JP2005131798A - Manufacturing method for resin molded product - Google Patents

Manufacturing method for resin molded product Download PDF

Info

Publication number
JP2005131798A
JP2005131798A JP2003367031A JP2003367031A JP2005131798A JP 2005131798 A JP2005131798 A JP 2005131798A JP 2003367031 A JP2003367031 A JP 2003367031A JP 2003367031 A JP2003367031 A JP 2003367031A JP 2005131798 A JP2005131798 A JP 2005131798A
Authority
JP
Japan
Prior art keywords
resin molded
molded body
molded product
correction
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367031A
Other languages
Japanese (ja)
Inventor
Mikio Masui
幹生 桝井
Keiji Azuma
啓二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003367031A priority Critical patent/JP2005131798A/en
Publication of JP2005131798A publication Critical patent/JP2005131798A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a resin molded product W constituted so that the dimensional shape of the resin molded product W after the reception of heat history becomes a desired shape by forming the resin molded product W into a shape preliminarily considering the heat history due to a use environment in a post process when the resin molded product W is corrected. <P>SOLUTION: This manufacturing method of the resin molded product W has a holding process for holding the resin molded product W by the predetermined clamping force of a correction member 1 so that an energy ray transmission part is brought into contact with at least either one of the deformation causing part formed in the molding process of the resin molded product W or a stress remaining part where internal stress remains, a heating process for irradiating at least either one of the deformation causing part of the resin molded product W or the stress remaining part through an energy ray transmission part in a state that the resin molded product W is held by the correction member 1 and a correction process for applying predetermined clamping force to the resin molded product W, which is irradiated with energy rays to be heated to a temperature above a thermal deformation temperature but below the melting point of the resin molded product W, by the correction member 1 to correct the resin molded product W into a shape considering heat history in the post process or under a use environment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、樹脂成形体の製造方法に関し、詳しくは、成形後の組立てや実装等の後工程の使用環境中に受けた熱履歴による成形品の熱変形を考慮した形状に成形する樹脂成形体の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing a resin molded body, and more specifically, a resin molded body that is molded into a shape that takes into account thermal deformation of a molded product due to a thermal history received during a post-use environment such as assembly or mounting after molding. It is related with the manufacturing method.

エネルギー線透過窓を有する金型内に、樹脂成形体を挿入・固定し、このエネルギー線透過窓を介して樹脂成形体に赤外線等のエネルギー線を照射する工程を有するものとして、図7に示すような、成形品金型20の一部に少なくとも1個の赤外線透過窓21を形成し、この赤外線透過窓21にその表面が対面するごとく樹脂成形体22を成形品金型20内に挿入してその姿勢を固定し、照射源から赤外線透過窓21を介して成形品の表面に赤外線を照射するものが知られている。このものにあっては、樹脂成形体22は赤外線に対して不透明で投射エネルギーをよく吸収するので、効率のよい加熱が行なわれる上に、成形品金型20自体は、赤外線照射による熱の発生がないので、樹脂成形体22と成形品金型20との間の温度勾配は常に冷却する方向にあり、そのため従来のヒーター加熱において要した温度勾配の逆転時間が不要となり、処理時間の短縮が可能となる。(特許文献1)
しかしながら前記方法では、樹脂成形体22全体にエネルギー線を照射したり、エネルギー線を照射する部分を特定していないため、前者の場合は、比較的大きな形状の樹脂成形体22の場合には、エネルギー線の照射に時間がかかったり、エネルギー線照射装置が大きくなるため、装置の設置に要するスペースや設備コストが大きくなるという問題が生じ、後者の場合は、エネルギー線照射が適切な部位に照射できているかはリフロー後でないと判明しないという問題があった。
As shown in FIG. 7, the resin molded body is inserted and fixed in a mold having an energy ray transmitting window, and the resin molded body is irradiated with energy rays such as infrared rays through the energy ray transmitting window. At least one infrared transmission window 21 is formed in a part of the molded product mold 20 as described above, and the resin molded body 22 is inserted into the molded product mold 20 so that the surface of the infrared transmission window 21 faces the infrared transmission window 21. It is known that the posture is fixed and the surface of the molded product is irradiated with infrared rays from an irradiation source through an infrared transmission window 21. In this case, since the resin molded body 22 is opaque to infrared rays and absorbs projection energy well, efficient heating is performed, and the mold 20 itself generates heat due to infrared irradiation. Therefore, the temperature gradient between the resin molded body 22 and the molded product mold 20 is always in the direction of cooling, so that the reversal time of the temperature gradient required in the conventional heater heating becomes unnecessary, and the processing time can be shortened. It becomes possible. (Patent Document 1)
However, in the above method, since the energy ray is irradiated to the entire resin molded body 22 or the portion to which the energy beam is irradiated is not specified, in the case of the resin molded body 22 having a relatively large shape, Because it takes time to irradiate energy beams and the energy beam irradiating device becomes larger, there is a problem that the space required for installing the device and the equipment cost increase. In the latter case, energy beam irradiation is applied to the appropriate part. There was a problem that it was not determined if it was done after reflow.

かかる問題を解決するための手段として、樹脂成形体の変形が生じている部分や残留する内部応力により使用環境下で反り変形の発生が予想される部分にエネルギー線透過部を備えた矯正拘束・部材を密着させて矯正、拘束する矯正・拘束工程と、矯正・拘束部材を密着させている樹脂成形体の部位にエネルギー線透過部を通してエネルギー線を照射し、熱変形温度以上、融点以下の所定温度に加熱する加熱工程とを備えた矯正方法があり、この矯正方法にあっては、必要な部位にのみエネルギー線照射が行なわれるため、効率のよい変形の矯正、内部応力の緩和を短時間に行なうことができるため、生産性が向上する。   As a means for solving such a problem, the correction restraint provided with the energy ray transmitting part in the part where the deformation of the resin molded body occurs or the part where the warp deformation is expected to occur in the usage environment due to the residual internal stress. Correction / restraining process to fix and restrain the member in close contact, and the part of the resin molded body to which the correction / restraining member is in close contact are irradiated with energy rays through the energy ray transmitting part, and a predetermined temperature not lower than the heat distortion temperature and lower than the melting point There is a correction method comprising a heating step of heating to a temperature, and in this correction method, energy beam irradiation is performed only on necessary parts, so that efficient deformation correction and internal stress relaxation can be performed in a short time. Therefore, productivity can be improved.

ところで、後工程において樹脂成形体に金属部材等が圧入される場合には、樹脂成形体に新たな変形や内部応力が発生する。このような場合には、圧入後に上述のような矯正方法を適用すれば、圧入後に生じた新たな変形や内部応力についても矯正、緩和することができる。しかし、工程的若しくは装置的な制約で、圧入後にエネルギー線照射による変形の矯正や内部応力の緩和が不可能な場合がある。また、液晶ポリマー(LCP)等配向性の極めて強い材料や、前工程において残留した内部応力が極めて大きい場合、残留応力が樹脂成形体の内部の奥深くに存在している場合等のエネルギー線照射のみでは内部応力の緩和が十分でない場合が生じ得る。このような場合には、後工程(前者の場合は、金属部材等の圧入後の工程)や使用環境下で熱履歴を受けると樹脂成形体に熱変形が生じ得るという問題がある。
特開2002−273764号公報
By the way, when a metal member or the like is pressed into the resin molded body in a later process, new deformation or internal stress is generated in the resin molded body. In such a case, if the correction method as described above is applied after press-fitting, new deformation and internal stress generated after press-fitting can be corrected and alleviated. However, there are cases where it is impossible to correct deformation or relieve internal stress by irradiation with energy rays after press-fitting due to process or device restrictions. In addition, materials with extremely high orientation, such as liquid crystal polymer (LCP), or when the internal stress remaining in the previous process is extremely large, or when the residual stress exists deep inside the resin molded body, etc. In some cases, the internal stress may not be sufficiently relaxed. In such a case, there is a problem that when the thermal history is received in a post-process (in the former case, a process after press-fitting a metal member or the like) or in a use environment, the resin molded body may be thermally deformed.
JP 2002-273762 A

本発明は、このような問題に鑑みてなされたもので、樹脂成形体を矯正するに際して、予め後工程での使用環境による熱履歴を考慮した形状に形成することで、熱履歴を受けた後の樹脂成形体の寸法形状が、所望する形状となるための樹脂成形体の製造方法を提供することである。   The present invention has been made in view of such a problem. When a resin molded body is corrected, it is formed in advance in a shape that takes into account the thermal history due to the use environment in the subsequent process, and after receiving the thermal history. It is providing the manufacturing method of the resin molding for the dimension shape of this resin molding to become a desired shape.

上記した課題を解決するために、本発明の請求項1に係る樹脂成形体の製造方法は、エネルギー線透過性の材料からなるエネルギー線透過部を少なくとも一部に備えた矯正部材により樹脂成形体を挟持した状態で、エネルギー線透過部を介して樹脂成形体にエネルギー線を照射・加熱して残留応力を緩和するとともに、所望の形状に成形する樹脂成形体の製造方法であって、樹脂成形体の成形過程で生じた変形発生部若しくは内部応力が残留した応力残留部の少なくともいずれかに、エネルギー線透過部を介してエネルギー線を照射して熱変形温度以上融点以下の温度に加熱した状態で、前記矯正部材により所定の締付け力を加えて後工程や使用環境下で受ける熱履歴を考慮した形状に矯正する矯正工程を有することを特徴とする。   In order to solve the above-described problem, a method for producing a resin molded body according to claim 1 of the present invention is a resin molded body using an orthodontic member provided at least in part with an energy beam transmitting portion made of an energy beam transmitting material. The resin molded body is manufactured by irradiating and heating the resin molded body with energy rays through the energy beam transmitting portion to relieve the residual stress and molding into a desired shape. A state in which at least one of a deformation generation part generated in the body molding process or a stress residual part in which internal stress remains is irradiated with energy rays through an energy ray transmission part and heated to a temperature not lower than the thermal deformation temperature and not higher than the melting point. Then, it has a straightening step of applying a predetermined tightening force by the straightening member to correct the shape in consideration of the heat history received in the post-process or in the use environment.

本発明の請求項2に係る樹脂成形体の製造方法は、前記加熱工程が、変形の矯正や残留した内部応力の緩和に必要な樹脂成形体の部位にのみエネルギー線を照射するものであることを特徴とする。   In the method for producing a resin molded body according to claim 2 of the present invention, the heating step irradiates an energy beam only to a portion of the resin molded body necessary for correction of deformation and relaxation of residual internal stress. It is characterized by.

本発明の請求項3に係る樹脂成形体の製造方法は、矯正工程により矯正された後溶融開始温度以下に冷却された樹脂成形体の寸法形状を計測し、所定の寸法に満たない場合には、樹脂成形体に荷重を加えて、前記後工程の使用環境下での熱変形を考慮した形状に再度矯正する再矯正工程を有することを特徴とする。   The method for producing a resin molded body according to claim 3 of the present invention measures the dimensional shape of the resin molded body that has been straightened by the straightening process and then cooled to the melting start temperature or less, and when the predetermined shape is not reached. The method further comprises a re-correction step in which a load is applied to the resin molded body and the shape is re-corrected in consideration of thermal deformation in the use environment of the post-process.

本発明の請求項1に係る樹脂成形体の製造方法によると、成形品を後工程や使用環境下での熱変形を考慮した形状に樹脂成形体を矯正する矯正工程を有するため、後工程や使用環境下で受けた熱履歴により変形した後の樹脂成形体の形状が所望の形状となる。そのため、後工程に樹脂成形体に金属部材等が圧入されるような樹脂成形体に新たな変形や内部応力が発生する工程を有する場合であっても、寸法精度の低下やそれを防止するための再度の矯正が不要になる。また、液晶ポリマー(LCP)等配向性の極めて強い材料や、内部応力が極めて大きい場合、残留応力が樹脂成形体の内部の奥深くに存在している場合等の、エネルギー線照射のみでは内部応力の緩和が十分でない場合であっても、後工程や使用環境下で受けた熱履歴による変形を原因とした樹脂成形体の寸法精度の低下を防止することができる。   According to the method for producing a resin molded body according to claim 1 of the present invention, since the molded product has a correction process for correcting the resin molded body into a shape that takes into account thermal deformation under a post-process or use environment, The shape of the resin molded body after being deformed by the heat history received under the usage environment becomes a desired shape. Therefore, in order to prevent a decrease in dimensional accuracy and to prevent it, even in the case where there is a step in which new deformation or internal stress is generated in the resin molded body in which a metal member or the like is pressed into the resin molded body in the subsequent process. No need to correct again. In addition, when the material is very strong in orientation, such as liquid crystal polymer (LCP), when the internal stress is extremely large, or when the residual stress exists deep inside the resin molded body, the internal stress can be reduced by energy beam irradiation alone. Even if the relaxation is not sufficient, it is possible to prevent a decrease in the dimensional accuracy of the resin molded body due to deformation due to a thermal history received in a subsequent process or use environment.

本発明の請求項2に係る樹脂成形体の製造方法によると、上述した請求項1の効果に加えて、金属部材や電子部品等が樹脂成形体に圧入や実装されている場合であっても、変形の矯正や残留した内部応力の緩和に必要な樹脂成形体の部位にのみエネルギー線が照射されるので、圧入や実装された金属部材や電子部品及び変形発生部や残留応力部以外の樹脂成形体の部位が加熱されることがなく、これらの部位に不要な熱影響の与えることを防ぐことができる。   According to the method for manufacturing a resin molded body according to claim 2 of the present invention, in addition to the effect of claim 1 described above, even when a metal member, an electronic component, or the like is press-fitted or mounted on the resin molded body. Because the energy rays are irradiated only on the parts of the resin molded body that are necessary for correction of deformation and relaxation of residual internal stress, resin other than press-fitted and mounted metal parts and electronic parts, deformation generating parts and residual stress parts The parts of the molded body are not heated, and it is possible to prevent these parts from being subjected to unnecessary thermal effects.

本発明の請求項3に係る樹脂成形体の製造方法によると、上述した請求項1の効果に加えて、矯正工程により矯正された後溶融開始温度以下に冷却された樹脂成形体の寸法形状を計測した結果、後工程や使用環境下で受ける熱履歴を考慮した所望の寸法形状を得られない場合であっても、所定の寸法に満たない場合には樹脂成形体に荷重を加えて、所望の寸法形状に再度矯正する再矯正工程を有するので、寸法精度がさらに向上する。   According to the method for producing a resin molded body according to claim 3 of the present invention, in addition to the effect of claim 1 described above, the dimension and shape of the resin molded body cooled to the melting start temperature or lower after being corrected by the correction process. As a result of measurement, even if it is not possible to obtain the desired size and shape taking into account the thermal history received in the post-process and the usage environment, if the predetermined size is not reached, a load is applied to the resin molded body, Therefore, the dimensional accuracy is further improved.

(実施形態1)
本発明の第1の実施形態を図1及び図3に基づいて説明する。図1及び図3において、1は矯正部材、1aは補正部材を構成する上側の矯正部材、1bは補正部材を構成する下側の矯正部材、4は加熱手段、8は下側治具取付体、9は下側取付板、10は位置決めブロック、11は上側治具取付板、12は上側取付板、13は保持ブロック、14はエネルギー線照射装置、15は冷却管、16は温度センサー、17は下側治具、46は冷却溝、W、W1、W2は樹脂成形体である。
(Embodiment 1)
A first embodiment of the present invention will be described with reference to FIGS. 1 and 3, 1 is a correction member, 1a is an upper correction member constituting the correction member, 1b is a lower correction member constituting the correction member, 4 is a heating means, and 8 is a lower jig mounting body. , 9 is a lower mounting plate, 10 is a positioning block, 11 is an upper jig mounting plate, 12 is an upper mounting plate, 13 is a holding block, 14 is an energy beam irradiation device, 15 is a cooling pipe, 16 is a temperature sensor, 17 Is a lower jig, 46 is a cooling groove, and W, W1, and W2 are resin moldings.

図1は樹脂成形体の製造装置を示し、同図(a)は断面図、同図(b)は(a)のC−C線断面図である。同図に示すように、下側治具取付体8の上面側に下側取付板9が取付けられ、下側取付板9の上面側に下側の矯正部材1bが取付けられ、下側の矯正部材1bの上面側には樹脂成形体Wを位置決め固定するための位置決めブロック10が取付けられている。また、上側治具取付体11の下面側に上側取付板12が取付けられ、上側取付板12の下面側に保持ブロック13が取付けられ、保持ブロック13の下面側に上側の矯正部材1が取付けられている。下側治具取付体8は図示しない昇降手段にて昇降自在になっており、上下の矯正部材1a、1bによって樹脂成形体Wを挟持するようにしている。上側の矯正部材1aは、エネルギー線透過材にて形成して、加熱手段4を構成するエネルギー線照射装置14からのエネルギー線を上側の矯正部材1aを透過して樹脂成形体Wに照射して加熱するようにしている。下側の矯正部材1はエネルギー線透過材であってもよく、非透過材であってもよい。この上下の矯正部材1a、1bの樹脂成形体Wと当接する部分の形状は、樹脂成形体Wが後工程や使用環境下で受ける熱履歴を考慮した形状、すなわち、後工程で樹脂成形体Wに内部応力が残留した後、熱履歴が加わって反りが生じた場合の最終的な変形部位及び変形量を考慮した形状に形成されている。なお、本実施形態においては、上側の矯正部材1a全体がエネルギー線透過材から構成されており、上側の矯正部材1a全体がエネルギー線透過部であるが、これに限定されるものではなく、樹脂成形体Wの成形過程で生じた変形発生部若しくは内部応力が残留した応力残留部の少なくともいずれかに当接する上側の矯正部材1aの部位に、エネルギー線透過材からなるエネルギー線透過部を有していればよい。   1A and 1B show a resin molded body manufacturing apparatus, in which FIG. 1A is a cross-sectional view, and FIG. 1B is a cross-sectional view taken along line CC in FIG. As shown in the figure, a lower mounting plate 9 is mounted on the upper surface side of the lower jig mounting body 8, and a lower correction member 1 b is mounted on the upper surface side of the lower mounting plate 9, thereby correcting the lower side. A positioning block 10 for positioning and fixing the resin molding W is attached to the upper surface side of the member 1b. Further, the upper mounting plate 12 is mounted on the lower surface side of the upper jig mounting body 11, the holding block 13 is mounted on the lower surface side of the upper mounting plate 12, and the upper correction member 1 is mounted on the lower surface side of the holding block 13. ing. The lower jig mounting body 8 can be moved up and down by a lifting means (not shown), and the resin molded body W is sandwiched between the upper and lower correction members 1a and 1b. The upper correcting member 1a is formed of an energy ray transmitting material, and the energy beam from the energy beam irradiation device 14 constituting the heating unit 4 is transmitted through the upper correcting member 1a to irradiate the resin molding W. I try to heat it. The lower correction member 1 may be an energy ray transmitting material or a non-transmitting material. The shapes of the portions of the upper and lower correction members 1a and 1b that are in contact with the resin molded body W are shapes that take into account the thermal history that the resin molded body W receives in the post-process and the use environment, that is, the resin molded body W in the post-process. After the internal stress remains, the shape is formed in consideration of the final deformed portion and the amount of deformation when the warp occurs due to the thermal history. In the present embodiment, the entire upper correction member 1a is made of an energy ray transmitting material, and the entire upper correction member 1a is an energy ray transmitting portion. However, the present invention is not limited to this, and resin An energy ray transmitting portion made of an energy ray transmitting material is provided at a portion of the upper correction member 1a that comes into contact with at least one of a deformation occurrence portion generated in the forming process of the formed body W or a stress remaining portion where internal stress remains. It only has to be.

エネルギー線は、樹脂成形体Wの材質によって最適なもの、例えば紫外線(エキシマレーザ等)、赤外線(CO2レーザ、YAGレーザやハロゲンランプ等)、X線電子線や熱線等の公知のものを適宜選択することができる。また、エネルギー線透過材の種類は、照射するエネルギー線の波長帯を透過するもの、例えばセレン化亜鉛、硫化亜鉛、サファイアガラス、石英ガラス、硼珪酸クラウンガラス等を適宜選択することができる。例えば、樹脂成形体Wがポリメチルメタクリレート(PMMA)であった場合、エネルギー線としては赤外線(CO2レーザ)が、エネルギー線透過材としてはセレン化亜鉛が好適に用いられる。 As the energy beam, an optimum one depending on the material of the resin molding W, for example, ultraviolet rays (excimer laser, etc.), infrared rays (CO 2 laser, YAG laser, halogen lamp, etc.), X-ray electron beams, heat rays, etc. You can choose. In addition, the type of the energy ray transmitting material can be appropriately selected from materials that transmit the wavelength band of the irradiated energy rays, such as zinc selenide, zinc sulfide, sapphire glass, quartz glass, and borosilicate crown glass. For example, when the resin molding W is polymethylmethacrylate (PMMA), infrared rays (CO 2 laser) are suitably used as the energy rays, and zinc selenide is suitably used as the energy ray transmitting material.

保持ブロック13には冷却管15が環状の冷却溝46に配管されて樹脂成形体Wからの伝熱によって上側の矯正部材1aが昇温するのを抑制している。下側の矯正部材1bには温度センサー16を設けて樹脂成形体Wの温度を検知するようにしている。このように、上側の矯正部材1はエネルギー線を透過するために、エネルギー線照射によっては温度上昇せず、エネルギー線照射によって温度上昇した樹脂成形体Wの表面からの熱伝導でのみ温度上昇する。従って、上側の矯正部材1aにおけるエネルギー線透過部の樹脂成形体Wとの密着面は、エネルギー線吸収により温度上昇した樹脂成形体Wに比較すると低温であるため、上側の矯正部材1aの冷却作用により、加熱時に樹脂成形体Wの表面に熱が集中することがない。従って、表面の樹脂組成物の変色・分解を低減させることができる。   In the holding block 13, the cooling pipe 15 is provided in the annular cooling groove 46 to suppress the temperature of the upper correction member 1 a from rising due to heat transfer from the resin molded body W. A temperature sensor 16 is provided on the lower correction member 1b to detect the temperature of the resin molded body W. Thus, since the upper correction member 1 transmits energy rays, the temperature does not rise by irradiation with energy rays, but rises only by heat conduction from the surface of the resin molded body W that has risen in temperature by irradiation with energy rays. . Therefore, since the contact surface of the upper correction member 1a with the resin molded body W of the energy ray transmitting portion is lower in temperature than the resin molded body W whose temperature has increased due to absorption of energy rays, the cooling action of the upper correction member 1a. Thus, heat does not concentrate on the surface of the resin molded body W during heating. Therefore, discoloration / decomposition of the resin composition on the surface can be reduced.

また、加熱終了後は、矯正部材1自体はエネルギー線照射による温度上昇がないので、矯正部材1が樹脂成形体Wの熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温させることができる。そのため、樹脂成形体Wを矯正部材1a、1bで挟持しながらエネルギー線を照射して樹脂成形体Wの反り、変形の矯正、内部応力の緩和を図りながら、簡易に、品質を高め、生産性を高めることができる。   In addition, after the heating is completed, the correction member 1 itself does not increase in temperature due to the irradiation of energy rays. Therefore, the correction member 1 takes away the amount of heat of the resin molded body W, so that the cooling efficiency is good and quickly reaches a predetermined temperature below the heat deformation temperature. The temperature can be lowered. Therefore, while the resin molded body W is sandwiched between the correction members 1a and 1b, energy rays are irradiated to straighten the resin molded body W to correct warping, deformation, and internal stress, while improving quality and productivity. Can be increased.

図2は本発明に係る脂成形体の製造方法の前後での樹脂成形体Wの形状を示すものであり、同図(a)は本実施形態における製造方法の実施により挟持・矯正される前、同図(b)は本実施形態における製造方法の実施により挟持・矯正された後、同図(c)は補正・矯正後に熱履歴を受けた後の樹脂成形体Wの形状を示すものである。同図(a)に示すように、樹脂成形体Wは、円筒容器状の射出成形品であって、円板の上に円筒の縁部が連結されている形状である。本実施形態における樹脂成形体Wは本来W1に示す形状を狙って射出成形されたものであるが、成形時の残留応力や冷却条件等の影響でW2に示すような反りが発生する場合がある。本願発明における樹脂成形体Wは、W1,W2いずれの形状であっても好適に用いることができる。なお、樹脂成形体Wは本実施例の形状に限定されるものではなく、反りの方向も樹脂成形体Wの肉厚、金型の温度分布等によっては図示のものと反対の方向に生じることもある。   FIG. 2 shows the shape of the resin molded body W before and after the method for manufacturing a fat molded body according to the present invention, and FIG. 2 (a) is before clamping and correction by the implementation of the manufacturing method in the present embodiment. (B) shows the shape of the resin molded body W after being sandwiched and corrected by the manufacturing method according to the present embodiment, and (c) being subjected to a heat history after correction and correction. is there. As shown in FIG. 2A, the resin molded body W is a cylindrical container-like injection-molded product, and has a shape in which a cylindrical edge is connected to a circular plate. Although the resin molded body W in the present embodiment is originally injection-molded aiming at the shape shown in W1, warping as shown in W2 may occur due to the influence of residual stress and cooling conditions during molding. . The resin molded body W in the present invention can be suitably used regardless of the shape of W1 or W2. The resin molded body W is not limited to the shape of the present embodiment, and the direction of warping may occur in the opposite direction to the illustrated one depending on the thickness of the resin molded body W, the temperature distribution of the mold, and the like. There is also.

図3は、本実施形態における樹脂成形体の補正工程の概略を示すものである。同図(a)はエネルギー線照射による樹脂成形体Wの加熱の開始を示す概略図である。矯正部材1によって樹脂成形体Wを挟持する前に、上側の矯正部材1aに備えたエネルギー線透過部を介して樹脂成形体Wにエネルギー線を照射する。   FIG. 3 shows an outline of the correction process of the resin molded body in the present embodiment. FIG. 2A is a schematic view showing the start of heating of the resin molded body W by energy beam irradiation. Before sandwiching the resin molded body W by the correction member 1, the resin molded body W is irradiated with energy rays through the energy ray transmitting portion provided in the upper correction member 1 a.

次に、同図(b)に示すように、エネルギー線を照射した樹脂成形体Wが熱変形温度以下であって、熱変形温度近傍の所定温度になった後に、同図(c)に示すように、拘束部材1a、1bによる挟持および矯正を行なう。具体的には、温度センサー16による温度の測定によって、変形発生部の近傍の温度が樹脂成形体Wの樹脂組成物の熱変形温度近傍の所定温度に到達した時点において、下側治具取付体8を備えた下側治具17が図示しない昇降手段によって上昇され、上側治具取付体11を備えた上側治具18のエネルギー線透過材からなる上側の矯正部材1aと下側の矯正部材1bで樹脂成形体Wを挟持して密着させ矯正する。このように、熱変形温度近傍の所定温度までは、樹脂成形体とエネルギー線透過性材料からなる矯正部材1aは密着していないため、上側の矯正部材1aに樹脂成形体Wの表面の熱が拡散せず、迅速に温度を上昇させることができ、熱変形温度近傍の所定温度を越えてからはエネルギー線透過性材料からなる上側の矯正部材1aを樹脂成形体Wに挟持させて矯正をおこなうことによって、上側の矯正部材1aは樹脂成形体Wに樹脂成形体Wの表面に熱が集中して樹脂組成物の分解、変色を避けることができる。   Next, as shown in FIG. 4B, after the resin molded body W irradiated with the energy rays reaches a predetermined temperature near the heat deformation temperature, which is equal to or lower than the heat deformation temperature, the same is illustrated in FIG. As described above, clamping and correction by the restraining members 1a and 1b are performed. Specifically, when the temperature near the deformation generating portion reaches a predetermined temperature near the thermal deformation temperature of the resin composition of the resin molded body W by measuring the temperature with the temperature sensor 16, the lower jig mounting body. A lower jig 17 having 8 is raised by a lifting means (not shown), and an upper correction member 1a and a lower correction member 1b made of an energy ray transmitting material of an upper jig 18 having an upper jig attachment body 11. Then, the resin molded body W is sandwiched and adhered to be corrected. Thus, since the resin molded body and the correction member 1a made of the energy ray transmitting material are not in close contact with each other up to a predetermined temperature near the heat distortion temperature, the heat of the surface of the resin molded body W is applied to the upper correction member 1a. The temperature can be quickly raised without diffusion, and after exceeding a predetermined temperature in the vicinity of the heat distortion temperature, the upper correction member 1a made of an energy ray transmissive material is sandwiched between the resin molded bodies W to perform correction. Thus, the upper correction member 1a can avoid decomposition and discoloration of the resin composition due to heat concentration on the surface of the resin molded body W.

ところで、上側の矯正部材1aは、樹脂成形体Wに密着することによって樹脂成形体Wからの熱の伝導によって温度上昇するが、保持ブロック13には冷却管15、図示しない冷却溝を経由して冷却媒体が常時循環しているため加熱時の温度上昇が少なく、短時間に反りや変形の矯正及び内部応力の緩和が可能となる。   By the way, although the upper correction member 1a comes into close contact with the resin molded body W and rises in temperature due to the conduction of heat from the resin molded body W, the holding block 13 passes through the cooling pipe 15 and a cooling groove (not shown). Since the cooling medium is constantly circulated, the temperature rise during heating is small, and warping and deformation can be corrected and internal stress can be relaxed in a short time.

ここで、熱変形温度は一般的に荷重たわみ温度を用いる。熱変形温度近傍の所定温度は熱変形温度より10〜30K低いほうが好ましく、また、挟持の際の締付け力としては1〜100kPa特には5〜20kPaが好ましい。図示しない駆動(昇降)加熱手段は油圧、空圧、モータ、手動プレス等のものが用いられる。また、本実施の形態は下側が駆動するようにしたが、上側のみ又は両者を駆動してもよい。   Here, the deflection temperature under load is generally used as the heat distortion temperature. The predetermined temperature in the vicinity of the heat deformation temperature is preferably 10 to 30 K lower than the heat deformation temperature, and the clamping force at the time of clamping is preferably 1 to 100 kPa, particularly preferably 5 to 20 kPa. Driving (lifting / lowering) heating means (not shown) may be hydraulic, pneumatic, motor, manual press or the like. In this embodiment, the lower side is driven, but only the upper side or both may be driven.

温度センサー16の温度測定によって、変形発生部の近傍の温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度以上、融点以下の所定温度に到達した時点において、挟持部材1a、1bによる挟持状態を維持したままでエネルギー線による照射加熱を終了して冷却工程に移る。エネルギー線透過材からなる上側の矯正部材1aはエネルギー線を透過するため、照射時の温度上昇は成形品表面からの熱伝導でのみ温度上昇している。従って樹脂成形体Wのエネルギー線吸収による温度上昇に比較すると低温であり、樹脂成形体Wの熱量を奪うため冷却効率がよく、早く熱変形温度以下の所定の温度に降温する。   When the temperature in the vicinity of the deformation generating portion reaches a predetermined temperature not lower than the melting point and not higher than the melting point of the resin composition constituting the molded resin W by the temperature measurement of the temperature sensor 16, the sandwiching members 1a and 1b The irradiation heating by the energy rays is finished while maintaining the sandwiched state by and the process proceeds to the cooling step. Since the upper correction member 1a made of the energy ray transmitting material transmits the energy ray, the temperature rise at the time of irradiation rises only by heat conduction from the surface of the molded product. Accordingly, the temperature is lower than the temperature rise due to the absorption of energy rays of the resin molded body W, and since the amount of heat of the resin molded body W is taken away, the cooling efficiency is good and the temperature is quickly lowered to a predetermined temperature below the heat deformation temperature.

次に、同図(d)に示すように、温度センサー16の温度測定によって、挟持部材の温度が樹脂成形体Wを構成している樹脂組成物の熱変形温度近傍の所定温度に降温した時点において、矯正部材1a、1bによる挟持を解除し、樹脂成形体Wを取り出す。   Next, as shown in FIG. 6D, when the temperature of the temperature sensor 16 is measured, the temperature of the clamping member is lowered to a predetermined temperature in the vicinity of the thermal deformation temperature of the resin composition constituting the resin molded body W. , The clamping by the correction members 1a and 1b is released, and the resin molded body W is taken out.

(実施形態2)
本発明の第2の実施形態を図4及び図5に基づいて説明する。図4及び図5において、19は端子部材、W、W1、W2は樹脂成形体、図5において、1aは補正部材を構成する上側の矯正部材、1bは補正部材を構成する下側の矯正部材、18はエネルギー線非透過材、19は端子部材、46は冷却溝、Wは樹脂成形体である。なお、本実施の形態の基本構成は実施形態1と共通であり、共通する部分には同一の符号を付して説明は省略する。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. 4 and 5, 19 is a terminal member, W, W1, and W2 are resin moldings. In FIG. 5, 1a is an upper correction member that constitutes a correction member, and 1b is a lower correction member that constitutes a correction member. , 18 is an energy ray non-permeable material, 19 is a terminal member, 46 is a cooling groove, and W is a resin molding. Note that the basic configuration of this embodiment is the same as that of Embodiment 1, and common portions are denoted by the same reference numerals and description thereof is omitted.

本実施形態は、矯正部材1のエネルギー線透過部の一部にエネルギー線非透過材を設けてエネルギー線を樹脂成形体Wに照射することで、矯正が必要な部位にのみエネルギー線を照射することを特徴とし、実施形態1と共通するその他の部分については説明を省略する。   In the present embodiment, an energy ray non-permeable material is provided in a part of the energy ray transmitting portion of the correction member 1 and the energy ray is applied to the resin molded body W, so that the energy ray is applied only to a portion requiring correction. The description of other parts common to the first embodiment is omitted.

図4は本実施形態における製造方法の実施により挟持・矯正される前の樹脂成形体Wの形状を示すものである。同図(a)に示すように、本実施形態における樹脂成形体W1、W2は円筒容器状の射出成形品であって、円板の上に円筒の縁部が連結されている形状であり、円板上には端子部材19が圧入されている。本実施形態における樹脂成形体は本来W1に示す形状を狙ったものであるが、射出成形時の残留応力や端子部材19を圧入する際の加工条件等の影響でW2に示すように変形したり、このような変形の有無にかかわらず、端子部材19の圧入による新たな内部応力が樹脂成形品W1、W2に残留する場合がある。この場合、後工程や使用環境下で受けた熱履歴により樹脂成形体W1、W2が変形する。   FIG. 4 shows the shape of the resin molded body W before being clamped and corrected by the production method according to this embodiment. As shown in the figure (a), the resin molded bodies W1 and W2 in the present embodiment are cylindrical container-like injection-molded products, and have a shape in which a cylindrical edge is connected on a circular plate, A terminal member 19 is press-fitted on the disk. The resin molded body in the present embodiment is originally aimed at the shape shown in W1, but may be deformed as shown in W2 due to the residual stress at the time of injection molding or the processing conditions when the terminal member 19 is press-fitted. Regardless of the presence or absence of such deformation, new internal stress due to the press-fitting of the terminal member 19 may remain in the resin molded products W1 and W2. In this case, the resin moldings W1 and W2 are deformed due to the thermal history received in the post-process or use environment.

そのため、本実施形態における上下の矯正部材1a、1bの樹脂成形体Wと当接する部分の形状は、端子部材19圧入後の樹脂成形体Wが後工程や使用環境下で受ける熱履歴を考慮した形状、すなわち、後工程で端子部材19圧入後の樹脂成形体Wに内部応力が残留した後、熱履歴が加わって反りが生じた場合の最終的な変形部位及び変形量を考慮した形状に形成されている。したがって、挟持・矯正される前の樹脂成形体Wは、これらW1、W2いずれの形状でも、本実施形態における製造方法を適用することができる。   For this reason, the shape of the portion of the upper and lower correction members 1a, 1b in contact with the resin molded body W in the present embodiment takes into account the thermal history that the resin molded body W after press-fitting the terminal member 19 receives in a subsequent process or use environment. Formed into a shape that takes into account the final deformation site and deformation amount when warping occurs due to the addition of thermal history after internal stress remains in the resin molded body W after the terminal member 19 is press-fitted in the subsequent process. Has been. Therefore, the manufacturing method in this embodiment can be applied to the resin molded body W before being sandwiched / corrected in any shape of W1 and W2.

このような樹脂成形体Wにおいては、実施形態1に示すような樹脂成形体全面にエネルギー線を照射すると、端子部材19に金属材料が含まれる場合には、エネルギー線の照射により端子部材19が異常に加熱され、端子部材19自身や樹脂成形体Wが損傷される可能性があり、また、端子部材19が耐熱性の低い樹脂材料から形成されている場合には、端子部材19がエネルギー線の照射により溶融し、損傷や寸法精度の低下が生じる場合がある。   In such a resin molded body W, when the energy beam is irradiated to the entire surface of the resin molded body as shown in the first embodiment, when the terminal member 19 contains a metal material, the terminal member 19 is irradiated by the energy beam irradiation. If the terminal member 19 is formed of a resin material having low heat resistance, the terminal member 19 itself or the resin molded body W may be damaged due to abnormal heating. May be melted by irradiation, resulting in damage and a decrease in dimensional accuracy.

そのため、図5(a)に示すように上側の矯正部材1aのエネルギー透過部に、エネルギー線非透過部18が備えられている。このエネルギー線非透過部18は、例えば鋼鈑のようなエネルギー線が透過しない材料からなるものであり、樹脂成形体Wの円板上に圧入される端子部材19の位置に応じて、端子部材19にエネルギー線が照射されないような位置に配される。   Therefore, as shown in FIG. 5A, an energy ray non-transmissive portion 18 is provided in the energy transmitting portion of the upper correction member 1a. The energy ray non-transmissive portion 18 is made of a material that does not allow energy rays to pass through, such as a steel plate, for example, and is a terminal member depending on the position of the terminal member 19 that is press-fitted onto the disk of the resin molded body W. 19 is arranged at a position where energy rays are not irradiated.

このような装置を用いて樹脂成形体Wにエネルギー線を照射すれば、図5(b)に示すように、本来端子部材19に照射されるエネルギー線がエネルギー線非透過部18で遮蔽され、樹脂成形体Wの必要部位にのみエネルギー線が照射される。すなわち、変形の矯正や残留した内部応力の緩和に必要な樹脂成形体Wの部位にのみエネルギー線が照射されるので、圧入された端子部材が加熱されることがなく、これらの部位に不要な熱影響の付与を防ぐことができる。   If the resin molded body W is irradiated with energy rays using such an apparatus, as shown in FIG. 5 (b), the energy rays originally irradiated on the terminal member 19 are shielded by the energy ray non-transmissive portion 18, Energy rays are irradiated only on the necessary parts of the resin molded body W. That is, since the energy rays are irradiated only on the portions of the resin molded body W necessary for correction of deformation and relaxation of the remaining internal stress, the press-fitted terminal member is not heated and unnecessary for these portions. Application of heat effects can be prevented.

さらに、樹脂成形体Wの変形発生部や残留応力部以外にエネルギー線が照射されないような部位にもエネルギー線非透過部18を配するのが好ましい。これにより、樹脂成形体Wに変形や内部応力が残留せず、本来エネルギー線の照射が不要な部分への熱影響の付与を防ぐことができる。なお、この後工程である矯正部材1a、1bによる樹脂成形体Wの挟持から樹脂成形体Wを矯正部材1より取り出すに至る一連の工程に関しては、図3(b)〜(d)に基づいて説明した実施形態1と同一であるので本実施形態での説明は省略する。   Furthermore, it is preferable to dispose the energy ray non-transmitting portion 18 in a portion where the energy ray is not irradiated other than the deformation occurrence portion and the residual stress portion of the resin molded body W. Thereby, a deformation | transformation and internal stress remain | survive in the resin molding W, and the provision of the heat influence to the part which does not need the irradiation of an energy beam can be prevented. In addition, regarding a series of processes from the sandwiching of the resin molded body W by the correction members 1a and 1b, which is a subsequent process, to the removal of the resin molded body W from the correction member 1, FIG. 3B to FIG. Since it is the same as Embodiment 1 demonstrated, description in this embodiment is abbreviate | omitted.

また、樹脂成形体Wの形状は本実施例に限定されるものではなく、変形の方向も樹脂成形体Wの肉厚、金型の温度分布等によっては図示のものと反対の方向に生じることもある。また、本実施形態においては、円板上に配置されるものは端子部材であったが、これに限定されるものではなく、円板上に実装される金属部品や電子部品であってもよく、その他樹脂成形品Wに装着することにより樹脂成形品Wに残留応力や変形を発生させる装着部材に対して、本実施形態に係る発明を好適に用いることができる。   Further, the shape of the resin molded body W is not limited to this embodiment, and the direction of deformation may occur in the opposite direction to that shown in the figure depending on the thickness of the resin molded body W, the temperature distribution of the mold, and the like. There is also. Further, in the present embodiment, the terminal member is disposed on the disk, but is not limited to this, and may be a metal component or an electronic component mounted on the disk. In addition, the invention according to this embodiment can be suitably used for a mounting member that generates residual stress or deformation in the resin molded product W by mounting on the resin molded product W.

(実施形態3)
本発明の第3の実施形態を図6に基づいて説明する。図6は再矯正用装置による樹脂成形体Wの再矯正工程の概略を示すものである。同図において、20は再矯正用装置、21はパンチ、22はダイ、Wは樹脂成形体である。
(Embodiment 3)
A third embodiment of the present invention will be described with reference to FIG. FIG. 6 shows the outline of the re-correction process of the resin molded body W by the re-correction device. In the figure, 20 is a re-correcting device, 21 is a punch, 22 is a die, and W is a resin molding.

実施形態1及び2に示す樹脂成形体の製造方法により矯正後冷却された樹脂成形体Wは、エネルギー線の照射条件のばらつきや冷却条件のばらつきにより、残留する内部応力がばらつき、図1や図5に示すような矯正部材1aから取り出した場合に、収縮具合のばらつきによって、その寸法精度にばらつきが生じる場合がある。このような寸法精度のばらつきを有したままで、その後熱履歴を受けると樹脂成形体の最終的な寸法もばらつきが生じる。そのため、実施形態1及び2に示す樹脂成形体の製造方法により矯正後冷却された樹脂成形体Wを、図示しない寸法計測装置等で、所望の寸法精度が得られているかを計測する。計測した結果、所望の寸法形状が得られていない樹脂成形体Wについては、図6に示す再矯正用装置にて、本来の狙いとする形状、すなわち、実施形態1および2で説明した後工程の使用環境下での熱変形を考慮した形状に再度矯正する。具体的には、樹脂成形体Wをダイ22に固定して、パンチ21で加圧することにより再矯正を行なう。パンチ21による加圧条件は、前述の寸法計測結果で得られた計測値と本来狙いとする寸法との差異に応じて決定する。例えば、この差異が大きい場合は加圧力を大きくし、小さい場合は加圧力を小さくする。図示しないパンチ21の駆動制御部には、予め寸法の差異の値と付与すべき加圧力の関係がデータベース化されており、かかる駆動制御部によって再矯正のための加圧制御が行なわれる。   The resin molded body W that has been cooled after correction by the method for producing a resin molded body shown in the first and second embodiments varies in residual internal stress due to variations in irradiation conditions of energy rays and variations in cooling conditions. When it is taken out from the correction member 1a as shown in FIG. 5, the dimensional accuracy may vary due to the variation in the degree of contraction. If the thermal history is subsequently received with such a variation in dimensional accuracy, the final dimensions of the resin molded product also vary. Therefore, the resin molded body W that has been cooled after correction by the method for manufacturing a resin molded body shown in Embodiments 1 and 2 is measured by a dimension measuring device (not shown) to obtain a desired dimensional accuracy. As a result of the measurement, for the resin molded body W in which a desired dimension and shape are not obtained, the re-correction apparatus shown in FIG. 6 uses the original target shape, that is, the post-process described in the first and second embodiments. Correct the shape again in consideration of thermal deformation under the usage environment. Specifically, re-correction is performed by fixing the resin molded body W to the die 22 and pressurizing with the punch 21. The pressurizing condition by the punch 21 is determined according to the difference between the measured value obtained from the above-described dimension measurement result and the originally intended dimension. For example, when the difference is large, the pressure is increased, and when the difference is small, the pressure is decreased. The drive control unit of the punch 21 (not shown) has a database of the relationship between the dimensional difference value and the pressure to be applied, and the drive control unit performs pressure control for re-correction.

実施形態1における樹脂成形体の製造装置を示す説明図である。It is explanatory drawing which shows the manufacturing apparatus of the resin molding in Embodiment 1. FIG. 実施形態1における脂成形体の製造方法の前後での樹脂成形体の形状を示す説明図である。It is explanatory drawing which shows the shape of the resin molding before and behind the manufacturing method of the fat molding in Embodiment 1. FIG. 実施形態1における樹脂成形体の補正工程の概略を示す説明図である。It is explanatory drawing which shows the outline of the correction | amendment process of the resin molding in Embodiment 1. FIG. 実施形態2における製造方法の実施により挟持・矯正される前の樹脂成形体の形状を示す説明図である。It is explanatory drawing which shows the shape of the resin molding before being pinched and corrected by implementation of the manufacturing method in Embodiment 2. 実施形態2における樹脂成形体の製造装置を示す説明図である。It is explanatory drawing which shows the manufacturing apparatus of the resin molding in Embodiment 2. 実施形態3における再矯正用装置による樹脂成形体の再矯正工程の概略を示す説明図である。It is explanatory drawing which shows the outline of the recorrection process of the resin molding by the apparatus for recorrection in Embodiment 3. FIG. 従来例を示す概略図である。It is the schematic which shows a prior art example.

符号の説明Explanation of symbols

1 矯正部材
W 樹脂成形体
1 Straightening member W Resin molding

Claims (3)

エネルギー線透過性の材料からなるエネルギー線透過部を少なくとも一部に備えた矯正部材により樹脂成形体を挟持した状態で、エネルギー線透過部を介して樹脂成形体にエネルギー線を照射・加熱して残留応力を緩和するとともに、所望の形状に成形する樹脂成形体の製造方法であって、
樹脂成形体の成形過程で生じた変形発生部若しくは内部応力が残留した応力残留部の少なくともいずれかに、エネルギー線透過部を介してエネルギー線を照射して熱変形温度以上融点以下の温度に加熱した状態で、前記矯正部材により所定の締付け力を加えて後工程や使用環境下で受ける熱履歴を考慮した形状に矯正する矯正工程を有することを特徴とする樹脂成形体の製造方法。
In a state where the resin molded body is sandwiched by an orthodontic member provided at least in part with an energy beam transmitting portion made of an energy beam transmitting material, the resin molded body is irradiated with energy rays and heated via the energy beam transmitting section. A method for producing a resin molded body that relieves residual stress and molds it into a desired shape,
At least one of the deformation generation part generated in the molding process of the resin molded body or the stress residual part where internal stress remains is irradiated with energy rays through the energy ray transmission part and heated to a temperature not lower than the heat deformation temperature and not higher than the melting point. A method for producing a resin molded body, comprising: a straightening step in which a predetermined tightening force is applied by the straightening member to correct the shape in consideration of a thermal history received in a post-process or a use environment.
前記加熱工程は、変形の矯正や残留した内部応力の緩和に必要な樹脂成形体の部位にのみエネルギー線を照射するものであることを特徴とする請求項1に記載の樹脂成形体の製造方法。   2. The method for producing a resin molded body according to claim 1, wherein the heating step irradiates an energy beam only to a portion of the resin molded body necessary for correction of deformation and relaxation of residual internal stress. . 矯正工程により矯正された後溶融開始温度以下に冷却された樹脂成形体の寸法形状を計測し、所定の寸法に満たない場合には、樹脂成形体に荷重を加えて、前記後工程の使用環境下での熱変形を考慮した形状に再度矯正する再矯正工程を有することを特徴とする請求項1若しくは請求項2のいずれかに記載の樹脂成形体の製造方法。   Measure the size and shape of the resin molded product that has been corrected by the correction process and then cooled below the melting start temperature. If it does not meet the specified dimensions, a load is applied to the resin molded product, The method for producing a resin molded body according to claim 1, further comprising a re-correction step of correcting the shape again in consideration of the thermal deformation below.
JP2003367031A 2003-10-28 2003-10-28 Manufacturing method for resin molded product Pending JP2005131798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367031A JP2005131798A (en) 2003-10-28 2003-10-28 Manufacturing method for resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367031A JP2005131798A (en) 2003-10-28 2003-10-28 Manufacturing method for resin molded product

Publications (1)

Publication Number Publication Date
JP2005131798A true JP2005131798A (en) 2005-05-26

Family

ID=34645152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367031A Pending JP2005131798A (en) 2003-10-28 2003-10-28 Manufacturing method for resin molded product

Country Status (1)

Country Link
JP (1) JP2005131798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102922754A (en) * 2012-10-31 2013-02-13 东莞劲胜精密组件股份有限公司 Technique for eliminating deformation of plastic parts
JP2014034160A (en) * 2012-08-09 2014-02-24 Dainippon Printing Co Ltd Correction method and production method of fine convex structure, and system for producing fine convex structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034160A (en) * 2012-08-09 2014-02-24 Dainippon Printing Co Ltd Correction method and production method of fine convex structure, and system for producing fine convex structure
CN102922754A (en) * 2012-10-31 2013-02-13 东莞劲胜精密组件股份有限公司 Technique for eliminating deformation of plastic parts

Similar Documents

Publication Publication Date Title
CN1892275A (en) Optical element fixation method and method for manufacturing optical module
JP2006512221A5 (en)
JP2011183782A (en) Transfer device and transfer method
CN109641399B (en) Method and device for laser beam plastic welding
JP2005131798A (en) Manufacturing method for resin molded product
US20210008609A1 (en) Method for manufacturing a press-molded article, a retainer, and a manufacturing system for a press-molded article
KR102270530B1 (en) Method for bending of glass and tempered glass using laser
JPS62134118A (en) Method for correcting shape accuracy of plate spring
JP2016169121A (en) Bending molding equipment and bending molding method of sheet glass
JP5912687B2 (en) Welding apparatus and welding method for thermoplastic resin tube
KR102002363B1 (en) Method for bending of glass and tempered glass using laser
JP4549562B2 (en) Method and apparatus for removing molecular orientation of resin molded product
JP5123345B2 (en) Steel plate quenching method and steel plate quenching apparatus
JP3988516B2 (en) Manufacturing method of resin molded body and manufacturing apparatus thereof
JP2901138B2 (en) Mold quenching method and apparatus for quenching bending dies
KR101678986B1 (en) Glass forming apparatus and glass forming method using laser beam
JP4921989B2 (en) Method for manufacturing straightened tempered workpiece
JP2007169761A (en) Method for manufacturing reclining component
JP4965310B2 (en) Constraint quenching apparatus and method for thin plate member
JP2001350074A (en) Lens-attaching structure for optical pickup
KR101652180B1 (en) Laser heat treatment system having metal surface hardness measuring instrument
JP3970680B2 (en) Annealing method for resin products
JP2002129239A (en) Laser beam hardening method and apparatus
JPWO2013047645A1 (en) Resin bonded body and manufacturing method thereof
JP6129592B2 (en) Heating method and heating apparatus for fiber-containing resin body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Effective date: 20071130

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20071211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408