JPH05114570A - Photoirradiation heating system - Google Patents

Photoirradiation heating system

Info

Publication number
JPH05114570A
JPH05114570A JP28403491A JP28403491A JPH05114570A JP H05114570 A JPH05114570 A JP H05114570A JP 28403491 A JP28403491 A JP 28403491A JP 28403491 A JP28403491 A JP 28403491A JP H05114570 A JPH05114570 A JP H05114570A
Authority
JP
Japan
Prior art keywords
wafer
temperature
semiconductor wafer
photoirradiation
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28403491A
Other languages
Japanese (ja)
Inventor
Hideo Nishihara
英夫 西原
Yoshimitsu Fukutomi
義光 福▲富▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP28403491A priority Critical patent/JPH05114570A/en
Publication of JPH05114570A publication Critical patent/JPH05114570A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title photoirradiation heating system eliminating the pre-heating step of semiconductor wafer, further averting the uneven heating effect. CONSTITUTION:The title photoirradiation heating system is arranged with multiple CW arc lamps 7 on the parallel plane with a wafer W as well as the variable resistors 15 respectively fluctuating the ratios of power fed to respective CW arc lamps 7. In such a constitution, the resistance value of the variable resistors 15 is set up corresponding to the irradiation efficiency of the CW arc lamps 7 top perform the photoirradiation heating process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハ(以下、
単にウエハという)を短時間で高温まで加熱したのち徐
冷したり、長時間高温で熱処理することによりその物質
の構造や物性を安定化させる等のため、特に、ウエハを
光照射加熱する装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor wafer (hereinafter,
In particular, the present invention relates to a device for heating and irradiating a wafer with light in order to stabilize the structure and physical properties of the substance by heating the wafer to a high temperature in a short time and then slowly cooling it, or by heat-treating it at a high temperature for a long time. ..

【0002】[0002]

【従来の技術】半導体製造工程における光照射加熱処理
は、イオン注入の後処理としてイオン注入層の活性化
や、メタルシリサイド形成,熱酸化膜の形成など、広い
範囲にわたって行われている。いずれもウエハを高温で
加熱するが、処理の迅速化のため、加熱手段としてハロ
ゲンランプや高輝度のキセノンランプを用いた光照射加
熱装置が注目されている。
2. Description of the Related Art Light irradiation heat treatment in a semiconductor manufacturing process is performed over a wide range such as activation of an ion implantation layer, formation of a metal silicide, formation of a thermal oxide film as a post-treatment of ion implantation. In both cases, the wafer is heated at a high temperature, but a light irradiation heating device using a halogen lamp or a high-intensity xenon lamp as a heating means has been attracting attention in order to speed up the process.

【0003】従来の光照射加熱装置として、2つの形態
をもつ装置を例に挙げる。(1) 処理炉内に搬入されたウ
エハの表面に対して平行で、かつ、近接した平面内に複
数本の閃光放電灯を配し、パルス光をウエハに照射して
加熱する装置と、(2) 処理炉内に搬入されたウエハの上
方に、1本のCWアークランプ(CW:continuous wav
e −連続発振)を配し、ウエハを所要時間光照射して加
熱する装置である。
As a conventional light irradiation heating device, a device having two forms will be taken as an example. (1) A device for arranging a plurality of flash discharge lamps in a plane that is parallel to and close to the surface of a wafer carried into a processing furnace and irradiates the wafer with pulsed light to heat the wafer. 2) One CW arc lamp (CW: continuous wav) above the wafer loaded into the processing furnace.
e-Continuous oscillation), and irradiates the wafer with light for a required time to heat it.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記例
に挙げた従来装置にはそれぞれ次のような欠点がある。 (1) に記載した装置ではパルス光を利用しているため、
1度の閃光でウエハを高温加熱することができず、摂氏
約400 度ぐらいの予備加熱を行うための機構を必要とし
ている。このため、装置の構成が複雑化したり、また、
予備加熱用のヒータを別途設置するなど装置がコスト高
となる。 (2) に記載した装置は連続光を用いるものであるから、
上記のような予備加熱を必要としないが、1本のCWア
ークランプでウエハの面を均一に加熱するのは困難で、
面内温度分布の不均一が生じやすい。
However, each of the conventional devices listed above has the following drawbacks. Since the device described in (1) uses pulsed light,
The wafer cannot be heated to a high temperature with a single flash, so a mechanism for preheating to about 400 degrees Celsius is required. Therefore, the configuration of the device becomes complicated, and
The cost of the device is increased by separately installing a heater for preheating. Since the device described in (2) uses continuous light,
Although it does not require the above preheating, it is difficult to uniformly heat the surface of the wafer with one CW arc lamp.
Non-uniformity of in-plane temperature distribution is likely to occur.

【0005】この発明は、このような事情に鑑みてなさ
れたものであって、上記の欠点を解消する光照射加熱装
置を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light irradiation and heating device which solves the above-mentioned drawbacks.

【0006】[0006]

【課題を解決するための手段】この発明は、このような
目的を達成するために、次のような構成をとる。すなわ
ち、この発明の光照射加熱装置は、被処理物である半導
体ウエハに対して平行な面内に配される複数本の連続放
電灯(CWアークランプ)と、前記半導体ウエハの温度
分布が均一になるように前記各連続放電灯への供給電力
の割合をそれぞれ任意に設定する電力設定手段と、前記
半導体ウエハの温度を検出する温度検出手段と、前記温
度検出手段からの検出信号に基づいて前記半導体ウエハ
の温度が目標温度となるように前記電力設定手段を制御
する制御手段と、を備えたことを特徴とする。
The present invention has the following constitution in order to achieve such an object. That is, the light irradiation heating apparatus of the present invention has a plurality of continuous discharge lamps (CW arc lamps) arranged in a plane parallel to the semiconductor wafer which is the object to be processed, and the temperature distribution of the semiconductor wafer is uniform. Based on the detection signal from the temperature setting means for detecting the temperature of the semiconductor wafer, the power setting means for arbitrarily setting the ratio of the power supplied to each of the continuous discharge lamps, Control means for controlling the power setting means so that the temperature of the semiconductor wafer becomes a target temperature.

【0007】[0007]

【作用】本発明の構成による光照射加熱処理は次のよう
にして行われる。まず、電力設定手段を用いて、半導体
ウエハの温度分布が均一になるように各連続放電灯への
供給電力の割合をそれぞれに設定しておく。次に、各連
続放電灯を一斉に点灯して半導体ウエハに連続光を照射
し加熱する。温度検出手段は加熱される半導体ウエハの
温度を検出して検出信号を制御手段に送出する。制御手
段は検出された半導体ウエハの温度が目標温度となるよ
うに、電力設定手段を制御して各連続放電灯への供給電
力を調整する。このとき、電力設定手段によって各連続
放電灯への供給電力の割合が夫々設定されているので、
半導体ウエハの温度分布は均一を保ちながら目標温度に
向かう。また、連続放電灯を使用しているので予備加熱
の必要もない。
The light irradiation heat treatment according to the constitution of the present invention is performed as follows. First, the power setting means is used to set the ratio of the power supplied to each continuous discharge lamp so that the temperature distribution of the semiconductor wafer becomes uniform. Next, the continuous discharge lamps are turned on all at once to irradiate the semiconductor wafer with continuous light for heating. The temperature detecting means detects the temperature of the semiconductor wafer to be heated and sends a detection signal to the control means. The control means controls the power setting means to adjust the power supplied to each continuous discharge lamp so that the detected temperature of the semiconductor wafer becomes the target temperature. At this time, since the ratio of the power supplied to each continuous discharge lamp is set by the power setting means,
The temperature distribution of the semiconductor wafer approaches the target temperature while maintaining a uniform temperature distribution. Further, since a continuous discharge lamp is used, there is no need for preheating.

【0008】[0008]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本実施例における光照射加熱装置の断面
図である。被処理物であるウエハWは、サセプタ1に支
持されて石英製の偏平な石英チャンバ2の内部に搬入さ
れる。サセプタ1は石英チャンバ2の入口に対して接離
移動自在の蓋体3に接合されており、ウエハWの搬入と
同時に石英チャンバ2の入口は蓋体3で封止されるよう
になっている。石英チャンバ2の入口と対向する壁部4
には、不活性ガス(例えば、チッ素ガス)や、酸素ガ
ス、その他所要のガスを石英チャンバ2の内部に導入す
るガスノズル5が取り付けられている。ガスノズル5の
先端部分には不活性ガス等のガスを石英チャンバ2内部
に分散させる分散環6が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a light irradiation and heating device according to this embodiment. A wafer W, which is an object to be processed, is supported by the susceptor 1 and carried into a flat quartz chamber 2 made of quartz. The susceptor 1 is joined to a lid 3 which is movable toward and away from the entrance of the quartz chamber 2, and the entrance of the quartz chamber 2 is sealed by the lid 3 at the same time when the wafer W is loaded. .. Wall 4 facing the inlet of the quartz chamber 2
A gas nozzle 5 for introducing an inert gas (for example, nitrogen gas), oxygen gas, and other required gas into the quartz chamber 2 is attached to this. A dispersion ring 6 for dispersing a gas such as an inert gas inside the quartz chamber 2 is provided at the tip of the gas nozzle 5.

【0009】石英チャンバ2の外部において、ウエハW
の表面に対して平行な面内に複数本の連続放電灯7(以
下、CWアークランプという)が配されている。CWア
ークランプ7の背面側および、石英チャンバ2を挟んだ
ウエハWの裏面側には反射板8が取り付けられ、CWア
ークランプ7からの熱放射がまんべくなくウエハWの表
裏両面に向かうように構成されている。石英チャンバ2
の下壁面において、収容するウエハWの真下の辺りには
下方へ突出する中空円筒状の導出部9が形成されてい
る。この導出部9は反射板8を貫通して装置外に導出し
ており、その導出端には放射温度計12が設けられてい
る。放射温度計12の前部には、炉内と炉外の雰囲気を遮
断する窓体10が取り付けられている。
A wafer W is provided outside the quartz chamber 2.
A plurality of continuous discharge lamps 7 (hereinafter referred to as CW arc lamps) are arranged in a plane parallel to the surface of the. A reflector 8 is attached to the back side of the CW arc lamp 7 and the back side of the wafer W sandwiching the quartz chamber 2 so that the heat radiation from the CW arc lamp 7 is directed toward both the front and back sides of the wafer W. Has been done. Quartz chamber 2
On the lower wall surface, a hollow cylindrical lead-out portion 9 protruding downward is formed just below the wafer W to be housed. The lead-out portion 9 passes through the reflection plate 8 and leads out to the outside of the device, and a radiation thermometer 12 is provided at the lead-out end. At the front of the radiation thermometer 12, a window body 10 that shuts off the atmosphere inside and outside the furnace is attached.

【0010】なお、CWアークランプ7は1500nm以下
の波長域の光を照射するので、放射温度計12としては、
例えば5500〜10000 nm近辺に測光特性を有するサーモ
パイル等を使用することによって、CWアークランプ7
からの直接光ではなく、ウエハWから放射された光だけ
が放射温度計12に導かれ、ウエハWの温度が検出され
る。
Since the CW arc lamp 7 emits light in the wavelength range of 1500 nm or less, the radiation thermometer 12 is
For example, by using a thermopile having a photometric characteristic near 5500 to 10000 nm, the CW arc lamp 7
Only the light emitted from the wafer W is guided to the radiation thermometer 12 and the temperature of the wafer W is detected.

【0011】放射温度計12の出力は電源制御部13に与え
られ、電源制御部13はウエハWの温度が予め設定された
目標温度となるように、各CWアークランプ7に個別に
設けられている複数個の電源部14の出力を一斉にフィー
ドバック制御する。このようにして、ウエハWの光照射
加熱処理が行われるが、これだけでは、ウエハWの表面
の温度分布は必ずしも均一にはならない。例えば、各C
Wアークランプ7の照射効率にバラツキがあったり、ま
た反射板8の形状等をどんなに工夫したところで、石英
チャンバ2内部の比較的中央の部分と端の部分での光照
射の強さを完全に均一にすることは極めて困難であるか
ら、ウエハWの面内温度分布の不均一という好ましくな
い現象が起こる。
The output of the radiation thermometer 12 is given to the power supply control unit 13, and the power supply control unit 13 is individually provided for each CW arc lamp 7 so that the temperature of the wafer W reaches a preset target temperature. The outputs of the plurality of power supply units 14 are simultaneously feedback-controlled. In this way, the light irradiation and heat treatment of the wafer W is performed, but the temperature distribution on the surface of the wafer W is not necessarily uniform only by this. For example, each C
Irradiation efficiency of the W arc lamp 7 has variations, and no matter how the shape of the reflection plate 8 is modified, the intensity of light irradiation at the central portion and the end portion inside the quartz chamber 2 can be completely adjusted. Since it is extremely difficult to make the temperature uniform, an undesired phenomenon that the in-plane temperature distribution of the wafer W is non-uniform occurs.

【0012】そこで、本実施例では電力設定手段とし
て、各電源部14と電源制御部13との間に可変抵抗器15を
設けている。可変抵抗器15は電源制御部13から出力され
る制御信号の値を可変して、各電源部14に応じた(つま
りは、各CWアークランプ7に応じた)値に設定する。
この設定方法について以下に説明する。
Therefore, in this embodiment, a variable resistor 15 is provided between each power supply unit 14 and the power supply control unit 13 as power setting means. The variable resistor 15 varies the value of the control signal output from the power supply control unit 13 and sets it to a value corresponding to each power supply unit 14 (that is, corresponding to each CW arc lamp 7).
This setting method will be described below.

【0013】まず、被処理物としてのウエハWと同等の
ダミーウエハSをサセプタ1に支持して石英チャンバ2
の内部に搬入する。光照射加熱処理の目標温度となるよ
うに電源制御部13で各電源部14を制御してダミーウエハ
Sを所要時間加熱する。このときの可変抵抗器15の抵抗
値はそれぞれ一定の任意の抵抗値に設定しておくか、あ
るいは「零」に設定しておく。加熱処理後のダミーウエ
ハSを石英チャンバ2から搬出し、ダミーウエハSに形
成された酸化膜の厚みを所々で測定する。
First, a dummy wafer S equivalent to a wafer W as an object to be processed is supported on a susceptor 1 and a quartz chamber 2 is provided.
Carry it inside. The power supply control unit 13 controls each power supply unit 14 so that the target temperature of the light irradiation heating process is reached, and the dummy wafer S is heated for a required time. At this time, the resistance value of the variable resistor 15 is set to a constant arbitrary resistance value or set to “zero”. The dummy wafer S after the heat treatment is unloaded from the quartz chamber 2 and the thickness of the oxide film formed on the dummy wafer S is measured in places.

【0014】測定箇所としては、各CWアークランプ7
の設置位置に相当する箇所を例に挙げることができる。
もし、各CWアークランプ7の照射効率にバラツキがあ
れば、酸化膜の厚みは各CWアークランプ7の設置位置
に相当する箇所で不均一となるからである。つまり、酸
化膜の厚みの不均一性と、各CWアークランプ7の照射
効率のバラツキとの相関を求める。そして、酸化膜の厚
みが均一となるように、電源制御部13から各CWアーク
ランプ7の電源部14に与えられる制御信号の値を可変抵
抗器15で可変する。ここで設定された可変抵抗器15の抵
抗値を固定して、次に、被処理物であるウエハWの加熱
処理を行う。
Each CW arc lamp 7 is used as a measuring point.
An example is a location corresponding to the installation position of.
This is because if the irradiation efficiency of each CW arc lamp 7 varies, the thickness of the oxide film becomes non-uniform at the location corresponding to the installation position of each CW arc lamp 7. That is, the correlation between the nonuniformity of the thickness of the oxide film and the variation in the irradiation efficiency of each CW arc lamp 7 is obtained. Then, the value of the control signal supplied from the power supply control unit 13 to the power supply unit 14 of each CW arc lamp 7 is changed by the variable resistor 15 so that the thickness of the oxide film becomes uniform. The resistance value of the variable resistor 15 set here is fixed, and then the wafer W, which is an object to be processed, is subjected to heat treatment.

【0015】ウエハWの温度が目標温度になるように、
電源制御部13から出力されるフィードバック制御の信号
値は、各CWアークランプ7の電源部14に対して一律に
送られるが、可変抵抗器15を通って実際に各電源部14に
与えられる制御信号の値は、前記で設定したように各C
Wアークランプ7の照射効率などに応じた値に変換され
る。こうして、ウエハWの表面の温度分布は一定に保た
れたまま、ウエハWは目標温度に加熱される。
In order that the temperature of the wafer W reaches the target temperature,
The signal value of the feedback control output from the power supply control unit 13 is uniformly sent to the power supply unit 14 of each CW arc lamp 7, but is actually applied to each power supply unit 14 through the variable resistor 15. The value of the signal is the value of each C as set above.
It is converted into a value according to the irradiation efficiency of the W arc lamp 7. Thus, the wafer W is heated to the target temperature while keeping the temperature distribution on the surface of the wafer W constant.

【0016】なお、電力設定手段として、上記の可変抵
抗器15の代わりに、コンピュータ・プログラムを用いて
制御信号の値を設定するような構成にしてもよい。すな
わち、ダミーウエハSに形成された酸化膜の厚みが均一
となるように、各電源部14に与える制御信号の値を夫々
変化させる係数値をプログラムで設定する。
As the power setting means, instead of the variable resistor 15 described above, a computer program may be used to set the value of the control signal. That is, a coefficient value for changing the value of the control signal given to each power supply unit 14 is set by a program so that the thickness of the oxide film formed on the dummy wafer S becomes uniform.

【0017】また、上記のようにダミーウエハSの酸化
膜の厚みの不均一性に基づいて、各CWアークランプ7
の熱放射の差異を求めるのではなく、ダミーウエハSの
表面の随所に熱電対を取り付けて、ダミーウエハSの表
面の温度分布をモニタし、温度分布のバラツキがなくな
るように各可変抵抗器15の抵抗値を設定するようにして
もよい。
Further, each CW arc lamp 7 is based on the non-uniformity of the thickness of the oxide film of the dummy wafer S as described above.
Rather than obtaining the difference in the heat radiation of the dummy wafer S, thermocouples are attached to the surface of the dummy wafer S everywhere to monitor the temperature distribution on the surface of the dummy wafer S, and the resistance of each variable resistor 15 is adjusted so as to eliminate the variation in the temperature distribution. You may make it set a value.

【0018】また、上記の実施例に示したようにウエハ
Wの表面に対向して複数本のCWアークランプ7を取り
付けるのではなく、ウエハWの表裏両面に対向する各平
面内にそれぞれ複数本のCWアークランプ7を設けて構
成してもよい。さらには、図2に示すように、各CWア
ークランプ7へ電力を供給する電源部14を1つだけ設
け、各CWアークランプ7と電源部14との間に可変抵抗
器15を設けた構成にしてもよい。
Further, instead of mounting a plurality of CW arc lamps 7 facing the surface of the wafer W as shown in the above embodiment, a plurality of CW arc lamps 7 are mounted on each of the planes facing the front and back surfaces of the wafer W. Alternatively, the CW arc lamp 7 may be provided. Further, as shown in FIG. 2, only one power supply unit 14 for supplying electric power to each CW arc lamp 7 is provided, and a variable resistor 15 is provided between each CW arc lamp 7 and the power supply unit 14. You can

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
の光照射加熱装置によれば、半導体ウエハの温度が目標
温度となるように、各連続放電灯への供給電力を制御す
る一方で、半導体ウエハの温度分布が均一になるように
各連続放電灯への供給電力の割合をそれぞれに設定する
ので、半導体ウエハを均一な温度分布のもとで目標温度
まで加熱することができ、ウエハの面内温度分布が均一
な光照射加熱処理が行える。また、連続放電灯を使用し
ているので予備加熱の必要もない。
As is apparent from the above description, according to the light irradiation and heating apparatus of the present invention, the power supplied to each continuous discharge lamp is controlled so that the temperature of the semiconductor wafer becomes the target temperature. Since the ratio of the power supplied to each continuous discharge lamp is set so that the temperature distribution of the semiconductor wafer becomes uniform, the semiconductor wafer can be heated to the target temperature under the uniform temperature distribution. It is possible to perform a light irradiation heat treatment with a uniform in-plane temperature distribution. Further, since a continuous discharge lamp is used, there is no need for preheating.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る光照射加熱装置の概略
構成を示した断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a light irradiation heating device according to an embodiment of the present invention.

【図2】光照射加熱装置のその他の構成例を示した図で
ある。
FIG. 2 is a diagram showing another configuration example of the light irradiation heating device.

【図3】である。FIG.

【符号の説明】[Explanation of symbols]

7・・・CWアークランプ 13・・・電源制御部 14・・・電源部 15・・・可変抵抗器 W・・・ウエハ 7 ... CW arc lamp 13 ... Power supply control unit 14 ... Power supply unit 15 ... Variable resistor W ... Wafer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月13日[Submission date] October 13, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る光照射加熱装置の概略
構成を示した断面図である。
FIG. 1 is a cross-sectional view showing a schematic configuration of a light irradiation heating device according to an embodiment of the present invention.

【図2】光照射加熱装置のその他の構成例を示した図で
ある。
FIG. 2 is a diagram showing another configuration example of the light irradiation heating device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被処理物である半導体ウエハに対して平
行な面内に配される複数本の連続放電灯(CWアークラ
ンプ)と、 前記半導体ウエハの温度分布が均一になるように前記各
連続放電灯への供給電力の割合をそれぞれ任意に設定す
る電力設定手段と、 前記半導体ウエハの温度を検出する温度検出手段と、 前記温度検出手段からの検出信号に基づいて前記半導体
ウエハの温度が目標温度となるように前記電力設定手段
を制御する制御手段と、 を備えたことを特徴とする光照射加熱装置。
1. A plurality of continuous discharge lamps (CW arc lamps) arranged in a plane parallel to a semiconductor wafer to be processed, and each of the semiconductor wafers so that the temperature distribution of the semiconductor wafer becomes uniform. A power setting unit that arbitrarily sets the ratio of the power supplied to the continuous discharge lamp, a temperature detection unit that detects the temperature of the semiconductor wafer, and a temperature of the semiconductor wafer based on a detection signal from the temperature detection unit. A light irradiation heating device, comprising: a control unit that controls the power setting unit so that the target temperature is reached.
JP28403491A 1991-10-03 1991-10-03 Photoirradiation heating system Pending JPH05114570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28403491A JPH05114570A (en) 1991-10-03 1991-10-03 Photoirradiation heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28403491A JPH05114570A (en) 1991-10-03 1991-10-03 Photoirradiation heating system

Publications (1)

Publication Number Publication Date
JPH05114570A true JPH05114570A (en) 1993-05-07

Family

ID=17673447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28403491A Pending JPH05114570A (en) 1991-10-03 1991-10-03 Photoirradiation heating system

Country Status (1)

Country Link
JP (1) JPH05114570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514008A (en) * 1998-04-30 2002-05-14 アプライド マテリアルズ インコーポレイテッド Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
JP2005527972A (en) * 2002-03-29 2005-09-15 マットソン、テクノロジー、インコーポレーテッド Semiconductor pulse heat treatment method using a combination of heat sources
KR100976649B1 (en) * 2007-05-20 2010-08-18 어플라이드 머티어리얼스, 인코포레이티드 Controlled annealing method
US7986871B2 (en) 2003-10-27 2011-07-26 Applied Materials, Inc. Processing multilayer semiconductors with multiple heat sources
JP2011204742A (en) * 2010-03-24 2011-10-13 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and heat treatment method
US8809077B2 (en) 2011-07-01 2014-08-19 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160512A (en) * 1986-01-08 1987-07-16 Dainippon Screen Mfg Co Ltd Method and device for controlling temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160512A (en) * 1986-01-08 1987-07-16 Dainippon Screen Mfg Co Ltd Method and device for controlling temperature

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002514008A (en) * 1998-04-30 2002-05-14 アプライド マテリアルズ インコーポレイテッド Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
JP2005527972A (en) * 2002-03-29 2005-09-15 マットソン、テクノロジー、インコーポレーテッド Semiconductor pulse heat treatment method using a combination of heat sources
US7986871B2 (en) 2003-10-27 2011-07-26 Applied Materials, Inc. Processing multilayer semiconductors with multiple heat sources
US8536492B2 (en) 2003-10-27 2013-09-17 Applied Materials, Inc. Processing multilayer semiconductors with multiple heat sources
KR100976649B1 (en) * 2007-05-20 2010-08-18 어플라이드 머티어리얼스, 인코포레이티드 Controlled annealing method
JP2011204742A (en) * 2010-03-24 2011-10-13 Dainippon Screen Mfg Co Ltd Heat treatment apparatus and heat treatment method
US8809077B2 (en) 2011-07-01 2014-08-19 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
TWI381430B (en) Light irradiation method
KR100802697B1 (en) Heat treatment apparatus of light emission type
US20090214193A1 (en) Light emission type heating method and light emission type heating apparatus
US10784127B2 (en) Method of adjusting measurement position of radiation thermometer and heat treatment apparatus
TWI698936B (en) Thermal processing method and thermal processing apparatus
US20020195437A1 (en) Heat treating apparatus and method
US10998206B2 (en) Light irradiation type heat treatment apparatus
US6393210B1 (en) Rapid thermal processing method and apparatus
JP2008288598A (en) Controlled annealing method
KR20080024060A (en) Light irradiation type heating apparatus and light irradiation type heating method
US8355624B2 (en) Susceptor for heat treatment and heat treatment apparatus
WO1999057751A2 (en) Method and apparatus for controlling the radial temperature gradient of a wafer while ramping the wafer temperature
TWI696221B (en) Heat treatment method and heat treatment apparatus
US11908703B2 (en) Light irradiation type heat treatment method
JPH05114570A (en) Photoirradiation heating system
US11430676B2 (en) Heat treatment method of light irradiation type
US11276575B2 (en) Light irradiation type heat treatment method and heat treatment apparatus
JP5465416B2 (en) Heat treatment method
US20030080104A1 (en) Heat treating apparatus and method
US10777427B2 (en) Light irradiation type heat treatment method
JPS60137027A (en) Optical irradiation heating method
US6513347B1 (en) Heat conditioning process
US12020958B2 (en) Light irradiation type heat treatment method
JPS6252926A (en) Heat treatment device
US20210272823A1 (en) Light irradiation type heat treatment method