JP3982780B2 - Method for manufacturing forged thin-walled casing made of magnesium alloy - Google Patents

Method for manufacturing forged thin-walled casing made of magnesium alloy Download PDF

Info

Publication number
JP3982780B2
JP3982780B2 JP07913598A JP7913598A JP3982780B2 JP 3982780 B2 JP3982780 B2 JP 3982780B2 JP 07913598 A JP07913598 A JP 07913598A JP 7913598 A JP7913598 A JP 7913598A JP 3982780 B2 JP3982780 B2 JP 3982780B2
Authority
JP
Japan
Prior art keywords
forging
magnesium alloy
casing
rough
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07913598A
Other languages
Japanese (ja)
Other versions
JPH11277173A (en
Inventor
伊佐夫 関
茂弘 谷池
葆夫 濱
洋 渡辺
昌彦 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Sony Corp
Original Assignee
Hitachi Metals Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Sony Corp filed Critical Hitachi Metals Ltd
Priority to JP07913598A priority Critical patent/JP3982780B2/en
Priority to DE1999613018 priority patent/DE69913018T2/en
Priority to EP99105853A priority patent/EP0945199B1/en
Priority to US09/275,003 priority patent/US6316129B1/en
Priority to KR1019990010571A priority patent/KR100611080B1/en
Publication of JPH11277173A publication Critical patent/JPH11277173A/en
Priority to US09/834,602 priority patent/US6511560B2/en
Application granted granted Critical
Publication of JP3982780B2 publication Critical patent/JP3982780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はマグネシウム合金に係り、特に鍛造成形された薄肉筐体およびその製造方法に関する。
【0002】
【従来の技術】
マグネシウムは現在実用化されている金属材料の中で最も比重が小さく、アルミニウムの2.7と比較してマグネシウムは1.8であり、軽量化材料として期待され、また普及しつつある。マグネシウム合金のほとんどは鋳造材として使用されている。マグネシウム合金の合金元素としては、主元素のマグネシウムの他に、基本元素のアルミニウム、亜鉛が強度と鋳造性を得るため、また強度と靱性を付与するジルコニウム、耐熱性付与に希土類元素、銀がある。マグネシウム合金の用途としては、航空・宇宙機器部品、原子力被覆材、陸上輸送機器、荷役機器、工業機械・工具類、電気・通信機器、農林鉱業機械、事務機器、光学用機器、スポーツ用品等広く利用されている。
【0003】
従来技術として、たとえば特開平6−172949号公報には、自動車のホイール等の部材をマグネシウム合金で構成するようなマグネシウム合金製部材およびその製造方法を開示している。すなわち、この開示されたマグネシウム合金製部材の製造方法は、「▲1▼ マグネシウム合金製鋳造素材を、鍛造成形して平均結晶粒径100μm以下の部材とした後、T6熱処理(溶体化処理及び人工時効処理)を施す。▲2▼ 鍛造成形温度を300〜420℃の範囲内に設定する。▲3▼ マグネシウム合金製部材を自動車用ホイールに設定する。」とするものである。
また、マグネシウム合金製部材は、「鋳造鍛造後にT6熱処理(溶体化処理及び人工時効処理)を施して形成されたマグネシウム合金製部材であって、上記部材の少なくとも表面部は、アルミニウムを6〜12重量パーセント含有し、かつ上記T6熱処理(溶体化処理及び人工時効処理)時にマグネシウムとアルミニウムとの金属間化合物とα相の共晶組織を有すると共に、上記鍛造時の塑性加工により平均結晶粒径が200μm以下で、かつ上記共晶組成が連鎖状に分散されたマグネシウム合金製部材。」とするものである。
【0004】
また、マグネシウム合金については、マグネシウム合金溶湯を高圧鋳造した成形品をT6熱処理(溶体化処理及び人工時効処理)する技術、あるいは鋳造成形品を鍛造成形する、いわゆる鋳造鍛造法も知られている。
また、最近では固液共存域で行う半溶融成形加工法として、射出成形法を応用した新成形法が注目されている。この成形方法で得られた成形品は一般鋳造品に見られるデンドライトがなく、微細な組織が得られ、ダイカスト法で得られた成形品と比較しても気孔が少なく高密度で、成形後の熱処理が可能であるので注目され、各方面で研究開発が進められている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記特開平6−172949号公報に開示された技術は、自動車のホイール等の大型部品を対象としたものであり、生産するにはかなりの設備費用を要し、またT6熱処理(溶体化処理及び人工時効処理)には長時間を要するという課題がある。
また、半溶融成形加工法によるマグネシウム合金成形品は、製造過程中に鋳造欠陥や酸化物を内部および表面に介在するおそれがある。これらが介在していると、その部品表面にメッキ処理を施しても、メッキ面の耐食性は改善できず外観から見た商品価値も低下する。そこで表面塗装により耐食性を向上させる方策がとられるが、この場合は金属光沢を出しにくく美観性に問題が残る。
【0006】
本発明は、このような従来技術の有する課題に鑑みてなされたもので、本発明の目的は、鍛造により軽量且つ高品質であるマグネシウム合金製薄肉筐体およびその製造方法を提供することにある。なお、本発明における「主要部の肉厚」とは、図5に示す筐体6の底部7及び側部8の大部分を占める均一肉厚を意味する。ただし、所定の記号用凹部20により形成される突出高さを含めないものとすると共に、図示していないが局部的ボスや更なる局部的薄肉部が存在する場合には、これら局部的ボスや更なる局部的薄肉部の肉厚は勘案しないものとする。また、「所定の記号」とは、図5において、所定の記号用凹部20により外面より突出して形成される文字、数字、マーク等の記号を意味する。
【0007】
【課題を解決するための手段】
本発明者等は上記の課題を解決するために種々のマグネシウム合金について種々検討を重ねた結果、重量比率で、Al:1〜6%、Zn:0〜2%、Mn:0.5%以下、微量元素0.2%以下、残部Mg及び不可避的不純物よりなる組成のマグネシウム合金、例えばASTM規格のAM20合金やAZ31合金が鍛造性に優れることを知見し、粗鍛造及び仕上鍛造の複数工程の鍛造を行うことによる本発明のマグネシウム合金製鍛造薄肉筐体およびその製造方法の発明をなした。
【0009】
本発明のマグネシウム合金製鍛造薄肉筐体の製造方法は、マグネシウム合金素材の温度を350〜550℃、鍛造に供する金型温度を350〜450℃とし、3〜30ton/cm 2 の成形荷重を負荷しながら10〜500mm/秒の鍛造速度により粗鍛造を行い、次いで粗鍛造した成形筐体を300〜500℃、鍛造に供する金型温度を300〜400℃とし、1〜20ton/cm 2 の成形荷重を負荷しながら1〜200mm/秒の鍛造速度により仕上鍛造することにより主要部の肉厚がほぼ1.0mm以下の筐体に成形し、前記筐体にトリミング及び機械加工を施し、その後前記筐体の全面に特殊複合陽極酸化皮膜処理を行うことを特徴とする。
【0011】
また、本発明のマグネシウム合金製鍛造薄肉筐体の製造方法は、粗鍛造工程で粗形状に成形し、次いで仕上鍛造工程で筐体内側の隅部を小半径を有する曲面に形成すると共に、前記筐体の底部および側部を目標寸法肉厚に形成し、さらに前記筐体の外側の面上に所定の記号を外面より突出させて一体的に形成することを特徴とする。
【0012】
得られたるマグネシウム合金製鍛造薄肉筐体の表面には、特殊複合陽極酸化皮膜処理を施すことにより、塗装では得られない優れた防食性およびマグネシウム合金素地を生かした金属光沢を有するマグネシウム合金製鍛造薄肉筐体の製造方法であることを特徴とする。
【0013】
また、マグネシウム合金製鍛造薄肉筐体の製造方法におけるマグネシウム合金素材の組成が、重量比率で、Al:1〜6%、Zn:0〜2%、Mn:0.5%以下、微量元素0.2%以下、残部Mg及び不可避的不純物よりなることを特徴とする。
【0014】
以下、本発明に係わる諸条件の適用及び限定理由について説明する。
1)鍛造用マグネシウム合金素材:
マグネシウム合金素材を鍛造して、薄肉筐体を成形するに際し、鍛造性に優れたマグネシウム合金である必要がある。そこで、重量比率で、Al:1〜6%、Zn:0〜2%、Mn:0.5%以下、微量元素0.2%以下、残部Mg及び不可避的不純物よりなるマグネシウム合金素材を選定する。アルミニウムが低いと鍛造性は良いが、剛性が悪くなるので、少なくともアルミニウム1%以上必要である。アルミニウム含有量が高くなると鍛造性、耐食性が低下するので、アルミニウム含有量を最大6%に限定する。亜鉛も同様な影響があり、鍛造性と、剛性のかねあいから0〜2%に限定する。例えば、ASTM規格のAZ31合金、AM20合金である。なお、微量元素としては希土類元素、リチウム、ジルコニウム等である。
【0015】
2)鍛造用マグネシウム合金素材の加熱:
マグネシウム合金素材を加熱する際に、大気中で行うと表面が酸化し、鍛造性、耐食性、外観に悪影響を及ぼすので、マグネシウム合金素材の加熱はアルゴンガス等の不活性ガス雰囲気を有する電気式加熱炉にて行う。マグネシウム合金素材の加熱温度は鍛造温度より若干高い温度の350〜550℃(炉内雰囲気温度)で均一加熱する。なお、例えば素材の大きさ30mmφ×10〜30mm長さでは、加熱時間は10〜20分程度である。また、仕上鍛造前の粗形状筐体の加熱温度は300〜500℃とする。
【0016】
3)鍛造温度(鍛造時のマグネシウム合金素材の温度):
鍛造時のマグネシウム合金素材の温度を350〜550℃とする。350℃未満の温度では鍛造時のマグネシウム合金の金属の流れ(以下「メタルフロー」という。)が円滑に得られず、薄肉化が困難である。一方、550℃を超えると結晶粒の粗大化を招くので、550℃を上限温度とする。仕上鍛造は粗鍛造に続いて実施するが、マグネシウム合金素材の温度は粗鍛造時より若干低く、300〜500℃とする。
【0017】
4)金型温度:
マグネシウム合金素材の鍛造時の温度低下を防止するために、マグネシウム合金素材温度より若干低い温度で、粗鍛造時は350〜450℃に、仕上鍛造時は300〜400℃に保温保持する。なお、金型材質は高温強度を有するものが好ましい。
【0018】
5)鍛造速度:
鍛造速度が速過ぎるとメタルフローが円滑に行われず、一方遅過ぎると生産性の低下を招く。500mm/秒を超える鍛造速度では、メタルフローが鍛造速度に円滑に追随できなくなりメタルフローが乱れを生じる。したがって、鍛造速度の上限を500mm/秒とする。1mm/秒未満の鍛造速度では、生産性の低下を招くので、鍛造速度の下限を1mm/秒とする。特に生産性を重視する粗鍛造においては10〜500mm/秒、成形性を重視する仕上鍛造においては1〜200mm/秒とする。
【0019】
6)成形荷重:
特に生産性を重視する粗鍛造においては、30ton/cm2を超える成形荷重では製品および金型への負荷が過大となるので、成形荷重の上限を30ton/cm2とする。一方、1ton/cm2未満の成形荷重では成形しにくくなるため、成形荷重の下限を1ton/cm2とする。特に成形荷重が必要となる粗鍛造では3〜30ton/cm2、成形荷重が小さくても十分である仕上鍛造では1〜20ton/cm2とする。
【0020】
7)表面処理(特殊複合陽極酸化皮膜の形成):
酸化皮膜の形成は、JIS H 8651が基本の特殊複合陽極酸化処理方法により行う。液は重クロム酸ナトリウム、酸性ふっ化ナトリウムか酸性ふっ化カリウムまたは酸性ふっ化アンモニウム、硝酸アンモニウム、第1リン酸ナトリウム、アンモニア水などをマグネシウム素材組成、希望する色調などにより複数適量混合し、一定の温度、時間、電流値で処理する。
この特殊複合陽極酸化皮膜処理により、塗装では得られない優れた防食性およびマグネシウム合金素地を生かした金属光沢を有する鍛造製薄肉筐体を得ることができる。
【0021】
【発明の実施の形態】
以下本願発明の実施の形態について説明する。
(実施の形態)
図1は本発明の鍛造工程を示す図である。また、図2は鍛造用素材を載置して鍛造を行う上下金型の概略縦断面図である。また図3は鍛造機の概略側面図である。本発明は、 図1に示すように、重量比率で、Al:1〜6%、Zn:0〜2%、Mn:0.5%以下、微量元素0.2%以下、残部Mg及び不可避的不純物よりなるマグネシウム合金素材、例えばASTM規格のAZ31合金(Al約3%、Zn約1%、その他)やAM20合金(Al約2%、Mn約0.5%、その他)の30〜40mmφ×10〜30mm長さの鍛造用素材をアルゴンガスで充満した電気式加熱炉内に装入し、350〜550℃に均一加熱する。次いで、鍛造用素材を電気式加熱炉内から取り出し、図2に示す下金型2上に載置し、図3に示す鍛造機を用いて粗鍛造を行い、次いで仕上鍛造を行う。なお、図2において、4はヒーター、5は熱電対を示す。
【0022】
なお、鍛造機9は図3に示す如く、フライホイール11の回転力を応用する機械式鍛造機で、力を連結桿12に伝え、連結桿12の先端には連結具を介して上金型3が取外し自在に連結されている。上金型3は矢印Lの方向へ移動し、下金型2上に載置された鍛造用素材1に一定間隔で成形荷重を負荷する。粗形状成形の粗鍛造には鍛造速度が速い機械式鍛造機を使用し、最終製品寸法を成形する仕上鍛造には鍛造速度が比較的遅い油圧式鍛造機を使用する。10は偏心軸、13はフレームを示す。
【0023】
本発明に供する金型の実施の形態の概略縦断面図を図4(粗鍛造用金型)と図5(仕上鍛造用金型)に示す。粗鍛造に供する図4に示す上金型3は、その凸部下端隅部14を2〜7mmの半径に形成する。粗鍛造において、上金型3の凸部下端隅部14で鍛造形成される部位は、筐体6の内側の隅部となる。粗鍛造において、筐体6の内側の隅部はやや厚肉に成形される。両金型3、2により押圧されて鍛造成形される筐体6の底部7および側部8の肉厚部位も最終厚さと同等かやや厚い0.5〜1.5mmに形成される。また、下金型2は図4に示すように、その凹部隅部15を0.5〜1.5mmの半径に形成する。粗鍛造において、下金型2の凹部隅部15で鍛造形成される部位は、筐体6の外側の隅部となるので、当初から最終形状目標寸法に成形したほうが好ましい。
【0024】
次に、仕上鍛造に供する上金型16は、図5に示すように、その凸部下端隅部18を0.5〜1.5mmの半径に形成する。この凸部下端隅部18の形状により、粗鍛造でやや厚肉の2〜7mmの半径に成形された隅部を0.5〜1.5mmの半径に成形すると共に、図4に示す両金型3、2により押圧されて粗鍛造成形された筐体6の肉厚部位の一部は、仕上鍛造により下金型17の内側に所定の記号用に刻印された凹部20にメタルフローを生じ、筐体6の底部7の内側面21は平坦に、且つ目的の最終肉厚に鍛造成形される。なお、所定の記号は、筐体6の外表面上に一体的に突出して形成される。Aは筐体寸法80mm角の例示である。なお、鍛造条件は、粗鍛造では鍛造温度350〜550℃、金型温度350〜450℃、鍛造速度10〜500mm/秒、及び成形荷重3〜30ton/cm2とし、仕上鍛造では鍛造温度300〜500℃、金型温度300〜400℃、鍛造速度1〜200mm/秒、及び成形荷重1〜20ton/cm2とする。
【0025】
本発明においては、粗鍛造及び仕上鍛造で前述の鍛造条件により目標の主要部の肉厚0.5〜1.0mmを得ることができる。実験した中から代表的例を以下に実施例として記述する。
(実施例1)
30〜40mmφ×10〜40mm長さの鍛造用マグネシウム合金素材(10個)を 鍛造温度(鍛造時のマグネシウム合金素材の温度)500℃、金型温度400℃、鍛造速度200mm/秒、成形荷重20ton/cm2の鍛造条件で粗鍛造を行ったところ、主要部の肉厚が0.8〜1.0mmのものが得られた。
次いで、鍛造温度400℃、金型温度350℃、鍛造速度50mm/秒、成形荷重10ton/cm2 の鍛造条件で仕上鍛造を行った結果、主要部の肉厚は目標通りの0.6〜0.8mm厚さの範囲のものに成形することができた。
【0026】
(実施例2)
金型温度を300℃とした以外は実施例1と同様の粗鍛造条件で粗鍛造を行ったところ、主要部の肉厚は1.6mm以上となった。次いで、実施例1と同様の仕上鍛造条件により仕上鍛造を行った結果、主要部の肉厚は1.5mmであった。このように、金型温度を300℃と低い温度で粗鍛造した場合には、低温の金型に熱を奪われて素材温度が低下するため、塑性流動(メタルフロー)しにくく、その後に行う仕上鍛造では薄肉成形が困難であることがわかった。
【0027】
(実施例3)
鍛造温度(鍛造時のマグネシウム合金素材の温度)を340℃、成形荷重30ton/cm2とした以外は実施例1と同様の粗鍛造条件で粗鍛造を行ったところ、主要部の肉厚は1.8mm以上となった。次いで、実施例1と同様の仕上鍛造条件により仕上鍛造を行った結果、主要部の肉厚は1.6mm以上であった。
このことは、鍛造時での素材温度が低温であるため、成形荷重を30ton/cm2と負荷を増大させても、塑性流動(メタルフロー)しにくく、その後に行う仕上鍛造では薄肉成形が困難であることがわかった。
【0028】
(実施例4)
鍛造温度(鍛造時のマグネシウム合金素材の温度)を560℃、金型温度460℃とした以外は実施例1と同様の粗鍛造条件で粗鍛造を行ったところ、主要部の肉厚は1.0mm以下に成形することができたが、素材温度が高過たために塑性流動(メタルフロー)が激しく、表面にメタルフローの波状痕跡が残存していあ。次いで、仕上鍛造条件を種々変えて仕上鍛造を行ったが、メタルフローの波状痕跡を均一平坦な見栄え良くすることはできなかった。この結果から、鍛造温度が高過ぎては良くないことが確認できた。
【0029】
(実施例5)
成形荷重0.8ton/cm2とした以外は実施例1と同様の粗鍛造条件で粗鍛造を行ったところ、主要部の肉厚は2.0mm以上となった。次いで、仕上鍛造条件を種々変えて、特に成形荷重を30ton/cm2あるいは40ton/cm2と高くして、仕上鍛造を行った結果、主要部の肉厚1.0mmまでは薄肉成形できたが、厚さの不均一が生じ成形性が良好でなかった。
【0030】
(実施例6)
鍛造速度500mm/秒とした以外は実施例1と同様の粗鍛造条件で粗鍛造を行ったところ、塑性流動(メタルフロー)に乱れが生じ、金型内への充填が悪く、正確な形状に成形することができなかった。また、 鍛造速度に関しては粗鍛造で10mm/秒以下になると加圧時間が遅くなり素材の温度が下がるので薄くならず、5mm/秒では2.5mmであった。
【0031】
このようにして得られたマグネシウム合金製鍛造薄肉筐体には、その上端部の周囲に鍛造バリが発生しているので、パンチにより鍛造バリを除去するトリミングを行う。次いで、必要部位を機械加工する。マグネシウム合金は鍛造後においても酸化して金属光沢を失うおそれがあるので、特殊複合陽極酸化皮膜処理により酸化皮膜を形成し、塗装では得られない優れた防食性およびマグネシウム合金素地を生かした金属光沢を有するマグネシウム合金製鍛造薄肉筐体とする。
【0032】
【発明の効果】
本発明のマグネシウム合金製鍛造薄肉筐体は、アルミニウム合金製部品よりもさらに軽量で、剛性もあり、その外表面に所定の記号を有すると共に、全面に優れた防食性及び特殊複合陽極酸化皮膜が形成されてマグネシウム合金素地を生かした金属光沢があり、各種機器の軽量化を目的とする薄肉筐体として、その適用が期待できる。
【図面の簡単な説明】
【図1】本発明の鍛造作業工程を示す工程図である。
【図2】本発明に係り、鍛造用素材を載置して鍛造成形を行う上下金型の概略縦断面図である。
【図3】本発明に係る鍛造機の概略側面図である。
【図4】本発明に係り、粗鍛造に供する上下金型の概略縦断面図である。
【図5】本発明に係り、仕上鍛造に供する上下金型の概略縦断面図である。
【符号の説明】
1 鍛造用素材
2 下金型
3 上金型
4 ヒーター
5 熱電対
6 筐体
7 筐体の底部
8 筐体の側部
9 鍛造機
10 偏心軸
11 フライホイール
12 連結桿
13 フレーム
L 成形荷重方向
14 粗鍛造用上金型の凸部下端隅部
15 粗鍛造用下金型の凹部隅部
16 仕上鍛造用上金型
17 仕上鍛造用下金型
18 仕上鍛造用上金型の凸部下端隅部
19 仕上鍛造用下金型の凹部隅部
20 所定の記号用凹部
21 筐体の底部の内側面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnesium alloy, and more particularly to a forged thin-walled casing and a method for manufacturing the same.
[0002]
[Prior art]
Magnesium has the smallest specific gravity among metal materials currently in practical use, and magnesium is 1.8 as compared with 2.7 of aluminum, and is expected as a light weight material and is becoming popular. Most magnesium alloys are used as castings. In addition to the main element magnesium, the alloy elements of the magnesium alloy include the basic elements aluminum and zinc to obtain strength and castability, as well as zirconium to provide strength and toughness, and rare earth elements and silver to provide heat resistance. . Magnesium alloys are widely used in aerospace equipment parts, nuclear coating materials, ground transportation equipment, cargo handling equipment, industrial machinery / tools, electrical / communication equipment, agriculture / forestry / mining machinery, office equipment, optical equipment, sports equipment, etc. It's being used.
[0003]
As a prior art, for example, Japanese Patent Application Laid-Open No. 6-172949 discloses a magnesium alloy member in which a member such as an automobile wheel is made of a magnesium alloy and a method for manufacturing the same. That is, according to the disclosed method for producing a magnesium alloy member, “(1) Magnesium alloy casting material is forged and formed into a member having an average crystal grain size of 100 μm or less, and then subjected to T6 heat treatment (solution treatment and artificial treatment). (2) Set the forging temperature within the range of 300 to 420 ° C. (3) Set the magnesium alloy member to the automobile wheel.
Further, the magnesium alloy member is “a magnesium alloy member formed by performing T6 heat treatment (solution treatment and artificial aging treatment) after casting forging, and at least the surface portion of the member is made of 6-12 aluminum. It contains a weight percentage and has an eutectic structure of an intermetallic compound of magnesium and aluminum and an α phase during the T6 heat treatment (solution treatment and artificial aging treatment), and an average crystal grain size is increased by plastic working during the forging. A magnesium alloy member in which the eutectic composition is 200 μm or less and dispersed in a chain form. ”
[0004]
As for the magnesium alloy, a technique in which a molded product obtained by high-pressure casting a molten magnesium alloy is subjected to T6 heat treatment (solution treatment and artificial aging treatment) or a so-called cast forging method in which a cast product is forged.
Recently, a new molding method using an injection molding method has attracted attention as a semi-melt molding method performed in a solid-liquid coexistence region. Molded products obtained by this molding method have no dendrites found in general cast products, a fine structure is obtained, and there are fewer pores and higher density than molded products obtained by the die casting method. It is attracting attention because it can be heat-treated, and research and development is underway in various areas.
[0005]
[Problems to be solved by the invention]
However, the technique disclosed in Japanese Patent Laid-Open No. Hei 6-172949 is intended for large parts such as automobile wheels, and requires considerable equipment costs to produce, and T6 heat treatment (solution treatment). The treatment and artificial aging treatment) have a problem of requiring a long time.
Further, a magnesium alloy molded product produced by a semi-melt forming method may have casting defects or oxides inside and on the surface during the manufacturing process. If these are present, the corrosion resistance of the plated surface cannot be improved even if the component surface is plated, and the commercial value as viewed from the outside is also reduced. Therefore, measures are taken to improve the corrosion resistance by surface coating. However, in this case, it is difficult to produce a metallic luster and a problem remains in aesthetics.
[0006]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a magnesium alloy thin-walled casing that is lightweight and high quality by forging, and a method for manufacturing the same. . The “wall thickness of the main part” in the present invention means a uniform wall thickness that occupies most of the bottom 7 and the side 8 of the housing 6 shown in FIG. However, the protrusion height formed by the predetermined symbol recess 20 is not included, and although there is a local boss or a further locally thin portion not shown, these local bosses and Further local thin wall thickness shall not be taken into account. In addition, the “predetermined symbol” means a symbol such as a character, a number, or a mark formed by protruding from the outer surface by the predetermined symbol recess 20 in FIG.
[0007]
[Means for Solving the Problems]
As a result of various studies on various magnesium alloys in order to solve the above-mentioned problems, the present inventors have found that by weight ratio, Al: 1 to 6%, Zn: 0 to 2%, Mn: 0.5% or less In addition, a magnesium alloy having a composition of trace element 0.2% or less, the balance Mg and inevitable impurities, for example, ASTM standard AM20 alloy and AZ31 alloy has been found to have excellent forgeability, and a plurality of steps of rough forging and finish forging are performed. Invented the magnesium alloy forged thin-walled casing of the present invention and a method for producing the same by forging.
[0009]
The method for producing a forged thin casing made of magnesium alloy according to the present invention is such that the temperature of the magnesium alloy material is 350 to 550 ° C., the mold temperature used for forging is 350 to 450 ° C., and a molding load of 3 to 30 ton / cm 2 is applied. Then, rough forging is performed at a forging speed of 10 to 500 mm / sec, and then the forged molded casing is 300 to 500 ° C., the mold temperature for forging is 300 to 400 ° C., and molding is performed at 1 to 20 ton / cm 2 . Finishing forging at a forging rate of 1 to 200 mm / sec while applying a load, the main part is formed into a casing having a thickness of approximately 1.0 mm or less, and trimming and machining are performed on the casing. A special composite anodic oxide film treatment is performed on the entire surface of the housing.
[0011]
Further, the magnesium alloy forged thin-walled housing manufacturing method of the present invention is formed into a rough shape in a rough forging step, and then formed into a curved surface having a small radius at the corner inside the housing in a finish forging step, The bottom and sides of the housing are formed to have a target dimension and thickness, and a predetermined symbol is projected from the outer surface on the outer surface of the housing so as to be integrally formed.
[0012]
The surface of the resulting magnesium alloy forged thin-walled casing is treated with a special composite anodized film to forge magnesium alloy with excellent anti-corrosion properties that cannot be obtained by painting and a metallic luster that makes use of the magnesium alloy substrate. It is a manufacturing method of a thin casing.
[0013]
Moreover, the composition of the magnesium alloy material in the manufacturing method of the forged thin-walled casing made of magnesium alloy is Al: 1 to 6%, Zn: 0 to 2%, Mn: 0.5% or less, trace elements of 0. It is characterized by comprising 2% or less, the balance Mg and inevitable impurities.
[0014]
Hereinafter, the application and reasons for limitation of various conditions according to the present invention will be described.
1) Magnesium alloy material for forging:
When a magnesium alloy material is forged to form a thin casing, the magnesium alloy must be excellent in forgeability. Therefore, a magnesium alloy material consisting of Al: 1 to 6%, Zn: 0 to 2%, Mn: 0.5% or less, trace elements of 0.2% or less, the balance Mg and unavoidable impurities is selected by weight ratio. . If aluminum is low, the forgeability is good, but the rigidity is poor, so at least 1% of aluminum is necessary. As the aluminum content increases, forgeability and corrosion resistance decrease, so the aluminum content is limited to a maximum of 6%. Zinc also has the same effect, and is limited to 0 to 2% because of forgeability and rigidity. For example, ASTM standard AZ31 alloy and AM20 alloy. The trace elements are rare earth elements, lithium, zirconium and the like.
[0015]
2) Heating magnesium alloy material for forging:
When heating the magnesium alloy material in the air, the surface will oxidize and adversely affect the forgeability, corrosion resistance, and appearance, so the magnesium alloy material is heated with an inert gas atmosphere such as argon gas. Perform in a furnace. The heating temperature of the magnesium alloy material is uniformly heated at 350 to 550 ° C. (furnace atmosphere temperature), which is slightly higher than the forging temperature. For example, when the size of the material is 30 mmφ × 10 to 30 mm, the heating time is about 10 to 20 minutes. Moreover, the heating temperature of the coarse-shaped housing | casing before finish forging shall be 300-500 degreeC.
[0016]
3) Forging temperature (temperature of magnesium alloy material during forging):
The temperature of the magnesium alloy material during forging is set to 350 to 550 ° C. If the temperature is lower than 350 ° C., the metal flow of the magnesium alloy during forging (hereinafter referred to as “metal flow”) cannot be obtained smoothly, and it is difficult to reduce the thickness. On the other hand, if the temperature exceeds 550 ° C., the crystal grains become coarse, so 550 ° C. is set as the upper limit temperature. Finish forging is carried out following rough forging, but the temperature of the magnesium alloy material is slightly lower than that during rough forging and is 300 to 500 ° C.
[0017]
4) Mold temperature:
In order to prevent a temperature drop during forging of the magnesium alloy material, the temperature is kept slightly lower than the magnesium alloy material temperature at 350 to 450 ° C. during rough forging and at 300 to 400 ° C. during finish forging. The mold material preferably has a high temperature strength.
[0018]
5) Forging speed:
If the forging speed is too fast, the metal flow is not smoothly performed, while if it is too slow, the productivity is lowered. If the forging speed exceeds 500 mm / second, the metal flow cannot smoothly follow the forging speed, and the metal flow is disturbed. Therefore, the upper limit of the forging speed is set to 500 mm / second. If the forging speed is less than 1 mm / second, the productivity is lowered. Therefore, the lower limit of the forging speed is set to 1 mm / second. In particular, in rough forging that emphasizes productivity, the speed is 10 to 500 mm / second, and in finish forging that emphasizes formability, the speed is 1 to 200 mm / second.
[0019]
6) Molding load:
Particularly in rough forging where importance is placed on productivity, since the load on the product and the mold becomes excessive at a molding load exceeding 30 ton / cm 2 , the upper limit of the molding load is set to 30 ton / cm 2 . On the other hand, since it becomes difficult to mold at a molding load of less than 1 ton / cm 2 , the lower limit of the molding load is set to 1 ton / cm 2 . Particularly, rough forging requiring a forming load is 3 to 30 ton / cm 2 , and finishing forging which is sufficient even if the forming load is small is set to 1 to 20 ton / cm 2 .
[0020]
7) Surface treatment (formation of special composite anodized film):
The oxide film is formed by a special composite anodizing method based on JIS H8651. The liquid is mixed with sodium dichromate, acidic sodium fluoride or acidic potassium fluoride or acidic ammonium fluoride, ammonium nitrate, primary sodium phosphate, aqueous ammonia, etc. according to the magnesium material composition, desired color, etc. Process by temperature, time, current value.
By this special composite anodic oxide film treatment, it is possible to obtain a forged thin-walled casing having excellent corrosion resistance that cannot be obtained by painting and a metallic luster that makes use of the magnesium alloy substrate.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Embodiment)
FIG. 1 is a diagram showing the forging process of the present invention. FIG. 2 is a schematic longitudinal sectional view of an upper and lower mold for forging with a forging material placed thereon. FIG. 3 is a schematic side view of the forging machine. In the present invention, as shown in FIG. 1, Al is 1 to 6%, Zn is 0 to 2%, Mn is 0.5% or less, trace element is 0.2% or less, remaining Mg and inevitable Magnesium alloy material made of impurities, such as ASTM standard AZ31 alloy (Al 3%, Zn 1%, etc.) and AM20 alloy (Al 2%, Mn 0.5%, etc.) 30-40mmφ × 10 A forging material having a length of ˜30 mm is placed in an electric heating furnace filled with argon gas and heated uniformly at 350 to 550 ° C. Next, the forging material is taken out from the electric heating furnace, placed on the lower mold 2 shown in FIG. 2, rough forging is performed using the forging machine shown in FIG. 3, and then finishing forging is performed. In FIG. 2, 4 indicates a heater and 5 indicates a thermocouple.
[0022]
As shown in FIG. 3, the forging machine 9 is a mechanical forging machine that applies the rotational force of the flywheel 11, and transmits the force to the connecting rod 12. 3 is detachably connected. The upper die 3 moves in the direction of the arrow L, and a forming load is applied to the forging material 1 placed on the lower die 2 at regular intervals. A mechanical forging machine having a high forging speed is used for the rough forging of the rough shape forming, and a hydraulic forging machine having a relatively low forging speed is used for the final forging for forming the final product dimensions. Reference numeral 10 denotes an eccentric shaft, and 13 denotes a frame.
[0023]
FIG. 4 (rough forging die) and FIG. 5 (finish forging die) show schematic longitudinal sectional views of the embodiment of the die for use in the present invention. The upper die 3 shown in FIG. 4 subjected to rough forging has a convex lower end corner 14 formed with a radius of 2 to 7 mm. In rough forging, a portion formed by forging at the convex lower end corner portion 14 of the upper mold 3 is a corner portion inside the housing 6. In rough forging, the inner corner of the housing 6 is formed to be slightly thick. The thick portions of the bottom portion 7 and the side portion 8 of the casing 6 that are pressed by the two dies 3 and 2 and are forged are formed to have a thickness that is equal to or slightly thicker than the final thickness. Further, as shown in FIG. 4, the lower mold 2 is formed with a concave corner 15 having a radius of 0.5 to 1.5 mm. In rough forging, the forged portion of the concave corner 15 of the lower mold 2 is the outer corner of the housing 6, so it is preferable to form the final shape target dimension from the beginning.
[0024]
Next, as shown in FIG. 5, the upper die 16 used for finish forging is formed with a convex lower end corner 18 having a radius of 0.5 to 1.5 mm. Depending on the shape of the lower end corner 18 of the convex portion, the corner formed into a slightly thick radius of 2 to 7 mm by rough forging is formed to a radius of 0.5 to 1.5 mm, and the two metals shown in FIG. A part of the thick portion of the casing 6 pressed by the dies 3 and 2 and roughly forged to form a metal flow in the recess 20 that is engraved for a predetermined symbol inside the lower die 17 by finish forging. The inner side surface 21 of the bottom 7 of the housing 6 is forged and formed to be flat and have a desired final thickness. The predetermined symbol is formed so as to protrude integrally on the outer surface of the housing 6. A is an example of a case size of 80 mm square. The forging conditions are forging temperature 350 to 550 ° C., mold temperature 350 to 450 ° C., forging speed 10 to 500 mm / second, and molding load 3 to 30 ton / cm 2 for rough forging, and forging temperature 300 to The temperature is 500 ° C., the mold temperature is 300 to 400 ° C., the forging speed is 1 to 200 mm / second, and the molding load is 1 to 20 ton / cm 2 .
[0025]
In the present invention, a target main part thickness of 0.5 to 1.0 mm can be obtained by rough forging and finish forging under the forging conditions described above. Representative examples from the experiments will be described as examples below.
Example 1
30 to 40 mmφ × 10 to 40 mm long forging magnesium alloy material (10 pieces) Forging temperature (temperature of magnesium alloy material during forging) 500 ° C., mold temperature 400 ° C., forging speed 200 mm / second, molding load 20 ton When rough forging was performed under forging conditions of / cm 2 , a main part having a thickness of 0.8 to 1.0 mm was obtained.
Next, as a result of finishing forging under forging conditions of a forging temperature of 400 ° C., a mold temperature of 350 ° C., a forging speed of 50 mm / sec, and a molding load of 10 ton / cm 2 , the thickness of the main part is 0.6 to 0 as targeted. It was possible to mold to a thickness in the range of 8 mm.
[0026]
(Example 2)
When rough forging was performed under the same rough forging conditions as in Example 1 except that the mold temperature was 300 ° C., the thickness of the main part was 1.6 mm or more. Next, as a result of finish forging under the same finish forging conditions as in Example 1, the thickness of the main part was 1.5 mm. As described above, when rough forging is performed at a low mold temperature of 300 ° C., heat is taken away by the low-temperature mold and the material temperature is lowered, so that the plastic flow (metal flow) is difficult to be performed. It turned out that thin wall forming is difficult by finish forging.
[0027]
(Example 3)
When rough forging was performed under the same rough forging conditions as in Example 1 except that the forging temperature (temperature of the magnesium alloy material during forging) was 340 ° C. and the forming load was 30 ton / cm 2 , the thickness of the main part was 1 It became more than 8mm. Next, as a result of finishing forging under the same finishing forging conditions as in Example 1, the thickness of the main part was 1.6 mm or more.
This is because the material temperature at the time of forging is low, so even if the molding load is increased to 30 ton / cm 2 , it is difficult for plastic flow (metal flow), and it is difficult to perform thin-wall molding by finish forging performed thereafter. I found out that
[0028]
(Example 4)
When rough forging was performed under the same rough forging conditions as in Example 1 except that the forging temperature (the temperature of the magnesium alloy material during forging) was 560 ° C. and the mold temperature was 460 ° C., the thickness of the main part was 1. Although it could be molded to 0 mm or less, the plastic flow (metal flow) was intense because the material temperature was too high, and a wavy trace of metal flow remained on the surface. Subsequently, finish forging was performed with various finish forging conditions, but the wavy traces of the metal flow could not be made uniform and flat. From this result, it was confirmed that the forging temperature was not good if it was too high.
[0029]
(Example 5)
When rough forging was performed under the same rough forging conditions as in Example 1 except that the molding load was 0.8 ton / cm 2 , the thickness of the main part was 2.0 mm or more. Next, as a result of finishing forging by changing various finishing forging conditions, in particular, by increasing the molding load to 30 ton / cm 2 or 40 ton / cm 2 , the main part has a thickness of up to 1.0 mm. The thickness was uneven and the moldability was not good.
[0030]
(Example 6)
When rough forging was performed under the same rough forging conditions as in Example 1 except that the forging speed was 500 mm / second, the plastic flow (metal flow) was disturbed, the filling into the mold was poor, and the shape was accurate. Could not be molded. The forging speed was 2.5 mm at 5 mm / second because the pressing time was slow and the temperature of the material was lowered when the forging speed was 10 mm / second or less in rough forging.
[0031]
Since the forged burrs are generated around the upper end of the forged thin-walled casing made of magnesium alloy thus obtained, trimming is performed to remove the forged burrs by punching. Next, the necessary part is machined. Magnesium alloys may oxidize after forging and lose metallic luster, so an oxide film is formed by a special composite anodized film treatment, and the metallic luster that makes use of the excellent corrosion resistance and magnesium alloy base that cannot be obtained by painting A forged thin-walled housing made of magnesium alloy having
[0032]
【The invention's effect】
The magnesium alloy forged thin-walled casing of the present invention is lighter and more rigid than aluminum alloy parts, has a predetermined symbol on its outer surface, and has excellent anticorrosion and special composite anodized film on the entire surface. The metallic luster that makes use of the magnesium alloy base is formed, and its application can be expected as a thin-walled casing for the purpose of reducing the weight of various devices.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a forging operation process of the present invention.
FIG. 2 is a schematic longitudinal sectional view of an upper and lower mold for carrying out forging by placing a forging material according to the present invention.
FIG. 3 is a schematic side view of a forging machine according to the present invention.
FIG. 4 is a schematic longitudinal sectional view of an upper and lower mold used for rough forging according to the present invention.
FIG. 5 is a schematic longitudinal sectional view of upper and lower molds used for finish forging according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Forging material 2 Lower die 3 Upper die 4 Heater 5 Thermocouple 6 Case 7 Case bottom 8 Case side 9 Forging machine 10 Eccentric shaft 11 Flywheel 12 Connecting rod 13 Frame L Forming load direction 14 Convex lower end corner 15 of upper die for rough forging Concave corner 16 of lower die for rough forging Upper die 17 for finish forging Lower die 18 for finish forging Lower end corner of convex portion of upper die for finish forging 19 Concave corner portion 20 of finish forging lower mold 20 Predetermined concave portion 21 Inner side surface of bottom of casing

Claims (4)

マグネシウム合金素材の温度を350〜550℃、鍛造に供する金型温度を350〜450℃とし、3〜30ton/cm 2 の成形荷重を負荷しながら10〜500mm/秒の鍛造速度により粗鍛造を行い、次いで粗鍛造した成形筐体を300〜500℃、鍛造に供する金型温度を300〜400℃とし、1〜20ton/cm 2 の成形荷重を負荷しながら1〜200mm/秒の鍛造速度により仕上鍛造することにより主要部の肉厚がほぼ1.0mm以下の筐体に成形し、前記筐体にトリミング及び機械加工を施し、その後前記筐体の全面に特殊複合陽極酸化皮膜処理を行うことを特徴とするマグネシウム合金製鍛造薄肉筐体の製造方法。 The temperature of the magnesium alloy material is set to 350 to 550 ° C., the mold temperature used for forging is set to 350 to 450 ° C., and rough forging is performed at a forging rate of 10 to 500 mm / sec while applying a forming load of 3 to 30 ton / cm 2. Then, the roughly forged molded casing is 300 to 500 ° C., the mold temperature used for forging is 300 to 400 ° C., and finished at a forging speed of 1 to 200 mm / sec while applying a molding load of 1 to 20 ton / cm 2. Forming a casing with a main part thickness of approximately 1.0 mm or less by forging , trimming and machining the casing, and then performing a special composite anodic oxide coating on the entire casing A method for producing a forged thin-walled casing made of magnesium alloy. 粗鍛造工程で粗形状に成形し、次いで仕上鍛造工程で筐体内側の隅部を小半径を有する曲面に形成すると共に、前記筐体の底部および側部を目標寸法肉厚に形成し、さらに前記筐体の外側の面上に所定の記号を外面より突出させて一体的に形成することを特徴とする請求項に記載のマグネシウム合金製鍛造薄肉筐体の製造方法。In the rough forging process, a rough shape is formed, and then in the finish forging process, the corners inside the casing are formed into curved surfaces having a small radius, and the bottom and sides of the casing are formed to a target dimension thickness, 2. The method for manufacturing a magnesium alloy forged thin casing according to claim 1 , wherein a predetermined symbol is protruded from the outer surface and integrally formed on the outer surface of the casing. 特殊複合陽極酸化皮膜処理を施すことにより、塗装では得られない優れた防食性およびマグネシウム合金素地を生かした金属光沢を有することを特徴とする請求項1または請求項2に記載のマグネシウム合金製鍛造薄肉筐体の製造方法。The magnesium alloy forging according to claim 1 or 2 , characterized by having a special composite anodic oxide film treatment, an excellent corrosion resistance that cannot be obtained by coating, and a metallic luster that makes use of the magnesium alloy substrate. A method for manufacturing a thin housing. マグネシウム合金素材の組成が、重量比率で、Al:1〜6%、Zn:0〜2%、Mn:0.5%以下、微量元素0.2%以下、残部Mg及び不可避的不純物よりなることを特徴とする請求項乃至請求項の何れか1項に記載のマグネシウム合金製鍛造薄肉筐体の製造方法。The composition of the magnesium alloy material consists of Al: 1 to 6%, Zn: 0 to 2%, Mn: 0.5% or less, trace elements of 0.2% or less, the balance Mg and unavoidable impurities. method of manufacturing a magnesium alloy forged thin casing according to any one of claims 1 to 3, characterized in.
JP07913598A 1998-03-26 1998-03-26 Method for manufacturing forged thin-walled casing made of magnesium alloy Expired - Fee Related JP3982780B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP07913598A JP3982780B2 (en) 1998-03-26 1998-03-26 Method for manufacturing forged thin-walled casing made of magnesium alloy
DE1999613018 DE69913018T2 (en) 1998-03-26 1999-03-23 Forged magnesium alloy body and process for making it
EP99105853A EP0945199B1 (en) 1998-03-26 1999-03-23 Thin, forged magnesium alloy casing and method for producing the same
US09/275,003 US6316129B1 (en) 1998-03-26 1999-03-24 Thin, forged magnesium alloy casing and method for producing same
KR1019990010571A KR100611080B1 (en) 1998-03-26 1999-03-26 Thin, forged magnesium alloy casing and method for producing same
US09/834,602 US6511560B2 (en) 1998-03-26 2001-04-16 Thin, forged magnesium alloy casing and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07913598A JP3982780B2 (en) 1998-03-26 1998-03-26 Method for manufacturing forged thin-walled casing made of magnesium alloy

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP11270587A Division JP2000135538A (en) 1999-09-24 1999-09-24 Magnesium alloy forged thin housing and manufacture thereof
JP2007141677A Division JP4666659B2 (en) 2007-05-29 2007-05-29 Magnesium alloy forged thin casing and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11277173A JPH11277173A (en) 1999-10-12
JP3982780B2 true JP3982780B2 (en) 2007-09-26

Family

ID=13681520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07913598A Expired - Fee Related JP3982780B2 (en) 1998-03-26 1998-03-26 Method for manufacturing forged thin-walled casing made of magnesium alloy

Country Status (1)

Country Link
JP (1) JP3982780B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002086237A (en) * 2000-09-08 2002-03-26 Hitachi Metals Ltd Thin formed body made of light alloy and its manufacturing method
KR20010079452A (en) * 2001-07-20 2001-08-22 이상호 Parts manufacturing method and apparatus for preventing electromagnetic interference using magnesium hot working
KR100476673B1 (en) * 2002-10-01 2005-03-18 한국과학기술연구원 The process and equipment for manufacturing package housing and its components for the optical communication electronic device
JP4243983B2 (en) 2003-07-11 2009-03-25 学校法人千葉工業大学 Magnesium alloy pressure injection molding method and metal products
JP4521659B2 (en) * 2003-11-19 2010-08-11 電化皮膜工業株式会社 Method for producing magnesium or magnesium alloy material
KR100605741B1 (en) * 2004-04-06 2006-08-01 김강형 magnesium alloy wrought product with anti-corrosion and good plating characteristics
FI20106217L (en) * 2010-11-18 2012-05-19 Perlos Oyj Method and scale part

Also Published As

Publication number Publication date
JPH11277173A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US6511560B2 (en) Thin, forged magnesium alloy casing and method for producing same
CN101269386B (en) Magnesium alloy plastic process product and manufacture method thereof and its uses
CN1283822C (en) Method for making magnesium alloy product
CN104889402B (en) A kind of preparation method of aluminum base powder metallurgy part
EP0535593B1 (en) Method of manufacturing sintered aluminum alloy parts
JP3982780B2 (en) Method for manufacturing forged thin-walled casing made of magnesium alloy
JP4666659B2 (en) Magnesium alloy forged thin casing and method for manufacturing the same
JP2002254132A (en) Hot forging and forming method for magnesium alloy member
CN106636798B (en) 6061 material commercial car aluminium alloy wheel hub liquid forging process methods
JP2005193371A (en) Magnesium alloy and method of producing vehicle sheet frame using the same
JP3240182B2 (en) Manufacturing method of magnesium alloy member
JP2000135538A (en) Magnesium alloy forged thin housing and manufacture thereof
CN106345984B (en) The liquid forging process method of A357 aluminium alloy applied to commercial vehicle wheel hub
JP2001162346A (en) Manufacturing method of magnesium alloy thin formed body, and thin formed body
JPH1177214A (en) Magnesium alloy forged thin-walled parts, and its manufacture
CN113430413A (en) Processing technology of high-strength AZ91D alloy material
JP2000210747A (en) Plastically worked thin formed part of magnesium alloy
JP2000246386A (en) Manufacture of magnesium alloy thin molding element, and thin molding element
JP3078411B2 (en) Method for manufacturing composite aluminum member
CN1283818C (en) Process for preparing semisolid non-dendritic zinc base alloy
CN106399770B (en) Liquid forging process method applied to the A357 aluminium alloys of commercial axle head
JP2001170736A (en) Method for manufacturing magnesium alloy thin formed body and thin formed body
JP2004351485A (en) Method for working metal and work formed product
CN110252841A (en) A kind of manufacturing process of aluminum alloy plate materials
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees