JP3975674B2 - Low alloy steel manufacturing method - Google Patents

Low alloy steel manufacturing method Download PDF

Info

Publication number
JP3975674B2
JP3975674B2 JP2000397907A JP2000397907A JP3975674B2 JP 3975674 B2 JP3975674 B2 JP 3975674B2 JP 2000397907 A JP2000397907 A JP 2000397907A JP 2000397907 A JP2000397907 A JP 2000397907A JP 3975674 B2 JP3975674 B2 JP 3975674B2
Authority
JP
Japan
Prior art keywords
less
steel
toughness
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000397907A
Other languages
Japanese (ja)
Other versions
JP2002194489A (en
Inventor
純 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000397907A priority Critical patent/JP3975674B2/en
Publication of JP2002194489A publication Critical patent/JP2002194489A/en
Application granted granted Critical
Publication of JP3975674B2 publication Critical patent/JP3975674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低合金鋼材製造方法に関する。詳述すれば、主として海洋構造物、橋梁、造船、大型産業機械等の溶接構造物用鋼材として好適な高強度の低合金鋼材の製造方法に関するものである。
【0002】
【従来の技術】
近年、経済性および安全性等の観点から、海洋構造物、橋梁、造船、大型産業機械等の溶接構造物における高強度化が益々進むと共に、これらの分野で使用される鋼材に対する要求特性は高まる一方である。これらの用途にもちいる鋼材は特性面から溶接性や高靭性が、また用途面から経済性が潜在的に求められている。
【0003】
一般に、鋼材の靭性を向上させるには、低C化が有効であり、低C化による強度低下を補うため、種々の合金元素添加やプロセス面からの高強度化が図られている。例えば、ASTMA710や米国特許第3692514 号ではCu析出強化を利用した鋼材が開示されている。これらの鋼材は溶接性に優れていることが特徴であるが、 充分な低温靭性を有しているとは言い難い。
【0004】
低温靭性を改善する技術としては、特許第2611565号あるいは同第2690578号公報に通常の熱間圧延後に冷間あるいは温間で圧下をえる方法が開示されている。しかしながらこれらの技術は、通常熱間圧延を行う厚板ミルにおいて冷間あるいは温間の圧下を加えるもので、設備負荷が大きく、広く一般に適用可能な技術とは言い難い。また、経済性の側面からは鋼材に不可避な腐食問題を最小化するため数年毎の塗装処理を要し、メンテナンスコスト上昇の主因となっている。
【0005】
【発明が解決しようとする課題】
本発明の一般的課題は、溶接性、靱性、さらに耐食性に優れた高強度鋼材、特に溶接構造物用鋼材を開発することである。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため種々検討を重ねた結果、添加元素を規制した特定範囲の鋼組成とすることにより、溶接性と安定した靭性を具備し、かつ塗装処理等を要さず実用上充分なレベルに腐食を抑制した経済性に優れた、高強度低合金鋼材を提供することが可能であることを知り、本発明を完成した。
【0007】
本発明の要旨とするところは以下の通りである。
(1) 質量%で、C:0.02〜0.1%、Mn:0.50〜2.5%、P:0.025%以下、S:0.01%以下、Cu:0.50%以上、 2.5 %未満、Ni:0.25〜2%、Mo:0.05〜0.30%、Nb:0.03%以下、Ti:0.05%以下、Se:0.005%以下、およびAl:0.1%以下を含有し、残部Feおよび不純物からなる鋼組成を有する鋼片を950〜1250℃の温度範囲に加熱し、熱間圧延を行った後、580℃以下の温度域まで冷却し、次いで450〜680℃に再加熱し、冷却することを特徴とする溶接構造物用低合金鋼材 ( ラインパイプ用鋼板を除く ) の製造法。
【0008】
(2)質量%で、C:0.02〜0.1%、Mn:0.50〜2.5%、P:0.025%以下、S:0.01%以下、Cu:0.50%以上、 2.5 %未満、Ni:0.25〜2%、Mo:0.05〜0.30%、Nb:0.03%以下、Ti:0.05%以下、Se:0.005%以下、およびAl:0.1%以下を含有し、残部Feおよび不純物からなる鋼組成を有する鋼片を950〜1250℃の温度範囲に加熱し、熱間圧延を行った後、1〜50℃/secの冷却速度で580℃以下の温度域まで冷却し、次いで450〜680℃に再加熱し、冷却することを特徴とする溶接構造物用低合金鋼材 ( ラインパイプ用鋼板を除く ) の製造法。
【0009】
(3)上記(1)または(2)において、前記鋼組成が、さらに質量%でCr:0.05〜0.5%、Ca:0.0005〜0.005%、REM:0.02%以下の1種または2種以上を含有することを特徴とする溶接構造物用低合金鋼材の製造法。
【0010】
【発明の実施の形態】
次に、本発明において鋼組成および製造条件を上述のように規定した理由について詳細に説明する。なお、本明細書においては特にことわりがない限り、「%」は「質量%」を意味するものとする。
【0011】
C:0.02〜0.1%
Cは、強度上昇に寄与する元素であるが、0.02%未満では強度を確保することは困難であり、一方、添加量が多いと溶接性および靭性を劣化させる。また、耐食性という面からはCr炭化物を形成した場合、それがカソードとして作用し耐候性を劣化させる。したがって、C含有量は0.02%以上0.1%以下と限定する。経済性や、より高い性能を求める意味から望ましいC含有量は0.03%以上0.08%以下である。
【0012】
Mn:0.50〜2.5%
Mnは、鋼の強度および靭性を確保するために必要な元素ではあるが、0.50%未満ではこのような効果は少なく、一方、2.5%を超えて多量に添加すると溶接性を劣化させる。また、多量に添加した場合、MnSを形成し腐食の起点となり、耐候性を劣化させる。したがって、Mn含有量は、0.50%〜2.5%に限定する。経済性や、より高い性能を求める意味から望ましいMn含有量は下限が0、60%、より望ましくは、0.9%であり、一方、上限は1.8%である。
【0013】
P:0.025%以下、S:0.01%以下
P、Sは、ともに鋼の凝固時に偏析を起こし易い元素であり、この偏析により、溶接部を脆化させて靭性を低下させる。このため、P、Sともに含有量を低減することが望ましいが、著しい低減には相応の処理コストを要する。また、Pは耐候性を向上させる元素でもあるが、前述の通り溶接性、靭性面でのマイナス要素が大きい。そこで、本発明では、P含有量を0.025%以下と限定する。耐候性面での効果を求め、溶接性を損なわない意味から望ましいP添加量は0.005%以上0.02%以下である。一方、Sは、A系介在物であるMnSとなって鋼中に析出し、圧延時に延伸されて靭性を低下させ、更には腐食の起点となり耐候性をも劣化させる。そこで、本発明では、S含有量は0.01%以下とする。
【0014】
Cu:0.50%以上2.5%未満
Cuは0.50%以上の添加により耐候性を向上させる効果を持つ。また、圧延冷却後の析出強化処理による強化作用を活用することにより、低C化を実現し、溶接性と低温靭性ひいては破壊靭性の向上をもたらす。析出強化を有効に得るためには下限を0.50%と限定する。また過度の添加は逆に靭性の低下をもたらすと共に、 鋼の熱間圧延中のCuクラックの発生やHAZの粒界割れを助長しするという悪影響が顕著になる。このため、上限を2. 5%未満と限定する。経済性や、より高い性能を求める意味から望ましいCu含有量は0.7%以上1.8%以下である。
【0015】
Ni:0.25%〜2%
Niは、Cuとほぼ同様に溶接性およびHAZ靭性に悪影響を及ぼすこともなく、母材の強度、靭性を向上させるが、2%超の添では構造用鋼材として極めて高価になるため経済性を失うため、添加量は2%以下と限定する。また、耐食性の面からNiを含有すると、X線的非晶質さびあるいはα-FeOOHは微細となり、鋼の溶解反応を抑制する作用を有すると共に、塩化物イオンの透過をある程度抑制する性質を発揮する。そのため、 一般にJlSG3114として知られる耐候性鋼では耐食性を確保できない高飛来塩分環境においても耐候性効果が得られる。しかし、多量添加した場合、6%程度でこの効果が飽和すると共に経済性を失うこととなる。また、いずれの場合においても添加量が0.2%未満では効果が小さい。更には、NiにはCu添加時のCuクラック抑制効果がある。この効果を発揮する面からのNi添加量は、Cu量の1/2以上が必要である。上述の効果を得ると共に優れた経済性を求める意味から望ましいNi含有量は0.25%〜2%である。より望ましくはNi含有量の上限は1.5%、下限は0.40%である。
【0016】
Mo:0.05%〜0.30
Moは強度を上昇させる元素である。更には酸素酸イオンの形でさびに吸着し、塩化物イオンの透過を抑制することで耐候性向上に効果があるが0.05%未満の添加量ではその効果が少なく、0.30%超の添加量では効果が飽和する。経済性と効果の両面を求める意味からもMo含有量は、0.05%〜0.30%として限定する
【0017】
Nb:0.03%以下
Nbは、析出硬化と細粒化による靭性向上に有効な元素であるが、0.03%を超えると溶接部の靭性が劣化する。そこで経済性やより高性能を求める意味からもNb添加量は、0.03%以下と限定する
【0018】
Ti:0.05%以下
Tiは、オーステナイト粒粗大化防止に有効な元素であるが、0.05%を超えると靭性が劣化する。そこでTi添加量は、0.05%以下と限定する。経済性や、より高い性能を求める意味から、望ましいTi含有量は0.03%以下である。特に、低温靱性の改善のためにTiはその効果を発揮することから、好ましくは0.007%以上含有する。
【0019】
Se:0.005%以下
Seは、添加により鋼の切肖リ 性を向上させるのに有効な元素であるが、硬くて脆い介在物を形成し破壊靭性の低下をもたらす、本発明の意図する鋼材では切削性向上を積極的に求める必要はなく、Seの意図的な添を行わないが、製鋼時に使用する鉱石類やスクラップから微量汚染され、通常の条件下でも0.007%程度は含有される場合がある。
【0020】
本発明の場合には、過剰量のSeの存在は破壊靭性の深刻な劣化をもたらすことから、その含有量を、0.005%以下と限定する。低温靱性についてのより高い性能を求める意味からSe含有量は少なければ少ないほど望ましい。
【0021】
Al:0.1%以下
Alは、脱酸およびオーステナイト粒粗大化防止に有効な元素であるが、脱酸効果に関してはSiやMnにより、また、オーステナイト粒粗大化防止効果に関してはNbやTiと云った微量元素添加で代替可能であり、多量添加では鋼中の清浄度を劣化させる懸念がある。よってAl含有量は、0.1%以下と限定する。経済性や、より高い性能を求める意味から望ましいAl含有量は0.06%以下である。
【0022】
その他の元素
本発明において、Cr、Ca、REMのうち1種又は2種を限定量含有させても良い。また、更には限定した元素以外で、鋼の製造において一般に添加される元素、例え V、B等については、本発明の効果を阻害しない範囲で添加されることは制限されない。換言すれば、経済的に許容可能な添加量であれば本発明の効果を助長こそすれ阻害しないためその添加量に制限を設けない。
【0023】
Cr、Ca、REMの添加量と限定理由は以下の通りである。
Cr :0.05%〜0.5%
Crは強度を上昇させる元素である。更には耐候性向上に効果があるが、0.05%未満の添加量ではその効果が少なく、0.5%超の添加量では、高飛来塩分環境における十分な耐候性が得られない。このため、Cr含有量は、0.05%〜0.5%に限定する。材料コストと得られる性能向上との両面を考慮した場合、望ましいCr含有量は0.1%〜0.3%である。
【0024】
Ca:0.0005%〜0.005%
Caは鋼中において酸化物または硫化物として存在し、さび粒子の微細析出、凝集を促進し、耐候性改善に寄与する。また、硫化物を形成する際は、S減少による結果としてMnS形成を抑制するので、MnSによる悪影響を排除することとなる。一方、過剰な添は過度の酸化物または硫化物の形成を通じ、靭性低下や鋼材の清浄度劣化を引き起こす。このため、Ca含有量は、0.0005%〜0.005%として限定する。
【0025】
REM:0.02%以下
REMは溶接性を向上させる効果を有し、必要に応じ添加できる。しかし、多量添加は鋼材の清浄度を劣化させるため、0.02%を上限とする。
【0026】
その他、本発明にあっては不可避不純物ならびに強度、Ceq 、Pcm 等を調整するために鋼に一般的に添加される元素を含有していてもよい。
(熱間圧延)本発明では、このようにして製造した鋼片を950〜1250℃の温度範囲に加熱して、熱間圧延を行う。加熱温度が950℃未満の場合はNbが充分にマトリックスに固溶しないため、続いて行われる熱間圧延においてオーステナイトの再結晶を抑制することができず、 組織の微細化が不充分となり、充分な靭性が得られない。一方、加熱温度が1250℃を超えると連続鋳造鋳片の熱時にオーステナイト結晶粒が粗大化し、板厚中心部だけでなく母材全体の靭性が低下する。そこで、本発明では、連続鋳造鋳片の加熱温度は950℃〜1250℃とする。好ましくは、上限温度は、1180℃であり、下限温度は1000℃である。その他の熱間圧延の条件は、通常の鋼材製造における条件でよいが、例えば、圧延終了温度は、700〜850℃の範囲とするのが好ましい。
【0027】
(冷却)
熱間圧延を終了した後に、 放冷又は必要に応じて1〜50℃/secの冷却速度で580℃以下の温度域まで冷却する。放冷は好ましくは空冷で行う。このときも冷却停止温度は580℃以下であればよく、その限りであれば特に制限されない。
【0028】
ここで言う「必要に応じて」とは、目標とする鋼材の板厚と低温靭性確保の両面から決定するのもであり、例えば、より低温での高靭性を必要とする鋼材又は厚肉鋼材であって放冷時の冷却速度が遅い場合は加速冷却を実施することが効果的であることを意味する。
【0029】
強制冷却の場合、圧延終了温度に応じた冷却開始温度が選択されるが、通常は圧延終了後直ちに冷却を開始する。しかし、場合によっては、さらに低温で冷却を開始することが望ましいことがあり、そのときの冷却開始温度への冷却条件は特に制限されない。
【0030】
この冷却における平均の冷却速度が1℃/sec未満であると、粗大な炭化物を伴うベイナイト組織等が生成し易いので、特に鋼板の中心部の充分な降伏強さを確保することができない。一方、冷却速度が50℃/secを超えると、鋼板の表層部近傍で焼きが入り易いために表層の靭性が低下することがある。そこで本発明では、580℃以下の温度域までの平均冷却速度を1℃/sec以上50℃/sec以下と限定する。好ましい下限は、5℃/secである。
【0031】
ここに、「冷却速度」は鋼材の平均冷却速度である。
この冷却における冷却停止温度が580℃を超えると、鋼板の中心部のみならず表層部においても、マルテンサイトあるいは下部ベイナイト等の生成が不充分になるので強度を確保することができない。そこで、本発明では、冷却停止温度は580℃以下とする。
【0032】
(熱処理)
放冷あるいは加速冷却した鋼を450〜680℃に再加熱した後、冷却処理を実施する。このときの冷却処理の条件は特に制限されない。この熱処理工程は、Cuの析出強化を効率的かつ安定的に発揮させるためであり、目的とする強度・低温靭性に応じ、450〜680℃の温度範囲で実施する。ここで、下限を450℃と限定するのは、これより低温では熱処理中にCuの析出が充分に完了せず、 その後で構造物等に加工される際の溶接熱によって継ぎ手近傍で母材の特性が著しく変化することが懸念されるからである。また上限を680℃と限定するのは、それを越えると過時効により充分な強度が確保できなくなるためである。
【0033】
なお、この熱処理工程での再加熱は、それに先立つ冷却工程での冷却停止温度よりもより高温への再加熱を意味するのである。また、冷却停止温度と再加熱温度が同じ場合にはその温度で保持するだけでよい。
【0034】
【実施例】
次に、実施例を参照しながら、本発明の作用効果をより具体的に説明する。
本実施例における目標性能は、YS≧550MPa、vTrs≦−60℃であるが、これは本発明がこの強度・靭性レベルに限定されることを示唆するものではなく、必要に応じた強度・靭性レベルは、鋼組成、製造条件の調整により適宜達成可能である。
【0035】
表1および表3に示す鋼組成・製造条件を有する鋼板を73種製造した。実施例では、「鋼材」が「鋼板」である場合を例にとるが、棒鋼材、条鋼材、鋼管材等他の形態であっても効果は変わらない。
【0036】
表1における、例No. 1〜51は本発明の実施例であり、表3における例No. 52〜73は比較例である。
結果は表2および表4に示す。同表において、「耐食性」は飛来塩分量0. 5mg/dm2/day相当の大気腐食環境にて1.5年間の水平曝露を実施し、比較材のJlSG3114 SMA570W鋼に対して板厚減少量が1/3以下であったものを良好であるとして○印にて示した。
【0037】
また、「表面性状」は目視及び浸透探傷法で製品として有害な表面疵がないものを○印で示した。
「内質」の評価はJlSG0801に準じ、感度を24dB上げて評価した。「溶接性」は、入熱0.7kJ/mmで溶接した場合で溶接熱影響部の最高硬さをビッカース硬さ試験により測定し、300以下であれば溶接性良好として○印で示した。
【0038】
いずれの場合も不良であるものは×印で示した。
表2の結果から明らかなように、本発明例(例No. 1〜51)は目標値以上のYSと良好な低温靭性を示し、耐食性、表面性状、内質および溶接性のいずれの評価でも良好であった。
【0039】
これに対し、表4に示す比較例(例No. 52〜73)は鋼組成または製造条件のいずれかが本発明の範囲を外れたため、YS又はvTrsの目標値を確保できない、または耐食性、表面性状、内質及び溶接性のいずれかで本発明が意図するレベルを越えることが出来なかった。
【0040】
【表1】

Figure 0003975674
【0041】
【表2】
Figure 0003975674
【0042】
【表3】
Figure 0003975674
【0043】
【表4】
Figure 0003975674
【0044】
【発明の効果】
本発明によれば、高強度とともに低温靱性が確保でき、しかもこれまでの圧延設備を使用することでその製造が可能となるなど、その実際上の効果は大きい。
【0045】
このように本発明の鋼材は、溶接性と安定した低温靭性を有し、且つ飛来塩分量が多い環境下においても充分な耐大気腐食性を発揮することから、溶接構造物におけるメンテナンスコストを大幅に減少することのできる優れた経済性を発揮でき工業上大変有用なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a low alloy steel. Specifically, the present invention relates to a method for producing a high-strength low-alloy steel material suitable as a steel material for welded structures such as offshore structures, bridges, shipbuilding, large industrial machines and the like.
[0002]
[Prior art]
In recent years, from the viewpoints of economy and safety, the strength of welded structures such as offshore structures, bridges, shipbuilding, large industrial machinery, etc. has been increasing, and the required characteristics for steel materials used in these fields have increased. On the other hand. Steel materials used for these applications are potentially required to have weldability and high toughness in terms of characteristics, and economically in terms of applications.
[0003]
Generally, in order to improve the toughness of a steel material, lowering C is effective, and in order to compensate for strength reduction due to lowering C, various alloy element additions and higher strength from the process side are attempted. For example, ASTM A710 and U.S. Pat. No. 3692514 disclose steel materials using Cu precipitation strengthening. These steel materials are characterized by excellent weldability, but it is difficult to say that they have sufficient low temperature toughness.
[0004]
As a technique for improving the low temperature toughness, pressurized El way pressure between cold or warm after normal hot-rolling in Japanese Patent No. 2611565 Patent or the second 2,690,578 is disclosed. However, these techniques apply cold or warm reduction in a thick plate mill that normally performs hot rolling, and have a large equipment load, and are not widely applicable techniques. In addition, from the economical aspect, it requires painting treatment every several years in order to minimize the inevitable corrosion problem in steel materials, which is a main cause of an increase in maintenance costs.
[0005]
[Problems to be solved by the invention]
A general problem of the present invention is to develop a high-strength steel material excellent in weldability, toughness, and corrosion resistance, particularly a steel material for welded structures.
[0006]
[Means for Solving the Problems]
As a result of various studies to solve the above-mentioned problems, the present inventors have achieved a weldability and stable toughness by requiring a steel composition in a specific range in which additive elements are regulated, and require a coating treatment or the like. The present invention was completed by knowing that it was possible to provide a high-strength, low-alloy steel material that was excellent in economy and suppressed corrosion to a practically sufficient level.
[0007]
The gist of the present invention is as follows.
(1) In mass%, C: 0.02 to 0.1%, Mn: 0.50 to 2.5%, P: 0.025% or less, S: 0.01% or less, Cu: 0.50% or more, Less than 2.5 %, Ni: 0.25 to 2%, Mo: 0.05 to 0.30%, Nb: 0.03% or less, Ti: 0.05% or less, Se: 0.005% or less, and Al : A steel slab containing 0.1% or less and having a steel composition composed of the remaining Fe and impurities is heated to a temperature range of 950 to 1250 ° C., hot-rolled, and then cooled to a temperature range of 580 ° C. or less. And then reheating to 450 to 680 ° C. and cooling, a method for producing a low alloy steel material for welded structures ( excluding steel plates for line pipes ) .
[0008]
(2) By mass%, C: 0.02 to 0.1%, Mn: 0.50 to 2.5%, P: 0.025% or less, S: 0.01% or less, Cu: 0.50 % : Less than 2.5 %, Ni: 0.25 to 2%, Mo: 0.05 to 0.30%, Nb: 0.03% or less, Ti: 0.05% or less, Se: 0.005% or less , And Al: A steel slab containing 0.1% or less and having a steel composition consisting of the remainder Fe and impurities is heated to a temperature range of 950 to 1250 ° C. and hot-rolled, then 1 to 50 ° C. / A method for producing a low alloy steel material for welded structures ( excluding steel plates for line pipes ) , characterized by cooling to a temperature range of 580 ° C. or lower at a cooling rate of sec, and then reheating to 450 to 680 ° C. .
[0009]
(3) In the above (1) or (2), the steel composition further comprises Cr: 0.05 to 0.5%, Ca: 0.0005 to 0.005%, REM: 0.02% in mass%. The manufacturing method of the low alloy steel material for welded structures characterized by containing the following 1 type, or 2 or more types.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the steel composition and production conditions are defined as described above in the present invention will be described in detail. In this specification, “%” means “mass%” unless otherwise specified.
[0011]
C: 0.02-0.1%
C is an element that contributes to an increase in strength, but if it is less than 0.02%, it is difficult to ensure the strength. On the other hand, if the addition amount is large, weldability and toughness are deteriorated. From the aspect of corrosion resistance, when Cr carbide is formed, it acts as a cathode and deteriorates weather resistance. Therefore, the C content is limited to 0.02% or more and 0.1% or less. Desirable C content is 0.03% or more and 0.08% or less from the viewpoint of economical efficiency and higher performance.
[0012]
Mn: 0.50 to 2.5%
Mn is an element necessary for ensuring the strength and toughness of steel, but if it is less than 0.50%, such an effect is small, while if it is added in excess of 2.5%, the weldability is deteriorated. Let Moreover, when added in a large amount, MnS is formed and becomes a starting point of corrosion, and weather resistance is deteriorated. Therefore, the Mn content is limited to 0.50% to 2.5%. The lower limit of the Mn content is preferably 0, 60%, more preferably 0.9%, while the upper limit is 1.8%.
[0013]
P: 0.025% or less, S: 0.01% or less Both P and S are elements that easily cause segregation during solidification of the steel, and the segregation causes the weld to become brittle and reduce toughness. For this reason, it is desirable to reduce the content of both P and S, but a significant reduction requires a corresponding processing cost. Moreover, although P is an element which improves a weather resistance, as above-mentioned, the negative factor in terms of weldability and toughness is large. Therefore, in the present invention, the P content is limited to 0.025% or less. Desirable P addition amount is 0.005% or more and 0.02% or less from the viewpoint of obtaining the effect in terms of weather resistance and not impairing the weldability. On the other hand, S becomes MnS, which is an A-based inclusion, and precipitates in the steel, and is stretched during rolling to lower toughness, and further becomes a starting point of corrosion and deteriorates weather resistance. Therefore, in the present invention, the S content is 0.01% or less.
[0014]
Cu: 0.50% or more and less than 2.5% Cu has an effect of improving the weather resistance by addition of 0.50% or more. Further, by utilizing the strengthening effect by precipitation strengthening after rolling and cooling, low C is realized, and weldability and low-temperature toughness, as well as fracture toughness are improved. In order to effectively obtain precipitation strengthening, the lower limit is limited to 0.50%. On the contrary, excessive addition causes a decrease in toughness, and the adverse effect of promoting the generation of Cu cracks during hot rolling of steel and the intergranular cracking of HAZ becomes remarkable. For this reason, the upper limit is limited to less than 2.5%. The desirable Cu content is 0.7% or more and 1.8% or less in view of economical efficiency and higher performance.
[0015]
Ni: 0.25% to 2%
Ni, without adversely affecting the substantially similarly to weldability and HAZ toughness and Cu, the strength of the base material, improves the toughness, very expensive made for economy as two percent of the added pressure in the structural steel Therefore, the addition amount is limited to 2% or less. In addition, when Ni is contained from the aspect of corrosion resistance, the X-ray amorphous rust or α-FeOOH becomes fine, and has the effect of suppressing the dissolution reaction of steel and also suppressing the permeation of chloride ions to some extent. To do. Therefore, a weathering effect can be obtained even in a high-flying salinity environment where corrosion resistance cannot be ensured with the weathering steel generally known as JlSG3114. However, when added in a large amount, this effect is saturated at about 6% and the economy is lost. In either case, the effect is small when the addition amount is less than 0.2%. Furthermore, Ni has a Cu crack suppressing effect when Cu is added. The amount of Ni added from the surface exhibiting this effect needs to be 1/2 or more of the amount of Cu. Desirable Ni content is 0.25% to 2% from the viewpoint of obtaining the above-described effects and obtaining excellent economic efficiency. More desirably, the upper limit of the Ni content is 1.5%, and the lower limit is 0.40%.
[0016]
Mo: 0.05% to 0.30 %
Mo is an element that increases the strength. Furthermore, it adsorbs to rust in the form of oxyacid ions, and is effective in improving weather resistance by suppressing the permeation of chloride ions, but the effect is small at an addition amount of less than 0.05%, exceeding 0.30 % The effect is saturated with the added amount. The Mo content is limited to 0.05% to 0.30 % from the viewpoint of obtaining both economic efficiency and effect .
[0017]
Nb: 0.03% or less Nb is an element effective for improving toughness by precipitation hardening and fine graining, but if it exceeds 0.03 %, the toughness of the welded portion deteriorates. Therefore, the amount of Nb addition is limited to 0.03 % or less from the viewpoint of economical efficiency and higher performance .
[0018]
Ti: 0.05% or less Ti is an element effective for preventing austenite grain coarsening, but if it exceeds 0.05%, toughness deteriorates. Therefore, the Ti addition amount is limited to 0.05% or less. Desirable Ti content is 0.03% or less from the viewpoint of economical efficiency and higher performance. In particular, Ti is preferably contained in an amount of 0.007% or more for improving the low-temperature toughness because it exhibits its effect.
[0019]
Se: 0.005% or less Se is an element effective for improving the cutting property of steel by addition, but it is intended by the present invention to form hard and brittle inclusions and reduce fracture toughness. it is not necessary to seek actively machinability improvement of steel, but does not perform an intentional added pressure of Se, the trace contaminants from ores and scrap to be used for steel making, about 0.007% or even at normal conditions May be included.
[0020]
In the case of the present invention, the presence of an excessive amount of Se causes serious deterioration of fracture toughness, so the content is limited to 0.005% or less. The smaller the Se content, the more desirable it is to obtain higher performance for low temperature toughness.
[0021]
Al: 0.1% or less Al is an element effective for deoxidation and prevention of austenite grain coarsening, but with respect to the deoxidation effect, Si and Mn, and with respect to the austenite grain coarsening prevention effect, Nb and Ti. It can be replaced by the addition of such trace elements, and there is a concern that the cleanliness in the steel is deteriorated when a large amount is added. Therefore, the Al content is limited to 0.1% or less. Desirable Al content is 0.06% or less from the viewpoint of economical efficiency and higher performance.
[0022]
Other Elements In the present invention, a limited amount of one or two of Cr, Ca and REM may be contained. Further, other than the elements further is limited, elements added generally in the production of steel, the V, B, etc. For example, the is not limited to be added in a range not impairing the effect of the present invention. In other words, if the addition amount is economically acceptable, the effect of the present invention is promoted and is not hindered, so that the addition amount is not limited.
[0023]
The addition amount of Cr, Ca, and REM and the reasons for limitation are as follows.
Cr: 0.05% to 0.5%
Cr is an element that increases the strength. Furthermore, although it is effective in improving the weather resistance, the effect is small when the addition amount is less than 0.05%, and when the addition amount exceeds 0.5%, sufficient weather resistance in a high flying salinity environment cannot be obtained. For this reason, the Cr content is limited to 0.05% to 0.5%. In consideration of both the material cost and the obtained performance improvement, the desirable Cr content is 0.1% to 0.3%.
[0024]
Ca: 0.0005% to 0.005%
Ca exists as an oxide or sulfide in steel, promotes fine precipitation and aggregation of rust particles, and contributes to improved weather resistance. Further, when forming sulfides, the formation of MnS is suppressed as a result of the decrease in S, so that adverse effects due to MnS are eliminated. On the other hand, excessive hydrogenation pressure is through the formation of excessive oxide or sulfide, causing cleanliness deterioration of toughness decreases and steel. For this reason, Ca content is limited as 0.0005%-0.005%.
[0025]
REM: 0.02% or less REM has the effect of improving weldability and can be added as necessary. However, the addition of a large amount degrades the cleanliness of the steel material, so 0.02% is made the upper limit.
[0026]
In addition, the present invention may contain inevitable impurities and elements that are generally added to steel to adjust strength, Ceq, Pcm, and the like.
(Hot Rolling) In the present invention, the steel slab thus manufactured is heated to a temperature range of 950 to 1250 ° C. to perform hot rolling. When the heating temperature is less than 950 ° C., Nb is not sufficiently dissolved in the matrix, so that recrystallization of austenite cannot be suppressed in the subsequent hot rolling, resulting in insufficient refinement of the structure. Toughness cannot be obtained. On the other hand, the heating temperature is coarsened austenite grains during pressure heat continuous casting slab exceeds 1250 ° C., the toughness of the entire base material not only the center of plate thickness is reduced. Therefore, in the present invention, the heating temperature of the continuously cast slab is 950 ° C to 1250 ° C. Preferably, the upper limit temperature is 1180 ° C and the lower limit temperature is 1000 ° C. Other hot rolling conditions may be those in normal steel production, but for example, the rolling end temperature is preferably in the range of 700 to 850 ° C.
[0027]
(cooling)
After finishing the hot rolling, it is allowed to cool or cooled to a temperature range of 580 ° C. or lower at a cooling rate of 1 to 50 ° C./sec as necessary. The cooling is preferably performed by air cooling. Also at this time, the cooling stop temperature may be 580 ° C. or lower, and is not particularly limited as long as it is limited.
[0028]
The term “as needed” as used herein is determined in terms of both the target steel thickness and low temperature toughness securing, for example, steel or thick steel that requires high toughness at lower temperatures. If the cooling rate during cooling is slow, it means that it is effective to perform accelerated cooling.
[0029]
In the case of forced cooling, a cooling start temperature corresponding to the rolling end temperature is selected, but usually cooling starts immediately after the end of rolling. However, in some cases, it may be desirable to start cooling at a lower temperature, and the cooling condition to the cooling start temperature at that time is not particularly limited.
[0030]
If the average cooling rate in this cooling is less than 1 ° C./sec, a bainite structure or the like with coarse carbides is likely to be generated, so that it is not possible to ensure a sufficient yield strength particularly at the center of the steel sheet. On the other hand, when the cooling rate exceeds 50 ° C./sec, the toughness of the surface layer may be lowered because baking is likely to occur near the surface layer portion of the steel sheet. Therefore, in the present invention, the average cooling rate up to a temperature range of 580 ° C. or less is limited to 1 ° C./sec or more and 50 ° C./sec or less. A preferred lower limit is 5 ° C./sec.
[0031]
Here, the “cooling rate” is the average cooling rate of the steel material.
If the cooling stop temperature in this cooling exceeds 580 ° C., the strength cannot be ensured because the formation of martensite or lower bainite becomes insufficient not only in the central part of the steel sheet but also in the surface layer part. Therefore, in the present invention, the cooling stop temperature is set to 580 ° C. or lower.
[0032]
(Heat treatment)
The steel that has been allowed to cool or accelerate is reheated to 450 to 680 ° C. and then cooled. The conditions for the cooling treatment at this time are not particularly limited. This heat treatment step is for efficiently and stably exerting precipitation strengthening of Cu, and is performed in a temperature range of 450 to 680 ° C. according to the intended strength and low temperature toughness. Here, the lower limit is limited to 450 ° C. The reason for this is that at a temperature lower than this, Cu precipitation is not sufficiently completed during the heat treatment, and then the base metal near the joint is welded by welding heat when processed into a structure or the like. This is because there is a concern that the characteristics may change significantly. Moreover, the upper limit is limited to 680 ° C., if it exceeds the upper limit, sufficient strength cannot be secured due to overaging.
[0033]
In addition, the reheating in this heat treatment process means reheating to a higher temperature than the cooling stop temperature in the cooling process preceding that. Further, when the cooling stop temperature and the reheating temperature are the same, it is only necessary to hold at that temperature.
[0034]
【Example】
Next, the effects of the present invention will be described more specifically with reference to examples.
The target performance in this example is YS ≧ 550 MPa, vTrs ≦ −60 ° C., but this does not suggest that the present invention is limited to this strength / toughness level, and strength / toughness as required. The level can be appropriately achieved by adjusting the steel composition and production conditions.
[0035]
73 types of steel plates having the steel compositions and production conditions shown in Tables 1 and 3 were produced. In the embodiment, the case where the “steel material” is a “steel plate” is taken as an example. However, the effect is not changed even in other forms such as a bar steel material, a steel bar material, and a steel pipe material.
[0036]
Example Nos. 1 to 51 in Table 1 are examples of the present invention, and Example Nos. 52 to 73 in Table 3 are comparative examples.
The results are shown in Table 2 and Table 4. In the table, “corrosion resistance” is the amount of reduction in plate thickness compared to JlSG3114 SMA570W steel, which is a comparative material, after horizontal exposure for 1.5 years in an atmospheric corrosion environment equivalent to an incoming salt content of 0.5 mg / dm 2 / day. Is indicated by ○ mark as good.
[0037]
In addition, “surface properties” are indicated by ◯ marks when there is no harmful surface flaw as a product by visual inspection and penetrant flaw detection.
Evaluation of the "inner quality" is according to the JlSG0801, sensitivity was evaluated on the 24d B Gaité. “Weldability” was measured by the Vickers hardness test when welding was performed at a heat input of 0.7 kJ / mm by the Vickers hardness test.
[0038]
In either case, the defective ones are indicated by x.
As is apparent from the results in Table 2, the present invention examples (Example Nos. 1 to 51) show YS exceeding the target value and good low temperature toughness, and in any evaluation of corrosion resistance, surface properties, internal properties and weldability. It was good.
[0039]
On the other hand, the comparative examples (Example Nos. 52 to 73) shown in Table 4 cannot secure the target value of YS or vTrs because either the steel composition or the manufacturing conditions are out of the scope of the present invention, or the corrosion resistance, the surface The level intended by the present invention could not be exceeded in any of properties, internal properties and weldability.
[0040]
[Table 1]
Figure 0003975674
[0041]
[Table 2]
Figure 0003975674
[0042]
[Table 3]
Figure 0003975674
[0043]
[Table 4]
Figure 0003975674
[0044]
【The invention's effect】
According to the present invention, the practical effects are great, such as high strength and low temperature toughness can be secured, and the production can be achieved by using the conventional rolling equipment.
[0045]
As described above, the steel material of the present invention has weldability and stable low temperature toughness and exhibits sufficient atmospheric corrosion resistance even in an environment with a large amount of incoming salt, greatly increasing the maintenance cost of the welded structure. It is very useful industrially because it can exhibit excellent economic efficiency that can be reduced significantly.

Claims (3)

質量%で、C:0.02〜0.1%、Mn:0.50〜2.5%、P:0.025%以下、S:0.01%以下、Cu:0.50%以上、2.5 %未満、Ni:0.25〜2%、Mo:0.05〜0.30%、Nb:0.03%以下、Ti:0.05%以下、Se:0.005%以下、およびAl:0.1%以下を含有し、残部Feおよび不純物からなる鋼組成を有する鋼片を950〜1250℃の温度範囲に加熱し、熱間圧延を行った後、580℃以下の温度域まで冷却し、次いで450〜680℃に再加熱し、冷却することを特徴とする溶接構造物用低合金鋼材( ラインパイプ用鋼板を除く )の製造法。In mass%, C: 0.02 to 0.1%, Mn: 0.50 to 2.5%, P: 0.025% or less, S: 0.01% or less, Cu: 0.50% or more, Less than 2.5%, Ni: 0.25 to 2%, Mo: 0.05 to 0.30%, Nb: 0.03% or less, Ti: 0.05% or less, Se: 0.005% or less, and Al : A steel slab containing 0.1% or less and having a steel composition composed of the remaining Fe and impurities is heated to a temperature range of 950 to 1250 ° C., hot-rolled, and then cooled to a temperature range of 580 ° C. or less. And then reheating to 450 to 680 ° C. and cooling, a method for producing a low alloy steel material for welded structures ( excluding steel plates for line pipes ) . 質量%で、C:0.02〜0.1%、Mn:0.50〜2.5%、P:0.025%以下、S:0.01%以下、Cu:0.50%以上、2.5 %未満、Ni:0.25〜2%、Mo:0.05〜0.30%、Nb:0.03%以下、Ti:0.05%以下、Se:0.005%以下、およびAl:0.1%以下を含有し、残部Feおよび不純物からなる鋼組成を有する鋼片を950〜1250℃の温度範囲に加熱し、熱間圧延を行った後、1〜50℃/secの冷却速度で580℃以下の温度域まで冷却し、次いで450〜680℃に再加熱し、冷却することを特徴とする溶接構造物用低合金鋼材( ラインパイプ用鋼板を除く )の製造法。In mass%, C: 0.02 to 0.1%, Mn: 0.50 to 2.5%, P: 0.025% or less, S: 0.01% or less, Cu: 0.50% or more, Less than 2.5%, Ni: 0.25 to 2%, Mo: 0.05 to 0.30%, Nb: 0.03% or less, Ti: 0.05% or less, Se: 0.005% or less, and Al : A steel slab containing 0.1% or less and having a steel composition composed of the balance Fe and impurities is heated to a temperature range of 950 to 1250 ° C., hot-rolled, and then cooled at 1 to 50 ° C./sec. A method for producing a low alloy steel material for a welded structure ( excluding a steel plate for a line pipe ) , characterized by cooling at a speed to a temperature range of 580 ° C. or lower, then reheating to 450 to 680 ° C. and cooling. 請求項1または2において、前記鋼組成が、さらに質量%でCr:0.05〜0.5%、Ca:0.0005〜0.005%、REM:0.02%以下の1種または2種以上を含有することを特徴とする溶接構造物用低合金鋼材の製造法。 3. The steel composition according to claim 1, wherein the steel composition further includes, in mass%, Cr: 0.05 to 0.5%, Ca: 0.0005 to 0.005%, REM: 0.02% or less. A method for producing a low-alloy steel material for welded structures, comprising at least a seed.
JP2000397907A 2000-12-27 2000-12-27 Low alloy steel manufacturing method Expired - Fee Related JP3975674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397907A JP3975674B2 (en) 2000-12-27 2000-12-27 Low alloy steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397907A JP3975674B2 (en) 2000-12-27 2000-12-27 Low alloy steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2002194489A JP2002194489A (en) 2002-07-10
JP3975674B2 true JP3975674B2 (en) 2007-09-12

Family

ID=18862971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397907A Expired - Fee Related JP3975674B2 (en) 2000-12-27 2000-12-27 Low alloy steel manufacturing method

Country Status (1)

Country Link
JP (1) JP3975674B2 (en)

Also Published As

Publication number Publication date
JP2002194489A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
US10358688B2 (en) Steel plate and method of producing same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5151693B2 (en) Manufacturing method of high-strength steel
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP5937538B2 (en) High strength steel plate excellent in low temperature toughness, elongation and weldability, and method for producing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JP2004124113A (en) Non-water-cooled thin low yield ratio high tensile steel, and production method therefor
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP3698082B2 (en) Wear resistant steel
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP3526722B2 (en) Ultra high strength steel pipe with excellent low temperature toughness
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH0615686B2 (en) Manufacturing method of abrasion resistant structural steel
JP3975674B2 (en) Low alloy steel manufacturing method
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP3736209B2 (en) High tensile steel with excellent weld toughness and manufacturing method thereof
KR101467030B1 (en) Method for manufacturing high strength steel plate
JP3548461B2 (en) Structural steel excellent in corrosion resistance and corrosion fatigue resistance and method for producing the same
JP7298777B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP3589156B2 (en) High strength steel with excellent fracture toughness
KR102142774B1 (en) High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3975674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees