JP3988292B2 - 車両用発電制御装置 - Google Patents

車両用発電制御装置 Download PDF

Info

Publication number
JP3988292B2
JP3988292B2 JP34599298A JP34599298A JP3988292B2 JP 3988292 B2 JP3988292 B2 JP 3988292B2 JP 34599298 A JP34599298 A JP 34599298A JP 34599298 A JP34599298 A JP 34599298A JP 3988292 B2 JP3988292 B2 JP 3988292B2
Authority
JP
Japan
Prior art keywords
signal
power generation
value
duty ratio
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34599298A
Other languages
English (en)
Other versions
JPH11262299A (ja
Inventor
冬樹 前原
博英 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34599298A priority Critical patent/JP3988292B2/ja
Publication of JPH11262299A publication Critical patent/JPH11262299A/ja
Application granted granted Critical
Publication of JP3988292B2 publication Critical patent/JP3988292B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)
  • Dc Digital Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン制御装置等からの指示に応じた車両用交流発電機の発電制御を行う車両用発電制御装置に関する。
【0002】
【従来の技術】
車両用交流発電機は、車両走行中にバッテリの補充電を行うとともに、エンジンの点火、照明、その他の各種電装品の電力を賄うものであり、その負荷状態が変化した場合であっても出力電圧をほぼ一定に維持するために発電制御装置が接続されている。特に最近では、車両に備わった外部制御装置(例えばエンジン制御装置ECU)から発電制御装置に対して所定の設定信号を送って、発電制御装置における調整電圧や励磁電流通電率の目標値等を設定することにより、車両の走行状態等に応じた最適な発電制御を行う手法が用いられている。
【0003】
例えば、特開平5−268733号公報に開示された車載用発電機の発電制御装置は、エンジンコントロールユニットから送られてくるPWM信号に基づいて発電機の調整電圧を設定している。また、特開平8−275407号公報に開示された発電電圧制御装置は、エンジン制御装置から送られてくる車両状態信号に応じた制御動作を行っている。また、特開平7−184330号公報に開示された電圧調整器は、エンジン制御装置から送られてくるコントロール信号に応じた発電制御を行うとともに、同じ信号線を介して出力モード信号が送られてきた場合には、診断装置による診断内容の出力を行っている。また、この他にも、エンジン制御装置との間で信号の送受を行うものとして、特開平6−261464号公報に開示された発電機制御装置が知られている。
【0004】
【発明が解決しようとする課題】
ところで、上述した特開平5−268733号公報に開示された発電制御装置では、PWM信号に応じて発電機の調整電圧を制御しており、同じ信号線を介して2種類以上の信号を送受することはできないため、調整電圧以外の制御、例えばアイドル時のトルク制御等を並行して行うことができなかった。
【0005】
また、特開平8−275407号公報に開示された発電電圧制御装置では、車両状態信号をシリアルの通信方法を用いて送受しており、この車両状態信号に応じてアイドル時の発電率(Fduty)を制御している。しかし、シリアル通信によって送受される信号は、ノイズの影響を受けやすく、データの転送速度を速くできないため、送受可能なデータ量が少なく、数十ステートからなるような車両状態信号や数段階の制御パラメータしか送受できず、複雑な制御が行えなかった。また、シリアル通信を行う場合には、エンジン制御装置と発電制御装置の両方に専用のICを備える必要があり、構成が複雑になって部品コストが上昇する。
【0006】
また、この発電制御装置を用いることにより、発電率を調整して発電率の増加速度である徐励時間の設定や変更を行う制御が可能になるが、このような制御はエンジン制御装置等から送られてくる信号に基づいて行うことになるため、信号線が断線したり、エンジン制御装置等が故障した場合には、徐励時間に関する制御が行われず、エンジンストールが発生するおそれがあった。また、この発電制御装置では、エンジン制御装置等から送られてきた複数種類の信号の設定値を保持して、この保持された設定値を用いて発電制御を行っているため、ノイズ等によって誤った内容の設定値が保持された場合には、それ以後の発電制御がこの誤った内容の設定値に基づいて行われてしまうという不都合があった。このように、上述した発電制御装置は、信号が遮断された場合に無制御状態になり、しかもノイズ等に弱いという問題があった。
【0007】
また、特開平7−184330号公報に開示された電圧調整器は、エンジン制御装置から送られてくる2種類の信号を識別しているが、一方は出力モード信号であり、電圧調整器では出力モード信号であることのみを認識できればよい。したがって、コントロール信号が2種類以上あるような複雑な場合を想定しておらず、これではエンジン制御装置との連携を取りながら電圧調整器によって数々の制御を行うといったことができなかった。
【0008】
本発明は、このような点に鑑みて創作されたものであり、その目的は、複数種類の制御信号を送受することができ、複雑な制御が可能な車両用発電制御装置を提供することにある。
【0009】
また、本発明の他の目的は、制御信号を受信できない場合の無制御状態を防止するとともに、ノイズ等による影響が少ない車両用発電制御装置を提供することにある。
【0010】
【課題を解決するための手段】
上述した課題を解決するために、本発明の車両用発電制御装置は、互いに周期が異なる複数のパルス信号のいずれかを受信したときに、その周期から信号の種類を判別して、設定しようとする制御変数を決定し、そのデューティ比を検出して、制御変数の具体的な設定を行っており、複数種類の制御信号に基づく複雑な制御が可能となる。例えば、車両やバッテリの状態に応じて、充電性能や燃費の向上を目的とした発電制御が可能になるだけでなく、エンジン制御装置等の信号の送信側において、制御のアルゴリズムや設定値の変更が必要になった場合であっても、単にソフトウエアを変えるだけで対処することができる。したがって、急な仕様変更が必要になっても短期間で対応でき、車両毎に仕様が異なっても発電制御装置の品種を増やすことなく対応することができる。また、PWM信号によるデータ通信が基本となっており、デューティ比によって制御変数の具体的な設定を行うため、シリアル通信による場合に比べるとノイズの影響を受けにくく、高速に制御信号の送受を行うことができる。さらに、PWM信号の周期とデューティ比は、信号の送信側においてソフトウエアで容易に変更することができ、しかも各種の制御変数の設定は必ずしもリアルタイムな処理を必要としない。したがって、エンジン制御装置から信号を送信する場合であっても処理の負担が軽く、エンジン制御等の他の処理に負担をかけることもない。このため、本発明の車両用発電制御装置は、ほとんどの車両に搭載されたエンジン制御装置と組み合わせて用いることができ、汎用性に優れている。
【0011】
また、受信した信号のデューティ比が所定の範囲に含まれている場合、例えば10〜90%の範囲内で制御変数の設定を行うようにすることが好ましい。デューティ比が極端に小さい場合や大きい場合とは、信号線に重畳したノイズを検出している場合も含まれるため、このような範囲に含まれるデューティ比を制御変数の設定から除外することにより、ノイズによる誤設定を回避することができる。
【0012】
また、上述したように各種の信号のデューティ比に応じて制御変数を設定する代わりに、パルス信号の波高値の大小に応じて制御変数を設定するようにしてもよい。デューティ比を検出する場合に比べると、波高値を検出する方が回路規模を小さくすることができるため、コストを下げることができる。
【0013】
また、所定時間内に受信しないいずれかの種類の信号がある場合には、この信号に応じて設定される制御変数を予め設定された値に変更することが好ましい。このように、所定時間検出できない信号についてはデフォルト値に設定されるため、信号の送信側の装置では、デフォルト値以外で制御したい信号についてのみ信号を送信すればよく、負担が軽く、しかも送信サイクルを短くして高速な制御が可能となる。また、信号線が断線した場合に、断線前に送信した信号が特殊なものであっても(例えば、減速時に発電機に強制発電をさせるために調整電圧を15Vに設定するような場合)、所定時間経過の後に制御変数がデフォルト値に再設定されるので、設定値が異常なために過充電や充電不足になるといった不都合はない。さらに、一時的な信号入力に応じて制御変数が長時間ホールドされることがないため、ノイズ等を正常な信号として誤って受信した場合であっても、誤動作は短時間で終了し、その影響を少なくすることができる。
【0014】
また、上述した制御変数には、発電機の発電電圧目標値を含めることが好ましい。発電機の発電電圧を多段階に設定することができるため、車両の走行状態に応じた最適な目標電圧が設定可能であり、バッテリの過充電や充電不足を低減することができる。
【0015】
また、上述した制御変数には、発電機の界磁巻線に対する通電をスイッチングするスイッチング手段の導通率の上限値を含めることが好ましい。発電機の稼働率を多段階に設定することができるため、例えばエンジン始動時の発電抑制による発電機トルクの低減を行う場合に、エンジン温度に応じた必要最小限の発電抑制が可能であり、バッテリの充電不足を低減することができる。
【0016】
また、上述した制御変数には、発電機の界磁巻線に対する通電をスイッチングするスイッチング手段の導通率の増加速度の上限値を含めることが好ましい。発電機の発電量の増加速度(徐励時間)を多段階に設定することができるため、エンジン回転数に応じた最適な徐励時間の設定が可能になり、エンジンストールを防止することができるとともに、走行時の不要な徐励制御をなくすことができるため負荷増大時の不必要な徐励制御によってヘッドランプが暗くなるといった不都合を防止することができる。
【0017】
また、制御変数にスイッチング手段の導通率の上限値が含まれる場合に、この導通率の上限値に対応する信号が所定時間内に受信できないときには導通率の増加速度の上限値を予め設定された値に変更し、受信できたときにはこの導通率の増加速度の上限値を大きく設定するかあるいは設定をなくすことが好ましい。導通率の上限値に対応する信号が受信可能な場合には、この上限値を可変することにより導通率の増加速度を制御することができるため、この増加速度の上限値を大きく設定、あるいは全く設定しなくても、エンジンに対して急激に負荷が加わることがない。また、導通率の上限値に対応する信号を受信できない場合、例えば信号線が断線した場合や信号の送信元となるエンジン制御装置等が故障した場合であっても、導通率の増加速度の上限値(徐励時間)が予め設定された値となるため、徐励時間が極端に短くなってエンジンに加わる負荷が急増してエンジンストール等の不都合が生じることもない。
【0018】
また、上述した各種の制御変数を設定するために用いられる複数のパルス信号は、所定の順番で周期的に入力することが好ましい。信号が入力される順番および周期が決まっているため、所定時間内に入力された信号を調べることにより、入力されない信号を認識することができ、信号入力の有無を調べるために複雑なロジック回路等を追加する必要がない。
【0019】
また、所定時間内に受信しない信号に対応する制御変数を予め設定された値に変更する場合に、この所定時間の設定を、複数のパルス信号が繰り返し入力される周期以上とすることが好ましい。信号が入力されないときに、対応する制御変数の値を確実に予め設定された値(デフォルト値)とすることができるため、信号を受信できない場合に無制御状態となることを防止することができる。また、繰り返し入力される信号に基づいて制御変数の値を設定しているため、ノイズ等による誤設定が発生した場合であっても、次の周期で入力される信号によってその誤設定が正しい内容に変更されるため、ノイズ等による影響を最小限に抑えることができる。
【0020】
【発明の実施の形態】
以下、本発明を適用した一の実施形態の車両用発電制御装置(以下、「レギュレータ」と称する)について、図面を参照しながら具体的に説明する。
【0021】
図1は、本発明を適用した一実施形態のレギュレータの構成を示す図であり、あわせてこのレギュレータと車両用交流発電機(以下、「オルタネータ」と称する)およびエンジン制御装置(ECU)等との接続状態が示されている。
【0022】
図1において、レギュレータ1はオルタネータ2の出力電圧(発電電圧)をほぼ一定(例えば14.5V)に制御するためのものであり、キースイッチ3がオン状態になってバッテリ4がECU5に接続されると、ECU5から数々の制御信号が送られてきて、これら複数種類の制御信号に応じた発電制御を行う。
【0023】
オルタネータ2は、固定子であるステータに含まれる3相のステータコイル20と、このステータコイル20の3相出力を全波整流するために設けられた整流器22と、回転子であるロータに含まれる界磁巻線としてのロータ巻線24とを含んでいる。このオルタネータ2の出力電圧の制御は、ロータ巻線24に対する通電をレギュレータ1によって適宜オンオフ制御することにより行われる。
【0024】
レギュレータ1は、上述したロータ巻線24に直列に接続されてオンオフ制御によって通電を行うスイッチング手段としてのスイッチングトランジスタ12と、ロータ巻線24に並列に接続されて巡回電流を流すフライホイールダイオード14と、スイッチングトランジスタ12のオンオフ状態を制御する発電制御回路16と、ECU5から送られてくる各種の制御信号を受信して対応する制御変数の設定を行う外部信号受信回路18とを含んで構成されている。
【0025】
図2は、レギュレータ1に含まれる外部信号受信回路18の構成を示すブロック図である。同図に示すように、外部信号受信回路18は、ECU5から送られてくる複数種類の信号のそれぞれの周期を検出する周期検出手段としての周期検出部30と、周期検出部30によって検出された周期の値に基づいて信号の種類を判別する信号種類判別手段としての信号種類判別部40と、受信した信号のデューティ比を検出するデューティ比検出手段としてのデューティ比検出部50と、信号種類判別部40によって判別された種類の信号に対応する制御変数の値を、デューティ比検出部50によって検出された信号のデューティ比に応じて設定する変数設定手段としての制御変数設定部60とを備えている。
【0026】
本実施形態においては、ECU5から送られてくる制御信号としては、▲1▼制限Fduty信号、▲2▼発電電圧目標信号、▲3▼徐励時間信号の3種類が少なくとも含まれている。▲1▼制限Fduty信号は、ロータ巻線24に対して通電を行うスイッチングトランジスタ12の導通率の上限値を制御変数として設定するためのものである。▲2▼発電電圧目標信号は、図1に示すB端子を介して検出されるオルタネータ2の発電電圧の目標値(発電電圧目標値)を制御変数として設定するためのものである。▲3▼徐励時間信号は、スイッチングトランジスタ12の導通率の増加速度の上限値を制御変数として設定するためのものである。
【0027】
図3は、3種類の制御信号の波形を示す図である。同図に示すように、例えば制限Fduty信号の周期が10msに、発電電圧目標信号の周期が20msに、徐励時間信号の周期が40msにそれぞれ設定されている。なお、図3に示した各信号は、デューティ比が50%の場合を示したが、この値は制御変数の設定内容に応じて可変に設定される。
【0028】
図2に示す周期検出部30は、ECU5から送られてくる制御信号(制限Fduty信号、発電電圧目標信号、徐励時間信号の3種類の信号のいずれか)の周期を検出する。信号種類判別部40は、周期検出部30によって検出した周期が10ms、20ms、40msのいずれであるかを調べることにより信号の種類を判別する。
【0029】
図4は、外部信号受信回路18の詳細構成を示す図である。キースイッチ3がオン状態になってECU5から何らかの制御信号が送られてきてCX端子の電位が高くなると、CX端子に接続された抵抗201とダイオード202の直列回路からなるキーオン信号生成回路から電源回路に向けてキーオン信号が出力される。
【0030】
図5は、電源回路の詳細構成を示す図である。ECU5からレギュレータ1に対して送られてくる制御信号は、図3に示したように、いずれもPWM信号であり、ハイレベルとローレベルが周期的に繰り返されるため、この制御信号によって生成されるキーオン信号も同様の波形を有している。このキーオン信号が電源回路に入力されると、キャパシタ301が充電されるため、MOSトランジスタ302のゲートに印加されるバイアス電圧が所定値以上に保持され、このMOSトランジスタ302のドレインに接続されたトランジスタ303がオン状態になる。このため、ツェナーダイオード304に通電が行われ、発生した定電圧Vccが各回路に供給されて、図1に示した発電制御回路16や外部信号受信回路18が動作を開始する。なお、オルタネータ2が発電を開始した後は、P端子にステータコイル20の相電圧が印加され、この相電圧が抵抗305を介してMOSトランジスタ302のゲートに印加されるため、ECU5から制御信号の送信が停止しても、オルタネータ2の発電が停止するまでは、電源回路の動作が維持される。
【0031】
次に、図4を用いて外部信号受信回路18の構成と動作を説明する。図4に示す外部信号受信回路18は、周期検出部30として動作するトリガパルス(TP)発生回路203、周期検出カウンタ204、周期ラッチ205と、信号種類判別部40として動作する信号判別回路206、ラッチ信号選択アンド回路207、208、209と、デューティ比検出部50として動作するオン時間検出カウンタ210、オン時間ラッチ211、除算回路212と、制御変数設定部60として動作する徐励時間信号ラッチ215、発電電圧信号ラッチ216、制限Fduty信号ラッチ217、徐励時間信号受信間隔検出カウンタ221、発電電圧信号受信間隔検出カウンタ222、制限Fduty信号受信間隔検出カウンタ223とを含んで構成されている。
【0032】
ECU5からCX端子に入力されたPWM信号は、抵抗230とキャパシタ231によって構成されるノイズ除去回路によってノイズが除去され、直列接続された2つのインバータ回路233、234によって波形整形が行われた後に、トリガパルス発生回路203とオン時間検出カウンタ210にそれぞれ入力される。
【0033】
トリガパルス発生回路203は、入力されたPWM信号の立ち上がりに同期したトリガパルスを生成する。周期検出カウンタ204は、このトリガパルスがリセット端子に入力されており、トリガパルスの出力間隔をカウントし、そのカウント値(入力されたPWM信号の周期)が周期ラッチ205に保持される。一方、オン時間検出カウンタ210は、波形整形後のPWM信号が反転リセット端子に入力されており、PWM信号がハイレベルの間だけカウントを行い、そのカウント値(オン時間)がオン時間ラッチ211に保持される。
【0034】
除算回路212は、オン時間ラッチ211に保持された値B(オン時間)を周期ラッチ205に保持された値A(周期)で除算することにより、入力されたPWM信号のデューティ比を計算する。また、除算回路212のEND端子からは、デューティ比の計算が終了する毎にエンド信号がトリガパルスとして出力される。
【0035】
また、信号判別回路206は、周期ラッチ205に保持された値A(周期)に基づいて、周期に応じた3種類の出力信号を選択的にハイレベルにする。例えば、周期ラッチ205から入力された周期を選別する閾値としてT1=30msecおよびT2=15msecが設定されており、A>T1であるとき、すなわちPWM信号が周期40msecの徐励時間信号である場合には、アンド回路207に対してハイレベルの信号が送られる。また、T1>A>T2であるとき、すなわちPWM信号が周期20msecの発電電圧目標信号である場合には、アンド回路208に対してハイ状態の信号が送られる。T2>Aであるとき、すなわちPWM信号が周期10msecの制限Fduty信号である場合には、アンド回路209に対してハイ状態の信号が送られる。
【0036】
このように、受信したPWM信号の周期に応じて、選択的に3つのアンド回路207、208、209のいずれかにハイレベルの信号が送られ、このとき除算回路212からエンド信号が出力されると、対応するいずれかのラッチ215、216、217に対してのみラッチ信号が入力され、除算回路211の出力であるデューティ比がラッチ215、216、217のいずれかに取り込まれて保持される。例えば、徐励時間信号が受信された場合には、アンド回路207からラッチ信号が出力され、ラッチ215にこの徐励時間信号のデューティ比が保持される。また、発電電圧目標信号が受信された場合には、アンド回路208からラッチ信号が出力され、ラッチ216にこの発電電圧目標信号のデューティ比が保持される。また、制限Fduty信号が受信された場合には、アンド回路209からラッチ信号が出力され、ラッチ217にこの制限Fduty信号のデューティ比が保持される。このようにして各ラッチ215〜217で保持された各種の信号のデューティ比が図1に示した発電制御回路16に送られる。
【0037】
なお、デューティ比判定手段としてのデューティ比判定回路240は、除算回路212から出力されるデューティ比が所定の範囲に含まれている場合に出力をハイレベルにする。デューティ比が極端に小さいあるいは極端に大きいPWM信号はノイズの影響を受けやすいため、このような範囲を除外したPWM信号を使用することが好ましい。このために、例えばデューティ比が10〜90%の範囲にある場合に、デューティー比判定回路240からハイレベルの信号を各アンド回路207、208、209に入力して、上述したラッチ信号の出力動作を有効にしている。
【0038】
また、ラッチ215〜217のそれぞれに対応して設けられた3つのカウンタ221、222、223は、所定時間内に、対応するアンド回路207〜209からラッチ信号が出力されないと、各ラッチ215〜217のプリセット端子PRにトリガパルスを入力する。プリセット端子PRにトリガパルスが入力されたラッチ215〜217では、所定のプリセット動作が行われ、予め設定されたデフォルト値がセットされる。デフォルト値としては、例えば、徐励時間5秒に対応する値、発電電圧14.5Vに対応する値、制限Fduty100%に対応する値がそれぞれ設定されている。
【0039】
このように、受信したPWM信号の周期に応じて、データを取り込むラッチ215〜217を選択し、選択されたいずれかのラッチ215〜217に除算回路212で計算したデューティ比を取り込んで保持しており、任意の制御値が設定可能な複数の制御信号をECU5からレギュレータ1に対して送ることができ、レギュレータ1によって複雑な発電制御を行うことが可能になる。
【0040】
図6は、各種の制御信号のデューティ比と設定値の関係を示す図である。例えば、制限Fduty信号のデューティ比を10〜90%の範囲で可変に設定することにより、制限Fdutyが0〜100%の範囲で設定される。このため、エンジン始動時等においてオルタネータ2の発電トルクの抑制が必要になった場合に、エンジン温度等に応じて発電抑制量をリニアに設定、変更することが可能となる。
【0041】
また、発電電圧目標信号のデューティ比を10〜90%の範囲で可変に設定することにより、発電電圧目標電圧が12.0〜15.0Vの範囲でリニアに設定される。このため、減速時の発電量増加や車両の走行状態に応じた発電電圧の目標値の変更が容易であり、最適なバッテリ充電状態を実現することができる。
【0042】
また、徐励時間信号のデューティ比を10〜90%の範囲で可変に設定することにより、徐励時間が10〜0secの範囲でリニアに設定される。このため、走行時等において徐励制御が不要なときに徐励をキャンセル(0secに設定)して充分な発電量を確保したり、アイドル時に徐励時間を長めに設定してエンジンストールを防止する等の効果がある。
【0043】
次に、上述した各種の制御信号を用いて各種制御変数を設定する具体例について説明する。図7は、発電制御回路16の詳細構成を示す図である。
【0044】
徐励時間の設定は、図4に示したラッチ215に保持された値をデジタル−アナログ(D/A)変換器401によってアナログ値に変換することにより行われる。D/A変換器401の出力端は抵抗402を介してトランジスタ403、404からなるカレントミラー回路に接続されている。この抵抗402によって、D/A変換器401の出力電圧が電流に変換されるため、D/A変換器401の出力電圧が低い場合(図6に示したように、徐励時間が長くて徐励時間信号のデューティ比が小さい場合に相当する)にはこの電流値が小さくなり、反対にD/A変換器401の出力電圧が高い場合(図6に示したように、徐励時間が短くて徐励時間信号のデューティ比が大きい場合に相当する)にはこの電流値が大きくなる。上述したトランジスタ403、404からなるカレントミラー回路は、トランジスタ405、406からなる別のカレントミラー回路を介して徐励コンデンサ407に接続されており、D/A変換器401の出力電圧に応じて徐励コンデンサ407の充電電流が設定される。したがって、D/A変換器401の出力電圧が低い場合には、徐励コンデンサ407に流れる充電電流が小さくなるため、充電時間が長くなり、徐励コンデンサ407の両端電圧に応じて設定されるスイッチングトランジスタ12の導通率の上昇に時間がかかる。反対に、D/A変換器401の出力電圧が高い場合には、徐励コンデンサ407に流れる充電電流が大きくなるため、充電時間が短くなり、徐励コンデンサ407の両端電圧に応じて設定されるスイッチングトランジスタ12の導通率の上昇が短時間に行われる。
【0045】
また、発電電圧目標値の設定は、図4に示したラッチ216に保持された値をD/A変換器411によってアナログ値に変換することにより行われる。差動増幅器412は、D/A変換器411の出力電圧とB端子電圧の分圧電圧との差分を増幅し、電圧比較器413によってその増幅電圧と徐励コンデンサ407の両端電圧とが比較される。徐励コンデンサ407の両端電圧の方が差動増幅器412の出力電圧よりも低い場合には、電圧比較器413の出力端がハイレベルに、すなわちトランジスタ414のベース電位が低くなるため、トランジスタ414がオフ状態になって、上述した徐励時間信号に応じて設定された充電電流で徐励コンデンサ407が充電される。したがって、実際の発電電圧よりも目標電圧の方が高い場合には、徐励コンデンサ407の両端電圧が上昇し、この両端電圧に応じて設定される実際の発電電圧も上昇する。反対に、実際の発電電圧の方が目標電圧よりも高い場合には、トランジスタ414がオン状態になって、抵抗415を介して徐励コンデンサ407が放電されるため、その両端電圧が低下し、実際の発電電圧も低くなる。
【0046】
また、制限Fdutyの設定は、図4に示したラッチ217に保持された値をD/A変換器421によってアナログ値に変換することにより行われる。電圧比較器422の2つの入力端子には、鋸波発生回路423の鋸波電圧とアナログスイッチ424を介した徐励コンデンサ407の両端電圧とがそれぞれ印加されており、電圧比較器422は、これら2つの入力電圧を比較することにより、徐励コンデンサ407の両端電圧に対応したデューティ比を有するPWM信号をスイッチングトランジスタ12に送る。電圧比較器425は、徐励コンデンサ407の両端電圧と、D/A変換器421の出力電圧を比較し、徐励コンデンサ407の両端電圧の方が低い場合(徐励コンデンサ407の両端電圧に対応するFdutyの方が制限Fdutyよりも小さい場合)には、アナログスイッチ424がオン状態になって、上述した徐励コンデンサ407の両端電圧に基づくPWM信号が生成される。反対に、徐励コンデンサ407の両端電圧の方が高い場合(制限Fduty信号によってスイッチングトランジスタ22の導通率を下げて発電量を低下させる場合に対応する)には、インバータ回路426に接続されているアナログスイッチ427がオン状態になって、徐励コンデンサ407の両端電圧の代わりにD/A変換器421の出力電圧が電圧比較器422に印加される。したがって、制限Fduty信号に対応したデューティ比を有するPWM信号が生成され、スイッチングトランジスタ12に送られる。
【0047】
このように、本実施形態のレギュレータ1は、受信した信号の周期に基づいて信号の種類を判別し、信号のデューティ比によって各信号に対応した制御変数の値を広範囲にわたって連続的に設定することができ、これら複数種類の制御信号に基づく複雑な制御が可能となる。例えば、車両やバッテリ4の状態に応じて、充電性能や燃費の向上を目的とした発電制御が可能になる。また、エンジン制御装置等の信号の送信側において、制御のアルゴリズムや設定値の変更が必要になった場合であっても、各種の制御信号のデューティ比とそれによって設定される制御変数との関係を変更すればよいため、単にソフトウエアを変えるだけで対処することができる。
【0048】
また、車両毎にECU5の仕様が異なっても、ECU5側で各種制御信号の周期とデューティ比を設定するだけでよいため、レギュレータ1の品種を増やすことなく対応することができる。また、各制御信号としてPWM信号が用いられているため、ノイズの影響を受けにくく、高速に制御信号の送受を行うことができる。
【0049】
さらに、各種制御信号の周期とデューティ比は、ECU5側のソフトウエアで容易に変更することができ、しかも各種の制御変数の設定は必ずしもリアルタイムな処理を必要としないため、ECU5における処理の負担が軽く、エンジン制御等の他の処理に負担をかけることもない。このため、本実施形態のレギュレータ1は、ほとんどの車両に搭載されたECU5と組み合わせて用いることができ、汎用性に優れている。
【0050】
図8は、ECU5からレギュレータ1に向けて出力される制御信号の好ましい具体例を示す図である。図8に示すように、レギュレータ1に入力される制御信号には、制限Fduty信号に対応する区間aと、発電電圧目標信号に対応する区間bと、徐励時間信号に対応する区間cとが所定の順番で含まれており、しかもこれらの各区間が所定の周期で繰り返される。図4に示した外部信号受信回路18内の3つのカウンタ221、222、223のそれぞれがリセットされてからトリガパルスが出力されるまでの所定時間は、この繰り返し周期以上に設定されている。したがって、周期的な制御信号が繰り返し入力されている間は、この入力された制御信号のデューティ比に基づいて徐励時間、発電電圧目標値、制限Fdutyのそれぞれが設定される。また、制御信号の周期的な入力が中断した場合には、入力が途絶えた制御信号に対応する徐励時間、発電電圧目標値、制限Fdutyのいずれかあるいは全部が所定のデフォルト値に設定される。
【0051】
このように、3つの制御信号が所定の順番で周期的に入力されており、ノイズ等によって誤設定がなされた場合であっても、次の周期で適正な設定値に変更されるため、ノイズ等の影響を最小限に抑えることができる。また、各制御信号に対応したデフォルト値が出力されるまでの時間をこの制御信号の繰り返し周期よりも長い時間に設定することにより、正常に各種の制御信号が入力されている場合にはこの入力された制御信号に基づいて制限Fduty等の値を設定し、各種の制御信号の入力が途絶えた場合には制限Fduty等の値を確実にデフォルト値に設定することができる。また、3つの制御信号の入力の有無を調べる場合であっても、繰り返し周期内に入力された信号のみを調べればよいため、信号入力の有無を調べるために複雑なロジック回路等を追加する必要がない。
【0052】
ところで、上述した実施形態では、受信した3種類の制御信号のそれぞれに対応した制御変数の値を各信号のデューティ比に応じて設定するようにしたが、一部の信号について、デューティ比によらずに制御変数を一定値に制御するようにしてもよい。例えば、図9に示すように、徐励時間信号を受信したときにそのデューティ比にかかわらず徐励時間を0secに設定し、徐励時間信号が送られてこない場合にはデフォルト値に対応する5秒に設定する。このように、連続的に可変する必要がある制御変数についてはデューティ比に基づく設定を行い、2段階程度の設定で充分な制御変数については、固定的な一定値を設定することにより、外部信号受信回路18の回路構成を簡素化することができる。
【0053】
図10は、レギュレータ1に含まれる外部信号受信回路の変形例を示す図であり、制限Fdutyと発電電圧目標値に対応した2種類の制御信号が交互に周期的に入力される場合の構成が示されている。例えば、制限Fdutyに対応した制御信号が入力された場合には、この制御信号に基づいて設定された制限Fdutyを用いて発電制御を行う。この場合には、徐励時間の設定は必要ないため、ある程度大きな値に設定するか、あるいはキャンセル(0secに設定)しておく。また、信号線やECU5の異常等によって制限Fdutyに対応した制御信号が入力されない場合には、制限Fdutyをデフォルト値(例えば100%)に設定するとともに、徐励時間もデフォルト値(例えば5sec)に設定する。
【0054】
図10に示した外部信号受信回路は、図4に示した外部信号受信回路18に比べると、徐励時間に対応した制御信号が入力されたときにこの制御信号のデューティ比に基づいて徐励時間を設定するために用いられていたアンド回路207、ラッチ215およびカウンタ221のそれぞれを、D型フリップフロップ260、レジスタ262、264、セレクタ266に置き換えた構成を有している。
【0055】
D型フリップフロップ260は、制限Fdutyを設定するために備わったアンド回路209の出力端子がクロック端子に、カウンタ223の出力端子がリセット端子にそれぞれ接続されている。したがって、制限Fduty信号が受信されてアンド回路209からラッチ信号が出力されると、D型フリップフロップ260は、入力端子Dに固定的に入力されるハイレベルの信号を取り込んで保持し、出力端子Qからハイレベルの信号を出力する。また、制限Fduty信号が入力されない状態で所定時間が経過するとカウンタ223からトリガパルスが出力されるので、D型フリップフロップ260がリセットされ、出力端子Qから出力される信号がハイレベルからローレベルに変化する。
【0056】
セレクタ266は、制御端子にD型フリップフロップ260から出力される信号が入力されており、この信号がハイレベルのときに一方の入力端子1に入力されるデータを選択し、反対にローレベルのときに他方の入力端子0に入力されるデータを選択する。セレクタ266の一方の入力端子1には一方のレジスタ262が接続されており、他方の入力端子0には他方のレジスタ264が接続されている。
【0057】
レジスタ264には、制限Fduty信号が入力されない場合に設定される徐励時間のデフォルト値が格納されている。このデフォルト値としては、例えば徐励時間5秒に対応する値が設定されている。また、レジスタ262には、制限Fduty信号が入力されたときに設定される徐励時間に対応する値が格納されている。この値は、レジスタ264に格納されているデフォルト値よりも大きな値が設定されており、制限Fduty信号が入力されたときに設定される徐励時間は、レジスタ264のデフォルト値に基づいて設定される徐励時間(例えば5秒)よりも短い時間となる。なお、徐励時間0秒に対応する値をレジスタ262に格納することにより、徐励制御自体を解除あるいは停止するようにしてもよい。
【0058】
図11は、図10に示した外部信号受信回路の動作手順を示す流れ図である。キースイッチがオンされて、外部信号受信回路が動作可能な状態になると、まず、3つの制御変数としての制限Fduty、設定電圧目標値、徐励時間のそれぞれがデフォルト値に初期設定される(ステップS1)。例えば、ラッチ217のプリセット端子にパワーオンリセット信号を入力することにより、制限Fdutyがデフォルト値に対応した100%に設定される。同様に、ラッチ216のプリセット端子にパワーオンリセット信号を入力することにより、設定電圧目標値がデフォルト値に対応した14.5Vに設定される。また、D型フリップフロップ260のリセット端子にパワーオンリセット信号を入力することにより、レジスタ264に格納されたデフォルト値がセレクタ266において選択され、徐励時間がデフォルト値に対応した5秒に設定される。
【0059】
その後、所定時間(例えば200ms)以内に調整電圧目標信号が受信されたか否かが判定される(ステップS2)。図12は、ECU5から出力される制御信号の具体例を示す図である。図12に示す制御信号には、制限Fduty信号に対応する区間aと、発電電圧目標信号に対応する区間bとが交互に含まれており、それぞれの信号の繰り返し周期が例えば200msに設定されている。ステップS2あるいは後述するステップS5の判定で用いられる所定時間は、この繰り返し周期よりも長い時間に設定される。
【0060】
200ms以内にECU5から調整電圧目標信号が送られてきた場合には、除算回路212から出力される調整電圧目標信号のデューティ比がアンド回路208から出力されるラッチ信号に同期してラッチ216に取り込まれ、このデューティ比に基づいて調整電圧目標値が設定される(ステップS3)。一方、200ms以内にECU5から調整電圧目標信号が送られてこない場合には、カウンタ222から出力されるトリガパルスによってラッチ216がプリセットされるため、ラッチ216から出力されるデフォルト値(例えば14.5V)を用いて調整電圧目標値が設定される(ステップS4)。
【0061】
また、上述した調整電圧目標値の設定動作と並行して、所定時間(例えば200ms)以内に制限Fduty信号が受信されたか否かが判定される(ステップS5)。200ms以内にECU5から制限Fduty信号が送られてきた場合には、除算回路212から出力される制限Fduty信号のデューティ比がアンド回路209から出力されるラッチ信号に同期してラッチ217に取り込まれ、このデューティ比に基づいて制限Fdutyが設定される(ステップS6)。また、アンド回路209から出力されるラッチ信号に同期してD型フリップフロップ260の出力信号がハイレベルになるため、長い徐励時間(0秒あるいはレジスタ264に格納されたデフォルト値よりも長い時間)に対応するレジスタ262の格納値がセレクタ266によって選択され、徐励制御が停止される(ステップS7)。
【0062】
一方、200ms以内にECU5から制限Fduty信号が送られてこない場合には、カウンタ223から出力されるトリガパルスによってラッチ217がプリセットされるため、ラッチ217から出力されるデフォルト値を用いて制限Fdutyが設定される(ステップS8)。また、カウンタ223から出力されるトリガパルスによってD型フリップフロップ260がリセットされるため、レジスタ264に格納されたデフォルト値(例えば5秒)がセレクタ266によって選択され、このデフォルト値に基づいて徐励時間が設定される(ステップS9)。上述したステップS2〜S9の処理がキースイッチがオフされるまで繰り返される(ステップS10)。
【0063】
このように、制限Fduty信号が受信可能な場合には、制限Fdutyの値を可変することにより徐励時間を制御することができるため、この徐励時間の設定値を大きく設定したり、あるいは全く設定しないで徐励制御を行わなくても、エンジンに対して急激に負荷が加わることがない。したがって、アイドリング時等においてエンジンに加わる負荷が急激に増してエンジンストールを引き起こすことを防止することができる。また、制限Fduty信号を受信できない場合であっても、デフォルト値に基づいて徐励時間が設定されるため、徐励時間が極端に短くなってエンジンに加わる負荷が急増することを防止することができ、信号線の断線やECU5の故障等によって制限Fduty信号が受信できない場合にエンジンストール等の不都合が生じることもない。
【0064】
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上述した実施形態では、制御信号のデューティ比に応じて、対応する制御変数の値を設定するようにしたが、各制御信号の波高値の大小に応じて、対応する制御変数の値を設定するようにしてもよい。この場合には、図13に示すように、図4に示したカウンタ210、ラッチ211、除算回路212、アンド回路207、208、209、デューティ比判定回路240をA/D変換器250に置き換えることができるため、外部信号受信回路18の回路規模を縮小して低コスト化を実現することができる。
【0065】
また、上述した実施形態では、ECU5からレギュレータ1に対して複数の制御信号を送信する場合を説明したが、反対にレギュレータ1からECU5やその他の装置に対して、それぞれの周期(あるいは波高値)を異ならせた複数の制御信号を送信することもできる。この場合に、複数の制御信号としては、Fduty値、励磁電流値、オルタネータ2の回転数、ステータコイル20の相電圧、レギュレータ1やオルタネータ2の故障信号などの状態信号が考えられる。
【図面の簡単な説明】
【図1】一実施形態のレギュレータの構成を示す図である。
【図2】レギュレータに含まれる外部信号受信回路の構成を示すブロック図である。
【図3】3種類の制御信号の波形を示す図である。
【図4】外部信号受信回路の詳細構成を示す図である。
【図5】電源回路の詳細構成を示す図である。
【図6】各種の制御信号のデューティ比と設定値の関係を示す図である。
【図7】発電制御回路の詳細構成を示す図である。
【図8】ECUからレギュレータに向けて出力される制御信号の好ましい具体例を示す図である。
【図9】各種の制御信号のデューティ比と設定値の関係を示す図である。
【図10】レギュレータに含まれる外部信号受信回路の変形例を示す図である。
【図11】図9に示した外部信号受信回路の動作手順を示す流れ図である。
【図12】ECU5から出力される制御信号の具体例を示す図である。
【図13】外部信号受信回路の変形例を示す図である。
【符号の説明】
1 レギュレータ
2 オルタネータ
5 ECU
16 発電制御回路
18 外部信号受信回路
30 周期検出部
40 信号種類判別部
50 デューティ比検出部
60 制御変数設定部

Claims (10)

  1. 互いに周期が異なる複数のパルス信号を受信し、この受信した信号の周期を検出する周期検出手段と、
    前記周期検出手段によって検出した信号の周期に基づいて信号の種類を判別する信号種類判別手段と、
    受信した信号のデューティ比を検出するデューティ比検出手段と、
    受信した信号の種類とデューティ比とに基づいて、制御変数を設定する変数設定手段と、
    を備えることを特徴とする車両用発電制御装置。
  2. 請求項1において、
    受信した信号のデューティ比が所定の範囲内に含まれているか否かを判定するデューティ比判定手段を備え、
    前記デューティ比判定手段による判定結果に基づいて、受信した信号のデューティ比が所定の範囲からはずれるときに、前記変数設定手段による前記制御変数の設定を行わないことを特徴とする車両用発電制御装置。
  3. 互いに周期が異なる複数のパルス信号を受信し、この受信した信号の周期を検出する周期検出手段と、
    前記周期検出手段によって検出した信号の周期に基づいて信号の種類を判別する信号種類判別手段と、
    受信した信号の波高値を検出する波高値検出手段と、
    受信した信号の種類と波高値とに基づいて、制御変数を設定する変数設定手段と、
    を備えることを特徴とする車両用発電制御装置。
  4. 請求項1〜3のいずれかにおいて、
    所定時間内に受信しないいずれかの種類の信号がある場合に、前記変数設定手段は、この信号に応じて設定する前記制御変数を予め設定された値に変更することを特徴とする車両用発電制御装置。
  5. 請求項1〜4のいずれかにおいて、
    前記変数設定手段によって設定される制御変数には、制御対象となる発電機の発電電圧目標値が含まれることを特徴とする車両用発電制御装置。
  6. 請求項1〜4のいずれかにおいて、
    前記変数設定手段によって設定される制御変数には、制御対象となる発電機の界磁巻線に対する通電をスイッチングするスイッチング手段の導通率の上限値が含まれることを特徴とする車両用発電制御装置。
  7. 請求項1〜4のいずれかにおいて、
    前記変数設定手段によって設定される制御変数には、制御対象となる発電機の界磁巻線に対する通電をスイッチングするスイッチング手段の導通率の増加速度の上限値が含まれることを特徴とする車両用発電制御装置。
  8. 請求項6において、
    前記スイッチング手段の導通率の上限値に対応する信号が所定時間内に受信できない場合には、前記導通率の増加速度の上限値を予め設定された値に変更し、受信できた場合には、前記増加速度の上限値を予め設定された前記値よりも大きく設定、あるいは前記増加速度の上限値の設定を解除することを特徴とする車両用発電制御装置。
  9. 請求項1〜4のいずれかにおいて、
    前記複数のパルス信号が所定の順番で周期的に入力されることを特徴とする車両用発電制御装置。
  10. 請求項4において、
    前記複数のパルス信号が所定の順番で周期的に入力されており、前記制御変数を予め設定された値に変更する前記所定時間が、前記複数のパルス信号が入力される繰り返し周期以上に設定されることを特徴とする車両用発電制御装置。
JP34599298A 1997-12-08 1998-12-04 車両用発電制御装置 Expired - Fee Related JP3988292B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34599298A JP3988292B2 (ja) 1997-12-08 1998-12-04 車両用発電制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33722197 1997-12-08
JP9-337221 1997-12-08
JP34599298A JP3988292B2 (ja) 1997-12-08 1998-12-04 車両用発電制御装置

Publications (2)

Publication Number Publication Date
JPH11262299A JPH11262299A (ja) 1999-09-24
JP3988292B2 true JP3988292B2 (ja) 2007-10-10

Family

ID=26575711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34599298A Expired - Fee Related JP3988292B2 (ja) 1997-12-08 1998-12-04 車両用発電制御装置

Country Status (1)

Country Link
JP (1) JP3988292B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269534B2 (ja) * 2001-04-16 2009-05-27 株式会社デンソー 充電システムおよび車両用発電制御装置
JP3997984B2 (ja) 2003-12-08 2007-10-24 株式会社デンソー 車両用発電制御装置
JP4196927B2 (ja) * 2004-10-15 2008-12-17 株式会社デンソー 車両用発電制御装置
JP4600226B2 (ja) * 2005-09-16 2010-12-15 株式会社日立製作所 電動機の駆動制御装置
JP2008184917A (ja) * 2007-01-26 2008-08-14 Mitsubishi Motors Corp 車両用制御装置及び車両用制御方法
JP4826565B2 (ja) 2007-09-18 2011-11-30 株式会社デンソー 充電システムおよび車両用発電制御装置
JP5353422B2 (ja) * 2009-05-08 2013-11-27 株式会社デンソー 車両用発電制御装置
JP5605242B2 (ja) * 2011-01-31 2014-10-15 株式会社デンソー 電子装置
US8710783B2 (en) 2012-05-15 2014-04-29 Panasonic Corporation Motor control system, motor control device, and brushless motor
JP2015002646A (ja) * 2013-06-18 2015-01-05 株式会社デンソー 車両用発電制御装置
JP6562604B2 (ja) * 2014-08-22 2019-08-21 ダイハツ工業株式会社 車両の制御装置
JP7222620B2 (ja) * 2018-07-06 2023-02-15 株式会社Subaru 車両の制御装置

Also Published As

Publication number Publication date
JPH11262299A (ja) 1999-09-24

Similar Documents

Publication Publication Date Title
US6137247A (en) Electric power generation control for vehicles using a plurality of control signals
JP2651030B2 (ja) 発電機の制御装置及び制御方法とそれを応用した車両用発電機の制御装置及び制御方法
US7292008B2 (en) Electric generation control apparatus for vehicle alternator
US7015594B2 (en) Vehicle-mounted electric generator control system which selectively supplies regenerative field current to battery in accordance with currently available generating capacity
JP3988292B2 (ja) 車両用発電制御装置
US7183750B2 (en) Vehicle power-generation control unit and vehicle power-generation control system
US7253591B2 (en) Electric power generation control apparatus
US7872451B2 (en) Apparatus for charging on-vehicle battery and apparatus for controlling generating operation of on-vehicle generator
JPH0919079A (ja) 車両用発電機の電圧制御装置
JP4121034B2 (ja) 車両用発電機の制御装置
JP4333022B2 (ja) 車両用発電機の発電制御システム
US7443143B2 (en) Controller of AC generator for vehicle
US7009366B2 (en) Voltage regulator for controlling output voltage of automotive alternator
JP4332172B2 (ja) 車両用オルタネータの制御装置
JP2003033048A (ja) インバータ装置
US6750634B2 (en) Vehicular power generation control device and method
JP4325094B2 (ja) 車両用発電制御装置
JP2000125483A (ja) 車両用発電機の制御装置
JP4558705B2 (ja) 車両用交流発電機の制御装置
JP4314750B2 (ja) 充電システムおよび車両用発電制御装置
JP2002315222A (ja) 充電システムおよび車両用発電制御装置
JP4269534B2 (ja) 充電システムおよび車両用発電制御装置
JP4239402B2 (ja) 車両用発電制御装置
JP3772930B2 (ja) 車両用交流発電機の信号異常検出方式、電圧制御装置および車両制御装置
JP2009112109A (ja) 車両用発電制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees