JP3988516B2 - Manufacturing method of resin molded body and manufacturing apparatus thereof - Google Patents

Manufacturing method of resin molded body and manufacturing apparatus thereof Download PDF

Info

Publication number
JP3988516B2
JP3988516B2 JP2002120006A JP2002120006A JP3988516B2 JP 3988516 B2 JP3988516 B2 JP 3988516B2 JP 2002120006 A JP2002120006 A JP 2002120006A JP 2002120006 A JP2002120006 A JP 2002120006A JP 3988516 B2 JP3988516 B2 JP 3988516B2
Authority
JP
Japan
Prior art keywords
resin molded
molded body
correction
restraint
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002120006A
Other languages
Japanese (ja)
Other versions
JP2003311822A (en
Inventor
久尚 梶浦
啓二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002120006A priority Critical patent/JP3988516B2/en
Publication of JP2003311822A publication Critical patent/JP2003311822A/en
Application granted granted Critical
Publication of JP3988516B2 publication Critical patent/JP3988516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂成形体の製造方法及びその製造装置に関し、詳しくは、樹脂成形体を矯正・拘束部材で矯正・拘束しながらエネルギー線を照射して樹脂成形体のそり、変形の矯正及び変形を防止するのに際して、エネルギー線照射による加熱時の矯正・拘束部材の温度上昇を回避し、樹脂成形体の表面へのエネルギー線の集中を防止し、樹脂成形体の表面の変色、分解を低減し、併せて、樹脂成形体が熱変形温度以下に早く降温させ、品質を高め、生産性を高めようとする技術に係るものである。
【0002】
【従来の技術】
従来、樹脂成形体の製造方法においては、以下のような要因で樹脂成形体内部に不均衡な応力が発生し、そり、変形や、残留する応力により使用環境下でのそり、変形が生じるという問題であった。
1.成形加工時の流動過程中に高温の樹脂組成物が低温の金型に接触することにより、樹脂成形体の表面部分が急冷され、内部は徐冷され、その冷却速度差により収縮差が発生する。
2.成形加工時の流動過程中に樹脂組成物の金型壁面との間で生じる剪断力が緩和されないままに急冷固化するために、樹脂成形体表面近傍に応力が残留する。
3.成形加工時の冷却過程中に樹脂成形体のコーナー部や偏肉部、リブ部、ボス部等、形状に起因する樹脂成形体の冷却速度差により収縮差が発生する。
4.成形加工時の冷却過程中に金型冷却管等、金型構造に起因する樹脂成形体の冷却速度差により収縮差が発生する。
5.成形加工後、樹脂成形体への金属端子等のインサート部材の圧入時に、樹脂成形体内部に圧入による歪みが発生する。
一般的にこれらの樹脂成形体のそり、変形の矯正方法、残留応力の緩和にあっては、矯正・拘束部材でそり、変形部あるいは応力が残留している部位を矯正あるいは拘束し、加熱する方法が知られている。
しかしながら従来の方法では
1.加熱手段は加熱炉等の加熱雰囲気下でおこなわれるが、熱伝達が伝導加熱であり、樹脂組成物は熱伝導率が低いため加熱冷却に時間を要する。また製品全体を炉内に投入する必要があり、エネルギー効率が悪くなる。
2.樹脂成形体の賦形状態を維持するために、加熱温度は樹脂成形体を形成している樹脂組成物の熱変形温度以下であり、そり、変形の矯正、応力の緩和が不完全である。さらに加熱処理にも非常に時間を要する。
3.矯正・拘束部材は一般的に金属、セラミックス等、樹脂組成物に比較して耐熱性かつ剛性のある材料からなるが、樹脂成形体と同様に加熱冷却されるため、矯正・拘束部材の熱容量の分だけ、樹脂成形体の加熱冷却に時間を要する。等の課題がある。
一方、加熱炉等の伝導加熱の欠点を克服する方法として、赤外線等のエネルギー線照射による輻射加熱方法が知られている。例えば特開昭60−94335では熱可塑的に成形されたプラスチックスの内部応力を減じるために、プラスチックス部品に成形後、熱を赤外線照射によって伝達させる方法が開示されている。
この方法では赤外線による輻射加熱のため、加熱時間が短時間で済む。また輻射の特徴により部分加熱が可能であるため、樹脂成形体全体の賦形状態を維持したままで、樹脂成形体の不均衡な応力が発生している部位のみを部分的に加熱することが可能となる。しかしながら前記方法では、上記課題の1、2は解決に至るが、課題3は未だ解決に至ってない。またエネルギー線の波長と樹脂組成物の組み合わせによってはエネルギー線が樹脂成形品の表面に集中し、熱によって表面樹脂組成物を変色、分解させるという新たな課題も発生する。
【0003】
このエネルギー線の樹脂成形品表面への集中を回避する方法として、特許第2089507では、コンベア炉内で成形体に対向する両面より赤外線照射による輻射加熱と温風エアシャワーにより樹脂成形体表面の熱を拡散し迅速かつ均一な加熱をおこなう方法が開示されている。しかしながら、エアシャワーによる攪拌では単に炉内の気体を攪拌しているに過ぎず、完全に樹脂成形体表面に集中する熱を分散できない。
【0004】
【発明が解決しようとする課題】
本発明は、このような問題に鑑みてなされたもので、樹脂成形体を矯正・拘束部材で矯正・拘束しながらエネルギー線を照射して樹脂成形体Wのそり、変形の矯正及び変形を防止するのに際して、エネルギー線照射による加熱時の矯正・拘束部材の温度上昇を回避し、樹脂成形体の表面へのエネルギー線の集中を防止し、樹脂成形体の表面の変色、分解を低減し、併せて、樹脂成形体が熱変形温度以下に早く降温させ、品質を高め、生産性を高めることができる樹脂成形体の製造方法及びその製造装置を提供することを課題とするものである。
【0005】
【課題を解決するための手段】
請求項1の発明においては、樹脂成形体Wを矯正・拘束部材1によって矯正・拘束した状態で樹脂成形体Wを加熱して残留応力を緩和し樹脂成形体のそり、変形を矯正する樹脂成形体の製造方法であって、
樹脂成形体Wのそり、変形が生じている部分、若しくは残留する内部応力により使用環境下でそり変形が発生することが予想される部分の少なくともいずれかにエネルギー線透過性材料からなるエネルギー線透過部を備えた矯正・拘束部材1を密着させて矯正、拘束する矯正・拘束工程イと、
矯正・拘束部材1を密着させている樹脂成形体Wの部位にエネルギー線透過部を通してエネルギー線を照射し、熱変形温度以上、融点以下の所定温度に加熱する加熱工程ロと、
照射加熱終了後、樹脂成形体Wが熱変形温度以下の温度において矯正・拘束部材1の矯正・拘束を解除する矯正・拘束解除工程ハとを備え、
矯正・拘束部材1はエネルギー透過材にて形成したローラ状もしくは球状の回転体2を備え、回転体2を樹脂成形体Wに密着した状態で移動させながら、回転体2を経てエネルギー線を樹脂成形体Wの照射領域に照射することを特徴とするものである。
このような構成によれば、矯正・拘束部材1のエネルギー線透過部はエネルギー線を透過するために、照射による温度上昇はなく、照射によって温度上昇した樹脂成形体Wの表面からの熱伝導でのみ温度上昇するのであり、従って、エネルギー線透過部の樹脂成形体Wへの密着面はエネルギー線吸収により温度上昇した樹脂成形体Wに比較すると低温であるため、
・矯正・拘束部材1の冷却作用により、加熱時に樹脂成形体Wの表面に熱が集中することがない。従って、表面の樹脂組成物の変色・分解を低減させることができる。
【0006】
・加熱終了後は、矯正・拘束部材1自体はエネルギー線照射による温度上昇がないので、矯正・拘束部材1が樹脂成形体Wの熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温させることができる。
しかして、樹脂成形体を矯正・拘束部材で矯正・拘束しながらエネルギー線を照射して樹脂成形体のそり、変形の矯正、内部応力の緩和を図りながら、簡易に、品質を高め、生産性を高めることができる。
更に、請求項1においては、エネルギー線透過材からなる矯正・拘束部材1が樹脂成形体Wに密着する面がローラ状または球状となっていて回転移動ができるため、樹脂成形体Wは常に新しい矯正・拘束部材1の面と密着することになり、矯正・拘束部材1の温度上昇が少なく短時間で効率的な処理ができる。
【0007】
請求項2の発明においては、矯正・拘束工程イは、樹脂成形体Wにエネルギー線を照射して、樹脂成形体Wが熱変形温度以下であって、熱変形温度近傍の所定温度になった後におこなうことを特徴とするものである。
このような構成によれば、熱変形温度近傍の所定温度までは矯正・拘束部材1を密着させ矯正・拘束していないため、矯正・拘束部材1に樹脂成形体Wの表面の熱が拡散せず、迅速に温度を上昇させることができ、熱変形温度近傍の所定温度を越えてからは矯正・拘束部材1を密着させて矯正・拘束をおこなうことによって、樹脂成形体Wの表面に熱が集中して樹脂組成物の分解、変色を避けることができる。
【0008】
請求項3の発明においては、加熱工程ロは、矯正・拘束部材1による変形を矯正した時の矯正力を検出し、検出した矯正力が予め設定した値になるまでエネルギー線照射加熱をおこなうことを特徴とするものである。
このような構成によれば、樹脂成形体Wが熱変形温度以上、融点以下の所定温度に達するタイミングを、矯正力をその代用特性として検出し、検出した矯正力が予め設定した値になるまで照射加熱することにより、確実にそり、変形を矯正できる。
【0009】
請求項4の発明においては、加熱工程ロは、矯正・拘束部材1で樹脂成形体Wに一定の矯正力を付加した時の樹脂成形体Wの変形量を検出し、検出した変形量が予め設定した値になるまでエネルギー線照射加熱をおこなうことを特徴とするものである。
このような構成によれば、樹脂成形体Wの変形量を直接検出し、検出値が予め設定した値になるまで照射加熱することにより、簡便、確実にそり、変形を矯正できる。
【0011】
請求項5の発明においては、樹脂成形体Wのそり、変形部または樹脂成形体Wの内部応力残留部はインサート部材3が樹脂成形品に圧入されることによって生じた部位であることを特徴とするものである。
一般に、インサート部材3を圧入することによって生じる樹脂成形体Wの弾性変形力がインサート部材3を保持する力となるのであり、インサート部材3が圧入された部位を加熱しすぎると弾性変形部が塑性変形してしまい、インサート部材3を保持する力が極端に低下することになる。しかして、請求項5の発明においては、インサート部材3が圧入された部位をエネルギー線によって均一に精度良く加熱するのであり、インサート部材3が圧入された部位が塑性変形することがなく、そり、変形または内部応力を除去できる。
【0012】
請求項6の発明においては、樹脂成形体Wを複数の矯正・拘束部材1、1によって矯正・拘束した状態で樹脂成形体Wを加熱して残留応力を緩和し樹脂成形体Wのそり、変形を矯正する樹脂成形体の製造装置であって、樹脂成形体Wのそり、変形が生じている部分、または残留する内部応力により使用環境下でそり変形が発生する部分に密着させ矯正・拘束する少なくともひとつがエネルギー線透過性材料からなる複数の矯正・拘束部材1と、矯正・拘束部材1を樹脂成形体Wに密着させてエネルギー線を照射する加熱手段4とを備え、矯正・拘束部材1は、エネルギー透過材にて形成したローラ状もしくは球状の回転体2を備え、回転体2を移動する樹脂成形体Wに密着させた状態で従動回転させる回転軸5を設けたことを特徴とするものである。
このような構成によれば、請求項1の作用と同様な作用を得ることができる。
【0014】
請求項7の発明においては、矯正・拘束部材1と、樹脂成形体Wにインサートされたインサート部材3を保持するための保持部材6とを弾性体33にて連結していることを特徴とするものである。
【0015】
このような構成によれば、樹脂成形体Wを矯正・拘束部材1によって矯正・拘束をおこなった後に、インサート部材3を弾性体33の弾性作用によって保持部材6にて保持することができ、インサート部材3の保持を簡単な構成で可能となる。
【0016】
請求項8の発明においては、樹脂成形体Wを拘束した矯正・拘束部材1を搬送する搬送装置7と、搬送中の樹脂成形体Wにエネルギー線を照射する加熱手段4を備えていることを特徴とするものである。
このような構成によれば、樹脂成形体Wを矯正・拘束した矯正・拘束部材1を搬送装置7により搬送することができ、連続処理が可能となり、生産性を高めることができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は樹脂成形体の製造装置を示し、同図(a)は断面図、同図(b)は(a)のC−C線断面図である。図2は製造装置による矯正・拘束前の樹脂成形体を示し、同図(a)は平面図、同図(b)は(a)のA−A線断面図である。図3は加熱工程を示す断面図である。図4は矯正・拘束工程を示す断面図である。図5は冷却工程を示す断面図である。図6は矯正・拘束解除工程を示す断面図である。
【0018】
本発明における樹脂成形体の製造方法を実施した製造装置によって、そり、変形の矯正及び変形を防止される樹脂成形体Wは、例えば、図2に示すように、円板の上に円筒の縁部が連結されている形状のものであるが、他の形状であってもよく、そりの方向も樹脂成形体Wの肉厚、金型の温度分布等によっては図示のものと反対の方向に生じることもある。
以下、製造装置を詳述する。
下側冶具取付体8に下側取付板9が取付けられ、下側取付板9に下側の矯正・拘束部材1が取付けられ、下側の矯正・拘束部材1には位置決めブロック10が取付けられ、位置決めブロック10に樹脂成形体Wが取付けられるのである。又、加熱手段4を構成する上側冶具取付体11に上側取付板12が取付けられ、上側取付板12に保持ブロック13が取付けられ、保持ブロック13に参考例としての上側の矯正・拘束部材1が保持されている。下側冶具取付体8は昇降手段(図示せず)にて昇降自在になっていて上下の矯正・拘束部材1、1によって樹脂成形体Wを矯正・拘束するようにしている。
【0019】
上側の矯正・拘束部材1は、エネルギー線透過材にて形成して、加熱手段4を構成するエネルギー線照射装置14からのエネルギー線を上側の矯正・拘束部材1を透過して樹脂成形体Wに照射して加熱するようにしている。下側の矯正・拘束部材1はエネルギー線透過材であっても、非透過材であってもよい。
【0020】
保持ブロック13には冷却管15が環状の冷却溝46に配管されて樹脂成形体Wからの伝熱によって上側の矯正・拘束部材1が昇温するのを抑制している。下側の矯正・拘束部材1には温度センサー16を設けて樹脂成形体Wの温度を検知するようにしている。
このように、上側の矯正・拘束部材1はエネルギー線を透過するために、照射による温度上昇はなく、照射によって温度上昇した樹脂成形体Wの表面からの熱伝導でのみ温度上昇するのであり、従って、矯正・拘束部材1のエネルギー線透過部の樹脂成形体Wへの密着面は、エネルギー線吸収により温度上昇した樹脂成形体Wに比較すると低温であるため、
・矯正・拘束部材1の冷却作用により、加熱時に樹脂成形体Wの表面に熱が集中することがない。従って、表面の樹脂組成物の変色・分解を低減させることができる。
・加熱終了後は、矯正・拘束部材1自体はエネルギー線照射による温度上昇がないので、矯正・拘束部材1が樹脂成形体Wの熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温させることができる。
しかして、樹脂成形体Wを矯正・拘束部材1、1で矯正・拘束しながらエネルギー線を照射して樹脂成形体Wのそり、変形の矯正、内部応力の緩和を図りながら、簡易に、品質を高め、生産性を高めることができる。
【0021】
この場合、図4に示す矯正・拘束工程イは、図3に示すように、樹脂成形体Wにエネルギー線を照射して、樹脂成形体Wが熱変形温度以下であって、熱変形温度近傍の所定温度になった後におこなうものである。
具体的には、温度センサー16による温度の測定によって、変形発生部の近傍の温度が樹脂成形体Wの樹脂組成物の熱変形温度近傍の所定温度に到達した時点において、下側冶具取付体8を備えた下側冶具17が図示しない昇降手段によって上昇され、上側冶具取付体11を備えた上側冶具18のエネルギー線透過材からなる矯正・拘束部材1と下側の矯正・拘束部材1で樹脂成形体Wを密着し矯正、拘束するのである。
このように、熱変形温度近傍の所定温度まではエネルギー線透過性材料からなる矯正・拘束部材1、1を密着させ矯正・拘束していないため、矯正・拘束部材1、1に樹脂成形体Wの表面の熱が拡散せず、迅速に温度を上昇させることができ、熱変形温度近傍の所定温度を越えてからはエネルギー線透過性材料からなる矯正・拘束部材1を密着させて矯正・拘束をおこなうことによって、樹脂成形体Wの表面に熱が集中して樹脂組成物の分解、変色を避けることができる。
【0022】
ここで、エネルギー線及び、エネルギー線透過材の種類については、例えば、樹脂組成物がポリメチルメタクリレート(PMMA)であった場合、エネルギー線としては赤外線(CO2レーザ)、エネルギー線透過材としてはセレン化亜鉛が望ましい。
【0023】
ところで、樹脂成形体Wに密着することによって、上側の矯正・拘束部材1は樹脂成形体Wからの熱の伝導によって温度上昇するが、保持ブロック13には冷却管15、冷却溝46を経由して冷却媒体が常時循環しているため、加熱時の温度上昇が少なく、品質良く、短時間にそり、変形の矯正、内部応力の緩和が可能となる。
ここで、熱変形温度は一般的に荷重たわみ温度を用いる。熱変形温度近傍の所定温度は熱変形温度より10〜30℃低いほうが好ましく、また、矯正・拘束力としては1〜100kPa特には5〜20kPaが好ましい。図示しない駆動(昇降)加熱手段は油圧、空圧、モータ、手動プレス等のものが用いられる。また、本実施の形態は下側が駆動するようにしたが、上側のみ又は両者を駆動してもよい。
図5は冷却工程を示し、温度センサー16の温度測定によって、変形発生部の近傍の温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度以上、融点以下の所定温度に到達した時点において、矯正、拘束状態を維持したままで照射加熱を終了して冷却工程に移るものである。
エネルギー線透過材からなる上側の矯正・拘束部材1はエネルギー線を透過するため、照射時の温度上昇は成形品表面からの熱伝導でのみ温度上昇している。従って樹脂成形体Wのエネルギー線吸収による温度上昇に比較すると低温であり、樹脂成形体Wの熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温する。
図6は矯正・拘束解除工程を示し、温度センサー16の温度測定によって、矯正・拘束部の温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度近傍の所定温度に降温した時点において、矯正・拘束部材1、1による矯正・拘束を解除し、樹脂成形体Wを取り出す。
【0024】
図7は他の実施の形態を示し、但し、本実施の形態の基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
本実施の形態においては、エネルギー線の照射加熱工程において、温度センサー16による樹脂成形体Wのエネルギー照射部近傍の温度検出をおこない、検出した値を増幅器19で増幅した後、比較演算器20において、予め設定しておいた昇温プロファイルと比較する。温度プロファイルの例を同図(b)に示す。ここで、予め設定しておいた昇温プロファイルに追従するように、比較演算器20よりエネルギー線照射強度調整器21に信号を送り、エネルギー線照射強度のコントロールをおこなう。
このようにして、毎回、正確な昇温プロファイルが得られ、熱履歴の同一の均質な樹脂成形体Wを得ることが可能となる。
【0025】
図8は更に他の実施の形態を示し、但し、本実施の形態の基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
【0026】
本実施の形態においては、エネルギー線の照射加熱時に、矯正・拘束部材1によって変形を矯正した時の矯正力を駆動(昇降)加熱手段に取り付けたロードセル等の荷重測定装置(図示せず)により検出し、測定矯正力Fを増幅器19で増幅した後、比較演算器20において、予め設定しておいた荷重値と比較し、測定矯正力Fが予め設定しておいた荷重値になった時点で照射加熱を終了する。この場合、予め設定した荷重値はエネルギー線照射加熱による、そり、変形矯正による減少と樹脂成形体Wを構成している樹脂組成物の温度上昇による弾性率減少を考慮した値である。
このことにより、樹脂成形体Wが熱変形温度以上、融点以下の所定温度に達するタイミングを、矯正力をその代用特性として検出し、これが予め設定した値になるまで照射加熱することにより、簡便、確実にそり、変形を矯正可能となる。
【0027】
図9は更に他の実施の形態を示し、但し、本実施の形態の基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
【0028】
本実施の形態においては、エネルギー線の照射加熱時に、矯正・拘束部材1、1で樹脂成形体Wに一定の矯正力を負荷した時の上側、下側冶具18、17の間隔を測定する。検出した測定間隔Lを増幅器19で増幅した後、比較演算器20において、予め設定しておいた値と比較する。予め設定しておいた値はそり、変形量が樹脂成形体Wの許容範囲の寸法に上側、下側冶具18、17の間隔に樹脂成形体Wを構成している樹脂組成物の温度上昇による弾性率減少を考慮した値である。従って予め設定した値と測定値の差が矯正すべき変形量となる。しかして、上側、下側冶具18、17の測定間隔Lが予め設定しておいた値になった時点で照射加熱を終了する。図10及び図11はフローチャートを示す。
このように、樹脂成形体Wの変形量を直接検出し、検出値が予め設定した値になるまで照射加熱することにより、簡便、確実にそり、変形を矯正可能となる。
図12は更に他の実施の形態を示し、但し、本実施の形態の基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
本実施の形態においては、樹脂成形体Wのそり、変形部または樹脂成形体Wの内部応力残留部はインサート部材3が樹脂成形品に圧入されることによって生じた部位とし、かかる箇所のそり、変形及び残留応力を取るものである。
一般に、インサート部材3を圧入することによって生じる樹脂成形体Wの弾性変形力がインサート部材3を保持する力となるのであり、インサート部材3が圧入された部位を加熱しすぎると弾性変形部が塑性変形してしまい、インサート部材3を保持する力が極端に低下することになる。しかして、本実施の形態においては、インサート部材3が圧入された部位をエネルギー線によって均一に精度良く加熱するのであり、インサート部材3が圧入された部位が塑性変形することがなく、そり、変形または内部応力を除去できる。又、本実施の形態においては、平板状に形成した樹脂成形体Wに並列して形成したリブ22の間にインサート部材3が圧入された形状のものを示すが、このような形状に限定されるものではない。例えば、携帯電話等の小型電器機器に使用される薄型のコネクタのように、樹脂成形体Wの角形状等の穴に板金状金属端子を圧入した形状のものであってもよい。又、樹脂成形体Wの平板形状は矩形、円形等いかなる形状でもよい。
図13は同上の製造方法を実施した製造装置の基本動作を示す。但し、基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
下側冶具17に保持ブロック13aが取付けられ、保持ブロック13aには冷却管15を冷却溝46に配管して外部から冷却媒体を循環させる冷却回路を形成している。保持ブロック13aに位置決めブロック10を設けてインサート部材3を圧入して変形が生じている樹脂成形体Wを位置決めして保持するようにしている。
上側冶具18に取付けた上側取付板12に昇降ガイド孔23を形成し、上側の矯正・拘束部材1に軸26を固定し、軸26を昇降ガイド孔23の範囲内に昇降自在にして下側の矯正・拘束部材1を昇降自在に取付けている。上側取付板12にインサート部材3を保持するための保持部材6を取付けている。保持部材6に孔30を形成して軸26を遊挿している。保持部材6の孔30に連続して浅い大径孔25を形成し、大径孔25に一部を入れ、かつ、軸26に挿通したスプリング27を保持部材6と矯正・拘束部材1との間に設けている。保持部材6には凸部28を、インサート部材3には凹部29を形成している。矯正・拘束部材1には通孔31を形成してインサート部材3を挿通できるようにしている。
しかして、図13乃至図15に示すように、インサート部材3を圧入した樹脂成形体Wを保持ブロック13aの位置決めブロック10に位置決めして保持させ、上側冶具18を昇降手段によって下昇させ、インサート部材3を上側の矯正・拘束部材1の通孔31に通して上側の矯正・拘束部材1と下側の矯正・拘束部材1によって樹脂成形体Wを挟持して矯正・拘束し、この矯正・拘束によって、インサート部材3のピッチは製品の寸法公差内に入る。この場合、スプリング27の作用によって凸28と凹部29との間には隙間があってインサート部材3は保持されていない(図14参照)。その後、上側冶具18の一層の下昇によって、保持部材6の凸部28にインサート部材3の凹部29が嵌合して保持される(図15参照)。
このように、上側の矯正・拘束部材1と保持部材6とを弾性体33としてのスプリング27にて弾性的に連結された形となっていて、樹脂成形体Wを矯正・拘束部材1、1によって挟持して矯正・拘束をおこなった後に、インサート部材3を弾性体33の弾性作用によって保持部材6にて弾性的に保持することができ、インサート部材3の保持を簡単な構成で可能となる。この場合、下側の矯正・拘束部材1はエネルギー線透過材で形成しているが、参考例としての上側の矯正・拘束部材1の材質はエネルギー線透過、非透過いずれでもよい。
図15に示すように、インサート部材3の保持完了後、下側に設置したエネルギー線照射装置14であるレーザ照射装置により照射したレーザを駆動モータ(図示せず)を装備した走査用ミラー32によって走査し、エネルギー線透過材製の下側の矯正・拘束部材1を透過して樹脂成形体Wへのインサート部材3の圧入に基因するそり、変形部または応力残留部に照射を開始するのである。この場合、エネルギー線透過材からなる下側の矯正・拘束部材1の作用、効果は詳述した基本の実施の形態(図1〜図6)のものと同様である。
ここで、エネルギー線及びエネルギー線透過材の種類については、例えば、樹脂組成物がPMMAであった場合、エネルギー線としてはCO2レーザ、エネルギー線透過材としてはセレン化亜鉛が望ましい。詳しくは、エネルギー線透過材は、照射するエネルギー線の波長帯を透過するものを選択するのであり、セレン化亜鉛、硫化亜鉛、サファイヤ、石英ガラス、硼珪酸クラウンガラス、硼珪酸ガラスなどある。又、エネルギー線照射装置14としては、照射するエネルギー線の照射対象である樹脂成形体Wを構成する物質が吸収し得る波長帯を有するものを適宜選択する。紫外線(エキシマレーザ等)、赤外線(CO2レーザ、YAGレーザ、ハロゲンランプ等)、マイクロ波、可視光、X線電子線、γ線などがある。
図16は冷却工程を示し、レーザ照射部近傍の温度を温度センサー(図示せず)にて計測し、計測温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度以上、融点以下の所定温度に到達した時点において、矯正・拘束及びインサート部材3の保持状態を維持したままで照射加熱を終了する。この場合、応力残留部の温度上昇は、詳述した基本の実施の形態と同様に温度センサーによる測定でも熱計算による解析値でもかまわない。また熱変形温度は、詳述した基本の実施の形態のものと同様、一般的に荷重たわみ温度を用いる。
図17は樹脂成形体Wの矯正・拘束の解除及びインサート部材3の保持解除工程を示し、矯正・拘束部の温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度近傍の所定温度に降温した時点において、下側の矯正・拘束部材1の矯正・拘束を解除するとともにインサート部材3の保持を解除して、樹脂成形体Wを取り出すのである。
このように、エネルギー線照射により、そり、変形部または内部応力残留部を均一に精度良く加熱すると、インサート部材3の保持部分が塑性変形することなく、そり、変形または内部応力を除去できる。又、エネルギー線にレーザを用いることにより、複数のインサート部材3が樹脂成形体Wに狭いピッチで配列していても樹脂成形体Wの必要な部分のみを選択的に加熱でき、インサート部材3の保持部分が塑性変形することなく、そり、変形または残留応力を除去できる。
更に、矯正・拘束部材1と、インサート部材3を保持するための保持部材6が弾性体33としてのスプリング27によって連結されている形となることにより、矯正・拘束部材1、1による樹脂成形体Wのそり矯正・拘束後にインサート部材3の保持をおこなうことができ、樹脂成形体Wを熱変形温度以上に加熱しても、インサート部材3の位置を精度良く維持することができる。
図18〜図21は本発明の矯正・拘束部材の実施の形態を示し、但し、基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
図18は製造装置の構成を示し、下側の矯正・拘束部材1がベース34上を紙面の表裏方向及び左右方向の2方向に移動可能に設置されている。下側の矯正・拘束部材1の材質はエルギー線透過、非透過いずれでもよい。べ一ス34上には主コラム35が固定され、主コラム35にはエネルギー線照射装置14と副コラム36を取付けている。アーム状のローラ軸受け部材37が副コラム36に昇降自在に取付けられた支持材38に取付けられている。
ローラ軸受け部材37の先端の回転軸5にはエネルギー線透過材からなるローラ状の矯正・拘束部材1が回転体2として回転自在に取付けられている。回転軸5はスプリング40によって矯正・拘束力を調節可能にしている。エネルギー線照射装置14は照射するエネルギー線がエネルギー線透過材からなるローラ状の矯正・拘束部材1(回転体2)に透過可能な位置に配置されている。
図19は矯正・拘束状態から照射加熱工程への作用を示し、樹脂成形体Wを位置決めブロック10によって下側の矯正・拘束部材1に位置決めした後、副コラム36においてローラ状の矯正・拘束部材1の位置を調節して、樹脂成形体Wに密着させ、矯正・拘束する。矯正・拘束完了後、エネルギー線照射装置14により照射加熱を開始する。照射部温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度以上、融点以下の所定温度に到達した時点において、照射加熱を終了する。
図20は冷却工程から下側の矯正・拘束部材1の移動工程を示し、照射加熱終了後、照射部温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度近傍の所定温度に降温すると同時に下側の矯正・拘束部材1がベース34上を所定量移動する。ローラ状の矯正・拘束部材1は矯正・拘束力により下側の矯正・拘束部材1の移動に伴って回転する。以下、同様に照射加熱→冷却→下側の矯正・拘束部材1の移動を繰り返し、そり、変形部の全領域を照射して加熱冷却を終了する。この場合、ローラ状の矯正・拘束部材1が回転移動するため、樹脂成形体Wは常に新しい矯正・拘束部材1の面と密着することになり、矯正・拘束部材1の温度上昇が少なく短時間で効率的な処理ができる。
尚、エネルギー線及び、エネルギー線透過材の種類については、詳述した基本の実施の形態と同様であり、又、応力残留部の温度上昇は基本の実施の形態と同様に温度センサーによる測定でも熱計算による解析値でもかまわない。また熱変形温度は基本の実施の形態と同様一般的に荷重たわみ温度を用いる。
図21は矯正・拘束の解除工程を示し、そり、変形部の全領域を照射して加熱冷却を終了後、ローラ状の矯正・拘束部材1の位置を調節(上昇)して、樹脂成形体Wの矯正、拘束を解除する。
図22は更に他の参考例を示し、但し、基本構成は上記実施の形態と共通であり、共通する部分には同一の符号を付して説明は省略する。
本参考例の製造装置は、複数の樹脂成形体Wを矯正・拘束する上下の矯正・拘束部材1、1を備えた矯正・拘束冶具41とセラミックヒータ等のエネルギー線照射装置14と矯正・拘束冶具41を搬送する搬送装置7としてのコンベア42とこれらを収納する炉室43から構成されている。
矯正・拘束冶具41は下側の矯正・拘束部材1とエネルギー線透過材からなる上側の矯正・拘束部材1と上側の矯正・拘束部材1を挟持する一対の保持ブロック44、44と保持ブロック44を介して樹脂成形体Wを矯正・拘束するための加圧用スプリング45から構成されている。矯正・拘束冶具41は樹脂成形体Wを複数個取付可能になっている。エネルギー線照射装置14はコンベア42による搬送中にエネルギー線照射が可能な位置に配してある。コンベア42の長さはおよそ2〜5mである。矯正・拘束冶具41をコンベア42の長さに応じて多数個製作することにより、連続大量処理が可能となり、生産性の優れた製造装置を提供可能となる。
【0029】
【発明の効果】
請求項1の発明においては、樹脂成形体のそり、変形が生じている部分、若しくは残留する内部応力により使用環境下でそり変形が発生することが予想される部分の少なくともいずれかにエネルギー線透過性材料からなるエネルギー線透過部を備えた矯正・拘束部材を密着させて矯正、拘束する矯正・拘束工程と、
矯正・拘束部材を密着させている樹脂成形体の部位にエネルギー線透過部を通してエネルギー線を照射し、熱変形温度以上、融点以下の所定温度に加熱する加熱工程と、照射加熱終了後、樹脂成形体が熱変形温度以下の温度において矯正・拘束部材の矯正・拘束を解除する矯正・拘束解除工程とを備え、矯正・拘束部材はエネルギー透過材にて形成したローラ状もしくは球状の回転体を備え、回転体を樹脂成形体に密着した状態で移動させながら、回転体を経てエネルギー線を樹脂成形体の照射領域に照射するから、矯正・拘束部材のエネルギー線透過部はエネルギー線を透過するために、照射による温度上昇はなく、照射によって温度上昇した樹脂成形体の表面からの熱伝導でのみ温度上昇するのであり、従って、エネルギー線透過部の樹脂成形体への密着面はエネルギー線吸収により温度上昇した樹脂成形体に比較すると低温であるため、
矯正・拘束部材の冷却作用により、加熱時に樹脂成形体の表面に熱が集中することがない。従って、表面の樹脂組成物の変色・分解を低減させることができる。
加熱終了後は、矯正・拘束部材自体はエネルギー線照射による温度上昇がないので、矯正・拘束部材が樹脂成形体の熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温させることができる。
しかして、樹脂成形体を矯正・拘束部材で矯正・拘束しながらエネルギー線を照射して樹脂成形体のそり、変形の矯正、内部応力の緩和を図りながら、簡易に、品質を高め、生産性を高めることができるという利点がある。
更に、請求項1においては、エネルギー線透過材からなる矯正・拘束部材が樹脂成形体に密着する面がローラ状または球状となっていて回転移動ができるため、樹脂成形体は常に新しい矯正・拘束部材の面と密着することになり、矯正・拘束部材の温度上昇が少なく短時間で効率的な処理ができる。
【0030】
請求項2の発明においては、請求項1の効果に加えて、矯正・拘束工程は、樹脂成形体にエネルギー線を照射して、樹脂成形体が熱変形温度以下であって、熱変形温度近傍の所定温度になった後におこなうから、熱変形温度近傍の所定温度まではエネルギー線透過性材料からなる矯正・拘束部材を密着させ矯正・拘束していないため、矯正・拘束部材に樹脂の表面の熱が拡散せず、迅速に温度を上昇させることができ、熱変形温度近傍の所定温度を越えてからはエネルギー線透過性材料からなる矯正・拘束部材を密着させて矯正・拘束をおこなうことによって、樹脂成形体の表面に熱が集中して樹脂組成物の分解、変色を避けることができるという利点がある。
【0031】
請求項3の発明においては、請求項1又は2の効果に加えて、加熱工程は、矯正・拘束部材による変形を矯正した時の矯正力を検出し、検出した矯正力が予め設定した値になるまでエネルギー線照射加熱をおこなうから、樹脂成形体が熱変形温度以上、融点以下の所定温度に達するタイミングを、矯正力をその代用特性として検出し、検出した矯正力が予め設定した値になるまで照射加熱することにより、確実にそり、変形を矯正できるという利点がある。
【0032】
請求項4の発明においては、請求項1又は2又は3の効果に加えて、加熱工程は、矯正・拘束部材で樹脂成形体に一定の矯正力を付加した時の樹脂成形体の変形量を検出し、検出した変形量が予め設定した値になるまでエネルギー線照射加熱をおこなうから、樹脂成形体の変形量を直接検出し、検出値が予め設定した値になるまで照射加熱することにより、簡便、確実にそり、変形を矯正できるという利点がある。
【0034】
請求項5の発明においては、請求項1の効果に加えて、樹脂成形体のそり、変形部または樹脂成形体の内部応力残留部はインサート部材が樹脂成形品に圧入されることによって生じた部位であるから、一般に、インサート部材を圧入することによって生じる樹脂成形体の弾性変形力がインサート部材を保持する力となるのであり、インサート部材が圧入された部位を加熱しすぎると弾性変形部が塑性変形してしまい、インサート部材を保持する力が極端に低下することになる。しかして、請求項5の発明においては、インサート部材が圧入された部位をエネルギー線によって均一に精度良く加熱するのであり、インサート部材が圧入された部位が塑性変形することがなく、そり、変形または内部応力を除去できるという利点がある。
【0035】
請求項6の発明においては、樹脂成形体を複数の矯正・拘束部材によって矯正・拘束した状態で樹脂成形体を加熱して残留応力を緩和し樹脂成形体のそり、変形を矯正する樹脂成形体の製造装置であって、樹脂成形体のそり、変形が生じている部分、または残留する内部応力により使用環境下でそり変形が発生する部分に密着させ矯正・拘束する少なくともひとつがエネルギー線透過性材料からなる複数の矯正・拘束部材と、矯正・拘束部材を樹脂成形体に密着させてエネルギー線を照射する加熱手段とを備え、矯正・拘束部材は、エネルギー透過材にて形成したローラ状もしくは球状の回転体を備え、回転体を移動する樹脂成形体に密着させた状態で従動回転させる回転軸を設けているから、請求項1の効果と同様な効果を得ることができる。
【0037】
請求項7の発明においては、請求項6の効果に加えて、矯正・拘束部材と、樹脂成形体にインサートされたインサート部材を保持するための保持部材とを弾性体にて連結しているから、樹脂成形体を矯正・拘束部材によって矯正・拘束をおこなった後に、インサート部材を弾性体の弾性作用によって保持部材にて保持することができ、インサート部材の保持を簡単な構成で可能となるという利点がある。
【0038】
請求項8の発明においては、請求項6の効果に加えて、樹脂成形体を拘束した矯正・拘束部材を搬送する搬送装置と、搬送中の樹脂成形体にエネルギー線を照射する加熱手段を備えているから、樹脂成形体を矯正・拘束した矯正・拘束部材を搬送装置により搬送することができ、連続処理が可能となり、生産性を高めることができるという利点がある。
【図面の簡単な説明】
【図1】本発明の参考例の矯正・拘束部材を備えた樹脂成形体の製造装置を示し、(a)は概略断面図、(b)は(a)のC−C線断面図である。
【図2】同上の方法及び装置による矯正・拘束前の樹脂成形体を示し、(a)は平面図、(b)は(a)のA−A線断面図である。
【図3】同上の加熱工程を示す断面図である。
【図4】同上の矯正・拘束工程を示す断面図である。
【図5】同上の冷却工程を示す断面図である。
【図6】同上の矯正・拘束解除工程を示す断面図である。
【図7】(a)は同上の他の実施の形態の製造装置の説明図、(b)は温度プロファイルを示す説明図である。
【図8】同上の更に他の実施の形態の製造装置の説明図である。
【図9】同上の更に他の実施の形態の製造装置の説明図である。
【図10】同上のフローチャートである。
【図11】同上のフローチャートである。
【図12】同上の更に他の実施の形態を示し、(a)(b)(c)はインサート部材の圧入作用を示す説明図である。
【図13】同上の更に他の実施の形態の製造装置の断面図である。
【図14】同上の更に他の実施の形態の製造装置の矯正・拘束工程を示す断面図である。
【図15】同上のインサート部材を保持し加熱開始時を示す断面図である。
【図16】同上の冷却工程を示す断面図である。
【図17】同上の矯正・拘束工程及びインサート部材の解除工程を示す断面図である。
【図18】本発明の矯正・拘束部材を備えた実施の形態を示し、(a)は製造装置の側面図、(b)は(a)のB−B線断面図である。
【図19】同上の矯正・拘束工程及び加熱開始時の説明図である。
【図20】同上の下側の矯正・拘束部材の移動を示す説明図である。
【図21】同上の下側の矯正・拘束部材の移動及び上側の矯正・拘束の解除を示す説明図である。
【図22】同上の更に他の参考例の矯正・拘束部材を備えた説明図であり、(a)は製造装置の概略側面図、(b)は得られた樹脂成形体の断面図である。
【符号の説明】
1 矯正・拘束部材
2 回転体
3 インサート部材
4 加熱手段
5 回転軸
6 保持部材
7 搬送装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a resin molded body and an apparatus for manufacturing the same, and more specifically, the resin molded body is irradiated with energy rays while the resin molded body is corrected / restrained with a restraining member, and the resin molded body is warped, and deformation is corrected and deformed. When preventing heating, the temperature of the straightening / restraining member during heating due to irradiation with energy rays is avoided, the concentration of energy rays on the surface of the resin molding is prevented, and discoloration and decomposition of the surface of the resin molding are reduced. At the same time, the present invention relates to a technique in which the resin molded body lowers the temperature quickly to a temperature lower than the heat distortion temperature to improve quality and increase productivity.
[0002]
[Prior art]
Conventionally, in a method for producing a resin molded body, unbalanced stress is generated inside the resin molded body due to the following factors, and warpage or deformation occurs under the usage environment due to warpage, deformation, or residual stress. It was a problem.
1. When the high temperature resin composition comes into contact with the low temperature mold during the flow process during the molding process, the surface portion of the resin molded body is rapidly cooled, the inside is gradually cooled, and a difference in shrinkage occurs due to the difference in cooling rate. .
2. Since the shear force generated between the resin composition and the mold wall surface during the molding process is quenched and solidified without being relaxed, stress remains in the vicinity of the surface of the resin molded body.
3. During the cooling process at the time of molding, a difference in shrinkage occurs due to the cooling rate difference of the resin molded body due to the shape, such as the corner portion, uneven thickness portion, rib portion, boss portion, etc. of the resin molded body.
4). During the cooling process at the time of molding, a shrinkage difference occurs due to a cooling rate difference of the resin molded body caused by the mold structure such as a mold cooling pipe.
5. After molding, when press-fitting an insert member such as a metal terminal into the resin molded body, distortion due to the press-fitting occurs in the resin molded body.
In general, in the warpage of these resin moldings, the method of correcting deformation, and the relaxation of residual stress, warp with a correction / restraint member, and correct or restrain the deformed part or the part where the stress remains, and heat it. The method is known.
However, with the conventional method
1. Although the heating means is performed in a heating atmosphere such as a heating furnace, heat transfer is conductive heating, and the resin composition has a low thermal conductivity, and thus requires time for heating and cooling. Moreover, it is necessary to put the entire product into the furnace, resulting in poor energy efficiency.
2. In order to maintain the shaped state of the resin molded body, the heating temperature is not higher than the thermal deformation temperature of the resin composition forming the resin molded body, and warping, deformation correction, and stress relaxation are incomplete. Furthermore, the heat treatment also takes a very long time.
3. The straightening / restraining member is generally made of a heat-resistant and rigid material, such as metal or ceramics, as compared to the resin composition. It takes time to heat and cool the resin molding. There are issues such as.
On the other hand, as a method for overcoming the drawbacks of conduction heating in a heating furnace or the like, a radiation heating method by irradiation with energy rays such as infrared rays is known. For example, Japanese Patent Laid-Open No. 60-94335 discloses a method in which heat is transmitted by infrared irradiation after molding into a plastic part in order to reduce the internal stress of the plastic molded plastic.
In this method, the heating time is short because of radiation heating by infrared rays. In addition, since partial heating is possible due to the characteristics of radiation, it is possible to partially heat only a portion where an unbalanced stress is generated in the resin molded body while maintaining the shaping state of the entire resin molded body. It becomes possible. However, in the above method, problems 1 and 2 are solved, but problem 3 is not yet solved. Further, depending on the combination of the wavelength of the energy beam and the resin composition, the energy beam concentrates on the surface of the resin molded product, and a new problem arises that the surface resin composition is discolored and decomposed by heat.
[0003]
As a method for avoiding the concentration of the energy rays on the surface of the resin molded product, in Japanese Patent No. 2089507, the surface of the resin molded body is heated by radiant heating by infrared irradiation and hot air shower from both sides facing the molded body in a conveyor furnace. A method of diffusing the gas and performing rapid and uniform heating is disclosed. However, the stirring by the air shower merely stirs the gas in the furnace, and the heat concentrated on the surface of the resin molded body cannot be completely dispersed.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such problems. The resin molded body W is irradiated with energy rays while the resin molded body is corrected / restrained with a restraining member to prevent warping, deformation correction and deformation of the resin molded body W. In doing so, avoiding the temperature rise of the straightening and restraining member during heating by irradiation with energy rays, preventing the concentration of energy rays on the surface of the resin molded body, reducing discoloration and decomposition of the surface of the resin molded body, In addition, it is an object of the present invention to provide a method for manufacturing a resin molded body and a manufacturing apparatus therefor, in which the temperature of the resin molded body can be quickly lowered to a temperature equal to or lower than the thermal deformation temperature, thereby improving quality and productivity.
[0005]
[Means for Solving the Problems]
  In the first aspect of the present invention, the resin molding W is heated in a state where the resin molding W is corrected / restrained by the straightening / restraining member 1 to relieve the residual stress and correct the warpage and deformation of the resin molding. A method for manufacturing a body,
  Energy ray transmission made of an energy ray transmissive material in at least one of a warp, a deformed portion of the resin molded body W, or a portion where a warp deformation is expected to occur in a use environment due to a residual internal stress. Correction / restraint process a that corrects and restrains the straightening / restraining member 1 provided with a portion in close contact with each other;
  A heating step of irradiating an energy ray through the energy ray transmitting portion to a portion of the resin molded body W in which the correction / restraining member 1 is in close contact, and heating to a predetermined temperature not lower than the melting point and not higher than the melting point;
  After completion of irradiation heating, the resin molded body W is provided with a correction / restraint releasing step C for correcting / releasing the correction / restraint member 1 at a temperature equal to or lower than the heat deformation temperature.e,
  The straightening / restraining member 1 includes a roller-shaped or spherical rotating body 2 formed of an energy transmission material, and the energy beam is transferred through the rotating body 2 while moving the rotating body 2 in close contact with the resin molded body W. Irradiating the irradiation area of the compact WIt is characterized by.
According to such a configuration, since the energy ray transmitting portion of the correction / restraint member 1 transmits the energy ray, there is no temperature rise due to irradiation, and heat conduction from the surface of the resin molded body W that has risen in temperature due to irradiation. Only the temperature rises, and therefore, the adhesion surface of the energy ray transmitting portion to the resin molded body W is lower than the resin molded body W whose temperature has increased due to energy ray absorption.
  -Due to the cooling action of the correction / restraint member 1, heat does not concentrate on the surface of the resin molded body W during heating. Therefore, discoloration / decomposition of the resin composition on the surface can be reduced.
[0006]
  After the heating, the correction / restraint member 1 itself does not increase in temperature due to the irradiation of energy rays. Therefore, the correction / restraint member 1 takes away the amount of heat of the resin molded body W, so that the cooling efficiency is high, and the predetermined temperature below the heat deformation temperature is high. The temperature can be lowered.
Therefore, while correcting and restraining the resin molded body with a restraining member, the energy beam is irradiated to correct the resin molded body's warpage, deformation, and internal stress, while easily improving quality and productivity. Can be increased.
Further, in claim 1, since the surface of the correction / restraining member 1 made of an energy ray transmitting material is in close contact with the resin molded body W is in a roller shape or a spherical shape and can be rotated, the resin molded body W is always new. It will be in close contact with the surface of the straightening / restraining member 1, and the temperature of the straightening / restraining member 1 will be small and efficient processing can be performed in a short time.
[0007]
In the invention of claim 2, in the correction / restraint step (a), the resin molded body W is irradiated with energy rays, so that the resin molded body W is equal to or lower than the thermal deformation temperature and reaches a predetermined temperature near the thermal deformation temperature. It is characterized by what is done later.
According to such a configuration, since the correction / restraint member 1 is brought into close contact with the predetermined temperature near the heat distortion temperature and is not corrected / restrained, the heat of the surface of the resin molded body W is diffused to the correction / restraint member 1. Therefore, the temperature can be quickly raised, and after the predetermined temperature in the vicinity of the heat deformation temperature is exceeded, the correction / restraint member 1 is brought into close contact to perform correction / restraint so that heat is applied to the surface of the resin molded body W. Concentration can avoid decomposition and discoloration of the resin composition.
[0008]
In the invention of claim 3, the heating step b detects the correction force when the deformation by the correction / restraint member 1 is corrected, and performs energy beam irradiation heating until the detected correction force reaches a preset value. It is characterized by.
According to such a configuration, the timing at which the resin molded body W reaches a predetermined temperature not lower than the heat distortion temperature and not higher than the melting point is detected using the correction force as a substitute characteristic until the detected correction force reaches a preset value. Warping and deformation can be reliably corrected by irradiation and heating.
[0009]
In the invention of claim 4, the heating process b detects the deformation amount of the resin molded body W when a certain correction force is applied to the resin molded body W by the correction / restraint member 1, and the detected deformation amount is determined in advance. Energy beam irradiation heating is performed until a set value is reached.
According to such a configuration, the amount of deformation of the resin molded body W is directly detected, and irradiation heating is performed until the detected value reaches a preset value, thereby making it possible to easily and reliably warp and correct the deformation.
[0011]
  ClaimItem 5In the present invention, the warp, the deformed portion of the resin molded body W or the internal stress remaining portion of the resin molded body W is a portion generated by press-fitting the insert member 3 into the resin molded product. .
Generally, the elastic deformation force of the resin molded body W generated by press-fitting the insert member 3 becomes a force for holding the insert member 3, and if the portion into which the insert member 3 is press-fitted is heated too much, the elastic deformation portion becomes plastic. It will deform | transform and the force holding the insert member 3 will fall extremely. But billingItem 5In the present invention, the part into which the insert member 3 is press-fitted is heated uniformly and accurately by the energy beam, and the part into which the insert member 3 is press-fitted is not plastically deformed, and warpage, deformation or internal stress can be removed. .
[0012]
  ClaimItem 6In the present invention, the resin molded body W is heated and corrected with a plurality of correction / restraining members 1 and 1 to heat the resin molded body W to relieve the residual stress, thereby correcting the warpage and deformation of the resin molded body W. It is an apparatus for manufacturing a molded body, and at least one of the resin molded body W is in contact with a warp, a portion where deformation occurs, or a portion where warpage deformation occurs under the use environment due to residual internal stress. A plurality of straightening / restraining members 1 made of a wire-permeable material, and heating means 4 for irradiating energy rays with the straightening / restraining member 1 in close contact with the resin molded body W are provided.The correction / restraint member 1 includes a roller-shaped or spherical rotating body 2 formed of an energy transmitting material, and a rotating shaft 5 that is driven to rotate while being in close contact with the resin molded body W that moves the rotating body 2. EstablishedIt is characterized by.
  According to such a configuration, an action similar to that of the first aspect can be obtained.
[0014]
  ClaimItem 7In the invention, the correction / restraint member 1 and the holding member 6 for holding the insert member 3 inserted in the resin molded body W are connected by an elastic body 33.
[0015]
According to such a configuration, the insert member 3 can be held by the holding member 6 by the elastic action of the elastic body 33 after the resin molded body W is corrected / restrained by the correction / restraint member 1. The member 3 can be held with a simple configuration.
[0016]
  ClaimItem 8The invention is characterized by comprising a transport device 7 for transporting the correction / restraining member 1 restraining the resin molded body W, and a heating means 4 for irradiating the resin molded body W being transported with energy rays. It is.
According to such a configuration, the correction / restraint member 1 obtained by correcting / restraining the resin molded body W can be transported by the transport device 7, and continuous processing is possible, thereby improving productivity.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. 1A and 1B show a resin molded body manufacturing apparatus, in which FIG. 1A is a cross-sectional view, and FIG. 1B is a cross-sectional view taken along line CC in FIG. 2A and 2B show a resin molded body before correction / restraint by the manufacturing apparatus, where FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line AA in FIG. FIG. 3 is a cross-sectional view showing the heating process. FIG. 4 is a cross-sectional view showing the correction / restraint process. FIG. 5 is a cross-sectional view showing a cooling process. FIG. 6 is a cross-sectional view showing the correction / restraint releasing step.
[0018]
  As shown in FIG. 2, for example, as shown in FIG. 2, a resin molded body W that is warped, corrected for deformation, and prevented from being deformed by a manufacturing apparatus that implements the method for manufacturing a resin molded body according to the present invention is used. Although the shape is such that the parts are connected, other shapes may be used, and the direction of the warp may be in the direction opposite to that shown in the figure depending on the thickness of the resin molding W, the temperature distribution of the mold, etc. Sometimes it happens.
Hereinafter, the manufacturing apparatus will be described in detail.
A lower attachment plate 9 is attached to the lower jig attachment body 8, a lower correction / restraint member 1 is attached to the lower attachment plate 9, and a positioning block 10 is attached to the lower correction / restraint member 1. The resin molded body W is attached to the positioning block 10. Further, an upper mounting plate 12 is mounted on the upper jig mounting body 11 constituting the heating means 4, and a holding block 13 is mounted on the upper mounting plate 12.Above as a reference exampleThe side correction / restraint member 1 is held. The lower jig attachment body 8 can be moved up and down by an elevating means (not shown), and the upper and lower correction / restraint members 1 and 1 correct and restrain the resin molded body W.
[0019]
The upper correction / restraint member 1 is formed of an energy ray transmitting material, and passes through the upper correction / restraint member 1 to transmit the energy rays from the energy beam irradiation device 14 constituting the heating unit 4. Is irradiated and heated. The lower correction / restraint member 1 may be an energy ray transmitting material or a non-transmitting material.
[0020]
The holding block 13 is provided with a cooling pipe 15 in an annular cooling groove 46 to prevent the upper correction / restraining member 1 from being heated by heat transfer from the resin molded body W. The lower correction / restraint member 1 is provided with a temperature sensor 16 to detect the temperature of the resin molded body W.
Thus, since the upper correction / restraint member 1 transmits energy rays, there is no temperature rise due to irradiation, and the temperature rises only by heat conduction from the surface of the resin molded body W that has been heated by irradiation, Therefore, since the adhesion surface to the resin molded body W of the energy ray transmitting portion of the correction / restraint member 1 is lower than the resin molded body W whose temperature has increased due to absorption of energy rays,
-Due to the cooling action of the correction / restraint member 1, heat does not concentrate on the surface of the resin molded body W during heating. Therefore, discoloration / decomposition of the resin composition on the surface can be reduced.
After the heating, the correction / restraint member 1 itself does not increase in temperature due to the irradiation of energy rays. Therefore, the correction / restraint member 1 takes away the amount of heat of the resin molded body W, so that the cooling efficiency is high, and the predetermined temperature below the heat deformation temperature is high. The temperature can be lowered.
Thus, the quality of the resin molded body W can be easily improved by correcting the resin molded body W by correcting and restraining it with the restraining members 1 and 1 while irradiating energy rays to correct the warpage of the resin molded body W, correction of deformation, and relaxation of internal stress. Increase productivity.
[0021]
In this case, as shown in FIG. 3, the correction / restraining step (a) shown in FIG. 4 irradiates the resin molded body W with energy rays and the resin molded body W is equal to or lower than the thermal deformation temperature and is in the vicinity of the thermal deformation temperature. This is performed after the predetermined temperature is reached.
Specifically, when the temperature near the deformation generating portion reaches a predetermined temperature near the heat deformation temperature of the resin composition of the resin molded body W by measuring the temperature with the temperature sensor 16, the lower jig attachment body 8. The lower jig 17 provided with the upper jig 18 is lifted by a lifting / lowering means (not shown), and the upper jig 18 provided with the upper jig attachment body 11 is made of an energy ray transmitting material and the lower correction / restraint member 1 is made of resin. The molded body W is brought into intimate contact, corrected, and restrained.
As described above, since the correction / restraining members 1 and 1 made of the energy ray transmissive material are brought into close contact with each other up to a predetermined temperature in the vicinity of the heat deformation temperature, they are not corrected and restrained. The heat of the surface of the material does not diffuse and the temperature can be quickly raised. After a predetermined temperature in the vicinity of the heat deformation temperature is exceeded, the correction / restraint member 1 made of an energy ray-permeable material is brought into close contact to correct / restrain. By carrying out the process, heat can be concentrated on the surface of the resin molded body W, so that decomposition and discoloration of the resin composition can be avoided.
[0022]
Here, regarding the types of energy rays and energy ray transmitting materials, for example, when the resin composition is polymethyl methacrylate (PMMA), the energy rays are infrared rays (CO2 laser), and the energy ray transmitting materials are selenium. Zinc halide is desirable.
[0023]
By the way, by adhering to the resin molded body W, the upper correction / restraining member 1 rises in temperature due to conduction of heat from the resin molded body W, but the holding block 13 passes through the cooling pipe 15 and the cooling groove 46. Since the cooling medium is constantly circulated, the temperature rise during heating is small, the quality is good, the warp is made in a short time, the deformation can be corrected, and the internal stress can be relaxed.
Here, the deflection temperature under load is generally used as the heat distortion temperature. The predetermined temperature in the vicinity of the heat deformation temperature is preferably 10 to 30 ° C. lower than the heat deformation temperature, and the correction / binding force is preferably 1 to 100 kPa, particularly preferably 5 to 20 kPa. Driving (lifting / lowering) heating means (not shown) may be hydraulic, pneumatic, motor, manual press or the like. In this embodiment, the lower side is driven, but only the upper side or both may be driven.
FIG. 5 shows a cooling process, and the temperature in the vicinity of the deformation generating portion has reached a predetermined temperature not lower than the melting point and not higher than the melting point of the resin composition constituting the resin molded body W by measuring the temperature of the temperature sensor 16. At the time, the irradiation heating is finished while maintaining the correction and restraint state, and the process proceeds to the cooling step.
Since the upper correction / restraint member 1 made of the energy ray transmitting material transmits the energy rays, the temperature rise at the time of irradiation rises only by heat conduction from the surface of the molded product. Accordingly, the temperature is lower than the temperature rise due to the absorption of energy rays of the resin molded body W, and since the amount of heat of the resin molded body W is taken away, the cooling efficiency is good and the temperature is quickly lowered to a predetermined temperature below the heat deformation temperature.
FIG. 6 shows the correction / restraint release process, and when the temperature of the temperature sensor 16 is measured, the temperature of the correction / restraint part is lowered to a predetermined temperature near the heat deformation temperature of the resin composition constituting the resin molded body W. Then, the correction / restraint by the correction / restraint members 1, 1 is released, and the resin molded body W is taken out.
[0024]
FIG. 7 shows another embodiment. However, the basic configuration of this embodiment is the same as that of the above embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, in the energy ray irradiation heating step, the temperature sensor 16 detects the temperature in the vicinity of the energy irradiation portion of the resin molded body W, and after the detected value is amplified by the amplifier 19, the comparator 20 Compared with a preset temperature rise profile. An example of the temperature profile is shown in FIG. Here, a signal is sent from the comparison computing unit 20 to the energy beam irradiation intensity adjuster 21 so as to follow a preset temperature rise profile, and the energy beam irradiation intensity is controlled.
In this way, an accurate temperature rise profile is obtained each time, and a homogeneous resin molded body W having the same thermal history can be obtained.
[0025]
FIG. 8 shows still another embodiment. However, the basic configuration of this embodiment is the same as that of the above-described embodiment, and the same reference numerals are given to the common portions, and the description thereof is omitted.
[0026]
In the present embodiment, when the energy beam is radiated and heated, the correction force when the deformation is corrected by the correction / restraint member 1 is applied by a load measuring device (not shown) such as a load cell attached to the driving (elevating) heating means. After detecting and amplifying the measured correction force F by the amplifier 19, the comparison arithmetic unit 20 compares the measured correction force F with a preset load value, and when the measured correction force F becomes a preset load value. The irradiation heating ends. In this case, the preset load value is a value in consideration of a decrease due to warpage or deformation correction due to energy beam irradiation heating and a decrease in elastic modulus due to a temperature increase of the resin composition constituting the resin molded body W.
By this, the timing at which the resin molded body W reaches a predetermined temperature not lower than the heat distortion temperature and not higher than the melting point is detected by detecting the correction force as a substitute characteristic thereof, and heating by irradiation until this becomes a preset value. It is possible to reliably warp and correct deformation.
[0027]
FIG. 9 shows still another embodiment. However, the basic configuration of this embodiment is the same as that of the above embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
[0028]
  In the present embodiment, the distance between the upper and lower jigs 18 and 17 is measured when a certain correction force is applied to the resin molded body W by the correction / restraining members 1 and 1 during the energy beam irradiation heating. The detected measurement interval L is amplified by the amplifier 19 and then compared with a preset value in the comparator 20. The value set in advance is warped, and the deformation amount is due to the temperature rise of the resin composition constituting the resin molded body W at the interval between the upper and lower jigs 18 and 17 in the allowable range of the resin molded body W. This is a value considering the decrease in elastic modulus. Therefore, the difference between the preset value and the measured value is the amount of deformation to be corrected. The irradiation heating is finished when the measurement interval L between the upper and lower jigs 18 and 17 reaches a preset value. 10 and 11 show flowcharts.
In this way, by directly detecting the deformation amount of the resin molded body W and performing irradiation heating until the detected value reaches a preset value, it is possible to easily and reliably warp and correct the deformation.
FIG. 12 shows still another embodiment. However, the basic configuration of this embodiment is the same as that of the above embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, the warp of the resin molded body W, the deformed portion or the internal stress residual portion of the resin molded body W is a portion generated by press-fitting the insert member 3 into the resin molded product, It takes deformation and residual stress.
Generally, the elastic deformation force of the resin molded body W generated by press-fitting the insert member 3 becomes a force for holding the insert member 3, and if the portion into which the insert member 3 is press-fitted is heated too much, the elastic deformation portion becomes plastic. It will deform | transform and the force holding the insert member 3 will fall extremely. Thus, in the present embodiment, the portion into which the insert member 3 is press-fitted is heated uniformly and accurately by the energy beam, and the portion into which the insert member 3 is press-fitted is not plastically deformed, warped, deformed. Or internal stress can be removed. Moreover, in this Embodiment, although the thing of the shape where the insert member 3 was press-fitted between the ribs 22 formed in parallel with the resin molding W formed in flat form is shown, it is limited to such a shape. It is not something. For example, it may have a shape in which a sheet metal metal terminal is press-fitted into a hole such as a square shape of the resin molded body W, such as a thin connector used in a small electric appliance such as a mobile phone. The flat shape of the resin molded body W may be any shape such as a rectangle or a circle.
FIG. 13 shows the basic operation of a manufacturing apparatus that implements the above manufacturing method. However, the basic configuration is the same as that of the above-described embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
A holding block 13a is attached to the lower jig 17, and a cooling circuit for circulating a cooling medium from the outside by piping the cooling pipe 15 to the cooling groove 46 is formed in the holding block 13a. The positioning block 10 is provided in the holding block 13a, and the insert member 3 is press-fitted to position and hold the resin molded body W that is deformed.
A lifting guide hole 23 is formed in the upper mounting plate 12 attached to the upper jig 18, the shaft 26 is fixed to the upper correction / restraining member 1, and the shaft 26 is freely moved up and down within the range of the lifting guide hole 23. The straightening / restraining member 1 is attached to be movable up and down. A holding member 6 for holding the insert member 3 is attached to the upper mounting plate 12. A hole 30 is formed in the holding member 6 and the shaft 26 is loosely inserted. A shallow large-diameter hole 25 is formed continuously in the hole 30 of the holding member 6, a part of the large-diameter hole 25 is inserted into the large-diameter hole 25, and a spring 27 inserted through the shaft 26 is connected between the holding member 6 and the correction / restraint member 1. In between. A convex portion 28 is formed on the holding member 6, and a concave portion 29 is formed on the insert member 3. A through hole 31 is formed in the correction / restraint member 1 so that the insert member 3 can be inserted therethrough.
As shown in FIGS. 13 to 15, the resin molded body W into which the insert member 3 is press-fitted is positioned and held on the positioning block 10 of the holding block 13a, and the upper jig 18 is moved up and down by the elevating means. The member 3 is passed through the through hole 31 of the upper correction / restraint member 1, and the resin molded body W is sandwiched between the upper correction / restraint member 1 and the lower correction / restraint member 1 for correction / restraint. Due to the constraint, the pitch of the insert member 3 falls within the dimensional tolerance of the product. In this case, the spring 27 acts toPartThere is a gap between 28 and the recess 29, and the insert member 3 is not held (see FIG. 14). Thereafter, as the upper jig 18 is further lowered, the concave portion 29 of the insert member 3 is fitted and held on the convex portion 28 of the holding member 6 (see FIG. 15).
In this way, the upper correction / restraint member 1 and the holding member 6 are elastically connected by the spring 27 as the elastic body 33, and the resin molded body W is corrected to the correction / restraint members 1, 1. After the pin is clamped and corrected and restrained, the insert member 3 can be elastically held by the holding member 6 by the elastic action of the elastic body 33, and the insert member 3 can be held with a simple configuration. . In this case, the lower correction / restraint member 1 is formed of an energy ray transmitting material., Above as a reference exampleThe material of the correction / restraint member 1 on the side may be either energy ray transmissive or non-transmissive.
As shown in FIG. 15, after the holding of the insert member 3 is completed, the laser irradiated by the laser irradiation device which is the energy beam irradiation device 14 installed on the lower side is scanned by a scanning mirror 32 equipped with a drive motor (not shown). It scans and passes through the lower correction / restraint member 1 made of the energy ray transmitting material, and starts to irradiate the warp, deformed portion or residual stress portion caused by the press-fitting of the insert member 3 into the resin molded body W. . In this case, the operation and effect of the lower correction / restraining member 1 made of the energy ray transmitting material are the same as those in the basic embodiment (FIGS. 1 to 6) described in detail.
Here, regarding the types of energy rays and energy ray transmitting materials, for example, when the resin composition is PMMA, CO2 laser is desirable as the energy rays and zinc selenide is desirable as the energy ray transmitting material. Specifically, the energy ray transmitting material is selected from materials that transmit the wavelength band of the irradiated energy rays, and examples thereof include zinc selenide, zinc sulfide, sapphire, quartz glass, borosilicate crown glass, and borosilicate glass. In addition, as the energy beam irradiation device 14, a device having a wavelength band that can be absorbed by a substance constituting the resin molded body W that is an irradiation target of the energy beam to be irradiated is appropriately selected. There are ultraviolet rays (excimer laser, etc.), infrared rays (CO2 laser, YAG laser, halogen lamp, etc.), microwaves, visible light, X-ray electron beams, γ rays, and the like.
FIG. 16 shows the cooling step, the temperature in the vicinity of the laser irradiation part is measured by a temperature sensor (not shown), and the measured temperature is not less than the heat deformation temperature of the resin composition constituting the resin molded body W and not more than the melting point. When the predetermined temperature is reached, the irradiation heating is finished while the correction / restraint and the holding state of the insert member 3 are maintained. In this case, the temperature rise in the residual stress portion may be measured by a temperature sensor or an analytical value by thermal calculation as in the basic embodiment described in detail. The heat deflection temperature is generally the deflection temperature under load, as in the basic embodiment described in detail.
FIG. 17 shows a process of correcting / restraining the resin molded body W and releasing the holding of the insert member 3. The temperature of the correcting / restraining part is a predetermined value near the heat deformation temperature of the resin composition constituting the resin molded body W. When the temperature is lowered, the correction / restraint of the lower correction / restraint member 1 is released and the holding of the insert member 3 is released, and the resin molded body W is taken out.
As described above, when the warp, the deformed portion, or the internal stress residual portion is heated uniformly and accurately by energy beam irradiation, the warp, deformation, or internal stress can be removed without plastic deformation of the holding portion of the insert member 3. Further, by using a laser for the energy beam, even if a plurality of insert members 3 are arranged at a narrow pitch on the resin molded body W, only a necessary portion of the resin molded body W can be selectively heated. Warpage, deformation, or residual stress can be removed without plastic deformation of the holding portion.
Furthermore, since the correction / restraint member 1 and the holding member 6 for holding the insert member 3 are connected by a spring 27 as an elastic body 33, the resin molded body by the correction / restraint members 1, 1 is used. The insert member 3 can be held after the warp correction / restraint of W, and the position of the insert member 3 can be accurately maintained even when the resin molded body W is heated to a temperature higher than the heat deformation temperature.
18 to 21Is the actuality of the correction / restraint member of the present invention.However, the basic configuration is the same as that of the above embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
FIG. 18 shows the configuration of the manufacturing apparatus, in which the lower correction / restraint member 1 is installed on the base 34 so as to be movable in two directions, the front and back directions and the left and right directions. The material of the lower correction / restraint member 1 may be either an ergie wire transmission or non-transmission. A main column 35 is fixed on the base 34, and an energy beam irradiation device 14 and a sub column 36 are attached to the main column 35. An arm-shaped roller bearing member 37 is attached to a support member 38 attached to the sub column 36 so as to be movable up and down.
A roller-shaped correction / restraint member 1 made of an energy ray transmitting material is rotatably attached as a rotating body 2 to the rotary shaft 5 at the tip of the roller bearing member 37. The rotation shaft 5 is adjustable by a spring 40 so that the correction / restraint force can be adjusted. The energy beam irradiation device 14 is disposed at a position where the irradiated energy beam can pass through the roller-shaped correction / restraint member 1 (rotary body 2) made of an energy beam transmitting material.
FIG. 19 shows the operation from the correction / restraint state to the irradiation heating process. After positioning the resin molded body W on the lower correction / restraint member 1 by the positioning block 10, the roller-shaped correction / restraint member in the sub-column 36. The position of 1 is adjusted so that it is in close contact with the resin molded body W, and is corrected and restrained. After correction / restraint is completed, irradiation heating is started by the energy beam irradiation device 14. When the irradiation part temperature reaches a predetermined temperature not lower than the melting point and not higher than the melting point of the resin composition constituting the resin molded body W, the irradiation heating is terminated.
FIG. 20 shows a process of moving the lower correction / restraining member 1 from the cooling process, and after the irradiation heating, the temperature of the irradiated portion becomes a predetermined temperature near the heat deformation temperature of the resin composition constituting the resin molded body W. At the same time as the temperature is lowered, the lower correction / restraint member 1 moves on the base 34 by a predetermined amount. The roller-shaped correction / restraint member 1 rotates with the movement of the lower correction / restraint member 1 by the correction / restraint force. Thereafter, similarly, the irradiation heating → cooling → the lower correction / restraining member 1 is repeatedly moved, and the entire region of the warp and deformed portion is irradiated to complete the heating and cooling. In this case, since the roller-shaped correction / restraint member 1 rotates and moves, the resin molded body W always comes into close contact with the surface of the new correction / restraint member 1, and the temperature of the correction / restraint member 1 does not increase so much for a short time. Efficient processing.
The types of energy rays and energy ray transmitting materials are the same as those in the basic embodiment described in detail, and the temperature rise in the residual stress portion can be measured by a temperature sensor as in the basic embodiment. An analysis value by thermal calculation may be used. The heat distortion temperature is generally a deflection temperature under load as in the basic embodiment.
FIG. 21 shows the correction / restraint release process. After heating and cooling is completed by irradiating the entire region of the warp and deformed portion, the position of the roller-shaped correction / restraint member 1 is adjusted (raised) to form a resin molded body. W correction and restriction are released.
FIG. 22 is still anotherReference examplesHowever, the basic configuration is the same as that of the above-described embodiment, and common portions are denoted by the same reference numerals and description thereof is omitted.
Of this reference exampleThe manufacturing apparatus conveys the correction / restraint jig 41 including the upper and lower correction / restraint members 1 and 1 that correct and restrain the plurality of resin molded bodies W, the energy beam irradiation device 14 such as a ceramic heater, and the correction / restraint jig 41. It comprises a conveyor 42 as a conveying device 7 and a furnace chamber 43 for storing them.
The correction / restraint jig 41 includes a pair of holding blocks 44, 44 and a holding block 44 that sandwich the upper correction / restraint member 1 and the upper correction / restraint member 1. It is comprised from the spring 45 for a pressurization for correcting and restraining the resin molding W through this. The correction / restraint jig 41 can be attached with a plurality of resin molded bodies W. The energy beam irradiation device 14 is arranged at a position where energy beam irradiation is possible during conveyance by the conveyor 42. The length of the conveyor 42 is approximately 2 to 5 m. By producing a large number of the correction / restraint jigs 41 according to the length of the conveyor 42, continuous mass processing is possible, and a manufacturing apparatus with excellent productivity can be provided.
[0029]
【The invention's effect】
  In the invention of claim 1, the energy beam is transmitted to at least one of a portion of the resin molded body that is warped, deformed, or a portion where warpage deformation is expected to occur in a use environment due to residual internal stress. A correction / restraint process in which a correction / restraint member having an energy ray transmission portion made of a functional material is closely adhered and corrected and restrained;
  Heating process to irradiate energy beam through the energy beam transmission part to the part of the resin molded product that is in close contact with the straightening / restraining member, heating it to a predetermined temperature not lower than the heat distortion temperature and not higher than the melting point, and resin molding after irradiation heating is completed. Correction / Restriction Release Process for Correcting / Release Restraint of Body and Correcting / Restraining at Temperatures Below the Heat Deformation TemperatureThe correction / restraint member is provided with a roller-shaped or spherical rotating body formed of an energy transmission material, and the energy beam is passed through the rotating body while moving the rotating body in close contact with the resin molded body. Irradiate the irradiation areaTherefore, since the energy ray transmission part of the straightening / restraint member transmits the energy ray, there is no temperature rise due to the irradiation, and the temperature rises only by the heat conduction from the surface of the resin molded body whose temperature has been raised by the irradiation. Since the adhesion surface of the energy ray transmitting part to the resin molded body is lower than that of the resin molded body whose temperature has increased due to absorption of energy rays,
Due to the cooling action of the correction / restraint member, heat does not concentrate on the surface of the resin molded body during heating. Therefore, discoloration / decomposition of the resin composition on the surface can be reduced.
After the heating is completed, the temperature of the straightening / restraint member itself does not increase due to energy beam irradiation, so the straightening / restraint member takes away the heat of the resin molded product, so cooling efficiency is good and the temperature is quickly lowered to a predetermined temperature below the heat distortion temperature. Can be made.
Therefore, while correcting and restraining the resin molded body with a restraining member, the energy beam is irradiated to correct the resin molded body's warpage, deformation, and internal stress, while easily improving quality and productivity. There is an advantage that can be increased.
Furthermore, in claim 1, since the surface of the straightening / restraining member made of the energy ray transmitting material in close contact with the resin molded body is in a roller shape or a spherical shape and can be rotated, the resin molded body is always new straightening / restraining. It will be in close contact with the surface of the member, and the temperature of the straightening / restraining member will be small and efficient processing will be possible in a short time.
[0030]
In the invention of claim 2, in addition to the effect of claim 1, in the correction / restraint step, the resin molded body is irradiated with energy rays, and the resin molded body is at or below the heat deformation temperature, and near the heat deformation temperature. Since the correction / restraint member made of an energy ray permeable material is in close contact with the heat / deformation temperature until the predetermined temperature near the heat distortion temperature is not corrected / restrained, By not spreading the heat, the temperature can be increased quickly, and after exceeding a predetermined temperature near the heat distortion temperature, the correction / restraint member made of energy ray permeable material is brought into close contact to correct / restrict. There is an advantage that heat concentrates on the surface of the resin molded body and decomposition and discoloration of the resin composition can be avoided.
[0031]
In the invention of claim 3, in addition to the effect of claim 1 or 2, the heating step detects the correction force when the deformation by the correction / restraint member is corrected, and the detected correction force is set to a preset value. Since the energy beam irradiation heating is performed until the resin molded body reaches a predetermined temperature not lower than the thermal deformation temperature and not higher than the melting point, the correction force is detected as a substitute characteristic, and the detected correction force becomes a preset value. By irradiating and heating, there is an advantage that warping and deformation can be reliably corrected.
[0032]
In the invention of claim 4, in addition to the effect of claim 1, 2 or 3, the heating step determines the amount of deformation of the resin molded body when a certain correction force is applied to the resin molded body by the correction / restraint member. Detecting and performing energy beam irradiation heating until the detected deformation amount reaches a preset value, so by directly detecting the deformation amount of the resin molded body, by irradiation heating until the detection value reaches a preset value, There is an advantage that warp and deformation can be corrected easily and reliably.
[0034]
  ClaimItem 5In the invention, in addition to the effect of claim 1, since the warp of the resin molded body, the deformed portion or the internal stress residual portion of the resin molded body is a portion generated by press-fitting the insert member into the resin molded product, In general, the elastic deformation force of the resin molded body generated by press-fitting the insert member becomes a force for holding the insert member. If the portion into which the insert member is press-fitted is heated too much, the elastic deformation portion is plastically deformed. The force for holding the insert member is extremely reduced. But billingItem 5In the invention, the part into which the insert member is press-fitted is heated uniformly and accurately by the energy beam, and the part into which the insert member is press-fitted is not plastically deformed, and the advantage that warpage, deformation or internal stress can be removed. There is.
[0035]
  ClaimItem 6In the invention, a resin molded body manufacturing apparatus for heating a resin molded body in a state where the resin molded body is corrected / restrained by a plurality of correction / restraining members to relieve residual stress and correct warpage and deformation of the resin molded body. A plurality of at least one made of an energy ray permeable material that is in close contact with a portion of the resin molded body that is warped, deformed, or that is warped and deformed under the usage environment due to residual internal stress, and that is corrected / restrained. Straightening / restraining member, and heating means to irradiate the energy beam with the straightening / restraining member in close contact with the resin moldingThe correction / restraint member is provided with a roller-shaped or spherical rotating body formed of an energy transmission material, and provided with a rotating shaft that is driven to rotate while the rotating body is in close contact with the moving resin molded body.Therefore, the same effect as that of the first aspect can be obtained.
[0037]
  ClaimItem 7In the invention, claimsItem 6In addition to the effect, the correction / restraint member and the holding member for holding the insert member inserted in the resin molded body are connected by an elastic body. After the restraint, the insert member can be held by the holding member by the elastic action of the elastic body, and there is an advantage that the insert member can be held with a simple configuration.
[0038]
ClaimItem 8In the invention, claimsItem 6In addition to the effect, it is equipped with a conveying device that conveys the straightening / restraining member that constrains the resin molded body and a heating means that irradiates the resin molded body being conveyed with energy rays. The straightening / restraining member can be transported by the transporting device, enabling continuous processing and increasing the productivity.
[Brief description of the drawings]
FIG. 1 shows the present invention.Tree with correction / restraint memberThe manufacturing apparatus of a fat molding is shown, (a) is a schematic sectional drawing, (b) is CC sectional view taken on the line of (a).
FIGS. 2A and 2B show a resin molded body before correction and restraint by the method and apparatus described above, wherein FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a cross-sectional view showing the same heating step.
FIG. 4 is a cross-sectional view showing the correction / restraint process.
FIG. 5 is a cross-sectional view showing the same cooling process.
FIG. 6 is a cross-sectional view showing the correction / restraint releasing step.
FIG. 7A is an explanatory diagram of a manufacturing apparatus according to another embodiment of the above, and FIG. 7B is an explanatory diagram showing a temperature profile.
FIG. 8 is an explanatory view of a manufacturing apparatus according to still another embodiment of the same.
FIG. 9 is an explanatory view of a manufacturing apparatus according to still another embodiment.
FIG. 10 is a flowchart of the above.
FIG. 11 is a flowchart of the above.
FIG. 12 shows still another embodiment of the above, and (a), (b) and (c) are explanatory views showing the press-fitting action of the insert member.
FIG. 13 is a cross-sectional view of a manufacturing apparatus according to still another embodiment.
FIG. 14 is a cross-sectional view showing a correction / restraint process of a manufacturing apparatus according to still another embodiment of the same.
FIG. 15 is a cross-sectional view showing the start of heating while holding the insert member same as above.
FIG. 16 is a cross-sectional view showing the same cooling step.
FIG. 17 is a cross-sectional view showing the correction / restraint step and the insert member release step.
FIG. 18The fruit provided with the correction / restraint member of the present inventionEmbodiment is shown, (a) is a side view of a manufacturing apparatus, (b) is the BB sectional drawing of (a).
FIG. 19 is an explanatory view of the correction / restraint step and heating start of the above.
FIG. 20 is an explanatory view showing the movement of the lower correction / restraint member of the above.
FIG. 21 is an explanatory view showing the movement of the lower correction / restraint member and the release of the upper correction / restraint.
FIG. 22 is the same as above.It is explanatory drawing provided with the correction | amendment / restraint member of the reference example of (a)Is a schematic side view of the production apparatus, and (b) is a cross-sectional view of the obtained resin molding.
[Explanation of symbols]
1 Correction / restraint material
2 Rotating body
3 Insert members
4 Heating means
5 Rotating shaft
6 Holding member
7 Transport device

Claims (8)

樹脂成形体を矯正・拘束部材によって矯正・拘束した状態で樹脂成形体を加熱して残留応力を緩和し樹脂成形体のそり、変形を矯正する樹脂成形体の製造方法であって、
樹脂成形体のそり、変形が生じている部分、若しくは残留する内部応力により使用環境下でそり変形が発生することが予想される部分の少なくともいずれかにエネルギー線透過性材料からなるエネルギー線透過部を備えた矯正・拘束部材を密着させて矯正、拘束する矯正・拘束工程と、
矯正・拘束部材を密着させている樹脂成形体の部位にエネルギー線透過部を通してエネルギー線を照射し、熱変形温度以上、融点以下の所定温度に加熱する加熱工程と、
照射加熱終了後、樹脂成形体が熱変形温度以下の温度において矯正・拘束部材の矯正・拘束を解除する矯正・拘束解除工程と
を備え、
矯正・拘束部材はエネルギー透過材にて形成したローラ状もしくは球状の回転体を備え、回転体を樹脂成形体に密着した状態で移動させながら、回転体を経てエネルギー線を樹脂成形体の照射領域に照射することを特徴とする樹脂成形体の製造方法。
A method for producing a resin molded body that heats the resin molded body in a state where the resin molded body is corrected / restrained by a restraining member and relaxes the residual stress by heating the resin molded body and correcting the deformation,
An energy ray transmissive part made of an energy ray permeable material in at least one of a warped part, a deformed part of the resin molded body, or a part that is expected to be warped and deformed in a use environment due to residual internal stress. Correction / restraint process for correcting and restraining by adhering the correction / restraint member with
A heating step of irradiating an energy ray through the energy ray transmitting portion to the portion of the resin molded body in which the correction / restraining member is in close contact, and heating to a predetermined temperature not lower than the heat distortion temperature and not higher than the melting point;
After completion of irradiation heating, e Bei resin molded body and a step releasing straightening-restraint for canceling the correction-restraining straightening-restraining member in the thermal deformation temperature below the temperature,
The straightening / restraint member is provided with a roller-shaped or spherical rotating body formed of an energy transmission material, and the energy beam is irradiated through the rotating body while moving the rotating body in close contact with the resin molded body. A method for producing a resin molded body, characterized by irradiating the resin.
矯正・拘束工程は、樹脂成形体にエネルギー線を照射して、樹脂成形体が熱変形温度以下であって、熱変形温度近傍の所定温度になった後におこなうことを特徴とする請求項1記載の樹脂成形体の製造方法。  2. The correction / restraining step is performed after the resin molded body is irradiated with energy rays and the resin molded body has a temperature equal to or lower than a heat deformation temperature and reaches a predetermined temperature near the heat deformation temperature. A method for producing a resin molded article. 加熱工程は、矯正・拘束部材による変形を矯正した時の矯正力を検出し、検出した矯正力が予め設定した値になるまでエネルギー線照射加熱をおこなうことを特徴とする請求項1又は2記載の樹脂成形体の製造方法。  3. The heating step detects the correction force when the deformation by the correction / restraint member is corrected, and performs energy beam irradiation heating until the detected correction force reaches a preset value. A method for producing a resin molded article. 加熱工程は、矯正・拘束部材で樹脂成形体に一定の矯正力を付加した時の樹脂成形体の変形量を検出し、検出した変形量が予め設定した値になるまでエネルギー線照射加熱をおこなうことを特徴とする請求項1又は2又は3記載の樹脂成形体の製造方法。  In the heating process, the amount of deformation of the resin molding is detected when a certain straightening force is applied to the resin molding by the correction / restraint member, and energy beam irradiation heating is performed until the detected amount of deformation reaches a preset value. The method for producing a resin molded body according to claim 1, 2, or 3. 樹脂成形体のそり、変形部または樹脂成形体の内部応力残留部はインサート部材が樹脂成形品に圧入されることによって生じた部位であることを特徴とする請求項1記載の樹脂成形体の製造方法。 2. The resin molded body according to claim 1, wherein the warp, the deformed portion or the internal stress remaining portion of the resin molded body is a portion generated by press-fitting the insert member into the resin molded product. Method. 樹脂成形体を複数の矯正・拘束部材によって矯正・拘束した状態で樹脂成形体を加熱して残留応力を緩和し樹脂成形体のそり、変形を矯正する樹脂成形体の製造装置であって、A resin molded body manufacturing apparatus that heats a resin molded body in a state where the resin molded body is corrected / restrained by a plurality of correction / restraint members to relieve residual stress and correct warpage of the resin molded body, deformation,
樹脂成形体のそり、変形が生じている部分、または残留する内部応力により使用環境下でそり変形が発生する部分に密着させ矯正・拘束する少なくともひとつがエネルギー線透過性材料からなる複数の矯正・拘束部材と、Multiple corrections made of an energy ray permeable material that are in close contact with the parts that are warped, deformed or deformed due to residual internal stress, or are in close contact with the part where the warp deformation occurs in the operating environment. A restraining member;
矯正・拘束部材を樹脂成形体に密着させてエネルギー線を照射する加熱手段とA heating means for irradiating an energy ray with the straightening / restraining member in close contact with the resin molded body
を備え、With
矯正・拘束部材は、エネルギー透過材にて形成したローラ状もしくは球状の回転体を備え、回転体を移動する樹脂成形体に密着させた状態で従動回転させる回転軸を設けて成ることを特徴とする樹脂成形体の製造装置。The straightening / restraining member comprises a roller-shaped or spherical rotating body formed of an energy transmission material, and is provided with a rotating shaft that is driven and rotated in close contact with a resin molded body that moves the rotating body. Manufacturing equipment for resin moldings.
矯正・拘束部材と、樹脂成形体にインサートされたインサート部材を保持するための保持部材とを弾性体にて連結して成ることを特徴とする請求項6記載の樹脂成形体の製造装置。 7. The apparatus for producing a resin molded body according to claim 6, wherein the straightening / constraining member and a holding member for holding the insert member inserted into the resin molded body are connected by an elastic body . 樹脂成形体を拘束した矯正・拘束部材を搬送する搬送装置と、搬送中の樹脂成形体にエネルギー線を照射する加熱手段を備えて成ることを特徴とする請求項6記載の樹脂成形体の製造装置。7. The resin molded body according to claim 6, further comprising: a transport device that transports the correction / restraining member that restrains the resin molded body; and a heating unit that irradiates the resin molded body being transported with energy rays. apparatus.
JP2002120006A 2002-04-23 2002-04-23 Manufacturing method of resin molded body and manufacturing apparatus thereof Expired - Fee Related JP3988516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002120006A JP3988516B2 (en) 2002-04-23 2002-04-23 Manufacturing method of resin molded body and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002120006A JP3988516B2 (en) 2002-04-23 2002-04-23 Manufacturing method of resin molded body and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2003311822A JP2003311822A (en) 2003-11-06
JP3988516B2 true JP3988516B2 (en) 2007-10-10

Family

ID=29536354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002120006A Expired - Fee Related JP3988516B2 (en) 2002-04-23 2002-04-23 Manufacturing method of resin molded body and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP3988516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543199B2 (en) * 2004-07-21 2010-09-15 精電舎電子工業株式会社 Plastic molded product strain relief device
US7846375B2 (en) * 2005-09-16 2010-12-07 Tyco Healthcare Group Lp Methods for relaxing stress in polymeric materials
JP6694360B2 (en) * 2016-09-29 2020-05-13 アイチエレック株式会社 Stator manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107746B2 (en) * 1985-12-10 1995-11-15 日立マクセル株式会社 Optical information recording medium and manufacturing method thereof
JP3540476B2 (en) * 1995-12-13 2004-07-07 積水化学工業株式会社 Mold distortion removal method
JP2000008825A (en) * 1998-06-22 2000-01-11 Isuzu Motors Ltd Molding body to integrate insert member for against rotational torque
JP2001334578A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Method for welding resin by laser
JP2001351951A (en) * 2000-06-08 2001-12-21 Sumitomo 3M Ltd Apparatus and method for correcting warp of semiconductor carrier tape

Also Published As

Publication number Publication date
JP2003311822A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
KR100274753B1 (en) Heat treatment device
JP2961123B2 (en) Rapid heat treatment of semiconductor disks by electromagnetic radiation.
US4755654A (en) Semiconductor wafer heating chamber
US4493977A (en) Method for heating semiconductor wafers by a light-radiant heating furnace
JP2007535174A (en) Bonding apparatus and method using optical irradiation
JP3988516B2 (en) Manufacturing method of resin molded body and manufacturing apparatus thereof
EP1557868B1 (en) Light irradiation heat treatment method and light irradiation heat treatment apparatus
JPH09237789A (en) Shielding body as well as apparatus and method for heat treatment
US4543472A (en) Plane light source unit and radiant heating furnace including same
CN109641399A (en) Method and apparatus for the welding of laser beam plastics
JP5994676B2 (en) Glass molded body manufacturing apparatus and glass molded body manufacturing method
JPH1179765A (en) Production of glass container and apparatus for production
JPH10199904A (en) Hardening lead frame in carrier by optical heat source
JPH0234164B2 (en)
CN108141916B (en) Heating device and method for manufacturing plate-like member
JPS60137027A (en) Optical irradiation heating method
JP2002273764A (en) Method and apparatus for removing molecular orientation of resin molded product
KR100553256B1 (en) Device for Heat Treatment of Semicondu ctor Wafer with Localized Focusing
JP3632102B2 (en) High temperature pressurizer
JPH05114570A (en) Photoirradiation heating system
JPS60239400A (en) Process for annealing compound semiconductor
JP2005131798A (en) Manufacturing method for resin molded product
KR102535886B1 (en) laser annealing system using lamps
TW201741258A (en) Heating device
CN211265419U (en) Edge ring of wafer heat treatment equipment and wafer heat treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees