JP3975362B2 - Catalytic activated carbon - Google Patents

Catalytic activated carbon Download PDF

Info

Publication number
JP3975362B2
JP3975362B2 JP2004068726A JP2004068726A JP3975362B2 JP 3975362 B2 JP3975362 B2 JP 3975362B2 JP 2004068726 A JP2004068726 A JP 2004068726A JP 2004068726 A JP2004068726 A JP 2004068726A JP 3975362 B2 JP3975362 B2 JP 3975362B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
activated carbon
decomposition
acrylonitrile copolymer
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004068726A
Other languages
Japanese (ja)
Other versions
JP2005254129A (en
Inventor
和城 中川
優治 橘
一誠 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COOPERATIVE ASSOCIATION LATEST
Original Assignee
COOPERATIVE ASSOCIATION LATEST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COOPERATIVE ASSOCIATION LATEST filed Critical COOPERATIVE ASSOCIATION LATEST
Priority to JP2004068726A priority Critical patent/JP3975362B2/en
Publication of JP2005254129A publication Critical patent/JP2005254129A/en
Application granted granted Critical
Publication of JP3975362B2 publication Critical patent/JP3975362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、殺菌洗浄剤、漂白洗浄剤等に使用される過酸化水素を水と酸素に
分解する触媒作用を有する活性炭に関するものであり、このような用途に使用
された産業廃液に残留する過酸化水素を分解する触媒作用を有する活性炭に関
する。
The present invention relates to activated carbon having a catalytic action for decomposing hydrogen peroxide used for sterilizing detergents, bleaching detergents, etc. into water and oxygen, and the residual waste in industrial waste liquids used in such applications. The present invention relates to activated carbon having a catalytic action for decomposing hydrogen oxide.

過酸化水素は食品、繊維等の殺菌漂白洗浄やプリント基板等電子材料の洗浄
に、また近年では染髪の前処理の頭髪脱色にと多岐多様に使用されている。こ
れらの使用後に過酸化水素が残留した廃液をそのまま河川に放流することは水
中の生物に悪影響を及ぼし、生態系破壊の原因となる。過酸化水素が残留する
廃液をタンクローリー等で運搬する場合、車の揺れにより生じる摩擦で過酸化
水素が分解し、発生した酸素がタンクの内圧を上昇させ爆発の危険性が生じる。
また、廃液処理層に導入すると緩やかに分解が起こり、その時に発生する酸素
の気泡が沈澱したスラッジを再び水中に拡散させ、廃液処理の効率を低下させ
る。従って廃液に残留する過酸化水素を分解する必要性が生じる。
Hydrogen peroxide is widely used for sterilization bleaching washing of foods, fibers, etc., washing electronic materials such as printed circuit boards, and in recent years for hair decolorization of hair pretreatment. Discharging the waste liquid in which hydrogen peroxide remains after use to the river as it is adversely affects the organisms in the water, causing the destruction of the ecosystem. When transporting waste liquid in which hydrogen peroxide remains in a tank lorry or the like, hydrogen peroxide is decomposed by friction generated by the shaking of the vehicle, and the generated oxygen increases the internal pressure of the tank, causing an explosion risk.
In addition, when it is introduced into the waste liquid treatment layer, it slowly decomposes, and sludge in which oxygen bubbles generated at that time are precipitated is diffused again into the water, thereby reducing the efficiency of waste liquid treatment. Therefore, it becomes necessary to decompose hydrogen peroxide remaining in the waste liquid.

従来は、ヤシ殻などの活性炭や二酸化マンガン、或いはカタラーゼ等の酵素
で分解している。しかしながら活性炭を用いる場合、分解能力が低く、長時間
を必要とする欠点がある。二酸化マンガンを用いる場合、マンガンが液中に溶
出し、環境に悪影響を与える。また、カタラーゼ等の酵素では過酸化水素を分
解できるpHが主に中性域に限定され、幅広い使用が困難となる。
Conventionally, it is decomposed with activated carbon such as coconut shell, manganese dioxide, or an enzyme such as catalase. However, when activated carbon is used, there is a disadvantage that the decomposition ability is low and a long time is required. When manganese dioxide is used, manganese elutes in the liquid and adversely affects the environment. In addition, with enzymes such as catalase, pH capable of decomposing hydrogen peroxide is mainly limited to the neutral range, making it difficult to use in a wide range.

特開平5-811の請求項9では、ポリアクリロニトリル繊維状活性炭を還元性
ガスの雰囲気下で400〜1100℃に加熱して過酸化水素を分解する活性炭素材料
を得ている。
According to claim 9 of JP-A-5-811, an activated carbon material capable of decomposing hydrogen peroxide is obtained by heating polyacrylonitrile fibrous activated carbon to 400 to 1100 ° C. in a reducing gas atmosphere.

特開平7-232072ではアルミナ等の多孔質粒状担体にイリジウムを100〜300
μm厚の薄膜を形成させて焼成し還元処理後、過酸化水素を分解する触媒を得
ている。
In JP-A-7-232072, 100 to 300 iridium is applied to a porous granular carrier such as alumina.
A catalyst for decomposing hydrogen peroxide is obtained after forming a thin film with a thickness of μm, firing and reducing treatment.

特開平7-024315では、アクリロニトリル化合物やアクリロニトリル混合物
を炭化賦活して触媒活性炭を得ている。その実施例ではアクリロニトリル化合
物又は混合物としてアクリロニトリル含有率が85%又は95%のアクリル繊維
を0.5mmに切断し、ピッチ等の粘結剤と混合造粒したのち炭化賦活して過酸化
水素分解触媒活性炭を得ている。
In JP-A-7-024315, catalytic activated carbon is obtained by carbonization activation of an acrylonitrile compound or an acrylonitrile mixture. In this example, an acrylic fiber having an acrylonitrile content of 85% or 95% as an acrylonitrile compound or a mixture is cut into 0.5 mm, mixed and granulated with a binder such as pitch, and then activated by carbonization to activate hydrogen peroxide decomposition catalytic activated carbon. Have gained.

特開2003-266081では、銀、白金、パラジウム、銅及び鉄の少なくとも1種
の金属の化合物と活性炭前駆体を混練分散して得られた混合物を不融化及び/
又は炭化後、賦活処理をして金属成分を0.01重量%以上含有する過酸化水素分
解用活性炭を得ている。
In JP 2003-266081, a mixture obtained by kneading and dispersing at least one metal compound of silver, platinum, palladium, copper and iron and an activated carbon precursor is infusible and / or
Alternatively, after carbonization, activation treatment is performed to obtain activated carbon for hydrogen peroxide decomposition containing 0.01% by weight or more of a metal component.

特開平5-811号公報JP-A-5-811 特開平7-232072号公報Japanese Unexamined Patent Publication No. 7-232072 特開平7-024315号公報JP 7-024315 A 特開2003-266081号公報Japanese Patent Laid-Open No. 2003-266081

しかし、特開平5-811では還元性ガス中でアクリロニトリル炭素繊維を加熱
しており、その雰囲気形成に多量の不活性ガスとそれに伴う経費が必要となる。
However, in Japanese Patent Laid-Open No. 5-811, acrylonitrile carbon fiber is heated in a reducing gas, and a large amount of inert gas and associated expenses are required to form the atmosphere.

特開平7-232072ではアルミナ等の多孔質粒状担体に薄膜として形成したイ
リジウムが過酸化水素分解の主体であり、炭化物ではない。又、高濃度の過酸
化水素含有廃液を分解する場合、激しく発生する酸素気泡によりイリジウム薄
膜が担体表面から剥落し、分解性能の低下につながり、処理液にイリジウムが
混入するおそれが生じる。
In JP-A-7-232072, iridium formed as a thin film on a porous granular carrier such as alumina is the main component of hydrogen peroxide decomposition and is not a carbide. Further, when decomposing a high-concentration hydrogen peroxide-containing waste liquid, the iridium thin film is peeled off from the surface of the carrier due to vigorously generated oxygen bubbles, leading to a decrease in decomposition performance, and iridium may be mixed into the treatment liquid.

特開平7-024315では、アクリロニトリル化合物や混合物を炭化賦活してい
るが、酸化雰囲気で燃焼するものではなく、実施例ではアクリル繊維を0.5mm
に切断して造粒後炭化賦活をしているが、切断する工程が必要となりコスト高
の原因となる。また、成形強度が非常に低い。
In JP-A-7-024315, acrylonitrile compounds and mixtures are activated by carbonization, but they are not combusted in an oxidizing atmosphere.
Although the carbonization is activated after granulation after cutting, it requires a cutting step, which causes high cost. Also, the molding strength is very low.

特開2003-266081では銀、白金等の金属が過酸化水素分解の主体であり炭化
物前駆体はそれらの担体にすぎない。また、特開平7-232072と同様に、高濃
度の過酸化水素含有廃水の処理時に金属類が剥落し、分解性能低下と金属類の
廃液への溶出が生じる可能性が大きい。
In Japanese Patent Laid-Open No. 2003-266081, metals such as silver and platinum are the main components of hydrogen peroxide decomposition, and carbide precursors are only their carriers. Similarly to Japanese Patent Laid-Open No. 7-232072, there is a high possibility that metals will fall off during the treatment of high concentration hydrogen peroxide-containing wastewater, resulting in degradation of degradation performance and elution of metals into waste liquid.

本発明は以上のような不満点を解決して、不活性ガスを使用することなく、
過酸化水素の分解主体が金属類ではなくアクリトニトリル共重合体由来の活性
炭とした過酸化水素分解触媒活性炭の提供を目的とする。
The present invention solves the above dissatisfaction points without using an inert gas,
An object of the present invention is to provide a hydrogen peroxide-decomposing catalytic activated carbon in which the main component of hydrogen peroxide decomposition is activated carbon derived from an acrylonitrile copolymer rather than metals.

本発明の過酸化水素分解触媒活性炭はアクリロニトリル共重合体を酸素濃度
が3%以上の酸化雰囲気で燃焼し(最も簡便には空気中で燃焼する)、ガラス状
のアクリロニトリル共重合体の溶融物を得、それをそのまま、或いは粉状にし
たのち、任意の割合で周知の粘結剤であるピッチやタール等と混合し、水を加
えて成形器に投入して粒状に成形後、700〜1200℃の温度で水蒸気賦活処理を
行って得られるものであり、過酸化水素含有液のpHが強酸性でも分解できる
ものである。アクリロニトリル共重合体としてはアクリルニトリルを50重量%
以上含有しているポリマーであればアクリル繊維、モダクリル繊維、ABS樹脂、
などを単独又は混合して用いることができる。
The hydrogen peroxide decomposition catalytic activated carbon of the present invention burns an acrylonitrile copolymer in an oxidizing atmosphere having an oxygen concentration of 3% or more (most simply burns in the air), and converts the glassy acrylonitrile copolymer melt. Obtain it, or after making it into powder form, mix it with pitch or tar, which is a well-known binder, in any proportion, add water to the molding machine and mold it into granules, 700-1200 It is obtained by performing a steam activation treatment at a temperature of ° C., and can be decomposed even when the pH of the hydrogen peroxide-containing liquid is strongly acidic. Acrylonitrile copolymer contains 50% by weight of acrylonitrile.
If the polymer contains more than acrylic fiber, modacrylic fiber, ABS resin,
Etc. can be used alone or in combination.

これらのアクリロニトリル共重合体を、適当な容器に投入し空気中で燃焼さ
せると、ガラス質の硬い不定形な溶融物が得られる。もちろん周知の炭化炉に
空気を導入して燃焼しても良い。この溶融物を周知の炭化炉、好ましくはロー
タリーキルンに投入し、700〜1200℃に昇温し、水蒸気などのガスを導入して
比表面積600m/g以上の活性炭にする。賦活ガスとしては水蒸気の他、二酸
化炭素、酸素などが使用できる。賦活度合の指標の一つである比表面積は600
/g以上、好ましくは750〜1000m/gに設定するのが良く、小さくても或
いは大きすぎても過酸化水素の分解性能は低下する。
When these acrylonitrile copolymers are put into a suitable container and burned in air, a vitreous hard amorphous melt is obtained. Of course, air may be introduced into a known carbonization furnace and burned. This melt is put into a known carbonization furnace, preferably a rotary kiln, heated to 700 to 1200 ° C., and a gas such as water vapor is introduced to obtain activated carbon having a specific surface area of 600 m 2 / g or more. As the activation gas, water vapor, carbon dioxide, oxygen and the like can be used. The specific surface area, which is one of the indicators of the degree of activation, is 600
m 2 / g or more, preferably better to set 750~1000m 2 / g, the decomposition performance of smaller even or too large hydrogen peroxide decreases.

また、空気中で燃焼して、或いは周知の炭化炉に空気を導入し燃焼して得ら
れるアクリロニトリル共重合体溶融物を粉状に粉砕後、周知の粘結剤であるタ
ール、ピッチ等と任意の割合に混合し、水を加えて成形器に投入して粒状に成
形した造粒物を炭化炉やロータリーキルンに投入後、700〜1200℃に昇温し、
水蒸気等でガス賦活を行い、粒状の過酸化水素分解触媒活性炭を得ることがで
きる。
In addition, after pulverizing the acrylonitrile copolymer melt obtained by burning in air or introducing air into a known carbonization furnace and combusting it, any known binder, such as tar, pitch, etc. After adding the water and adding to water into a molding machine and granulating the granulated product into a carbonization furnace and rotary kiln, the temperature is raised to 700-1200 ° C,
Gas activation can be performed with steam or the like to obtain granular hydrogen peroxide decomposition catalytic activated carbon.

アクリロニトリル共重合体溶融物と粘結剤の混合割合は任意で良いが、溶融
物が少ないと分解率は低く、また、粘結剤が少ないと造粒物の強度が得られな
いので、好ましくは溶融物が50〜80重量%に設定するのが良い。
The mixing ratio of the acrylonitrile copolymer melt and the binder may be arbitrary, but the decomposition rate is low when the melt is small, and the strength of the granulated product cannot be obtained when the binder is small. It is better to set the melt to 50-80% by weight.

粒状に成形する粘結剤はタール、ピッチ、糖蜜、リグニン、フェノール樹脂
などの熱硬化性樹脂を用いることができる。この粒状の過酸化水素分解触媒活
性炭を乾式又は湿式粉砕して粉状の分解触媒活性炭を作成することもできる。
分解速度は粒状よりも粉状が速い。
A thermosetting resin such as tar, pitch, molasses, lignin, and phenol resin can be used as the binder to be formed into granules. The granular hydrogen peroxide decomposition catalytic activated carbon can be dry or wet pulverized to produce a powdered decomposition catalytic activated carbon.
The decomposition rate is faster in powder form than granular form.

近年、電子部品のプリント基板の洗浄に硫酸などを混合した過酸化水素含有
液が多量に使用されている。また漂白殺菌剤としても塩素を含む次亜塩素酸ソ
ーダに代って使用されことが多くなり、過酸化水素含有産業廃液が増大し、そ
の分解処理の必要性が高くなっている。
本発明による過酸化水素分解触媒活性炭は、pHを問わずに分解することが
可能であり、金属類の溶出の恐れが少なく、安価な方法で製造が可能な分解触
媒活性炭を提供するものである。
In recent years, a large amount of hydrogen peroxide-containing liquid mixed with sulfuric acid or the like has been used for cleaning printed circuit boards of electronic components. In addition, bleaching disinfectants are often used in place of sodium hypochlorite containing chlorine, and hydrogen peroxide-containing industrial waste liquid is increasing, and the necessity for its decomposition treatment is increasing.
The hydrogen peroxide decomposing catalytic activated carbon according to the present invention provides a decomposing catalytic activated carbon that can be decomposed regardless of pH, has a low risk of elution of metals, and can be produced by an inexpensive method. .

(作用)
本発明においてはアクリロニトリル共重合体を酸化雰囲気中で燃焼して得ら
れるガラス状不定形溶融物が、過酸化水素分解触媒活性炭の主体としての作用
をなし、それを単独で或いは粘結剤と混合して成形したのちガス賦活して得ら
れる比表面積600m/g以上の活性炭が過酸化水素の分解触媒活性炭の作用を
なす。
(Function)
In the present invention, a glassy amorphous melt obtained by burning an acrylonitrile copolymer in an oxidizing atmosphere serves as the main component of the hydrogen peroxide decomposition catalytic activated carbon, and it is used alone or mixed with a binder. Then, the activated carbon having a specific surface area of 600 m 2 / g or more obtained by gas activation after being molded serves as a decomposition catalytic activated carbon of hydrogen peroxide.

数ミリのチップ状アクリロニトリル共重合体を片側が開口した円筒形の容器
に少量ずつ投入し、着火燃焼して、塊状のガラス状溶融物を得た(燃焼ガスは
排ガス燃焼装置に導入し、処理する)。この塊状溶融物をロータリーキルンに投
入し、950℃まで昇温後、水蒸気賦活を行い、比表面積が700m/gの過酸化
水素分解触媒活性炭を得た。
A few millimeters of chip-like acrylonitrile copolymer was put in a small amount into a cylindrical container opened on one side and ignited and burned to obtain a massive glassy melt (the combustion gas was introduced into the exhaust gas combustion device and treated) To do). The bulk melt was poured into a rotary kiln, after heated to 950 ° C., subjected to steam activation, specific surface area was obtained hydrogen peroxide decomposition catalyst activated carbon 700m 2 / g.

この分解触媒活性炭を0.75mm以下に粉砕して3000ppmの過酸化水素水1L
中に投入し、15分後に測定した過酸化水素分解率は55%であった。尚、分解
率は過マンガン酸カリウムを滴定して求めた。
(比較例1)
実施例1と同様の方法でヤシ殻活性炭(比表面積1010m/g)の過酸化水
素分解率を測定すると4%であった。
This decomposition catalyst activated carbon is pulverized to 0.75mm or less and 1ppm of 3000ppm hydrogen peroxide water
The hydrogen peroxide decomposition rate measured after 15 minutes was 55%. The decomposition rate was determined by titrating potassium permanganate.
(Comparative Example 1)
The hydrogen peroxide decomposition rate of coconut shell activated carbon (specific surface area 1010 m 2 / g) was measured in the same manner as in Example 1 to be 4%.

アクリル繊維を実施例1と同様に燃焼して、鱗片塊状溶融物を得た。それを
0.75mm以下に粉砕し、同粒度に粉砕したピッチと6:4に混合し、水を加えて
混練したのち、直径5mm・長さ10mmの円柱状に成形した。それをロータリー
キルンに投入して900℃に昇温後、水蒸気を投入して比表面積800m/gの粒
状の過酸化水素分解触媒活性炭を得た。これを20g採り3000ppmの過酸化水
素水1Lに投入したのち、90分後に測定した過酸化水素分解率は100%であっ
た。
同じく20gを採り、容量40mlのガラス製U字管に充填し、pH1.8、水温20℃
の2,200ppmの過酸化水素が残留するプリント基板マイクロエッチング廃液を
体積速度(SV)5hr−1で通液し、分解触媒活性炭と接触して流出する廃液の
過酸化水素分解率は初期100%、100時間後に95%、200時間後には86%、ま
た800時間後には40%であった。
The acrylic fiber was burned in the same manner as in Example 1 to obtain a scale-like melt. It
The mixture was pulverized to 0.75 mm or less, mixed with a pitch pulverized to the same particle size at 6: 4, kneaded with water, and formed into a cylindrical shape having a diameter of 5 mm and a length of 10 mm. This was put into a rotary kiln, heated to 900 ° C., and steam was added to obtain granular hydrogen peroxide decomposition catalytic activated carbon having a specific surface area of 800 m 2 / g. After 20 g of this was put into 1 L of 3000 ppm hydrogen peroxide solution, the hydrogen peroxide decomposition rate measured after 90 minutes was 100%.
Similarly, 20 g is taken and filled into a glass U-tube with a capacity of 40 ml, pH 1.8, water temperature 20 ° C.
Printed circuit board microetching waste liquid in which 2,200ppm of hydrogen peroxide remains is passed at a volume rate (SV) of 5 hr-1, and the hydrogen peroxide decomposition rate of the waste liquid flowing out in contact with the decomposition catalyst activated carbon is 100% initially. It was 95% after 100 hours, 86% after 200 hours, and 40% after 800 hours.

実施例2で得られた粒状の過酸化水素分解触媒活性炭を乾式粉砕して、平均
粒形5μmの微粉末状の過酸化水素分解触媒活性炭を得た。それを1g採り、
pH6.5 水温25℃の100,000ppmの過酸化水素が残留する水溶液1Lに投入し、
120分後の分解率を測定すると99%であった。
The granular hydrogen peroxide decomposition catalytic activated carbon obtained in Example 2 was dry-pulverized to obtain a fine hydrogen peroxide decomposition catalytic activated carbon having an average particle size of 5 μm. Take 1g of it,
Throw in 1 liter of aqueous solution with 100,000 ppm hydrogen peroxide at pH 6.5 and water temperature of 25 ° C.
The decomposition rate after 120 minutes was measured and found to be 99%.

Claims (2)

アクリロニトリル共重合体を酸素濃度3%以上の酸化雰囲気中で着火燃焼
して得られるアクリロニトリル共重合体の溶融物を、賦活処理することを特
徴とする比表面積が600m2/g以上の過酸化水素分解触媒活性炭の製造方
法。
Hydrogen peroxide with a specific surface area of 600 m 2 / g or more, characterized by activating the melt of acrylonitrile copolymer obtained by igniting and burning acrylonitrile copolymer in an oxidizing atmosphere with an oxygen concentration of 3% or more A method for producing cracked catalytic activated carbon.
アクリロニトリル共重合体を酸素濃度3%以上の酸化雰囲気中で着火燃焼して得られるアクリロニトリル共重合体の溶融物を粉状にしたのち、粘結剤と混合して粒状に成形後、賦活処理することを特徴とする比表面積が600m2/g以上の過酸化水素分解触媒活性炭の製造方法。 The melt of acrylonitrile copolymer obtained by igniting and burning acrylonitrile copolymer in an oxidizing atmosphere with an oxygen concentration of 3% or more is powdered, mixed with a binder, formed into granules, and then activated. A method for producing a hydrogen peroxide-decomposing catalytic activated carbon having a specific surface area of 600 m 2 / g or more.
JP2004068726A 2004-03-11 2004-03-11 Catalytic activated carbon Expired - Lifetime JP3975362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068726A JP3975362B2 (en) 2004-03-11 2004-03-11 Catalytic activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068726A JP3975362B2 (en) 2004-03-11 2004-03-11 Catalytic activated carbon

Publications (2)

Publication Number Publication Date
JP2005254129A JP2005254129A (en) 2005-09-22
JP3975362B2 true JP3975362B2 (en) 2007-09-12

Family

ID=35080389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068726A Expired - Lifetime JP3975362B2 (en) 2004-03-11 2004-03-11 Catalytic activated carbon

Country Status (1)

Country Link
JP (1) JP3975362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606485A (en) * 2019-08-12 2019-12-24 新疆同力和环材科技有限公司 Preparation method of hydrogen peroxide modified coal-based activated carbon

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055604A1 (en) * 2009-11-05 2011-05-12 日清紡ホールディングス株式会社 Carbon catalyst and use thereof
JP2021147625A (en) * 2020-03-16 2021-09-27 幹生 杉本 Method for closely contacting, solidifying and integrating metal and carbon, and metal ion elution body obtained by closely contacting, solidifying and integrating metal and carbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606485A (en) * 2019-08-12 2019-12-24 新疆同力和环材科技有限公司 Preparation method of hydrogen peroxide modified coal-based activated carbon

Also Published As

Publication number Publication date
JP2005254129A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CN102267695B (en) Method for preparing super activated charcoal from oily sludge
Ahmad et al. Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood
KR920009114B1 (en) Process of effluent treatment
CN101774674B (en) Method for processing refractory organic wastewater by persulfate
JP2023182576A (en) Chemical sorbent oxidation method and sorbents made therefrom
WO2018116842A1 (en) Porous carbon material, method for producing same and use of same
CN110078154B (en) Removal of chlorine and/or chloramines from aqueous solutions
JP2573641B2 (en) Decomposition method of oxidizer in effluent stream
JPH02173091A (en) Manufacture of fuel having high calorific value
JP3975362B2 (en) Catalytic activated carbon
JP2012091167A (en) Method for treating water containing nutrient salts and oxidizing substance
JP2000313610A (en) Active carbon and water purifier using the same
CN105102377A (en) Removal of chloramine and mercury from aqueous solutions
Bai et al. Efficient degradation of phenol with high salinity wastewater by catalytic persulfate activation using chitosan biochar
JP6762459B1 (en) Porous carbon material and its manufacturing method and application
JP2007229546A (en) Oxidation catalyst and method and apparatus for treating exhaust gas
PULIDO-NOVICIO et al. < Original> Removal of Mercury from Aqueous Solutions of Mercuric Chloride Using Wood Powder Carbonized at High Temperature
Sampranpiboon et al. Kinetic models on chromium (VI) adsorption onto carbonized oil palm kernel with potassium hydroxide activation
Aurelien et al. Adsorption of 2, 4-dinitrophenol on activated carbon prepared from cotton cakes: Non-linear Isotherm Modeling
KR20040103546A (en) Manufacturing Method of Adsorbent to Remove Volatile Organic Compounds
JP3431416B2 (en) Porous surface amorphous porous ceramics and method for producing the same
JP2003266081A (en) Activated carbon for decomposing hydrogen peroxide and treatment method for hydrogen peroxide-containing wastewater
KR100328092B1 (en) A preparation method of decomposition catalyst of activated carbon based chlorinated organic compound
Machida et al. Adsorption of Pb (II) from aqueous solution onto charcoal and activated carbon
KR100388631B1 (en) Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3