JP3982266B2 - 冷凍空気調和装置およびその運転制御方法 - Google Patents
冷凍空気調和装置およびその運転制御方法 Download PDFInfo
- Publication number
- JP3982266B2 JP3982266B2 JP2002007197A JP2002007197A JP3982266B2 JP 3982266 B2 JP3982266 B2 JP 3982266B2 JP 2002007197 A JP2002007197 A JP 2002007197A JP 2002007197 A JP2002007197 A JP 2002007197A JP 3982266 B2 JP3982266 B2 JP 3982266B2
- Authority
- JP
- Japan
- Prior art keywords
- state
- filter
- clogging
- blower
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
【発明の属する技術分野】
この発明は、室内を空気調和する空気調和装置や冷蔵倉庫内を冷却する冷凍機などの冷凍空気調和装置に関するものである。
【0002】
【従来の技術】
従来の冷凍空気調和装置は、フィルターの目詰まり状態を検知する方法として、図10に示すように新しいフィルターをその装置へ装着或いはフィルターの清掃作業を行なって装着した時点からの運転の累積時間が設定時間t1を超えた場合に、フィルターが目詰まりを起こしたと判断する。そして、フィルターの目詰まりサインを、例えばLEDなどの表示器を点滅或いは点灯させて行なっている。また、その他の例として特開平08−132854号公報に開示される送風機の差圧を検出したり、特開平08−285348号公報に開示される送風機を駆動するモータの回転数を検出するなどしてフィルターの目詰まり状態を推測することが挙げられる。また、機器の故障診断を行なう方法としては後述のマハラノビスの距離を使用した特開2000−259222号公報などが知られている。
【0003】
【発明が解決しようとする課題】
従来の冷凍空気調和装置は、前述のように装置の運転の累積時間が設定時間t1を超えた場合に、フィルターの目詰まりを報知するように構成していた。しかしながら、環境の良い条件下ではフィルターに付着するゴミ量が比較的少ないために、フィルターが目詰まりを起こしていないのに運転の累積時間が設定時間t1を超えたために、目詰まりサインを表示してしまう。このために、フィルターのメンテンナンス作業、かつその費用が無駄になるという問題点を有していた。
【0004】
また、環境の悪い条件下ではフィルターに付着するゴミ量が比較的多いために、運転の累積時間が設定時間t1を超えない時点で、即ちフィルターの目詰まりの報知が行なわれない時点で目詰まりを起こしてしまう。このために、空気調和装置として吸込風量が減るので規定の暖房能力や冷房能力を発揮することが出来ず、部屋が温まり難い或いは冷え難いという問題点を有していた。
【0005】
また、フィルターの目詰まり状態を正確に検知できないため、例えば目詰まりが激しい状況で装置が運転動作を行なうことにより、装置が異常停止するという問題点を有していた。
【0006】
この発明は、前述のような問題点を解決するためになされたもので、フィルターの目詰まり状態を正確に推測してフィルターのメンテナンス作業を使用者或いは業者に対して実行させることにより、常に所定の吸込風量を確保して規定の暖房能力や冷房能力を維持できる冷凍空気調和装置を得ることを目的とする。また、目詰まりが激しい場合に冷凍空気調和装置が異常停止してしまうのを防止することを目的としている。
【0007】
【課題を解決するための手段】
この発明の冷凍空気調和装置は、流路内にフィルター、熱交換器、モータで駆動される送風機或いはポンプを備えた冷凍空気調和装置において、送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段を設け、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段を設け、この演算手段で求めた複合変数の大きさの変化に基づいてフィルターの目詰まり状態を判断する判断手段を設けるようにしたものである。
【0008】
また、流路内に熱交換器とモータで駆動される送風機或いはポンプとを備えた冷凍空気調和装置において、送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段を設け、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段を設け、この演算手段で求めた複合変数の大きさの変化に基づいて熱交換器の目詰まり状態を判断する判断手段を設けるようにしたものである。
【0009】
また、判断手段による判断された目詰まり状態と予め設定される目詰まり限界量とを比較する比較手段を設けるようにしたものである。
【0010】
また、目詰まり限界量を経過時間に応じて変化するようにしたものである。
【0011】
また、判断手段はその判断結果或いは比較手段による比較結果を出力する出力手段を設けるようにしたものである。
【0012】
また、出力手段を表示手段に接続するようにしたものである。
【0013】
また、出力手段を有線或いは無線で遠隔監視手段に接続するようにしたものである。
【0014】
また、流路内に配置されるモータで駆動する送風機或いはポンプの運転時における送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、流量、流速、前記モータへの供給電力、前記送風機或いはポンプの回転数の少なくとも1つの状態量、および吸込側の温度、吹出側の温度の何れか1つの状態量を検出し、検出された複数の状態量の相関関係に基づき、大きさの変化から状態を判別できる複合変数量を求め、この複合変数量と予め設定された流路構成における送風機或いはポンプの運転時の複合変数量とを比較し、流路内の流通状態を判断するようにしたものである。
【0015】
また、複数の状態量のデータを平均化および偏差の処理によって基準化し、この基準化された各々の値を相互的に関連付けるように演算して複合変数量を求めるようにしたものである。
【0016】
また、送風機或いはポンプの運転時の複合変数量が、予め設定された流路構成における複合変数量の数倍以上に達した場合に、流通状態は異常であると判断するようにしたものである。
【0017】
【発明の実施の形態】
実施の形態1.
図1は、この発明における冷凍空気調和装置の実施の形態1示す構成図である。図1において、1は本体、2は本体1の吸込口3に設置されるフィルターであって、塵埃、カビ、ダニ、花粉、バクテリアなどを捕捉する網目構造を有している。そして、例えばこのフィルター2は0.3ミクロン以上の微粒子を99.97%捕捉できるHEPAフィルターから成る。4はフィルター2の風下側に配置される吸込側の空気温度を検知する温度センサー、5はフィルター2を通じて吸込口3から吸い込まれる空気を送風機6の吸込側(図中のA)へ案内するガイド手段、7は送風機6の吹出側(図中のB)の空気を熱交換する熱交換器、8は熱交換器7で熱交換された空気を部屋へ吹き出すために必要な本体1の所定位置に形成する吹出口である。なお、温度センサー4はフィルター2の風下側の位置に配置させる他に、送風機6の吹出側、熱交換器7の入口側、熱交換器7の出口側の何れかの位置に配置するようにしても良い。
【0018】
次に、こうした構成を有する空気調和装置の動作について、図1に示す構成図を併用して説明する。装置の運転動作を開始すると、送風機6の誘引作用により吸込口3から吸い込まれた空気はフィルター2を通じて熱交換器7へ送り込まれる。そして、その空気は熱交換器7により暖房運転時は加熱され、冷房運転時は冷却される。この後で、熱交換された空気は吹出口8から部屋へ吹き出される。このような暖房運転或いは冷房運転の過程で、吸込口3から吸い込まれる空気中に含まれる塵埃、カビ、ダニ、花粉、バクテリアなどがフィルター4で捕捉される。このために、吹出口8から吹き出される空気は清浄度が高くなり、これに応じてフィルター2の塵埃などの付着量が増大し、フィルター2の目詰まり状態が進行していく。
【0019】
次に、フィルター2の目詰まり量に対する送風機6の動作について、図2に示す送風機6の前後差圧Pと風量Qとの関係図を併用して説明する。一般的に、風路を遮る量が少ない場合には送風機6の前後差圧Pが小さく、かつ風量Qが大きくなる。また、その風路を遮る量が多い場合には前後差圧Pが大きく、かつ風量Qが小さくなる性質を有する。したがって、風路内に存在するフィルター2の目詰まり量が少ないときは、送風機6は前後差圧がP1、風量がQ1の点で動作し、その風量や風速が大きくなる。一方、フィルター2の目詰まり量が多いときは、送風機6は前後差圧がP2、風量がQ2の点に移行して動作し、(Q1>Q2、P1<P2)、その風量や風速が小さくなる。このときに、送風機6のモータに印加する電圧を一定とした場合に、フイルター2の目詰まり量が多くなると風量が低下するので、送風機6の空気押出し量即ち仕事量が減る。これにより、仕事量を一定にしようとして送風機6が駆動するので、回転数が上昇することになる。
【0020】
また、熱交換器7の内部を流れている高温或いは低温の冷媒などの媒体と、その周囲に接触する空気とが熱交換されることで、空気が暖められたり冷やされたりする。したがって、送風機6の風量が低下した場合に熱交換器7の内部を流れている媒体との熱交換量が低下し、空気に対しての冷暖房能力が低下する。また、熱交換器7は例えば圧縮機、他の熱交換器と接続されて冷凍サイクルを構成している。このために、熱交換器7における熱交換能力が低下し過ぎるとその影響が冷凍サイクル全体に及び圧縮機の吐出温度が高くなり過ぎるのを防止する吐出温度の保護機能やその他の保護機能が作動することで、冷凍空気調和装置が異常停止してしまう場合がある。
【0021】
こうしたことにより、冷凍空調装置の分野ではフィルター2の目詰まり量が限界値以上に至らないように、例えばLEDなどを点滅或いは点灯してフィルター2の目詰まりサインを表示し、フィルター2の清掃作業を促すようにしている。
【0022】
しかし、フィルター2の目詰まり量を検知或いはその量を推測することは実際上では非常に困難である。一般的に、装置の運転累積時間が所定時間を経過した場合にフィルター2の目詰まり量が限界値に達したと判断し、フィルター2の目詰まりサインを表示している。この場合において、フィルター2の目詰まり量は使用環境によって変わるので、例えば実際上において目詰まりを起こしていないのにフィルター2を清掃するなどして非常に手間がかかったり、前述のように目詰まりし過ぎて装置が異常停止する恐れがある。このように、フィルター2の目詰まり量を検知或いは推測することは非常に重要なことである。
【0023】
次に、周囲温度に対する送風機6の動作について、図3に示す送風機6の前後差圧Pと風量Qとの関係図を併用して説明する。一般的に、空気の温度が低い場合にその比重が大きくなり、空気の温度が高い場合にその比重が小さくなるために、送風機1のモータに印加される電圧が一定であっても、空気温度に応じて送風機6の動作時における前後差圧Pと風量Qとの特性が変化する。
なお、送風機6の風量や風速は前述の要因以外に、モータへの印加電圧、電源電圧、インバータ母線電圧の大きさによっても変化する。
【0024】
以上のように、送風機6が動作する時点の前後差圧,風量,風速,回転数は、フィルター2の目詰まり量,空気温度,印加電圧,電源電圧、インバータ母線電圧などの複数の要因の相互作用で決定される。これにより、これらの要因の何れか1つの状態量を検出した場合では、フィルター2の目詰まり量を正確に推測することは困難である。したがって、複数の要因の状態量を検出してフィルター2の目詰まり量を推測する必要がある。しかし、前述の空気温度は設定温度との差がある場合に連続的に無段階で変化し、かつ回転数、印加電圧などはフィルター2の目詰まりがある場合に連続的に無段階で変化する。このために、複数の状態量を検知してフィルター2の目詰まり量を推測する際に、それらの状態量を特別な加工処理する必要がある。なお、前述の状態量の一つである空気温度以外に、熱交換器7の内部を流れる媒体温度或いは熱交換器7の配管温度の何れかを状態量としても良い。
【0025】
次に、前述の要因の状態量の加工処理方法について説明する。複数の状態量を処理する方法の一例として、一般周知である”マハラノビスの距離”が挙げられる。”マハラノビスの距離”とは、1992年10月26日に東京図書株式会社から発行された「すぐわかる多変量解析」に記載があり、多変量解析の分野で使われている手法である。
ここでは、例えば送風機6の回転数のみを検出することを考えてみる。送風機6の回転数はフィルター2の目詰まり量によって変化するが、前述のように吸込側の空気温度によっても変化する。したがって、送風機6の回転数のみではフィルター2の目詰まり量は推測できない。
【0026】
また、例えば送風機6のモータの印加電圧のみを検出することを考えてみる。送風機6の回転数は印加電圧の大きさで変化する。そして、フィルター2の目詰まり量が多くなると印加電圧を一定にした場合に送風機6の回転数が上昇する。このために、その回転数を一定にする場合には印加電圧を低下させる必要があり、この状態を捉えてフィルター2の目詰まりを把握することが考えられる。しかし、送風機6の回転数は前述のように吸込側の空気温度によっても変化するので、印加電圧のみではフィルター2の目詰まり量は推測できない。
【0027】
また、例えば電源電圧のみを検出することを考えてみる。送風機6の回転数は電源電圧が安定状態であれば一定であり、フィルター2の目詰まり量が多くなった場合でも電源電圧は変化しない。電源電圧は他の家電機器の使用状況などによって変動し、その時点に送風機6の回転数が変化するものである。したがって、電源電圧のみではフィルター2の目詰まり量は推測できない。
【0028】
しかし、送風機6の回転数はフィルター2の目詰まり量、吸込側の空気温度、モータの印加電圧、電源電圧などの状態量で決定されるので、これらの状態量の相互関係を定量化すればフィルター2の目詰まり量を推測できる。
【0029】
次に、こうした内容を考慮した上で具体的なフィルター2の目詰まり量の推測方法について説明する。送風機6の回転数をX1、吸込側の空気温度をX2、モータの印加電圧をX3、電源電圧をX4としてフィルター2の目詰まり量を零の状態で、X2〜X4を変化させる。つまり、合計n個(2以上)の組合わせパターンを作り、それぞれのパターンにおけるX1〜X4を検出する。そして、X1〜X4の検出値を基準データとし、X1〜X4のそれぞれの平均値miおよび標準偏差σi(基準データのバラツキ度合い)を、下記の(1)式と(2)式により求める。なお、iは項目数(パラメータの数)であって、ここでは1〜4に設定してX1〜X4に対応する値を示す。
【0030】
【数1】
【0031】
【数2】
【0032】
次に、前述の平均値miおよび標準偏差σiを用いて元のX1〜X4を、下記の(3)式によってx1〜x4に変換するという基準化を行なう。なお、下記の(3)式においてjは1〜nまでの何れかの値をとり、n個の各測定値に対応するものである。
【0033】
【数3】
【0034】
次に、x1〜x4の相関関係を示す相関行列Rおよび相関行列の逆行列R−1を、下記の(4)式で定義付ける。なお、下記の(4)式においてkは項目数(パラメータの数)であり、ここでは4とする。また、iやpは各項目での値を示し、ここでは1〜4の値をとる。
【0035】
【数4】
【0036】
このような演算処理の後で、マハラノビスの距離を下記の(5)式に基づいて求める。なお、(5)式においてjは1〜nまでの何れかの値をとり、n個の各測定値に対応するものである。また、kは項目数(パラメータの数)であり、ここでは4とする。また、a11〜akkは上記の(4)式の相関行列の逆行列の係数であり、マハラノビスの距離は基準データ即ちフィルター2の目詰まり量が零のときは約1になる。
【0037】
【数5】
【0038】
次に、フィルター2が目詰まりを起こしたときの送風機6の回転数X1、吸込側の空気温度X2、印加電圧X3、電源電圧X4を検出し、上記の(3)式および(5)式にX1〜X4の検出値を代入してフィルター2の目詰まり状態でのマハラノビスの距離を求める。なお、このときは相関行列の逆行列は基準となるフィルター2の目詰まり量が零の状態で求めたものを用いる。このようにして、フィルター2の目詰まり量を順次変化させてフィルター2の目詰まり量、送風機6の回転数X1、吸込側の空気温度X2、モータの印加電圧X3、電源電圧X4、マハラノビスの距離の関係を求める。つまり、マハラノビスの距離とフィルター2の目詰まり量との関係を対応付けておく。マハラノビスの距離は、基準状態から離れるに応じて大きくなる性質を有する。
【0039】
そして、フィルター2の目詰まり量が零の状態を基準状態とすれば、フィルター2の目詰まり量が多くなるに応じてマハラノビスの距離が大きくなっていく。これにより、判断したいフィルター2の目詰まり量に対応するマハラノビスの距離を実験データを用いてこれを演算して割り出し、これを閾値として記憶しておく。
以上のような一連の演算を行なってマハラノビスの距離を求める工程をオフラインで実行、即ち使用者がパソコンなどを使用してその距離を求める行為を実行する。
【0040】
ここで、マハラノビスの距離の概念について、図4と図5を併用して説明する。図4は、例えば送風機6の回転数X1、吸込側の空気温度X2、印加電圧X3などの三つ以上のパラメータに対するマハラノビスの距離を求めた場合の特性図である。図4において、フィルター2の目詰まり量が零のときの基準状態における各検出データは所定の範囲内(図中のA)に収まり、これを基準データ群と呼ぶものとする。そして、この基準データ群に判断すべき各検出データが存在するかどうか即ちフィルター2が目詰まりを起こしているかどうかを、マハラノビスの距離によって判断するものである。
【0041】
また、図5はマハラノビスの距離とその出現率の関係を図示したものである。図5において、パラメータが幾つの場合においても演算したマハラノビスの距離が、基準データ群に対してどういう位置関係に存在するかを判断し、フィルター2の目詰まり状態を確認できる。なお、基準データ群においてはマハラノビスの距離は平均値が約1となり、バラツキを考慮した場合でも4以下となる。
【0042】
次に、実機において送風機6の回転数を検知する検知手段および吸込側の空気温度を検知する検知手段を具備し、これらの検知手段の検出値を前記の(3)式と(5)式で演算処理し、マハラノビスの距離を求める。これにより、フィルター2の目詰まり量とマハラノビスの距離の大きさの関係が定量化され、マハラノビスの距離の大きさに基づいてフィルター2の目詰まり量を推測することができる。そして、図6に示すようにマハラノビスの距離が予め設定される閾値を超えた場合に、フィルター2が目詰まりを起こしたと判断し、例えばLEDなどを点滅或いは点灯させて目詰まり状態を表示することが提案される。また、その他の例として目詰まり状態の出力信号を有線或いは無線で遠隔監視手段へ送り出し、その状態を監視センターで集中管理することができる。
【0043】
なお、マハラノビスの距離の大きさは正常状態即ちフィルター2が目詰まりを起こしていな状態では4以下の値になる。したがって、この値を超えた場合には異常状態と判断する。しかし、フィルター2が多少の目詰まりを起した状態では空気調和装置の運転動作に殆ど支障がなく、フィルター2の目詰まりを頻繁に表示した場合にはメンテナンス回数が増えて無駄な作業が多くなる。こうしたことより、マハラノビスの距離と目詰まり状態との関係を明確化しておき、例えば閾値は4よりも大きい適切な値50の値に設定することが必要である。なお、マハラノビスの距離50という値は、前述で説明したフィルター2の目詰まり状態が激しく、装置の異常停止するのを防止できる距離値である。
【0044】
次に、実機におけるマハラノビスの距離を用いたフィルター2の目詰まり状態の検知方法について、図7に示す制御回路ブロック図および図8に示すフローチャート図の流れに沿って説明する。図7において、9は回転数、流速、流量、差圧、電圧、電流などから成る状態量A、10は吸込温度、吹出温度、熱交換器配管温度などから状態量Bであって、これらの状態量が演算手段11に入力される。そして、判断手段12は演算手段11により求められた複合変数と、予め設定された複合変数閾値或いは前時刻での複合変数13などを比較し、フイルター2の目詰まり状態を出力手段14に出力する。なお、判断手段12は演算手段11で求めた単位時間当たりの複合変数の変化量即ち微分値に基づいて、フイルター2の目詰まり状態を出力手段14に出力するように構成しても良い。次に、出力手段14は目詰まり状態の出力信号を例えばLEDなどの表示手段15或いは遠隔監視手段16に送り出す。
【0045】
また、図8において最初に基準データの平均値、標準偏差、相関行列の逆行列、項目数をセットし(ステップST1)、この後でマハラノビスの距離の閾値Dmaxをセットする(ST2)。そして、回転数、吸込側の空気温度、印加電圧、電源電圧を検出し(ST3)、これらの検出データについて順次X1〜X4として設定する(ST4)。次に、前記の(3)式に基づいてこれらの検出データの基準化を行い(ST5)、この後でマハラノビスの距離を初期値として0、カウンターi,jを初期値の1にセットする(ST6)。
【0046】
次に、カウンターi,jが項目数kに至るまで変化させ、前記の(5)式の演算を行う(ST7〜ST10)。そして、マハラノビスの距離が閾値を超えているかどうかを判断する(ST11)。ここで、仮にYESの場合はフィルター2の目詰まり量が多くなっていると判断し、エアフィルター2の目詰まり表示を行なう(S12)。なお、ここでマハラノビスの距離の大きさに応じてエアフィルター2の目詰まり量を定量的に表示しても良い。表示方法として、例えばLEDなどを複数個設けてマハラノビスの距離の大きさに応じて、その点灯数を変化するようにしても良い。
【0047】
また、フィルター2の目詰まり表示方法として、図8に示すように装置の運転の経過時間に応じてその閾値を複数段階で変化するようにしても良い。例えば、初期時(設定時間T0〜T1)は第1の閾値を設定し、運転の経過時間が設定時間(T1)に達した場合に、第2の閾値へ自動的に移行するようにしても良い(第1の閾値>第2の閾値)。これにより、装置の周囲環境が非常に良好の場合において長期使用でもフィルター2の目詰まり表示が行なわれないことに対し、目詰まり表示を行ない易くなって使用者に対しての不安感を解消することができる。
【0048】
また、前述のようにマハラノビスの距離によるフィルター2の目詰まり量の定量化を、送風機6の回転数、吸込側の空気温度、モータの印加電圧、電源電圧の4つの状態量から推測する例を述べたが、これ以外の状態量を取り込んでマハラノビスの距離を求め、目詰まりの検知精度を向上しても良い。さらに、例えば送風機6の回転数および吸込側の空気温度の二つ以上の状態量からフィルター2の目詰まり量を推測しても良い。ただし、状態量が少ないためにフィルター2の目詰まりの検知精度は若干低下する。
【0049】
また、前述のように部屋の空気はフィルター2、送風機6、熱交換器7の順に流れる構成を挙げてフィルター2の目詰まり状態について説明を行ったが、フィルター2、熱交換器7、送風機6の順に空気が流れる構成であっても、目詰まりの検知精度は殆ど同一である。これについては、周囲の空気は熱交換器7により加熱或いは冷却され、送風機6によって吸い込まれた後で吹き出されるが、送風機6の回転数に影響を与えるのは送風機6の吸込み側の空気温度である。したがって、送風機6の吸込側即ち熱交換器7の出口側、或いは送風機6の吹出側に空気温度を検知できる温度センサー4を設置すれば良い。また、熱交換器7の吸込側に温度センサー4を設置したり、或いは熱交換器7の内部を流れる媒体の温度を検知できる温度センサー4などをその配管に設置した場合でも、送風機6の吸込側の空気温度或いは吹出側の空気温度を推測することが可能であり、前述と同様の効果を奏する。
【0050】
また、送風機6の回転数の検知方法として送風機6の運転時の通電電流や周波数、ホール素子などを用いて送風機6の回転子の位置を検出して回転数を検知する回転センサー、送風機6の羽根の回転数を光や磁束などを測定して直接回転数を検知する方法などが提案される。
【0051】
また、前述のようにマハラノビスの距離を用いてフィルター2の目詰まり状態を推測する方法の他に、送風機6或いは熱交換器7への塵付着状態についても推測できる。このときは、前述と同様に予めこれらに塵が付着していない状態の基準データを記憶設定しておき、この基準データと検出される状態量とを比較して送風機6或いは熱交換器7への塵付着量を推測できる。
【0052】
また、前述のようにマハラノビスの距離をパッケージエアコンなどの空気調和装置に適用してフィルター2などの目詰まり状態を把握する方法について説明を行ったが、これ以外にルームエアコンや空気清浄器などの空気調和器、冷蔵倉庫の内部に設置されるユニットクーラー、スーパーマーケット内に設置されるショーケースの送風機や熱交換器に対しても、マハラノビスの距離を適用して目詰まり量を推測できる。
【0053】
また、目の大きさが異なる複数のフィルター2が設置されている空気調和装置の場合に、前述と同様に複数のフィルター2の目詰まり量を零としたときの基準データを検出し、マハラノビスの距離を適用して目詰まり状態を推測することができる。また、送風機6や熱交換器7が複数台を備えている空気調和装置の場合においても、前述と同様に基準データを検出してフィルター2の目詰まり状態を推測することができる。
【0054】
また、ここではマハラノビスの距離の絶対値と閾値とを比較してフイルター2、送風機6、熱交換器7の目詰まり量を推測する例を述べたが、これ以外に単位時間毎のマハラノビスの距離の変化量を捉えて、使用場所の空気の汚染度を推測することもできる。つまり、マハラノビスの距離の変化量が大きくなった場合には、空気の汚染度が高くなっていると推測するものである。
【0055】
また、使用運転時において吸込風路の圧損や印加電圧の大きさなどが基準データを検出した際の構成条件と異なった場合、例えば基準データを検出した際にはフィルター2が1枚であり、使用運転時ではフィルター2が2枚となった場合或いは送風機6のモータへの印加電圧が変更となった場合などは、その都度マハラノビスの距離の大きさを補正処理する必要がある。この補正処理としては、例えば使用運転時に一旦マハラノビスの距離を演算し、その演算された距離値を基準データ時のマハラノビスの距離の平均値1に近づけるようにデータ補正することが考えられる。
【0056】
また、ここでは吸込側の空気温度の絶対値を一定状態としてマハラノビスの距離を求める方法を説明したが、例えば空気温度が上昇している過程では一定時間毎の各データの平均値を捉えることにより、前述と同様にフィルター2の目詰り状態を推測することができる。
【0057】
また、ここでは送風機7により熱交換された空気を流通させる場合を例に挙げたが、その他の例として熱交換器7を空気以外の任意の流体が流通している場合にも前述と同様のことが言える。例えば、ポンプを用いて水を流通させて熱交換するように構成しても良い。
【0058】
また、ここでは熱交換器7の配管の内部を冷媒が流通することを例に説明を行なったが、これに限定するものではなく水やブラインなどの温熱或いは冷熱を輸送できる媒体であれば、どんなものを使用して前述と同様のことが言える。
【0059】
以上、送風機6の回転数、流量、流速、送風機のモータへの印加電圧、モータへの通電電流、モータへの供給電力、電源電圧、インバータ母線電圧、送風機6の送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源 前後差圧から少なくとも1つの状態量および吸込側の空気温度、吹出側の空気温度、熱交換器7の内部を流れる媒体の温度、熱交換器7の配管温度から少なくとも1つの状態量を検知する状態量検知手段を設け、これらの状態量から複合変数を求める演算手段を設け、この複合変数の大きさに基づいてフィルター2の目詰まり状態を精度良く推測することができる。
【0060】
【発明の効果】
この発明は、以上のように構成されているので、以下に記載されるような効果を奏する。
【0061】
この発明の空気調和装置は、流路内にフィルター、熱交換器、モータで駆動される送風機或いはポンプを備えた冷凍空気調和装置において、送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段を設け、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、前記フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段を設け、この演算手段で求めた複合変数の大きさの変化に基づいてフィルターの目詰まり状態を判断する判断手段を設けるようにしたので、各種の状態量の影響を受けることがなくフィルターの目詰まり状態を精度良く推測し、常に装置の冷暖房運転状態を良好に維持することができる。
【0062】
また、流路内に熱交換器とモータで駆動される送風機或いはポンプとを備えた冷凍空気調和装置において、送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段を設け、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段を設け、この演算手段で求めた複合変数の大きさの変化に基づいて熱交換器の目詰まり状態を判断する判断手段を設けるようにしたので、熱交換器の目詰まり状態を精度良く推測し、常に装置の冷暖房運転状態を良好に維持することができる。
【0063】
また、判断手段による判断された目詰まり状態と予め設定される目詰まり限界量とを比較する比較手段を設けるようにしたので、目詰まり量が限界量を超えたかどうかを判断することができ、冷凍空気調和装置の異常停止や不必要な目詰まりのメンテナンス作業を回避することができる。
【0064】
また、目詰まり限界量を経過時間に応じて変化するようにしたので、所定時間を経過すると目詰まりサインが出易くなる。したがって、例えば環境が良い条件下において使用者は目詰まり報知が行なわれず、不安感を抱くことを未然に回避することができる。
【0065】
また、判断手段はその判断結果或いは比較手段による比較結果を出力する出力手段を設けるようにしたので、検知した目詰まり量或いは目詰まり量が目詰まり限界量を超えたか否かの結果を、外部へ出力することができる。
【0066】
また、出力手段を表示手段に接続するようにしたので、例えば目詰まり量に応じた特性図を表示したり、目詰まり量が目詰まり限界量を超えた場合に目詰まりサインとしてLEDを点灯或いは点滅させることができる。
【0067】
また、出力手段を有線或いは無線で遠隔監視手段に接続するようにしたので、目詰まり状態を監視センターで集中管理することができる。
【0068】
また、流路内に配置されるモータで駆動する送風機或いはポンプの運転時における送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、流量、流速、前記モータへの供給電力、前記送風機或いはポンプの回転数の少なくとも1つの状態量、および吸込側の温度、吹出側の温度の何れか1つの状態量を検出し、検出された複数の状態量の相関関係に基づき、大きさの変化から状態を判別できる複合変数量を求め、この複合変数量と予め設定された流路構成における送風機或いはポンプの運転時の複合変数量とを比較し、流路内の流通状態を判断するようにしたので、常に流路の異常を検知する運転制御を実行することができる。
【0069】
また、複数の状態量のデータを平均化および偏差の処理によって基準化し、基準化された各々の値を相互的に関連付けるように演算して複合変数量を求めるようにしたので、データを画一的に採用して異なる機種同士を共通のアルゴリズムで取り扱うことができる。
【0070】
また、送風機或いはポンプの運転時の複合変数量が、予め設定された流路構成における複合変数量の数倍以上に達した場合に、流通状態は異常であると判断するようにしたので、目詰まり状態を正確に把握して無駄なメンテナンス回数を低減させることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に係る空気調和装置の構成図を示す。
【図2】 フイルターの目詰まり量に対応する送風機の前後差圧と風量との関係を示した図である。
【図3】 温度変化に対応する送風機の前後差圧と風量との関係を示した図である。
【図4】 マハラノビスの距離の概念を示した図である。
【図5】 マハラノビスの距離の特性図である。
【図6】 フィルターの目詰まり判断条件を示す図である。
【図7】 フィルターの目詰まり状態を推測する制御回路ブロック図である。
【図8】 マハラノビスの距離を用いたエアフィルターの目詰まり状態を推測するフローチャート図である。
【図9】 フィルターの目詰まり判断条件を示す他の図である。
【図10】 従来の空気調和装置におけるフィルターの目詰まり判断条件を示す図である。
【符号の説明】
1 本体、2 フイルター、3 吸込口、4 温度センサー、5 ガイド手段、6 送風機、7 熱交換器、8 吹出口、9 状態量A、10 状態量B、11 演算手段、12 判断手段、13 複合変数閾値、14 出力手段、15 表示手段、16 遠隔監視手段。
Claims (10)
- 流路内にフィルター、熱交換器、モータで駆動される送風機或いはポンプを備えた冷凍空気調和装置において、前記送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、前記熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段と、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、前記フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段と、この演算手段で求めた複合変数の大きさの変化に基づいて前記フィルターの目詰まり状態を判断する判断手段とを備えたことを特徴とする冷凍空気調和装置。
- 流路内に熱交換器とモータで駆動される送風機或いはポンプとを備えた冷凍空気調和装置において、前記送風機或いはポンプの回転数、流量、流速、前記モータに印加する電圧、通電電流、供給電力、送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、電源電圧、インバータ母線電圧から少なくとも1つの状態量、および吸込側の温度、吹出側の温度、前記熱交換器の内部を流通し冷熱或いは温熱を輸送する媒体の温度、熱交換器の配管温度から少なくとも一つの状態量を検出する状態量検出手段と、この状態量検出手段により検出される二つ以上の状態量の相関関係に基づき、前記フィルターの目詰まり状態を大きさの変化として定量化する複合変数を求める演算手段と、この演算手段で求めた複合変数の大きさの変化に基づいて熱交換器の目詰まり状態を判断する判断手段とを備えたことを特徴とする冷凍空気調和装置。
- 前記判断手段は、判断された目詰まり状態と予め設定される目詰まり限界量とを比較する比較手段を備えたことを特徴とする請求項1または請求項2記載の冷凍空気調和装置。
- 前記目詰まり限界量を経過時間に応じて変化するようにしたことを特徴とする請求項3記載の冷凍空気調和装置。
- 前記判断手段による判断結果或いは前記比較手段による比較結果を出力する出力手段を備えたことを特徴とする請求項1〜請求項4の何れかに記載の冷凍空気調和装置。
- 前記出力手段を表示手段に接続したことを特徴とする請求項5記載の冷凍空気調和装置。
- 前記出力手段を有線或いは無線で遠隔監視手段に接続するようにしたことを特徴とする請求項5記載の冷凍空気調和装置。
- 流路内に配置されるモータで駆動する送風機或いはポンプの運転時における送風機或いはポンプの吸込側流路の何れかの位置と吹出側流路の何れかの位置との差圧、流量、流速、前記モータへの供給電力、前記送風機或いはポンプの回転数の少なくとも1つの状態量、および吸込側の温度、吹出側の温度の何れか1つの状態量を検出し、検出された複数の状態量の相関関係に基づき、大きさの変化から状態を判別できる複合変数量を求め、この複合変数量と予め設定された流路構成における送風機或いはポンプの運転時の複合変数量とを比較し、流路内の流通状態を判断するようにしたことを特徴とする冷凍空気調和装置の運転制御方法。
- 前記複数の状態量のデータを平均化および偏差の処理によって基準化し、この基準化された各々の値を相互的に関連付けるように演算して複合変数量を求めるようにしたことを特徴とする請求項8の冷凍空気調和装置の運転制御方法。
- 前記送風機或いはポンプの運転時の複合変数量が、予め設定された流路構成における複合変数量の数倍以上に達した場合に、流通状態は異常であると判断したことを特徴とする請求項8または請求項9記載の冷凍空気調和装置の運転制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002007197A JP3982266B2 (ja) | 2002-01-16 | 2002-01-16 | 冷凍空気調和装置およびその運転制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002007197A JP3982266B2 (ja) | 2002-01-16 | 2002-01-16 | 冷凍空気調和装置およびその運転制御方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003207188A JP2003207188A (ja) | 2003-07-25 |
JP3982266B2 true JP3982266B2 (ja) | 2007-09-26 |
Family
ID=27645765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002007197A Expired - Lifetime JP3982266B2 (ja) | 2002-01-16 | 2002-01-16 | 冷凍空気調和装置およびその運転制御方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3982266B2 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4396286B2 (ja) | 2004-01-21 | 2010-01-13 | 三菱電機株式会社 | 機器診断装置および機器監視システム |
JP4265982B2 (ja) * | 2004-02-25 | 2009-05-20 | 三菱電機株式会社 | 機器診断装置、冷凍サイクル装置、冷凍サイクル監視システム |
JP4185463B2 (ja) * | 2004-03-03 | 2008-11-26 | 株式会社山武 | 空調制御システムおよび空調制御方法 |
JP4151679B2 (ja) * | 2005-07-07 | 2008-09-17 | 三菱電機株式会社 | 冷凍サイクル装置 |
JP4151680B2 (ja) * | 2005-07-07 | 2008-09-17 | 三菱電機株式会社 | 冷凍サイクル監視システム |
JP2005351618A (ja) * | 2005-07-07 | 2005-12-22 | Mitsubishi Electric Corp | 流体回路診断方法 |
JP4365378B2 (ja) * | 2006-02-21 | 2009-11-18 | 三菱電機株式会社 | 除霜運転制御装置および除霜運転制御方法 |
JP2007225158A (ja) * | 2006-02-21 | 2007-09-06 | Mitsubishi Electric Corp | 除霜運転制御装置および除霜運転制御方法 |
WO2012164745A1 (ja) * | 2011-06-03 | 2012-12-06 | トヨタ自動車株式会社 | 冷却システムおよびそれを備える車両 |
JP5910489B2 (ja) * | 2012-12-26 | 2016-04-27 | 株式会社デンソー | 流体性状判別装置、熱サイクル制御装置、および熱サイクル装置 |
JP2015081695A (ja) * | 2013-10-21 | 2015-04-27 | 三菱日立パワーシステムズ株式会社 | 炭素含有燃料熱交換器の監視・運転方法 |
JP7017313B2 (ja) * | 2017-03-31 | 2022-02-08 | エスペック株式会社 | 試験装置管理システム及び管理装置 |
US11358086B2 (en) | 2018-03-30 | 2022-06-14 | Nec Corporation | State estimation apparatus, method, and program storage medium |
JP7103436B2 (ja) * | 2018-12-26 | 2022-07-20 | 日本電気株式会社 | 状態推定装置と方法とプログラム |
JP2021085553A (ja) * | 2019-11-25 | 2021-06-03 | シャープ株式会社 | 空気調和機 |
-
2002
- 2002-01-16 JP JP2002007197A patent/JP3982266B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003207188A (ja) | 2003-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3982266B2 (ja) | 冷凍空気調和装置およびその運転制御方法 | |
US10168067B2 (en) | Detecting and handling a blocked condition in the coil | |
JP5289109B2 (ja) | 空気調和装置 | |
DK2880375T3 (en) | DETECTION OF FROZEN EVAPER HOSE AND STARTING OF DEFROST | |
US8346507B2 (en) | System and method for detecting fluid delivery system conditions based on motor parameters | |
JP2008510122A5 (ja) | ||
US20120053898A1 (en) | Performance evaluation device for centrifugal chiller | |
CN106642558B (zh) | 一种变频空调换热器除尘的检测方法 | |
CN106627044B (zh) | 一种高效融霜的热泵型纯电动客车空调 | |
US7836707B2 (en) | Methods for detecting and responding to freezing coils in HVAC systems | |
KR101070186B1 (ko) | 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 장치를 구비한 직접팽창방식 공조기 | |
JP2008510122A (ja) | 冷媒サイクルシステムの監視方法及び監視装置 | |
EP1914482A2 (en) | Method and apparatus for monitoring refrigerating-cycle systems | |
JP5787604B2 (ja) | 車両用空気調和装置故障診断システム及び故障診断装置 | |
EP3489592A1 (en) | Filter contamination detection method | |
JP2011247524A (ja) | 冷凍装置 | |
CN113465441B (zh) | 冷却塔的控制方法及存储介质 | |
CN108332379B (zh) | 空调器及其控制方法和控制装置、存储介质 | |
CN214406248U (zh) | 空调室内机 | |
KR101029988B1 (ko) | 직접팽창방식 공조기의 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 방법 | |
WO2018179333A1 (ja) | 冷媒圧縮式ヒートポンプ利用機器、冷媒圧縮式ヒートポンプの診断装置及び冷媒圧縮式ヒートポンプの診断方法 | |
JP7319866B2 (ja) | 空気調和システム | |
WO2021176688A1 (ja) | 冷凍サイクル装置 | |
JP2001221564A (ja) | ショーケース管理装置およびショーケースシステム | |
WO2024209508A1 (ja) | チリングユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20040706 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070625 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3982266 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120713 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130713 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |