminated.
請求項4または5記載のパワーモジュールの接合構造であって、
前記積層体は、前記第2の板材を前記第1の板材とでサンドイッチ構造とする第3の板材を備えるパワーモジュールの接合構造。
It is the joining structure of the power module according to claim 4 or 5,
The laminated body is a power module joint structure including a third plate member having a sandwich structure between the second plate member and the first plate member.
請求項4ないし6のいずか1つに記載のパワーモジュールの接合構造であって、
前記第2の板材は、その熱膨張率と前記電力素子の熱膨張率とが略同一となる材料により形成されてなるパワーモジュールの接合構造。
A power module joint structure according to any one of claims 4 to 6,
The second plate member is a power module joint structure formed of a material having a thermal expansion coefficient substantially the same as that of the power element.
請求項1ないし7いずれか1つに記載のパワーモジュールの接合構造であって、A power module joint structure according to any one of claims 1 to 7,
前記電力素子を跨いで前記導電部材が接合された面とは異なる面に配置され、該異なる面から冷却媒体を用いて冷却する冷却手段を備えるパワーモジュールの接合構造。  A power module joining structure comprising cooling means disposed on a surface different from the surface to which the conductive member is joined across the power element, and cooling using a cooling medium from the different surface.
JP2001385432A 2001-12-19 2001-12-19 Power module joint structure Expired - Fee Related JP3995928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001385432A JP3995928B2 (en) 2001-12-19 2001-12-19 Power module joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001385432A JP3995928B2 (en) 2001-12-19 2001-12-19 Power module joint structure

Publications (2)

Publication Number Publication Date
JP2003188328A JP2003188328A (en) 2003-07-04
JP3995928B2 true JP3995928B2 (en) 2007-10-24

Family

ID=27594849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001385432A Expired - Fee Related JP3995928B2 (en) 2001-12-19 2001-12-19 Power module joint structure

Country Status (1)

Country Link
JP (1) JP3995928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494178B2 (en) * 2014-05-22 2019-04-03 三菱電機株式会社 Power semiconductor device

Also Published As

Publication number Publication date
JP2003188328A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP2002203942A (en) Power semiconductor module
US10461012B2 (en) Semiconductor module with reinforcing board
JP5965687B2 (en) Power semiconductor module
JP3646665B2 (en) Inverter device
WO2011040313A1 (en) Semiconductor module, process for production thereof
JP3630070B2 (en) Semiconductor chip and semiconductor device
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
WO2008075409A1 (en) Base for power module, method for producing base for power module and power module
JP2004356625A (en) Semiconductor device and method for manufacturing the same
JP3995928B2 (en) Power module joint structure
JP4797492B2 (en) Semiconductor device
JP4487881B2 (en) Power module substrate manufacturing method
JP5887716B2 (en) Manufacturing method of semiconductor device
JP2014175511A (en) Semiconductor device and semiconductor device manufacturing method
JP2005019694A (en) Power module
JPWO2007141851A1 (en) Semiconductor package and electronic device
JPH0815189B2 (en) Method for manufacturing semiconductor device
JP2004296493A (en) Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP4747284B2 (en) Insulated circuit board with cooling sink
TW202032874A (en) Semiconductor laser light source device equipped with a plurality of semiconductor laser elements and capable of realizing both high density and high heat dissipation
JP4667723B2 (en) Power module substrate
JP3769139B2 (en) Power semiconductor module
JPH10125831A (en) Heat sink radiation fin
WO2016079970A1 (en) Cooling module
JPH0982858A (en) Semiconductor device and metal support plate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees