JP3981822B2 - Method for producing alicyclic dicarboxylic acid diester - Google Patents

Method for producing alicyclic dicarboxylic acid diester Download PDF

Info

Publication number
JP3981822B2
JP3981822B2 JP2002315811A JP2002315811A JP3981822B2 JP 3981822 B2 JP3981822 B2 JP 3981822B2 JP 2002315811 A JP2002315811 A JP 2002315811A JP 2002315811 A JP2002315811 A JP 2002315811A JP 3981822 B2 JP3981822 B2 JP 3981822B2
Authority
JP
Japan
Prior art keywords
ruthenium
aliphatic
reaction
compounds
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002315811A
Other languages
Japanese (ja)
Other versions
JP2004149449A (en
Inventor
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2002315811A priority Critical patent/JP3981822B2/en
Publication of JP2004149449A publication Critical patent/JP2004149449A/en
Application granted granted Critical
Publication of JP3981822B2 publication Critical patent/JP3981822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ジシクロペンタジエンとアセチレンジカルボン酸ジアルキルをルテニウム金属塩を触媒として、無溶媒下または含酸素及び又は含窒素炭化水素化合物を溶媒とし、ジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレート(DATDと略す)なる脂環式ジカルボン酸ジエステルの製造法に関する。
【0002】
DATDは、ポリエステル、ポリアミド、ポリアクリレート及びポリエポキシ樹脂等のモノマー又はその中間体として耐熱性や光透過性等の点で新しい用途が期待される。
【0003】
【従来の技術】
従来、ノルボルナン骨格を有するポリエステルはガラス転移温度が高く、寸法安定性に優れており写真用フィルムのベース等に用いられている(非特許文献1)。これまでのノルボルナン骨格を有する多環式化合物の合成には、多くの場合多工程を要し、製造コスト面で不利を強いられていた。DATDは、そのポリマーが従来品を改良した高耐熱性や高光透過性が期待される新規な優れたモノマーとしてDATDを高収率で得ている(特許文献1)。
【0004】
しかしながら、その製造触媒がジヒドリドテトラキス(トリフェニルホスフィン)ルテニウム、ジヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム及びジクロロトリス(トリフェニルホスフィン)ルテニウム等で、これらの錯体触媒は、水分や空気中の酸素により分解する取り扱い上の煩雑さに加え、高価であり工業的には相応しくない触媒のためコスト面での削減の課題を背負っていた。
【0005】
【非特許文献1】
ジャーナル オブ ポリマー サイエンス:ポリマー ケミストリー エディション(JOURANL OF POLYMER SCIENCE:Polymer Chemistry Edition) 10巻、3191−3204頁(1972年)。
【特許文献1】
特開平09−077721号公報
【発明が解決しようとする課題】
工業的に経済的価値が高いジシクロペンタジエンを原料として、その骨格の特異性を生かした耐熱性、光透過性、電気特性(絶縁性、誘電率)、吸水性及び有機溶媒溶解性等の諸物性の改良されたポリエステル、ポリアミド、ポリアクリレート及びポリエポキシ樹脂等のモノマー又はその中間体である脂環式ジカルボン酸ジエステルの経済的製造法を提供することを課題とする。
【0006】
【発明が解決するための手段】
本発明者は、上記の課題を解決するために鋭意研究を重ねた結果、ジシクロペンタジエンとジアルキルアセチレンジカルボキシレートから周期律表第8族金属触媒としてルテニウム金属塩を用いることで、一工程で得られるジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレート(DATD)の工業的に実施可能な経済的製造方法を見い出した。即ち,本発明は、ジシクロペンタジエンと式[1]
【0007】
【化4】

Figure 0003981822
【0008】
(式中、R1、R2はそれぞれ独立して炭素数1〜10のアルキル基、炭素数5又は6のシクロアルキル基を表す。)
で表されるアセチレンジカルボン酸ジアルキルを周期律表第8族金属を触媒とし付加反応させ、式[2]
【0009】
【化5】
Figure 0003981822
【0010】
(式中、R1、R2は前記と同じ意味を表す。)
で表されるジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレートの製造法において、ルテニウム金属塩を触媒とし、無溶媒下または含酸素及び含窒素炭化水素化合物の中から選ばれた少なくとも1種の溶媒を用いることを特徴とするジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレートの製造法に関する。以下本発明を詳細に説明する。
【0011】
【発明の実施の形態】
本発明のジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレート(DATD)の製造法は、下記のルートで表される。
【0012】
【化6】
Figure 0003981822
【0013】
(式中、R1、R2及びXは前記と同じ意味を表す。)
ジシクロペンタジエン(以下DCPDと略す)は、市販品をそのまま使用することができる。アセチレンジカルボン酸ジアルキル化合物(以下DMA化合物と略す)としては、種々の化合物が使用できる。
【0014】
DMA化合物のR1、R2は炭素数1〜10のアルキル基、炭素数5又は6のシクロアルキル基を表すが、例えば、具体的には、ジメチルアセチレンジカルボキシレート、ジエチルアセチレンジカルボキシレート、ジプロピルアセチレンジカルボキシレート、ジブチルアセチレンジカルボキシレート、ジペンチルアセチレンジカルボキシレート、ジヘキシルアセチレンジカルボキシレート、ジシクロペンチルアセチレンジカルボキシレート及びジシクロヘキシルアセチレンジカルボキシレート等が挙げられる。
【0015】
本反応において、本触媒存在下では、DMA化合物が特に重合し易く、DMP化合物の3量体であるヘキサ(メトキシカルボニル)ベンゼンが副生するので、DCPDの転化率を上げるためには過剰量仕込むことが必要である。DMA化合物の仕込み量は、DCPDに対して1〜3モル当量が好ましく、更には1.2〜2.5モル当量が好ましい。DMA化合物の仕込み法は、50〜80℃でDCPD、溶媒及び触媒の混合液中に0.5〜10時間かけて分割滴下することにより重合物の副生を抑制しつつ本反応を進行させることができる。DCPDが残余しDMA化合物が消失された場合は、DMA化合物を追加滴下し反応を完結させることができる。
【0016】
本発明では、ルテニウム金属塩を用いて、溶媒種の選択や、上記したDMA化合物の仕込み方法を改良することにより目的物が高収率で得られる。
【0017】
触媒のルテニウム金属塩としては、ルテニウムの塩酸、硫酸、硝酸及び燐酸等の鉱酸塩、蟻酸、酢酸及びプロピオン酸等の有機酸塩が挙げられる。具体的には例えば、三塩化ルテニウム、三臭化ルテニウム、三沃化ルテニウム、硫酸ルテニウム、硝酸ルテニウム、リン酸ルテニウム、蟻酸テニウム、酢酸ルテニウム及びプロピオン酸ルテニウムが挙げられる。実用的には最も経済的な三塩化ルテニウム及び三臭化ルテニウム等が好ましい。
【0018】
その使用量は、原料のDCPDに対し、0.1〜30モル%、特には、0.5〜10モル%が好ましい。三塩化ルテニウム及び三臭化ルテニウムは、トリフェニルホスフィン存在下で使用することもできる。その際のトリフェニルホスフィンの添加量は、トリハロゲン化ルテニウムに対して1〜10モル当量が好ましく、特には3〜6モル当量が好ましい。
【0019】
本発明で重要なのが溶媒の選択である。本反応では溶媒を使用しなくとも、反応は進行するが、溶媒を使用することが好ましい。無溶媒で反応すると、その進行に従い生成物が多くなると反応液の粘度が上がり攪拌が低下し原料DCPDが未反応のままで残余する。溶媒を使用することにより、DCPDの転化率が上がり、また特定の溶媒を使用することにより目的物DADTの選択率及び収率が向上する。その溶媒としては例えば、含酸素及び又は含窒素炭化水素化合物であり触媒を溶解する極性溶媒が好ましい。具体的には脂肪族エーテル化合物、脂肪族ケトン化合物、低級アルコール化合物、脂肪族カルボン酸化合物、脂肪族エステル化合物、脂肪族ニトリル化合物、脂肪族アミド化合物、脂肪族ラクトン化合物、脂肪族ラクタム化合物、脂肪族ニトロ化合物及び脂肪族スルホン化合物等が挙げられる。
【0020】
更に、具体的には脂肪族エーテル化合物としては、1,2−ジメトキシエタン及びジエチレングリコールジメチルエーテル(ジグライム)等の鎖状エーテル類、1,4−ジオキサン、12−クラウン−4−エーテル、15−クラウン−5−エーテル、18−クラウン−6−エーテル及びジベンゾ−18−クラウン−6−エーテル等の環状エーテル類等、脂肪族ケトン化合物としては、アセトン、メチルエチルケトン及びメチルイソブチルケトン等、低級アルコール化合物としては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール及びtertーブタノール等、脂肪族カルボン酸化合物としては、蟻酸、酢酸及びプロピオン酸等、脂肪族エステル化合物としては、酢酸エチル、酢酸プロピル、プロピオン酸メチル及びプロピオン酸エチル等、脂肪族ニトリル化合物としては、アセトニトリル、プロピオニトリル、ブチロニトリル及びバレロニトリル等、脂肪族アミド化合物としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)及び1,3−ジメチル−2−イミダゾリジノン(DMI)等、脂肪族ラクトン化合物としては、β−プロピオラクトン、β−ブチロラクトン及びδ−ブチロラクトン等、脂肪族ラクタム化合物としては、β−ブチロラクタム及びδ−バレロラクタム等、脂肪族ニトロ化合物としては、ニトロメタン、ニトロエタン及びニトロプロパン等、脂肪族スルホン化合物がジメチルスルホキシド及びスルホラン等が一例として挙げられる。
【0021】
特には、脂肪族エーテル化合物が、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル(ジグライム)、1,4−ジオキサン、15−クラウン−5−エーテル、脂肪族ケトン化合物がメチルイソブチルケトン、脂肪族カルボン酸化合物が酢酸、脂肪族エステル化合物が酢酸エチル、脂肪族アミド化合物がN,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)及び1,3−ジメチル−2−イミダゾリジノン(DMI)並びに脂肪族ニトロ化合物がニトロメタン及びニトロエタン並びに脂肪族スルホン化合物がジメチルスルホキシド等が好ましい。
【0022】
特に好ましい溶媒は、1,2−ジメトキシエタン、ジクライム、メチルイソブチルケトン、DMF、NMP及びニトロメタンが挙げられる。
【0023】
又これらの溶媒を組み合わせて使用することもできる。更には、脂肪族ニトロ化合物が、副生物が抑制され目的化合物の選択率及び収率が高く特に優れている。
【0024】
その使用量は、溶媒量が多くなると反応進行が遅くなるが、無溶媒では、反応進行に伴い高粘稠になることから、溶媒量はDCPDに対し1〜20質量倍、特には1〜10質量倍が経済的にも好ましい。
【0025】
DMA化合物の滴下終了後、昇温し未反応DCPDの反応を完結させることができる。本発明で重要なのが溶媒の選択に加えて反応温度の設定である。高温ほど反応が速いが重合等の副反応を伴うので、通常50〜180℃の範囲が好ましく、特には60〜150℃の範囲で行うのが好ましい。
【0026】
また、本反応の原料であるDCPDやDMP化合物の重合を抑制するために重合禁止剤を添加することもできる。
【0027】
重合禁止剤としては例えば、ジフェニルピクリルヒドラジン、トリ−p−ニトロフェニルメチル、N−(3−N−オキシアニリノ−1,3−ジメチルブチリデン)アニリンオキシド、p−ベンゾキノン、p−tert−ブチルカテコール、ニトロベンゼン、ピクリン酸、ジチオベンゾイルジスルフィド、ヒドロキノン、p−メトキシフェノール、2,4−ジ−t−ブチル−4−メチルフェノール及び塩化銅(II)等が挙げられる。
【0028】
重合禁止剤の添加量は、DCPDやDMP化合物に対して0.01〜1モル%が好ましい。
【0029】
反応時間は、ガスクロマトグラフィー(GC)や液体クロマトグラフィー(LC)で反応追跡して決定することができるが、通常4〜30時間で終了させることができる。本反応は、常圧又は加圧で行うこともでき、又回分式あるいは連続式でも可能である。
【0030】
反応生成物の単離は、濾過により触媒を分離した後、溶媒を濃縮留去させてから、蒸留法又はカラムクロマトグラフィー法で行うことができる。
【0031】
以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。
【0032】
【実施例】
実施例1
100ml耐熱ガラス製4つ口反応フラスコにDCPD13.2g(100mmol)、三塩化ルテニウム・三水塩(RuCl3 3H2O)1.0g(4mmol)、ニトロメタン66.0gを仕込み、攪拌しながら75℃に昇温してアセチレンジカルボン酸ジメチル(DMA)21.3g(150mmol)を1時間30分かけて滴下した。75℃で1時間攪拌を続けてから90℃に昇温し5時間攪拌を続け、反応液を、ガスクロマトグラフィー(GC)で分析した結果、未反応DCPDが8.2面積%残余し、新たなピークが78.6面積%生成していることが解った。そのまま更に10時間攪拌してから再度GC分析した結果、未反応DCPDが2.3面積%残余し、新たなピークが82.5面積%生成していることが解った。冷却後、触媒を濾過除去し、濃縮してからシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル/n−ヘプタン=1/5〜1/1)で精製すると油状物21.5g(収率78.3%)が得られた。この油状物をMASS、1HNMR、13CNMRで分析の結果、下記の分析値よりジメチルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレート(DMDE)であることを確認した。
【0033】
MASS(FAB+,m/e(%)):275([M+H]+,60),243(50),176(100),163(38),149(48).
1HNMR(CDCl3,δppm):1.22(d,J=11.0Hz,1H),1.39(d,J=10.7Hz,1H),2.17(d,J=4.89Hz,1H),2.18-2.20(m,2H),2.29(d,J=5.19Hz,1H),2.62-2.65(m,2H),2.72(d,J=3.36Hz,1H),3.09-3.13(m,1H),3.69(s,6H),5.46-5.48(m,1H),5.56-5.58(m,1H).
13CNMR(CDCl3,δppm):30.99,33.63,35.59,37.38,41.10,41.41,44.05,51.51(2C),52.03,130.47,131.45,141.19,142.34,161.28,161.31.
【0034】
実施例2〜8
50ml耐熱ガラス製4つ口反応フラスコにDCPD1.32g(10mmol)、三塩化ルテニウム・三水塩(RuCl・3HO)、1,4−ジオキサ6.6gを仕込み、攪拌しながら60℃に昇温してDMA2.13g(15mmol)を30分かけて滴下した。続いて所望の温度に昇温して攪拌を続けて反応させた。触媒量、反応温度、反応時間を変えて得られた反応液を、ガスクロマトグラフィーで分析した結果を表1に示す。
【0035】
【表1】
Figure 0003981822
【0036】
実施例9〜26及び比較例1、2
50ml耐熱ガラス製4つ口反応フラスコにDCPD1.32g(10mmol)、三塩化ルテニウム・三水塩(RuCl3・3H2O) 0.01g(0.4mmol)、溶媒6.6gを仕込み、攪拌しながら70℃に昇温してDMA2.13g(15mmol)を30分かけて滴下した。そのまま70℃で1時間攪拌を続けてから、所望の温度に昇温して攪拌を続けて反応させた。溶媒種、反応温度、反応時間を変えて得られた反応液を、ガスクロマトグラフィーで分析した結果を表2に示す。
【0037】
【表2】
Figure 0003981822
【0038】
【発明の効果】
耐熱性、光透過性、電気特性(絶縁性、誘電率)、吸水性及び有機溶媒溶解性等の諸物性の改良されたポリエステル、ポリアミド、ポリアクリレート及びポリエポキシ樹脂等のモノマー又はその中間体として有用なジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレート(DATD)が安価な触媒で高収率で得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is directed to dialkyltetracyclo [5.4.1.0 2, dicyclopentadiene and dialkyl acetylenedicarboxylate, using a ruthenium metal salt as a catalyst, solvent-free or oxygen-containing and / or nitrogen-containing hydrocarbon compounds as solvents . 6 . 0 8,11] (abbreviated as DATD) dodeca-3,9-diene-9,10-dicarboxylate comprising the preparation of cycloaliphatic dicarboxylic acid diester related.
[0002]
DATD is expected to be used as a monomer such as polyester, polyamide, polyacrylate and polyepoxy resin or an intermediate thereof in terms of heat resistance, light transmittance, and the like.
[0003]
[Prior art]
Conventionally, polyesters having a norbornane skeleton have a high glass transition temperature and excellent dimensional stability, and have been used for photographic film bases and the like (Non-Patent Document 1). Conventional synthesis of a polycyclic compound having a norbornane skeleton requires many steps in many cases, and is disadvantageous in terms of production cost. DATD has been obtained in a high yield as a novel excellent monomer that is expected to have high heat resistance and high light transmittance, which is a polymer improved from the conventional product (Patent Document 1).
[0004]
However, the production catalyst is dihydridotetrakis (triphenylphosphine) ruthenium, dihydridocarbonyltris (triphenylphosphine) ruthenium, dichlorotris (triphenylphosphine) ruthenium, etc., and these complex catalysts are oxygen and oxygen in the water and air. In addition to the complexity of handling that decomposes, the catalyst is expensive and unsuitable for industrial use, and thus has a problem of cost reduction.
[0005]
[Non-Patent Document 1]
Journal of Polymer Science: JOURANL OF POLYMER SCIENCE: Polymer Chemistry Edition, 10, 3191-3204 (1972).
[Patent Document 1]
JP 09-077771 A [Problems to be solved by the invention]
Using dicyclopentadiene, which has high industrial economic value, as a raw material, heat resistance, light transmission, electrical properties (insulating properties, dielectric constant), water absorption, solubility in organic solvents, etc., taking advantage of its skeleton specificity It is an object of the present invention to provide an economical method for producing an alicyclic dicarboxylic acid diester which is an intermediate or a monomer such as polyester, polyamide, polyacrylate and polyepoxy resin having improved physical properties.
[0006]
[Means for Solving the Invention]
As a result of intensive studies to solve the above-mentioned problems, the present inventor uses a ruthenium metal salt as a group 8 metal catalyst of the periodic table from dicyclopentadiene and dialkylacetylene dicarboxylate in one step. The resulting dialkyltetracyclo [5.4.1.0 2,6 . 0 8,11] found an industrially feasible economical method for producing dodeca-3,9-diene-9,10-dicarboxylate (DATD). That is, the present invention relates to dicyclopentadiene and the formula [1].
[0007]
[Formula 4]
Figure 0003981822
[0008]
(In the formula, R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms and a cycloalkyl group having 5 or 6 carbon atoms.)
A dialkyl acetylenedicarboxylate represented by the formula is added using the group 8 metal of the periodic table as a catalyst, and the formula [2]
[0009]
[Chemical formula 5]
Figure 0003981822
[0010]
(Wherein R 1 and R 2 represent the same meaning as described above.)
Dialkyltetracyclo [5.4.1.0 2,6 . In 0 8,11] dodeca-3,9-diene-9,10-dicarboxylate process, the ruthenium metal salt as a catalyst, selected from among without a solvent or oxygen-containing and nitrogen-containing hydrocarbon compound Dialkyltetracyclo [5.4.1.0 2,6 ... Characterized in that at least one solvent is used. 0 8,11] dodeca-3,9-diene-9,10-di-carboxylate Method for. The present invention will be described in detail below.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Dialkyltetracyclo [5.4.1.0 2,6 . 0 8,11] preparation of dodeca-3,9-diene-9,10-dicarboxylate (DATD) is represented by the following route.
[0012]
[Chemical 6]
Figure 0003981822
[0013]
(Wherein R 1 , R 2 and X represent the same meaning as described above.)
Commercially available dicyclopentadiene (hereinafter abbreviated as DCPD) can be used as it is. Various compounds can be used as the acetylenedicarboxylate dialkyl compound (hereinafter abbreviated as DMA compound).
[0014]
R 1 and R 2 of the DMA compound each represent an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 or 6 carbon atoms. Specific examples thereof include dimethyl acetylenedicarboxylate, diethyl acetylenedicarboxylate, Examples include dipropyl acetylenedicarboxylate, dibutyl acetylenedicarboxylate, dipentyl acetylenedicarboxylate, dihexyl acetylenedicarboxylate, dicyclopentyl acetylenedicarboxylate and dicyclohexyl acetylenedicarboxylate.
[0015]
In this reaction, in the presence of this catalyst, the DMA compound is particularly easily polymerized, and hexa (methoxycarbonyl) benzene, which is a trimer of the DMP compound, is formed as a by-product, so an excessive amount is added to increase the conversion rate of DCPD. It is necessary. The charged amount of the DMA compound is preferably 1 to 3 molar equivalents, more preferably 1.2 to 2.5 molar equivalents with respect to DCPD. The DMA compound preparation method is to proceed this reaction while suppressing the by-product of the polymer by dropwise addition over 0.5 to 10 hours into a mixture of DCPD, solvent and catalyst at 50 to 80 ° C. Can do. When DCPD remains and the DMA compound disappears, the DMA compound can be added dropwise to complete the reaction.
[0016]
In the present invention, by using a ruthenium metal salt, the target product can be obtained in a high yield by improving the selection of the solvent species and the above-described DMA compound charging method.
[0017]
Examples of the ruthenium metal salt of the catalyst include mineral salts of ruthenium such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acid salts such as formic acid, acetic acid and propionic acid. Specific examples include ruthenium trichloride, ruthenium tribromide, ruthenium triiodide, ruthenium sulfate, ruthenium nitrate, ruthenium phosphate, ruthenium formate, ruthenium acetate and ruthenium propionate. Practically, the most economical ruthenium trichloride and ruthenium tribromide are preferable.
[0018]
The amount of use is preferably 0.1 to 30 mol%, particularly 0.5 to 10 mol%, based on the raw material DCPD. Ruthenium trichloride and ruthenium tribromide can also be used in the presence of triphenylphosphine. In this case, the amount of triphenylphosphine added is preferably 1 to 10 molar equivalents, more preferably 3 to 6 molar equivalents, relative to ruthenium trihalide.
[0019]
What is important in the present invention is the selection of the solvent. Although the reaction proceeds in this reaction without using a solvent, it is preferable to use a solvent. When the reaction is carried out in the absence of a solvent, when the amount of products increases as the reaction proceeds, the viscosity of the reaction solution increases and the stirring decreases, and the raw material DCPD remains unreacted. By using a solvent, the conversion rate of DCPD is increased, and by using a specific solvent, the selectivity and yield of the target product DADT are improved. As the solvent, for example, a polar solvent which is an oxygen-containing and / or nitrogen-containing hydrocarbon compound and dissolves the catalyst is preferable. Specifically, aliphatic ether compounds, aliphatic ketone compounds, lower alcohol compounds, aliphatic carboxylic acid compounds, aliphatic ester compounds, aliphatic nitrile compounds, aliphatic amide compounds, aliphatic lactone compounds, aliphatic lactam compounds, fats Group nitro compounds and aliphatic sulfone compounds.
[0020]
Furthermore, specific examples of the aliphatic ether compound include chain ethers such as 1,2-dimethoxyethane and diethylene glycol dimethyl ether (diglyme), 1,4-dioxane, 12-crown-4-ether, 15-crown- As aliphatic ketone compounds such as cyclic ethers such as 5-ether, 18-crown-6-ether and dibenzo-18-crown-6-ether, as lower alcohol compounds such as acetone, methyl ethyl ketone and methyl isobutyl ketone, Examples of aliphatic carboxylic acid compounds such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol and tert-butanol include aliphatic ester compounds such as formic acid, acetic acid and propionic acid. , Ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, etc., as aliphatic nitrile compounds, acetonitrile, propionitrile, butyronitrile, valeronitrile, etc., as aliphatic amide compounds, N, N-dimethylformamide (DMF) ), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI) and the like, the aliphatic lactone compounds include β-propiolactone, β As aliphatic lactam compounds such as -butyrolactone and δ-butyrolactone, β-butyrolactam and δ-valerolactam and the like, as aliphatic nitro compounds such as nitromethane, nitroethane and nitropropane, aliphatic sulfone compounds such as dimethyl sulfoxide and sulfola And the like as an example.
[0021]
In particular, the aliphatic ether compound is 1,2-dimethoxyethane, diethylene glycol dimethyl ether (diglyme), 1,4-dioxane, 15-crown-5-ether, the aliphatic ketone compound is methyl isobutyl ketone, and the aliphatic carboxylic acid compound Is acetic acid, the aliphatic ester compound is ethyl acetate, and the aliphatic amide compound is N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), and 1,3-dimethyl- 2-Imidazolidinone (DMI) and the aliphatic nitro compound are preferably nitromethane and nitroethane, and the aliphatic sulfone compound is preferably dimethyl sulfoxide.
[0022]
Particularly preferred solvents include 1,2-dimethoxyethane, diclime, methyl isobutyl ketone, DMF, NMP and nitromethane.
[0023]
These solvents can also be used in combination. Furthermore, aliphatic nitro compounds are particularly excellent because the by-products are suppressed and the selectivity and yield of the target compound are high.
[0024]
The amount of the solvent used increases as the amount of the solvent increases, but in the absence of solvent, the amount of the solvent increases from 1 to 20 times, particularly from 1 to 10 times the amount of DCPD because the viscosity increases as the reaction proceeds. Mass times are also economically preferable.
[0025]
After completion of the dropping of the DMA compound, the temperature can be raised to complete the reaction of unreacted DCPD. What is important in the present invention is the setting of the reaction temperature in addition to the selection of the solvent. The higher the temperature, the faster the reaction, but it is accompanied by side reactions such as polymerization.
[0026]
In addition, a polymerization inhibitor can be added in order to suppress the polymerization of DCPD and DMP compounds which are raw materials for this reaction.
[0027]
Examples of the polymerization inhibitor include diphenylpicrylhydrazine, tri-p-nitrophenylmethyl, N- (3-N-oxyanilino-1,3-dimethylbutylidene) aniline oxide, p-benzoquinone, and p-tert-butylcatechol. , Nitrobenzene, picric acid, dithiobenzoyl disulfide, hydroquinone, p-methoxyphenol, 2,4-di-t-butyl-4-methylphenol, and copper (II) chloride.
[0028]
The addition amount of the polymerization inhibitor is preferably 0.01 to 1 mol% with respect to DCPD or DMP compound.
[0029]
The reaction time can be determined by tracking the reaction with gas chromatography (GC) or liquid chromatography (LC), but it can usually be completed in 4 to 30 hours. This reaction can be carried out at normal pressure or under pressure, and can also be carried out batchwise or continuously.
[0030]
Isolation of the reaction product can be carried out by distillation or column chromatography after separating the catalyst by filtration and then concentrating and distilling off the solvent.
[0031]
Examples Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0032]
【Example】
Example 1
DCPD13.2g in 100ml heat-resistant glass-made 4-neck reaction flask (100 mmol), ruthenium trichloride trihydrate (RuCl 3 · 3H 2 O) 1.0g (4mmol), were charged nitromethane 66.0 g, stirring 75 The temperature was raised to ° C., and 21.3 g (150 mmol) of dimethyl acetylenedicarboxylate (DMA) was added dropwise over 1 hour 30 minutes. After stirring at 75 ° C. for 1 hour, the temperature was raised to 90 ° C. and stirring was continued for 5 hours. The reaction solution was analyzed by gas chromatography (GC). As a result, 8.2% by area of unreacted DCPD remained, As a result, it was found that 78.6 area% of a large peak was generated. The mixture was further stirred for 10 hours and then subjected to GC analysis. As a result, it was found that 2.3% by area of unreacted DCPD remained and 82.5% by area of new peak was generated. After cooling, the catalyst was filtered off, concentrated, and purified by silica gel column chromatography (eluent: ethyl acetate / n-heptane = 1/5 to 1/1) to obtain 21.5 g of an oily substance (yield 78.3). %)was gotten. As a result of analysis of this oily substance by MASS, 1 HNMR, and 13 CNMR, dimethyltetracyclo [5.4.1.0 2,6 . 0 8,11] was confirmed to be dodeca-3,9-diene-9,10-dicarboxylate (DMDE).
[0033]
MASS (FAB + , m / e (%)): 275 ([M + H] + , 60), 243 (50), 176 (100), 163 (38), 149 (48).
1 HNMR (CDCl 3 , δ ppm): 1.22 (d, J = 11.0Hz, 1H), 1.39 (d, J = 10.7Hz, 1H), 2.17 (d, J = 4.89Hz, 1H), 2.18-2.20 (m , 2H), 2.29 (d, J = 5.19Hz, 1H), 2.62-2.65 (m, 2H), 2.72 (d, J = 3.36Hz, 1H), 3.09-3.13 (m, 1H), 3.69 (s, 6H), 5.46-5.48 (m, 1H), 5.56-5.58 (m, 1H).
13 C NMR (CDCl 3 , δ ppm): 30.99, 33.63, 35.59, 37.38, 41.10, 41.41, 44.05, 51.51 (2C), 52.03, 130.47, 131.45, 141.19, 142.34, 161.28, 161.31.
[0034]
Examples 2-8
A 50 ml heat-resistant glass four-necked reaction flask was charged with 1.32 g (10 mmol) of DCPD, ruthenium trichloride trihydrate (RuCl 3 .3H 2 O), 6.6 g of 1,4-dioxa and stirred at 60 ° C. The temperature was raised and 2.13 g (15 mmol) of DMA was added dropwise over 30 minutes. Subsequently, the temperature was raised to a desired temperature and the reaction was continued by stirring. Table 1 shows the results of gas chromatography analysis of reaction solutions obtained by changing the catalyst amount, reaction temperature, and reaction time.
[0035]
[Table 1]
Figure 0003981822
[0036]
Examples 9 to 26 and Comparative Examples 1 and 2
A 50 ml heat-resistant glass four-necked reaction flask was charged with 1.32 g (10 mmol) of DCPD, 0.01 g (0.4 mmol) of ruthenium trichloride trihydrate (RuCl 3 .3H 2 O), and 6.6 g of solvent, and stirred. However, the temperature was raised to 70 ° C., and DMA 2.13 g (15 mmol) was added dropwise over 30 minutes. Stirring was continued for 1 hour at 70 ° C., and then the temperature was raised to a desired temperature and stirring was continued for reaction. Table 2 shows the results of gas chromatography analysis of the reaction liquid obtained by changing the solvent species, reaction temperature, and reaction time.
[0037]
[Table 2]
Figure 0003981822
[0038]
【The invention's effect】
As monomers such as polyesters, polyamides, polyacrylates and polyepoxy resins with improved physical properties such as heat resistance, light transmittance, electrical properties (insulation, dielectric constant), water absorption and organic solvent solubility, or intermediates thereof Useful dialkyltetracyclo [5.4.1.0 2,6 . 0 8,11] dodeca-3,9-diene-9,10-dicarboxylate (DATD) in high yields at low catalyst.

Claims (2)

ジシクロペンタジエンと式[1]
Figure 0003981822
(式中、R、Rはそれぞれ独立して炭素数1〜10のアルキル基、炭素数5又は6のシクロアルキル基を表す。)
で表されるアセチレンジカルボン酸ジアルキルを、三塩化ルテニウム及び三臭化ルテニウムからなる群から選ばれる少なくとも1種を触媒とし、脂肪族ニトロ化合物中にて、付加反応させることを特徴とする式[2]
Figure 0003981822
(式中、R、Rは前記と同じ意味を表す。)
で表されるジアルキルテトラシクロ[5.4.1.02,6.08,11]ドデカ−3,9−ジエン−9,10−ジカルボキシレートの製造法。
Dicyclopentadiene and formula [1]
Figure 0003981822
(Wherein, R 1, R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 5 or 6 carbon atoms.)
The dialkyl acetylene dicarboxylate represented by the formula is subjected to an addition reaction in an aliphatic nitro compound using at least one selected from the group consisting of ruthenium trichloride and ruthenium tribromide as a catalyst [2 ]
Figure 0003981822
(Wherein R 1 and R 2 represent the same meaning as described above.)
Dialkyltetracyclo [5.4.1.0 2,6 . 0 8,11] dodeca-3,9 preparation of diene-9,10-dicarboxylate.
前記触媒が三塩化ルテニウムである請求項に記載のジアルキルテトラシクロ[5.4.1.02,6.08,11],9−ジエン−9,10−ジカルボキシレートの製造法。The dialkyl tetracyclo [5.4.1.0 2,6 ... Of claim 1 , wherein the catalyst is ruthenium trichloride. 0 8,11 ], 9-Diene-9,10-dicarboxylate.
JP2002315811A 2002-10-30 2002-10-30 Method for producing alicyclic dicarboxylic acid diester Expired - Lifetime JP3981822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002315811A JP3981822B2 (en) 2002-10-30 2002-10-30 Method for producing alicyclic dicarboxylic acid diester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002315811A JP3981822B2 (en) 2002-10-30 2002-10-30 Method for producing alicyclic dicarboxylic acid diester

Publications (2)

Publication Number Publication Date
JP2004149449A JP2004149449A (en) 2004-05-27
JP3981822B2 true JP3981822B2 (en) 2007-09-26

Family

ID=32459703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002315811A Expired - Lifetime JP3981822B2 (en) 2002-10-30 2002-10-30 Method for producing alicyclic dicarboxylic acid diester

Country Status (1)

Country Link
JP (1) JP3981822B2 (en)

Also Published As

Publication number Publication date
JP2004149449A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
US7208621B2 (en) Malonic acid monomethyl derivatives and production process thereof
JP4736474B2 (en) Process for producing fluorine-containing alkylsulfonylaminoethyl α-substituted acrylates
JP5359052B2 (en) Method for producing fluorine-containing monomer
JP3981822B2 (en) Method for producing alicyclic dicarboxylic acid diester
JP4328938B2 (en) Method for producing alicyclic spiro acid dianhydride
JP5900182B2 (en) Method for producing α, α-difluoroaromatic compound
JPWO2019117019A1 (en) Method for producing diol
JP4618412B2 (en) Alicyclic tetracarboxylic acid compound and process for producing the same
JP2008105955A (en) Method for producing (meth)acrylic ester
JP4061419B2 (en) Process for producing N- (1-alkoxyethyl) carboxylic acid amide
EP0144484B1 (en) Dicyclopentadiene dicarboxylic acid derivatives and process for their preparation
JP3981049B2 (en) Fluorinated biphenyldiamine compounds
JP5716291B2 (en) Method for producing monomers for fluorine-containing resist
JP2005255583A (en) Method for producing cyclic skeleton-containing (meth)acrylic acid ester
JP3735902B2 (en) Novel alicyclic dicarboxylic acid diester and process for producing the same
JP2001187762A (en) Method for producing highly pure aromatic acid chloride
JP5175460B2 (en) Process for producing (meth) acrylic acid oxoadamantyl esters
JP5403280B2 (en) Method for producing alicyclic tetracarboxylic acid compound
JP2005255584A (en) Method for producing lactone skeleton-containing (meth)acrylic acid ester
JP4336940B2 (en) Method for producing dicarboxyalicyclic acrylate compound
JPH06279360A (en) Halogenated cinnamic acid, its ester, those preparations and halogenated aryl diazonium salt
JPH0321537B2 (en)
JP4893903B2 (en) Method for producing bromoisophthalic acid compound
WO1998016495A1 (en) Processes for the preparation of dicarboxylic acid monoesters
JPH06345749A (en) Production of n-(meth)acryloylmorpholine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3981822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term