JP3977341B2 - Heat dissipation hinge structure for electronic devices - Google Patents

Heat dissipation hinge structure for electronic devices Download PDF

Info

Publication number
JP3977341B2
JP3977341B2 JP2004005590A JP2004005590A JP3977341B2 JP 3977341 B2 JP3977341 B2 JP 3977341B2 JP 2004005590 A JP2004005590 A JP 2004005590A JP 2004005590 A JP2004005590 A JP 2004005590A JP 3977341 B2 JP3977341 B2 JP 3977341B2
Authority
JP
Japan
Prior art keywords
heat
hinge
pipe
hinge member
cpu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004005590A
Other languages
Japanese (ja)
Other versions
JP2004164667A (en
Inventor
千佳 佐々木
裕昭 前川
順二 素谷
勝 大海
勲 塚田
徹 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004005590A priority Critical patent/JP3977341B2/en
Publication of JP2004164667A publication Critical patent/JP2004164667A/en
Application granted granted Critical
Publication of JP3977341B2 publication Critical patent/JP3977341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Casings For Electric Apparatus (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、例えばノートブック型パーソナルコンピュータのように一対のハウジングがヒンジ機構を介して開閉可能に連結された電子装置に適用され、内部のCPU等の発熱性部品を放熱させるための放熱ヒンジ構造に関するものである。   The present invention is applied to an electronic device in which a pair of housings are connected so as to be openable and closable via a hinge mechanism such as a notebook personal computer, for example, and a heat dissipation hinge structure for radiating heat-generating components such as an internal CPU It is about.

この種の電子装置の放熱ヒンジ構造として、ノートブック型パーソナルコンピュータ(以下、パソコンと略す)に適用したものを挙げることができる(例えば、特許文献1参照)。当該特許文献1に開示された放熱ヒンジ構造では、パソコンのCPU側ハウジングとディスプレイ側ハウジングとが左右一対のヒンジ機構を介して開閉可能に連結され、そのCPU側ハウジング内に格納されたCPUが発生した熱をディスプレイ側ハウジングに伝達して放熱させるために、一方のヒンジ機構を利用している。   An example of the heat dissipation hinge structure of this type of electronic device is one applied to a notebook personal computer (hereinafter abbreviated as a personal computer) (see, for example, Patent Document 1). In the heat dissipation hinge structure disclosed in Patent Document 1, a CPU side housing and a display side housing of a personal computer are connected so as to be openable and closable via a pair of left and right hinge mechanisms, and a CPU stored in the CPU side housing is generated. One hinge mechanism is used to transmit the heat to the display-side housing and dissipate it.

CPU側ハウジング内において、CPU上の伝熱ブロックにはヒートパイプの蒸発側端部が接続され、ヒートパイプはCPU側ハウジングに形成された円孔を介してディスプレイ側ハウジング内に突出している。ディスプレイ側ハウジング内には金属製のヒンジ部材が固定され、そのヒンジ部材に貫設された挿通部内に前記ヒートパイプの凝縮側端部が挿入されている。ヒンジ部材の挿通部には所謂すり割り加工が施されており、ヒートパイプの凝縮側端部は、ヒンジ部材自体の弾性力により挿通部内で適度な摺動抵抗をもって回動可能に保持されている。   In the CPU side housing, the evaporation side end of the heat pipe is connected to the heat transfer block on the CPU, and the heat pipe protrudes into the display side housing through a circular hole formed in the CPU side housing. A metal hinge member is fixed in the display-side housing, and the condensation side end of the heat pipe is inserted into an insertion portion provided through the hinge member. A so-called slitting process is applied to the insertion portion of the hinge member, and the condensation side end portion of the heat pipe is rotatably held within the insertion portion with an appropriate sliding resistance by the elastic force of the hinge member itself. .

前記円孔及びヒンジ部材の挿通部は、他方側のヒンジ機構と開閉軸線を一致して設けられているため、両ハウジングの開閉時において、一方のヒンジ機構では、ヒートパイプの凝縮側端部を中心としてヒンジ部材が回動することで、ハウジングの開閉を案内することになる。
周知のようにヒートパイプは、内部に封入された作動液の蒸発潜熱を利用して熱伝達を行うように構成されている。従って、パソコンの作動に伴ってCPUが発生する熱は、ヒートパイプを経てヒンジ部材に伝達され、そのヒンジ部材から比較的温度が低いディスプレイ側ハウジングに放熱される。尚、このパソコンではより高い放熱効果を得るために、ヒンジ部材から別のヒートパイプを介してディスプレイ側ハウジングに熱伝達がなされるように配慮されている。
特開平10−187284号公報
Since the circular hole and the insertion part of the hinge member are provided so that the other side hinge mechanism and the opening / closing axis line coincide with each other, when opening and closing both housings, one hinge mechanism uses the condensation side end of the heat pipe. The hinge member pivots around the center to guide the opening and closing of the housing.
As is well known, the heat pipe is configured to perform heat transfer using latent heat of vaporization of the working fluid sealed inside. Therefore, the heat generated by the CPU in accordance with the operation of the personal computer is transmitted to the hinge member through the heat pipe, and is radiated from the hinge member to the display-side housing having a relatively low temperature. In this personal computer, in order to obtain a higher heat dissipation effect, consideration is given to heat transfer from the hinge member to the display-side housing via another heat pipe.
Japanese Patent Laid-Open No. 10-187284

上記したパソコンの放熱ヒンジ構造では、一方のヒンジ機構において中空構造で強度的に十分でないヒートパイプにより開閉を案内することになるため、ヒートパイプの破損を引き起こす虞があった。
そこで、本発明の目的は、ヒンジ機構の強度を向上させて、ヒートパイプの破損等の不具合を未然に防止することができる電子装置の放熱ヒンジ構造を提供することにある。
In the above-described heat dissipation hinge structure of a personal computer, opening and closing is guided by a heat pipe having a hollow structure and insufficient strength in one hinge mechanism, which may cause damage to the heat pipe.
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat dissipation hinge structure for an electronic device that can improve the strength of the hinge mechanism and prevent problems such as breakage of a heat pipe.

上記目的を達成するために、請求項1の発明では、相互に開閉可能な一対のハウジングの連結箇所に放熱ヒンジ部材を配設し、同放熱ヒンジ部材に、前記両ハウジングの開閉軸線上で回動可能にヒートパイプを連結して、同ヒートパイプ及び放熱ヒンジ部材を介して一方のハウジングに設けた発熱性部品の熱を他方のハウジング側に放熱する電子装置の放熱ヒンジ構造において、
前記放熱ヒンジ部材には、前記両ハウジングの開閉を案内するヒンジ機構の固定ヒンジの支軸と同一軸線上に位置決め孔が貫設されており、その位置決め孔に前記固定ヒンジの支軸が回動可能に嵌合され、その嵌合部分を除いた前記位置決め孔は上方に向けて開放されてパイプの受容溝を形成し、そのパイプ受容溝内で前記ヒートパイプを回動可能に保持することを特徴としている。従って、両ハウジングはヒートパイプとは全く関係なくヒンジ機構により開閉を案内され、ヒートパイプに無理な外力が作用しないことから、その破損が未然に防止され、且つ、組立時においてヒートパイプの回動中心は自ずとヒンジ機構の開閉軸線と一致するため、開閉軸線を中心としてハウジングが開閉するときにヒートパイプに無理な力が作用するのが防止される。
In order to achieve the above object, according to the first aspect of the present invention, a radiating hinge member is provided at a connecting portion of a pair of housings that can be opened and closed with respect to each other, and the radiating hinge member is rotated on an opening / closing axis of the two housings. In the heat dissipation hinge structure of the electronic device that connects the heat pipe movably and dissipates the heat of the heat-generating component provided in one housing to the other housing side via the heat pipe and the heat dissipation hinge member,
The heat dissipating hinge member is provided with a positioning hole on the same axis as the supporting shaft of the fixed hinge of the hinge mechanism for guiding the opening and closing of the two housings, and the supporting shaft of the fixed hinge rotates in the positioning hole. The positioning hole excluding the fitting portion is opened upward to form a pipe receiving groove, and the heat pipe is rotatably held in the pipe receiving groove. It is a feature . Therefore, both housings are guided to open and close by the hinge mechanism regardless of the heat pipe, so that excessive external force does not act on the heat pipe, so that the damage is prevented and the heat pipe rotates during assembly. Since the center automatically matches the opening / closing axis of the hinge mechanism, it is possible to prevent an excessive force from acting on the heat pipe when the housing opens / closes around the opening / closing axis.

又、請求項2の発明では、請求項1の発明において、前記ヒンジ機構の固定ヒンジが支軸のみから成り、該支軸を前記位置決め孔に圧入固定することを特徴としている。この場合には、前記固定ヒンジの機能を前記放熱ヒンジ部材が兼ねることになり、前記支軸の周囲を可動ヒンジの軸受部が摺接しながら回動してハウジング1,2の開閉を案内する。このように固定ヒンジ4の省略により部品点数が削減されると共に、ヒンジ機構を小型化してハウジング内の有効スペースを拡大できるThe invention according to claim 2 is characterized in that, in the invention according to claim 1, the fixed hinge of the hinge mechanism comprises only a support shaft, and the support shaft is press-fitted and fixed in the positioning hole. In this case, the heat dissipating hinge member also functions as the fixed hinge, and rotates around the support shaft while the bearing portion of the movable hinge is in sliding contact to guide the opening and closing of the housings 1 and 2. Thus, the omission of the fixed hinge 4 can reduce the number of parts, and the hinge mechanism can be downsized to increase the effective space in the housing .

以上説明したように請求項1の発明の電子装置の放熱ヒンジ構造によれば、ヒートパイプとは全く関係なくヒンジ機構によりハウジングの開閉を案内するため、ヒートパイプに無理な外力が作用せずに破損等のトラブルを未然に防止することができ、しかも、組立時においてヒートパイプの回動中心が自ずとヒンジ機構の開閉軸線と一致するため、上記ヒートパイプの破損を一層確実に防止できると共に、組立作業の簡略化を達成することができる。   As described above, according to the heat dissipation hinge structure of the electronic device according to the first aspect of the present invention, since the opening and closing of the housing is guided by the hinge mechanism regardless of the heat pipe, an excessive external force does not act on the heat pipe. Troubles such as breakage can be prevented in advance, and the center of rotation of the heat pipe automatically matches the opening / closing axis of the hinge mechanism during assembly, so that the heat pipe can be more reliably prevented from being broken and assembled. Simplification of work can be achieved.

又、請求項2の発明の電子装置の放熱ヒンジ構造によれば、ヒートパイプとは全く関係なくヒンジ機構によりハウジングの開閉を案内するため、ヒートパイプに無理な外力が作用せずに破損等のトラブルを未然に防止することができるという上記請求項1の発明の効果に加えて、固定ヒンジの省略により部品点数が削減されると共に、ヒンジ機構を小型化してハウジング内の有効スペースを拡大できるAccording to the heat radiation hinge structure of the electronic device of the second aspect of the invention, since the opening and closing of the housing is guided by the hinge mechanism regardless of the heat pipe, the heat pipe is not damaged by an excessive external force. In addition to the effect of the first aspect of the invention that trouble can be prevented, the number of parts can be reduced by omitting the fixed hinge, and the hinge mechanism can be miniaturized to increase the effective space in the housing .

以下、本発明をノートブック型パソコンの放熱ヒンジ構造に具体化した一実施例を説明する。
図1の組立状態の斜視図、及び図2の分解斜視図に示すように、本実施例のパソコンは、大略的に表現するとCPU側ハウジング1とディスプレイ側ハウジング2とを左右一対のヒンジ機構3(図では左側のみを図示)を介して相互に連結して構成され、図示はしないが、CPU側ハウジング1上にはキーボードが、ディスプレイ側ハウジング2上には液晶ディスプレイが設けられている。両ハウジング1,2はヒンジ機構3の開閉軸線Lを中心として開閉し、キーボード及び液晶ディスプレイを内包して閉じた格納位置と、キーボード及び液晶ディスプレイを露出させて開いた使用位置との間で切換可能となっている。
Hereinafter, an embodiment in which the present invention is embodied in a heat dissipation hinge structure of a notebook personal computer will be described.
As shown in the perspective view of the assembled state of FIG. 1 and the exploded perspective view of FIG. 2, the personal computer of the present embodiment can be expressed roughly by connecting the CPU side housing 1 and the display side housing 2 to a pair of left and right hinge mechanisms 3. Although not shown, a keyboard is provided on the CPU side housing 1 and a liquid crystal display is provided on the display side housing 2 (not shown). Both housings 1 and 2 are opened / closed about the opening / closing axis L of the hinge mechanism 3 to switch between a closed storage position including the keyboard and the liquid crystal display and a use position opened by exposing the keyboard and the liquid crystal display. It is possible.

CPU側ハウジング1及びディスプレイ側ハウジング2はアルミ板を折曲して製作され、それぞれキーボードや液晶ディスプレイが配設される側の面を開口させた薄型の箱状をなしている。両ヒンジ機構3は同一構成で左右対称の関係にあり、それぞれ固定ヒンジ4と可動ヒンジ5とから構成されている。
以下、左側のヒンジ機構3を例にとって説明すると、固定ヒンジ4はステンレス板からL字状に折曲形成され、その一側面がビス6a及びナット6bによってCPU側ハウジング1内の底面に固定されると共に、他側面にはハウジング1,2の開閉軸線Lに沿って支軸4aが固着されている。又、可動ヒンジ5はステンレス板からなり、その基端側をビス6a及びナット6bによってディスプレイ側ハウジング2内の底面に固定されると共に、先端側が湾曲形成されて筒状の軸受部5aをなしている。各可動ヒンジ5の軸受部5aには固定ヒンジ4の支軸4aがそれぞれ挿入され、支軸4a(即ち、開閉軸線L)を中心として、上記のようにCPU側ハウジング1とディスプレイ側ハウジング2とが開閉する。
The CPU-side housing 1 and the display-side housing 2 are manufactured by bending an aluminum plate, and each has a thin box shape in which a surface on which a keyboard and a liquid crystal display are disposed is opened. The two hinge mechanisms 3 have the same configuration and are symmetrical with each other, and are each composed of a fixed hinge 4 and a movable hinge 5.
Hereinafter, the left hinge mechanism 3 will be described as an example. The fixed hinge 4 is bent into an L shape from a stainless steel plate, and one side surface thereof is fixed to the bottom surface in the CPU side housing 1 by screws 6a and nuts 6b. At the same time, a support shaft 4a is fixed to the other side surface along the opening / closing axis L of the housings 1 and 2. The movable hinge 5 is made of a stainless steel plate, and the base end side thereof is fixed to the bottom surface in the display side housing 2 by screws 6a and nuts 6b, and the tip end side thereof is curved to form a cylindrical bearing portion 5a. Yes. The support shaft 4a of the fixed hinge 4 is inserted into the bearing portion 5a of each movable hinge 5, and the CPU side housing 1 and the display side housing 2 are arranged around the support shaft 4a (that is, the opening / closing axis L) as described above. Opens and closes.

尚、ハウジング1,2はプラスチックやマグネシウム合金等の成型によって製作してもよく、この場合にはナット6bをハウジング1,2に一体成形してもよい。又、固定ヒンジ4や可動ヒンジ5は弾性体であればよく、例えば、りん青銅で製作してもよい。
パソコンは、CPU側ハウジング1をデスク上に載置した姿勢でディスプレイ側ハウジング2を上方に開放して使用されるが、軸受部5aの弾性により内部の支軸4aとの間には適度な摺動抵抗が生じるように配慮されているため、ディスプレイ側ハウジング2を任意の角度で固定可能となっている。
The housings 1 and 2 may be manufactured by molding plastic or magnesium alloy. In this case, the nut 6b may be integrally formed with the housings 1 and 2. Moreover, the fixed hinge 4 and the movable hinge 5 should just be an elastic body, for example, may be manufactured with phosphor bronze.
The personal computer is used with the display side housing 2 opened upward in a posture in which the CPU side housing 1 is placed on a desk. However, due to the elasticity of the bearing portion 5a, an appropriate sliding distance is provided between the personal computer and the internal support shaft 4a. Since consideration is given to generating dynamic resistance, the display-side housing 2 can be fixed at an arbitrary angle.

図2及び図3の拡大断面図に示すように、左側のヒンジ機構3の左方位置にはアルミダイカスト製の放熱ヒンジ部材7が配設されて、下部に延設された取付面7aがビス6a及びナット6bによってCPU側ハウジング1内の底面に固定されている。放熱ヒンジ部材7には、固定ヒンジ4の支軸4aと同一軸線上に位置決め孔8が貫設されると共に、その下側には平行に保持孔9が貫設されている。位置決め孔8には右方より固定ヒンジ4の支軸4aの先端が回動可能に嵌合され、その嵌合部分を除いて、位置決め孔8は上方に向けて開放されてパイプ受容溝10を形成している。パイプ受容溝10の両側には断面円弧状の拡張案内部11が形成され、両拡張案内部11の下側には掛止溝12が形成されている。尚、放熱ヒンジ部材7は、アルミ押出し材や銅等の熱伝導性の良好な材質で製作してもよい。   As shown in the enlarged sectional views of FIGS. 2 and 3, a heat radiating hinge member 7 made of aluminum die casting is disposed on the left side of the left hinge mechanism 3, and a mounting surface 7a extending downward is provided with a screw. It is fixed to the bottom surface in the CPU side housing 1 by 6a and nut 6b. The radiating hinge member 7 has a positioning hole 8 penetrating on the same axis as the support shaft 4a of the fixed hinge 4, and a holding hole 9 penetrating in parallel to the lower side thereof. The distal end of the support shaft 4a of the fixed hinge 4 is pivotably fitted to the positioning hole 8 from the right side, and the positioning hole 8 is opened upward to remove the pipe receiving groove 10 except for the fitting portion. Forming. An extension guide portion 11 having a circular arc cross section is formed on both sides of the pipe receiving groove 10, and a latching groove 12 is formed below the both extension guide portions 11. The heat dissipation hinge member 7 may be made of a material having good thermal conductivity such as an aluminum extruded material or copper.

一方、CPU側ハウジング1内には、演算処理を行うための電子部品が実装されたプリント基板15が格納され、本実施例では、このプリント基板15上の発熱性部品としてのCPU16に対して放熱対策が施されている。CPU16上にはほぼ同等の四角形状をなす伝熱プレート17が密着状態で配設され、伝熱プレート17の一辺は筒状に湾曲形成されて、第1ヒートパイプ18の蒸発側端部18aがカシメにより固定されている。第1ヒートパイプ18はCPU側ハウジング1内の周辺に沿って直角に折曲され、その他端側の凝縮側端部18bは、前記放熱ヒンジ部材7の保持孔9内に圧入固定された上で、放熱ヒンジ部材7の側面よりカシメが施されて離脱を防止されている。   On the other hand, a printed circuit board 15 on which electronic components for performing arithmetic processing are mounted is stored in the CPU side housing 1. In this embodiment, heat is radiated to the CPU 16 as a heat generating component on the printed circuit board 15. Measures are taken. On the CPU 16, a heat transfer plate 17 having a substantially equal square shape is disposed in close contact, and one side of the heat transfer plate 17 is formed in a cylindrical shape so that the evaporation side end 18a of the first heat pipe 18 is formed. It is fixed by caulking. The first heat pipe 18 is bent at right angles along the periphery in the CPU side housing 1, and the other end side condensation side end 18 b is press-fitted and fixed in the holding hole 9 of the heat radiation hinge member 7. The radiating hinge member 7 is caulked from the side surface to prevent detachment.

前記放熱ヒンジ部材7のパイプ受容溝10内には第2ヒートパイプ19の蒸発側端部19aが配置され、ステンレス板やりん青銅等の弾性材料より折曲成形されたパイプ固定金具20が上方から被嵌されている。パイプ固定金具20の両側面の下端には掛止部20aが形成され、パイプ固定金具20は、自己の弾性で掛止部20aを放熱ヒンジ部材7の掛止溝12に掛け止めすることにより放熱ヒンジ部材7に固定されている。パイプ固定金具20の上面には下方に湾曲する押圧部20bが形成され、この押圧部20bは第2ヒートパイプ19の蒸発側端部19aを弾性をもって上方より押圧して、パイプ受容溝10内で回動可能に保持している。   An evaporation side end 19a of the second heat pipe 19 is disposed in the pipe receiving groove 10 of the heat dissipation hinge member 7, and a pipe fixing bracket 20 bent from an elastic material such as a stainless steel plate or phosphor bronze is provided from above. It is fitted. A latching portion 20a is formed at the lower ends of both side surfaces of the pipe fixing bracket 20, and the pipe fixing bracket 20 radiates heat by latching the latching portion 20a on the latching groove 12 of the radiating hinge member 7 by its own elasticity. The hinge member 7 is fixed. A pressing portion 20b that is curved downward is formed on the upper surface of the pipe fixing bracket 20. The pressing portion 20b elastically presses the evaporation side end portion 19a of the second heat pipe 19 from above, so that the inside of the pipe receiving groove 10 Holds in a rotatable manner.

ここで、本実施例ではヒートパイプとして第2ヒートパイプ19が機能し、パイプ固定部材としてパイプ固定金具20が機能している。第2ヒートパイプ19は直角に折曲され、その凝縮側端部19bはディスプレイ側ハウジング2内の周辺に沿って配置されて、アルミ板から略L字状に折曲された固定板21によりハウジング2に固定されている。
尚、第2ヒートパイプ19とパイプ受容溝10やパイプ固定金具20との間は、ハウジング1,2の開閉時に第2ヒートパイプ19に作用する外力や摩耗を低減すべく、熱伝導性グリスの充填により摺動抵抗が極力低減されている。熱伝導性グリスは空気層の介在を排除して、放熱ヒンジ部材7から第2ヒートパイプ19への熱伝導効率を向上させる利点もある。
Here, in this embodiment, the second heat pipe 19 functions as a heat pipe, and the pipe fixing bracket 20 functions as a pipe fixing member. The second heat pipe 19 is bent at a right angle, and its condensing side end 19b is arranged along the periphery in the display side housing 2, and is fixed to the housing by a fixing plate 21 bent from an aluminum plate into a substantially L shape. 2 is fixed.
In addition, between the second heat pipe 19 and the pipe receiving groove 10 or the pipe fixing bracket 20, in order to reduce external force and wear acting on the second heat pipe 19 when the housings 1 and 2 are opened and closed, heat conductive grease is used. The sliding resistance is reduced as much as possible by filling. The heat conductive grease also has an advantage of improving heat transfer efficiency from the heat radiation hinge member 7 to the second heat pipe 19 by eliminating the air layer.

上記した第1ヒートパイプ18及び第2ヒートパイプ19は、内部に封入された作動液の蒸発潜熱を利用して熱伝達を行っており、その動作原理は周知のものであるため、概略のみを説明する。ヒートパイプ18,19は銅、アルミ等の熱伝導性の良好な金属材料から製作されて、その両端は閉塞されて内部に密閉空間を有している。ヒートパイプ18,19の表面にはニッケルメッキ処理が施され、内部にはグルーブ等のウイック構造体が内張りされると共に、ヒートパイプ18,19の材質に適した作動液、例えば水、アセトン、代替フロン等が所定量封入された上で、予め所定圧に減圧されている。   The first heat pipe 18 and the second heat pipe 19 described above perform heat transfer using the latent heat of vaporization of the working fluid sealed inside, and the operation principle is well known, so only an outline is given. explain. The heat pipes 18 and 19 are made of a metal material having good thermal conductivity such as copper and aluminum, and both ends thereof are closed to have a sealed space inside. The surface of the heat pipes 18 and 19 is nickel-plated, and a wick structure such as a groove is lined inside, and a hydraulic fluid suitable for the material of the heat pipes 18 and 19 such as water, acetone, or the like. After a predetermined amount of chlorofluorocarbon or the like is sealed, the pressure is reduced to a predetermined pressure in advance.

以上のように構成されたパソコンの作動中において、以下に述べるようにCPU16の放熱作用が奏される。
パソコンの作動に伴ってCPU16が発熱すると、その熱は伝熱プレート17を介して第1ヒートパイプ18の蒸発側端部18aに集約されて内部の作動液を蒸発させる。このときの蒸発によって蒸発側端部18aの内圧は上昇し、発生した蒸気はより低圧の凝縮側端部18bへと流れて、凝縮側端部18b内で冷却されて凝縮する。この凝縮液は毛細管現象によりウイック構造体内を経て蒸発側端部18aに戻され、再びCPU16からの熱で蒸発する。このサイクルが繰り返されることにより、蒸発潜熱がCPU16側から第1ヒートパイプ18を経て放熱ヒンジ部材7に伝達され、更に放熱ヒンジ部材7からCPU側ハウジング1へと放熱される。又、放熱ヒンジ部材7に伝達された熱の一部は、第2ヒートパイプ19で繰り返される同様の熱伝達サイクルを経てディスプレイ側ハウジング2に伝達される。ディスプレイ側ハウジング2は内部に電子部品を格納せずに比較的温度が低いことから、CPU側ハウジング1に比較してより効率良く放熱が行われる。
During the operation of the personal computer configured as described above, the heat dissipation action of the CPU 16 is exhibited as described below.
When the CPU 16 generates heat with the operation of the personal computer, the heat is concentrated on the evaporation side end portion 18a of the first heat pipe 18 via the heat transfer plate 17 to evaporate the internal working fluid. Due to the evaporation at this time, the internal pressure of the evaporation side end 18a rises, and the generated steam flows to the condensation side end 18b having a lower pressure, and is cooled and condensed in the condensation side end 18b. This condensate is returned to the evaporation side end 18a through the wick structure by capillary action, and is evaporated again by the heat from the CPU 16. By repeating this cycle, the latent heat of vaporization is transmitted from the CPU 16 side to the heat radiation hinge member 7 via the first heat pipe 18 and further radiated from the heat radiation hinge member 7 to the CPU side housing 1. A part of the heat transmitted to the heat dissipation hinge member 7 is transmitted to the display-side housing 2 through a similar heat transfer cycle repeated in the second heat pipe 19. Since the display-side housing 2 has a relatively low temperature without storing electronic components therein, heat can be radiated more efficiently than the CPU-side housing 1.

ここで、前記のように第2ヒートパイプ19の蒸発側端部19aはパイプ固定金具20の押圧部20bに押圧されているため、放熱ヒンジ部材7のパイプ受容溝10の内壁に常に密着して十分な接触面積が確保されている。従って、放熱ヒンジ部材7から第2ヒートパイプ19への熱伝達が確実になされ、ディスプレイ側ハウジング2においても大きな放熱効果を得ることができる。   Here, as described above, the evaporation side end portion 19 a of the second heat pipe 19 is pressed against the pressing portion 20 b of the pipe fixing bracket 20, and thus is always in close contact with the inner wall of the pipe receiving groove 10 of the radiating hinge member 7. Sufficient contact area is secured. Therefore, heat transfer from the heat dissipation hinge member 7 to the second heat pipe 19 is ensured, and a large heat dissipation effect can be obtained also in the display-side housing 2.

一方、以上の説明から明らかなように、本実施例では右側のヒンジ機構(図示せず)は無論のこと、左側のヒンジ機構3についても、ヒートパイプ18,19とは全く関係なく独立してヒンジとしての機能を奏するように構成されている。つまり、特開平10−187284号公報記載されるように開閉の案内にヒートパイプ18,19を利用していないため、ヒートパイプ18,19に無理な外力が作用することがなく、その破損を未然に防止することができる。この種のノートブック型のパソコンは、例えばディスプレイ側ハウジング2を把持して持ち上げられる等の予想外の取り扱いを受けるが、このような取り扱いに対しても十分に耐えることができる。   On the other hand, as apparent from the above description, in the present embodiment, the right hinge mechanism (not shown) is of course, and the left hinge mechanism 3 is also independent of the heat pipes 18 and 19 at all. It is configured to function as a hinge. That is, as described in JP-A-10-187284, the heat pipes 18 and 19 are not used for opening and closing guidance, so that an excessive external force does not act on the heat pipes 18 and 19, and the damage is prevented. Can be prevented. This type of notebook-type personal computer receives unexpected handling such as holding the display-side housing 2 and lifting it, but can sufficiently withstand such handling.

次に、以上のように構成されたパソコンの放熱ヒンジ構造の組立手順、特に第2ヒートパイプ19の蒸発側端部19aと放熱ヒンジ部材7との連結手順について説明する。
第2ヒートパイプ19と放熱ヒンジ部材7とを連結する際には、事前に放熱ヒンジ部材7及び固定ヒンジ4がCPU側ハウジング1に固定されて、固定ヒンジ4の支軸4aに可動ヒンジ5の軸受部5aが嵌め込まれている。又、放熱ヒンジ部材7の保持孔9内にはCPU16側からの第1ヒートパイプ18の凝縮側端部18bが圧入されている。一方、第2ヒートパイプ19は固定板21によりディスプレイ側ハウジング2に固定されている。
Next, an assembling procedure of the heat dissipation hinge structure of the personal computer configured as described above, particularly a connection procedure between the evaporation side end 19a of the second heat pipe 19 and the heat dissipation hinge member 7 will be described.
When connecting the second heat pipe 19 and the heat dissipation hinge member 7, the heat dissipation hinge member 7 and the fixed hinge 4 are fixed to the CPU side housing 1 in advance, and the movable hinge 5 is attached to the support shaft 4 a of the fixed hinge 4. The bearing 5a is fitted. Further, the condensation side end 18b of the first heat pipe 18 from the CPU 16 side is press-fitted into the holding hole 9 of the heat dissipation hinge member 7. On the other hand, the second heat pipe 19 is fixed to the display-side housing 2 by a fixing plate 21.

この状態で左右の可動ヒンジ3をディスプレイ側ハウジング2の正規位置にビス6a及びナット6bにより固定すると、第2ヒートパイプ19の蒸発側端部19aは自ずと放熱ヒンジ部材7のパイプ受容溝10内に上方より配置される。次いで、放熱ヒンジ部材7に上方よりパイプ固定金具20を嵌め込むと、両側の掛止部20aは、図4に示すように放熱ヒンジ部材7の拡張案内部11に案内されてパイプ固定金具20を撓ませながら一旦離間した後に、図3に示すように放熱ヒンジ部材7の掛止溝12に掛け止めされる。その結果、パイプ固定金具20は放熱ヒンジ部材7に被嵌され、その押圧部20bに押圧されて第2ヒートパイプ19の蒸発側端部19aがパイプ受容溝10内に保持される。   In this state, when the left and right movable hinges 3 are fixed to the normal position of the display-side housing 2 by screws 6a and nuts 6b, the evaporation side end 19a of the second heat pipe 19 is naturally in the pipe receiving groove 10 of the heat dissipation hinge member 7. Arranged from above. Next, when the pipe fixing bracket 20 is fitted into the heat dissipation hinge member 7 from above, the latching portions 20a on both sides are guided by the extended guide portions 11 of the heat dissipation hinge member 7 as shown in FIG. After being separated once while being bent, it is latched in the latching groove 12 of the heat dissipation hinge member 7 as shown in FIG. As a result, the pipe fixing bracket 20 is fitted on the heat dissipation hinge member 7 and is pressed by the pressing portion 20b so that the evaporation side end portion 19a of the second heat pipe 19 is held in the pipe receiving groove 10.

言うまでもなく、上記以外の手順でも組立可能であるが、その場合であっても第2ヒートパイプ19と放熱ヒンジ部材7との連結は上記と同様になされる。
このように組立時において第2ヒートパイプ19と放熱ヒンジ部材7とを連結するには、第2ヒートパイプ19の蒸発側端部19aをパイプ受容溝10内に配置して、上方よりパイプ固定金具20を嵌め込むだけでよい。従って、ヒートパイプ18,19を開閉軸線Lに沿って挿入する必要がある公報記載の従来例に比較して、組立作業が非常に行い易く、ひいてはパソコンの組立作業を簡略化することができる。
Needless to say, it is possible to assemble by a procedure other than the above, but even in that case, the second heat pipe 19 and the heat radiation hinge member 7 are connected in the same manner as described above.
Thus, in order to connect the second heat pipe 19 and the heat dissipation hinge member 7 during assembly, the evaporation side end portion 19a of the second heat pipe 19 is disposed in the pipe receiving groove 10, and the pipe fixing metal fitting from above. It is only necessary to fit 20 in. Therefore, as compared with the conventional example described in the publication in which the heat pipes 18 and 19 need to be inserted along the opening / closing axis L, the assembling work is very easy, and as a result, the assembling work of the personal computer can be simplified.

一方、両ハウジング1,2の開閉時において、第2ヒートパイプ19の蒸発側端部19aはパイプ受容溝10内で回動しながら放熱ヒンジ部材7との間の角度変化を吸収している。よって、第2ヒートパイプ19の蒸発側端部19aは、開閉中心である固定ヒンジ4aの支軸4aに対して同一軸線上(即ち、開閉軸線L上)に位置する必要があり、蒸発側端部19aと支軸4aとの中心がずれると、開閉の度に第2ヒートパイプ19が撓んで破損の虞が生ずる。本実施例では、固定ヒンジ4の支軸4aを放熱ヒンジ部材7の位置決め孔8に嵌合させることにより、支軸4aに対して第2ヒートパイプ19の蒸発側端部19aを簡単、且つ確実に一致させることができ、上記したヒートパイプ19の破損等のトラブルを回避すると共に、組立作業の簡略化にも大きく貢献している。   On the other hand, when both the housings 1 and 2 are opened and closed, the evaporation side end 19 a of the second heat pipe 19 absorbs a change in angle with the heat radiation hinge member 7 while rotating in the pipe receiving groove 10. Therefore, the evaporation side end 19a of the second heat pipe 19 needs to be positioned on the same axis (that is, on the opening / closing axis L) with respect to the support shaft 4a of the fixed hinge 4a that is the opening / closing center. If the center of the part 19a and the support shaft 4a is deviated, the second heat pipe 19 is bent each time it is opened and closed, which may cause damage. In this embodiment, the evaporating side end portion 19a of the second heat pipe 19 can be easily and reliably secured to the supporting shaft 4a by fitting the supporting shaft 4a of the fixed hinge 4 into the positioning hole 8 of the heat dissipation hinge member 7. This avoids troubles such as breakage of the heat pipe 19 and greatly contributes to simplification of the assembly work.

請求項2の発明についての実施例としては、例えば図5に示すように、CPU側ハウジング1に固定された固定ヒンジ4を省略して支軸4aのみとし、その支軸4aを放熱ヒンジ部材7の位置決め孔8に圧入固定してもよい。この場合には、固定ヒンジ4の機能を放熱ヒンジ部材7が兼ねることになり、支軸4aの周囲を可動ヒンジ5の軸受部5aが摺接しながら回動してハウジング1,2の開閉を案内する。そして、このように固定ヒンジ4の省略により部品点数が削減されると共に、ヒンジ機構3を小型化してハウジング1,2内の有効スペースを拡大できるため、上記実施例で述べた作用効果に加えて、製造コスト低減の効果、及び基板等の設置レイアウトの自由度拡大の効果を得ることができる。
As an embodiment of the invention of claim 2, for example, as shown in FIG. 5, the fixed hinge 4 fixed to the CPU side housing 1 is omitted and only the support shaft 4 a is provided, and the support shaft 4 a is used as the heat radiation hinge member 7. The positioning hole 8 may be press-fitted and fixed. In this case, the radiating hinge member 7 also functions as the fixed hinge 4 and rotates while the bearing portion 5a of the movable hinge 5 is in sliding contact with the periphery of the support shaft 4a to guide the opening and closing of the housings 1 and 2. To do. Since the number of parts can be reduced by omitting the fixed hinge 4 as described above, the hinge mechanism 3 can be miniaturized and the effective space in the housings 1 and 2 can be expanded. In addition to the functions and effects described in the above embodiment, In addition, the effect of reducing the manufacturing cost and the effect of expanding the degree of freedom of the installation layout of the substrate and the like can be obtained.

又、上記実施例ではCPU側ハウジング1に格納されたCPU16の熱を、第1ヒートパイプ18、放熱ヒンジ部材7、第2ヒートパイプ19を経てディスプレイ側ハウジング2に伝達したが、これらの各部材のレイアウトは種々の態様に変更可能である。例えば、公報記載の従来技術と同様に、放熱ヒンジ部材7をディスプレイ側ハウジング2に固定し、その放熱ヒンジ部材7にCPU16側からの第1ヒートパイプ18の凝縮側端部18bを接続し、第2ヒートパイプ19は省略してもよい。このように構成しても、放熱ヒンジ部材7のパイプ受容溝10を開閉軸線Lと一致させておけば支障なくハウジング1,2を開閉可能であり、且つ、CPU16の熱を第1ヒートパイプ18及び放熱ヒンジ部材7を介してディスプレイ側ハウジング2に放熱させることができる。   In the above embodiment, the heat of the CPU 16 stored in the CPU side housing 1 is transmitted to the display side housing 2 through the first heat pipe 18, the heat dissipation hinge member 7, and the second heat pipe 19. The layout can be changed in various ways. For example, as in the prior art described in the publication, the heat dissipation hinge member 7 is fixed to the display-side housing 2, and the heat dissipation hinge member 7 is connected to the condensation side end 18b of the first heat pipe 18 from the CPU 16 side. The two heat pipes 19 may be omitted. Even in such a configuration, if the pipe receiving groove 10 of the heat radiation hinge member 7 is aligned with the opening / closing axis L, the housings 1 and 2 can be opened and closed without any trouble, and the heat of the CPU 16 can be transferred to the first heat pipe 18. The heat can be radiated to the display side housing 2 via the heat radiation hinge member 7.

一方、CPU16等の発熱性部品が開閉軸線Lの近接位置にある場合には、第1ヒートパイプ18を省略してもよい。図6はこのように構成した場合の一例であり、放熱ヒンジ部材7に伝熱ブロック31を一体成形してビス6a及びナット6bによってCPU側ハウジング1に固定している。そして、伝熱ブロック31の一側をCPU16上に密着させているため、CPU16の熱は伝熱ブロック31を経て放熱ヒンジ部材7側に伝達される。伝熱ブロック31は銅、金、銀、グラファイト等の熱伝導性の良好な材質で製作され、且つ、CPU16から放熱ヒンジ部材7までの熱伝導経路が短いため、第1ヒートパイプ18を利用しなくてもCPU16の熱は十分に放熱ヒンジ部材7側に伝達され、第2ヒートパイプ19を経てディスプレイ側ハウジング2に放熱させることができる。   On the other hand, when the heat-generating component such as the CPU 16 is in the proximity of the opening / closing axis L, the first heat pipe 18 may be omitted. FIG. 6 shows an example of such a configuration. A heat transfer block 31 is formed integrally with the heat dissipation hinge member 7 and fixed to the CPU side housing 1 with screws 6a and nuts 6b. Since one side of the heat transfer block 31 is in close contact with the CPU 16, the heat of the CPU 16 is transmitted to the heat dissipation hinge member 7 side through the heat transfer block 31. Since the heat transfer block 31 is made of a material having good heat conductivity such as copper, gold, silver, graphite, and the heat conduction path from the CPU 16 to the heat dissipation hinge member 7 is short, the first heat pipe 18 is used. Even if not, the heat of the CPU 16 is sufficiently transmitted to the heat radiating hinge member 7 side and can be radiated to the display side housing 2 through the second heat pipe 19.

又、図7は上記図6の別例であり、この例では伝熱ブロック41を放熱ヒンジ部材7に対して別部材としており、伝熱ブロック41の一側を、放熱ヒンジ部材7の取付面7aと共にビス6a及びナット6bによってCPU側ハウジング1に固定し、伝熱ブロック41の他側を、伝熱プレート42を介してCPU16上に密着させている。上記した伝熱ブロック31と同じく、これらの伝熱ブロック41と伝熱プレート42は銅、金、銀、グラファイト等で製作されているため、CPU16の熱は伝熱プレート42及び伝熱ブロック41を経て十分に放熱ヒンジ部材7側に伝達される。そして、これら図6及び図7の別例においても、放熱ヒンジ部材7に対する第2ヒートパイプ19の連結状態は上記した実施例と全く同様であるため、組立時には放熱ヒンジ部材7のパイプ受容溝10内に第2ヒートパイプ19の蒸発側端部19aを配置して、上方よりパイプ固定金具20を嵌め込むだけでよく、極めて簡単に連結することができる。   FIG. 7 is another example of FIG. 6. In this example, the heat transfer block 41 is a separate member from the heat dissipation hinge member 7, and one side of the heat transfer block 41 is attached to the mounting surface of the heat dissipation hinge member 7. 7a is fixed to the CPU side housing 1 by screws 6a and nuts 6b, and the other side of the heat transfer block 41 is in close contact with the CPU 16 via the heat transfer plate. As with the heat transfer block 31 described above, the heat transfer block 41 and the heat transfer plate 42 are made of copper, gold, silver, graphite or the like, so that the heat of the CPU 16 is transferred to the heat transfer plate 42 and the heat transfer block 41. Then, it is sufficiently transmitted to the heat radiating hinge member 7 side. Also in these other examples of FIGS. 6 and 7, the connection state of the second heat pipe 19 with respect to the heat dissipation hinge member 7 is exactly the same as that of the above-described embodiment, so that the pipe receiving groove 10 of the heat dissipation hinge member 7 is assembled at the time of assembly. The evaporation side end portion 19a of the second heat pipe 19 is disposed inside, and the pipe fixing metal fitting 20 is fitted from above, and can be connected very easily.

一方,上記実施例では、CPU16の熱をディスプレイ側ハウジング2に伝達することにより放熱作用を得たが、別の放熱経路を付加してもよい。図8乃至図11は、図6に示した放熱ヒンジ構造の例を基に、ヒートシンク50を用いた放熱経路を付加した一例であり、以下にその構成を説明する。CPU16上には熱伝導性ラバー53を介して伝熱ブロック31が配設され、伝熱ブロック31及び放熱ヒンジ部材7と共にヒートシンク50がアルミダイカストにより一体的に形成されている。これらの部材7,31,50は、前記したビス6a及びナット6bに加えて、ヒートシンク50のボス部50aを利用してビス52によりCPU側ハウジング1に固定されている。尚、ヒートシンク50の材質として、上記した伝熱ブロック31,41と同様に銅、金、銀、グラファイト等を適用可能なことは無論である。ヒートシンク50には上方に開口する冷却送風路51が形成され、この冷却送風路51は伝熱ブロック31から右方に延びて後方に湾曲形成され、CPU側ハウジング1の側面に形成されたスリット状の排気口54を介して外部と連通している。冷却送風路51の底壁51a上には冷却ファン55のモータ55aが配設され、図示はしないが、モータ55aは底壁51aに形成された凹部内に圧入固定されると共に、モータ55aの配線はプリント基板15に電気的に接続されている。冷却送風路51はアルミ製のカバー56にて上方より閉塞され、カバー56に形成された円形の吸気口56aを介して内部の冷却ファン55が上方に露出している。   On the other hand, in the said Example, although the heat radiation effect | action was acquired by transmitting the heat | fever of CPU16 to the display side housing 2, you may add another heat dissipation path | route. 8 to 11 show an example in which a heat dissipation path using the heat sink 50 is added based on the example of the heat dissipation hinge structure shown in FIG. 6, and the configuration thereof will be described below. A heat transfer block 31 is disposed on the CPU 16 via a heat conductive rubber 53, and a heat sink 50 is integrally formed with the heat transfer block 31 and the heat dissipation hinge member 7 by aluminum die casting. These members 7, 31, 50 are fixed to the CPU side housing 1 by screws 52 using the boss portions 50 a of the heat sink 50 in addition to the above-described screws 6 a and nuts 6 b. Of course, copper, gold, silver, graphite or the like can be used as the material of the heat sink 50 in the same manner as the heat transfer blocks 31 and 41 described above. The heat sink 50 is formed with a cooling air passage 51 that opens upward. The cooling air passage 51 extends rightward from the heat transfer block 31 and is curved backward, and is formed in a slit shape formed on the side surface of the CPU side housing 1. The exhaust port 54 communicates with the outside. A motor 55a of a cooling fan 55 is disposed on the bottom wall 51a of the cooling air passage 51. Although not shown, the motor 55a is press-fitted and fixed in a recess formed in the bottom wall 51a, and wiring of the motor 55a is performed. Are electrically connected to the printed circuit board 15. The cooling air passage 51 is closed from above by an aluminum cover 56, and the internal cooling fan 55 is exposed upward through a circular air inlet 56 a formed in the cover 56.

前記した伝熱ブロック31は十分な板厚に設定されて所謂ヒートスプレッダーとして蓄熱作用を奏し、CPU16が発生した熱を速やかに吸収する。又、冷却送風路51の底壁51aも十分な板厚に設定されていることから、伝熱ブロック31に吸収された熱は低壁51aを経て側壁51bやカバー56、つまり、冷却送風路51の内壁全体に速やかに伝達される。そして、パソコンの作動時にモータ55aにて冷却ファン55が回転駆動されると、図10及び図11に矢印で示すように、CPU側ハウジング1内の空気は吸気口56aから冷却送風路51内に導入されて排気口54から外部に排出され、冷却送風路51内を通過する際に内壁から熱を奪って効率良く外部に放熱する。従って、CPU16の熱をより確実に放熱できる上に、放熱ヒンジ部材7を経てディスプレイ側ハウジング2側に伝達される熱量が減少するため、熱伝達に伴う放熱ヒンジ部材7の温度上昇を想定してハウジング1,2の耐熱性を確保する必要がなくなり、その材質設定の自由度を拡大できるという効果も得られる。   The heat transfer block 31 described above is set to a sufficient plate thickness and has a heat storage function as a so-called heat spreader, and quickly absorbs the heat generated by the CPU 16. Further, since the bottom wall 51a of the cooling air passage 51 is also set to have a sufficient thickness, the heat absorbed by the heat transfer block 31 passes through the low wall 51a and the side wall 51b and the cover 56, that is, the cooling air passage 51. It is promptly transmitted to the entire inner wall. When the cooling fan 55 is rotationally driven by the motor 55a during the operation of the personal computer, the air in the CPU-side housing 1 flows from the intake port 56a into the cooling air passage 51 as shown by arrows in FIGS. When the air is introduced and discharged from the exhaust port 54 and passes through the cooling air passage 51, the heat is taken away from the inner wall and efficiently radiated to the outside. Accordingly, the heat of the CPU 16 can be radiated more reliably, and the amount of heat transmitted to the display side housing 2 through the heat radiating hinge member 7 is reduced, so that the temperature rise of the heat radiating hinge member 7 accompanying heat transfer is assumed. There is no need to ensure the heat resistance of the housings 1 and 2, and the effect that the degree of freedom of material setting can be expanded is also obtained.

又、熱伝達を向上させるために、例えば図12及び図13に示すようにヒートシンク60にヒートパイプ64を内蔵させてもよい。この例では、上記した例とは逆にヒートシンク60の冷却送風路61を下方に開口させてカバー62で閉塞し、そのカバー62の吸気口62aを経て冷却ファン63にて下方より空気を導入する構成としている。そして、冷却送風路61の上壁61aの板厚を大きく設定して、その上壁61aの上面に冷却送風路61に沿ってパイプ溝61bを形成し、パイプ溝61b内に熱伝導性グリスを塗布した上でヒートパイプ64を圧入固定する。このように構成すれば、伝熱ブロック31に吸収された熱をヒートパイプ64を経て冷却送風路61の内壁全体により迅速に伝達することができる。   In order to improve heat transfer, for example, a heat pipe 64 may be incorporated in the heat sink 60 as shown in FIGS. In this example, contrary to the above example, the cooling air passage 61 of the heat sink 60 is opened downward and closed by the cover 62, and air is introduced from below by the cooling fan 63 via the intake port 62a of the cover 62. It is configured. And the plate | board thickness of the upper wall 61a of the cooling ventilation path 61 is set large, the pipe groove 61b is formed along the cooling ventilation path 61 in the upper surface of the upper wall 61a, and thermally conductive grease is put in the pipe groove 61b. After the application, the heat pipe 64 is press-fitted and fixed. If comprised in this way, the heat absorbed by the heat-transfer block 31 can be rapidly transmitted to the whole inner wall of the cooling air passage 61 through the heat pipe 64.

更に、上記実施例ではCPU側ハウジング1とディスプレイ側ハウジング2を放熱性の良好なアルミ板から製作してCPU16の放熱に利用したが、ハウジング1,2をプラスチックで製作した場合には、それ程高い放熱効果を期待できないため、ハウジング1,2内に設けられている既存のアルミ製の電磁シールド板を放熱に利用する。具体的には、上記実施例において、第2ヒートパイプ19の凝縮側端部19bをディスプレイ側ハウジング2内の電磁シールド板に接続したり、或いは第1ヒートパイプ18をCPU16から反対側に延設してキーボード下の電磁シールド板に接続したりして構成すればよい。後者の場合には、CPU16に接続された第1ヒートパイプ18の中央で作動液の蒸発が生じ、パイプ両端で作動液の凝縮がそれぞれ生じて放熱作用を奏することになる。   Further, in the above embodiment, the CPU side housing 1 and the display side housing 2 are manufactured from an aluminum plate having good heat dissipation and used for heat dissipation of the CPU 16. However, when the housings 1 and 2 are made of plastic, they are so high. Since the heat dissipation effect cannot be expected, an existing aluminum electromagnetic shield plate provided in the housings 1 and 2 is used for heat dissipation. Specifically, in the above embodiment, the condensation side end 19b of the second heat pipe 19 is connected to the electromagnetic shield plate in the display side housing 2, or the first heat pipe 18 is extended from the CPU 16 to the opposite side. Then, it may be configured by connecting to an electromagnetic shield plate under the keyboard. In the latter case, the working fluid is evaporated at the center of the first heat pipe 18 connected to the CPU 16, and the working fluid is condensed at both ends of the pipe, thereby providing a heat radiation effect.

一方、上記実施例ではCPU16を目的として放熱対策を施したが、放熱を要する発熱性部品であれば特にCPU16に限定されることはなく、例えばトランス、電源部等の放熱に利用してもよい。   On the other hand, in the above embodiment, heat dissipation measures are taken for the purpose of the CPU 16, but the heat-generating component that requires heat dissipation is not particularly limited to the CPU 16, and may be used for heat dissipation of, for example, a transformer and a power supply unit. .

実施例の電子装置の放熱ヒンジ構造の組立状態を示す部分斜視図である。It is a fragmentary perspective view which shows the assembly state of the thermal radiation hinge structure of the electronic device of an Example. 分解状態を示す部分斜視図である。It is a fragmentary perspective view which shows a decomposition | disassembly state. 放熱ヒンジ部材の詳細を示す拡大断面図である。It is an expanded sectional view which shows the detail of a thermal radiation hinge member. パイプ固定金具を被嵌するときの拡大断面図である。It is an expanded sectional view when fitting a pipe fixing metal fitting. 固定ヒンジを省略した別例の組立状態を示す部分斜視図である。It is a fragmentary perspective view which shows the assembly state of another example which abbreviate | omitted the fixed hinge. 第1ヒートパイプを省略した別例の組立状態を示す部分斜視図である。It is a fragmentary perspective view which shows the assembly state of another example which abbreviate | omitted the 1st heat pipe. 第1ヒートパイプを省略した他の別例の組立状態を示す部分斜視図である。It is a fragmentary perspective view which shows the assembly state of the other another example which abbreviate | omitted the 1st heat pipe. 冷却ファンを用いた放熱経路を付加した別例の組立状態を示す部分斜視図である。It is a fragmentary perspective view which shows the assembly state of the other example which added the heat dissipation path using a cooling fan. 冷却ファンを用いた放熱経路を付加した別例の分解状態を示す部分斜視図である。It is a fragmentary perspective view which shows the decomposition | disassembly state of another example which added the thermal radiation path | route using a cooling fan. 冷却ファンを用いた放熱経路を付加した別例を示す部分平面図である。It is a fragmentary top view which shows the other example which added the heat dissipation path | route using a cooling fan. 冷却ファンを用いた放熱経路を付加した別例を示す部分側断面図である。It is a fragmentary sectional side view which shows another example which added the thermal radiation path | route using a cooling fan. 冷却ファンを用いた放熱経路を付加した他の別例を示す部分平面図である。It is a fragmentary top view which shows the other example which added the thermal radiation path | route using a cooling fan. 冷却ファンを用いた放熱経路を付加した他の別例を示す部分側断面図である。It is a fragmentary sectional side view which shows the other example to which the heat dissipation path using a cooling fan was added.

符号の説明Explanation of symbols

1 CPU側ハウジング
2 ディスプレイ側ハウジング
3 ヒンジ機構
5 可動ヒンジ(ヒンジ部材)
7 放熱ヒンジ部材
16 CPU(発熱性部品)
19 第2ヒートパイプ
L 開閉軸線
1 CPU side housing 2 Display side housing 3 Hinge mechanism 5 Movable hinge (hinge member)
7 Radiating hinge member 16 CPU (heat generating component)
19 Second heat pipe L Open / close axis

Claims (2)

相互に開閉可能な一対のハウジングの連結箇所に放熱ヒンジ部材を配設し、同放熱ヒンジ部材に、前記両ハウジングの開閉軸線上で回動可能にヒートパイプを連結して、同ヒートパイプ及び放熱ヒンジ部材を介して一方のハウジングに設けた発熱性部品の熱を他方のハウジング側に放熱する電子装置の放熱ヒンジ構造において、
前記放熱ヒンジ部材には、前記両ハウジングの開閉を案内するヒンジ機構の固定ヒンジの支軸と同一軸線上に位置決め孔が貫設されており、その位置決め孔に前記固定ヒンジの支軸が回動可能に嵌合され、その嵌合部分を除いた前記位置決め孔は上方に向けて開放されてパイプの受容溝を形成し、そのパイプ受容溝内で前記ヒートパイプを回動可能に保持することを特徴とする電子装置の放熱ヒンジ構造。
A heat dissipating hinge member is disposed at a connecting portion of a pair of housings that can be opened and closed mutually, and a heat pipe is connected to the heat dissipating hinge member so as to be rotatable on the opening / closing axis of the two housings. In the heat dissipation hinge structure of the electronic device that dissipates the heat of the heat-generating component provided in one housing to the other housing side via the hinge member,
The heat dissipating hinge member is provided with a positioning hole on the same axis as the supporting shaft of the fixed hinge of the hinge mechanism for guiding the opening and closing of the two housings, and the supporting shaft of the fixed hinge rotates in the positioning hole. The positioning hole excluding the fitting portion is opened upward to form a pipe receiving groove, and the heat pipe is rotatably held in the pipe receiving groove. A heat dissipating hinge structure for electronic devices.
前記ヒンジ機構の固定ヒンジが支軸のみから成り、該支軸を前記位置決め孔に圧入固定することを特徴とする、請求項1に記載する、電子装置の放熱ヒンジ構造。 2. The heat dissipation hinge structure for an electronic device according to claim 1, wherein the fixed hinge of the hinge mechanism includes only a support shaft, and the support shaft is press-fitted and fixed into the positioning hole .
JP2004005590A 1998-12-18 2004-01-13 Heat dissipation hinge structure for electronic devices Expired - Lifetime JP3977341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005590A JP3977341B2 (en) 1998-12-18 2004-01-13 Heat dissipation hinge structure for electronic devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP36078498 1998-12-18
JP10288399 1999-04-09
JP2004005590A JP3977341B2 (en) 1998-12-18 2004-01-13 Heat dissipation hinge structure for electronic devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33633799A Division JP3644858B2 (en) 1998-12-18 1999-11-26 Heat dissipation hinge structure for electronic devices

Publications (2)

Publication Number Publication Date
JP2004164667A JP2004164667A (en) 2004-06-10
JP3977341B2 true JP3977341B2 (en) 2007-09-19

Family

ID=32830394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005590A Expired - Lifetime JP3977341B2 (en) 1998-12-18 2004-01-13 Heat dissipation hinge structure for electronic devices

Country Status (1)

Country Link
JP (1) JP3977341B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027319A (en) * 2005-07-14 2007-02-01 Sony Corp Mesh material and electronic apparatus
JP4822009B2 (en) * 2007-02-28 2011-11-24 日本電気株式会社 Electronic device heat dissipation structure and electronic device
TWI488574B (en) 2011-07-18 2015-06-11 Au Optronics Corp Heat-dissipation structure and portable folding electronic apparatus therewith
JP6392694B2 (en) * 2015-03-26 2018-09-19 Necプラットフォームズ株式会社 Heat dissipation mechanism and electronic equipment
JP6469183B2 (en) * 2017-07-25 2019-02-13 レノボ・シンガポール・プライベート・リミテッド Electronics

Also Published As

Publication number Publication date
JP2004164667A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US6507490B2 (en) Heat pipe hinge structure for electronic device
JP3634825B2 (en) Electronics
JP4153569B2 (en) Electronic device having heat sink structure
US6026888A (en) Molded heat exchanger structure for portable computer
JP4256310B2 (en) Electronics
US6507488B1 (en) Formed hinges with heat pipes
US6189602B1 (en) Electronic device with improved heat dissipation
US20090103265A1 (en) Electronic device
JP2006147618A (en) Cooling device and heat sink
US20070070599A1 (en) Portable computer
JP2005079325A (en) Heat pipe, cooling device having heat pipe and electronic apparatus equipped with the cooling device
JP3977341B2 (en) Heat dissipation hinge structure for electronic devices
JP3644858B2 (en) Heat dissipation hinge structure for electronic devices
JP4176909B2 (en) Heat dissipation hinge structure for electronic devices
JP2000002493A (en) Cooling unit and cooling structure employing it
JPH09293985A (en) Electronic apparatus
JP2006332148A (en) Cooler
JP3035170B2 (en) Notebook PC cooling structure
JP2000035291A (en) Cooling unit and cooling structure
JPH11191024A (en) Small-sized electronic equipment
JP2002344179A (en) Electronic equipment
JP2005300092A (en) Storage device for refrigerator control board
JPH08286783A (en) Heat radiating structure for electronic parts in information unit
JP2002076223A (en) Cooler for electronic component
JP3313665B2 (en) Heat pipe installation status monitoring device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3977341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term