KR100388631B1 - Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash - Google Patents

Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash Download PDF

Info

Publication number
KR100388631B1
KR100388631B1 KR10-2000-0075268A KR20000075268A KR100388631B1 KR 100388631 B1 KR100388631 B1 KR 100388631B1 KR 20000075268 A KR20000075268 A KR 20000075268A KR 100388631 B1 KR100388631 B1 KR 100388631B1
Authority
KR
South Korea
Prior art keywords
coal ash
adsorbent
high carbon
coal
carbon
Prior art date
Application number
KR10-2000-0075268A
Other languages
Korean (ko)
Other versions
KR20020045851A (en
Inventor
백일현
남성찬
이종섭
류완호
이병노
박구현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR10-2000-0075268A priority Critical patent/KR100388631B1/en
Publication of KR20020045851A publication Critical patent/KR20020045851A/en
Application granted granted Critical
Publication of KR100388631B1 publication Critical patent/KR100388631B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them

Abstract

본 발명은 화력발전소에서 대량 폐기되는 있는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing a molded adsorbent for wastewater treatment using high carbon coal ash which is disposed in large quantities in a thermal power plant.

하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법은The manufacturing method of the molded adsorbent for wastewater treatment using high carbon coal ash

원료물질 60∼70wt%, 코올타르 피치 15∼20 wt%, 피치 용매제 2∼3 wt%, 바인더 첨가제 2∼3 wt%, 촉매제 4∼6 wt%, 물 8∼12 wt%를 분쇄하는 단계와;60 to 70 wt% of raw material, 15 to 20 wt% of coal tar pitch, 2 to 3 wt% of pitch solvent, 2 to 3 wt% of binder additive, 4 to 6 wt% of catalyst, 8 to 12 wt% of water Wow;

상기 단계 후 50∼60℃에서 혼합하는 단계와;Mixing at 50 to 60 ° C. after the step;

상기 단계 후 압축 및 성형하여 펠렛을 제조하는 단계와;Compressing and molding after the step to produce pellets;

상기 단계후 펠렛을 킬른내에 넣은 후 20㎖/min으로 질소를 주입하여 550∼650℃의 온도에서 30∼90분 동안 탄화하는 단계와;After the step, the pellet was put in the kiln and injected with nitrogen at 20 ml / min for carbonization at a temperature of 550 to 650 ° C. for 30 to 90 minutes;

상기 단계 후 질소공급을 중단하고 200℃로 예열된 수증기를 1g-steam/hr·g-coal로 공급하여 활성화하는 단계와;Stopping the nitrogen supply after the step and activating by supplying steam preheated to 200 ° C. with 1 g-steam / hr · g-coal;

상기 활성화 단계 후 수증기의 공급을 중단하고 20㎖/min으로 질소를 주입하면서 서서히 냉각하는 단계를 포함하는 것을 특징으로 한다.After the activation step is characterized in that it comprises the step of slowly cooling while supplying nitrogen at 20ml / min to stop the supply of water vapor.

한편 상기 원료물질은 고탄소 석탄회 이거나 또는 고탄소 석탄회 100 wt%를 기준으로 무연탄 50∼100wt%를 고탄소 석탄회와 혼합한 혼합물질이다.On the other hand, the raw material is a high carbon coal ash or a mixture of 50 to 100 wt% of anthracite coal based on 100 wt% of high carbon coal ash and high carbon coal ash.

Description

고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법{Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash}Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash}

본 발명은 화력발전소에서 대량 폐기되는 있는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing a molded adsorbent for wastewater treatment using high carbon coal ash which is disposed in large quantities in a thermal power plant.

국내 석탄화력발전소에서는 국내에서 생산되는 무연탄과 외국에서 수입하여 온 유연탄을 연료로 사용하고 있으며, 이때 석탄은 미분쇄(200mesh 체로 70-80% 통과)하여 고온에서 공기와 함께 연소로로 주입되며, 1,500±200℃에서 연소한 후 잔류되는 미세한 회분은 대부분 연소가스와 함께 배출된다. 이와 같은 물질을 석탄회라 하는데, 국내에서 사용하고 있는 석탄은 무연탄뿐만 아니라 다양한 품종을 외국으로부터 수입한 유연탄이 혼합됨에 따라 그 성상 차이가 매우 크다. Domestic coal-fired power plants use domestic anthracite coal and bituminous coal imported from abroad as fuel.In this case, coal is pulverized (passed 70-80% with 200mesh sieve) and injected into the combustion furnace with air at high temperature. Most of the fine ash remaining after burning at 1,500 ± 200 ° C is discharged with the combustion gases. Such a material is called coal ash, and the coal used in Korea is not only anthracite coal but also bituminous coal imported from various varieties from abroad.

국내에서 재활용되고 있는 석탄회는 대부분 콘크리트 혼화재 및 시멘트 원료로 사용되고 있는데, 이는 석탄회 중 대부분을 차지하고 있는 무기성분을 재활용하기 때문에 그 활용범위가 넓음을 알 수 있다. 석탄회를 재활용하기 위해 콘크리트 강도에 커다란 영향을 주는 미연탄소분을 제거하여야 하는데, 석탄회 중 미연탄소분을 분리하기 위하여 분급이라는 물리적 방법을 사용한다. 이때 분급 후 미연탄소가 적은 석탄회(저탄소 석탄회)는 재활용하지만 미연탄소분이 많은 석탄회(고탄소 석탄회)는 재 폐기되어야 한다는 문제점을 갖고 있다. 따라서 고탄소 석탄회를 효율적으로 재이용 한다면 재폐기에 의한 장소 확보의 문제를 해결할 뿐만 아니라 폐기물을 상품화함으로써 고부가가치의 이율을 추구하는 효과를 얻을 수 있다. 그러나 탄소성분은 석탄회 중 주성분을 이루고 있는 SiO2, Al2O3와 같은 무기물질과 다른 유기성분을 가지고 있어 판이하게 성질이 다르므로 고탄소 석탄회를 활용하는데는 많은 어려움이 따르고 있다.Most of the coal ash recycled in Korea is used as a raw material for concrete admixture and cement, and it can be seen that its utilization range is wide because it recycles the inorganic components that make up most of the coal ash. In order to recycle coal ash, unburned carbon powder which has a great influence on the strength of concrete must be removed. A physical method of classification is used to separate unburned carbon powder from coal ash. At this time, after classifying, coal ash having low unburned carbon (low carbon coal ash) is recycled, but coal ash having a high amount of unburned carbon (high carbon coal ash) has a problem of re-disposal. Therefore, if the high-carbon coal ash is efficiently reused, it will not only solve the problem of securing a place by re-disposal but also obtain the effect of pursuing high value-added interest rate by commercializing waste. However, the carbon component is SiO, which is the main component of coal ash.2, Al2O3Inorganic materials such as and other organic components have different properties, so there is a lot of difficulties in using high carbon coal ash.

본 발명은 고탄소 석탄회에 다량 함유되어 있는 미연탄소 성분을 최대한 이용함과 동시에 장기간 이용 가능한 성형 흡착제 제조하는데 그 목적을 두고 있다. 이를 위해, 미세분말로 되어 있는 고탄소 석탄회에 점결제인 코올타르 피치 등을 첨가하여 펠렛으로 제조한 후 탄화 및 활성화 과정을 거침으로 흡착능력을 향상시킨 흡착제를 제조하고자 한다. 이와 같은 방법은 고탄소 석탄회에 함유되어 미연탄소를 활성화하여 흡착능력을 향상시킴과 동시에 조립 활성탄과 같은 성형 흡착제를 제조하여 계속적인 흡착/재생에 의해 장기간 이용 가능하게 한다. 또한 본 발명에서 제조한 흡착제는 생물활성담체, 하폐수, AOS, 중금속 제거용으로 활용할 수 있다.The present invention aims to produce a molded adsorbent that can be used for a long time while maximizing the use of unburned carbon components contained in a large amount of high carbon coal ash. To this end, it is intended to prepare an adsorbent having improved adsorptive capacity by adding a coal tar pitch, which is a caking agent, to a fine carbon coal ash made of fine powder, and preparing the pellets to undergo carbonization and activation. Such a method is contained in the high carbon coal ash to activate the unburned carbon to improve the adsorption capacity, and at the same time to produce a molded adsorbent, such as granulated activated carbon, to be made available for a long time by continuous adsorption / regeneration. In addition, the adsorbent prepared in the present invention can be utilized for removing biologically active carriers, sewage, AOS, heavy metals.

도 1은 본 발명에 의한 흡착제 제조방법이고,1 is a manufacturing method of the adsorbent according to the present invention,

도 2은 제조된 펠렛이고,2 is a manufactured pellet,

도 3는 TypeⅠ 흡착제의 주사현미경 사진(10,000배율)이고,3 is a scanning micrograph (10,000 magnification) of a Type I adsorbent,

도 4는 흡착제를 이용한 생활하수 제거 실험결과이고,4 is a test result of living sewage removal using an adsorbent,

도 5은 흡착제를 이용한 AOS 계면활성제 제거 실험결과이고,5 is a test result of AOS surfactant removal using an adsorbent,

도 6은 흡착제를 이용한 중금속 제거 실험결과이고,6 is a heavy metal removal experiment using an adsorbent,

도 7은 질산화 반응장치이고,7 is a nitrification apparatus,

도 8은 Type I, 활성탄, 유리구술을 생물학적 담체로 이용시 암모니아성 질소 제거 실험결과이다.FIG. 8 shows the results of ammonia nitrogen removal using Type I, activated carbon, and glass dictates as biological carriers. FIG.

상기와 같은 목적을 달성하기 위한 본 발명의 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법은Method for producing a molded adsorbent for wastewater treatment using the high carbon coal ash of the present invention for achieving the above object

원료물질 60∼70wt%, 점결제로 연화점이 85℃ 이상인 코올타르 피치 15∼20 wt%, 피치 용매제로 중질 오일 2∼3 wt%, 바인더 첨가제로 전분 또는 당밀2∼3 wt%, 촉매제로 CaCO3또는 K2CO3와 같은 금속탄산염 4∼6 wt%, 물 8∼12 wt%를 분쇄하는 단계와;60 to 70 wt% of raw material, 15 to 20 wt% of coal tar with softening point of 85 ° C or more as caking agent, 2 to 3 wt% of heavy oil as pitch solvent, 2 to 3 wt% of starch or molasses as binder additive, CaCO as catalyst Grinding 4 to 6 wt% of metal carbonate, such as 3 or K 2 CO 3, and 8 to 12 wt% of water;

상기 단계 후 50∼60℃에서 30∼60분 혼합하는 단계와;Mixing for 30 to 60 minutes at 50 to 60 ° C. after the step;

상기 단계 후 압축 및 성형하여 펠렛을 제조하는 단계와;Compressing and molding after the step to produce pellets;

상기 단계후 펠렛을 킬른내에 넣은 후 10∼30㎖/min으로 질소를 주입하여 550∼650℃의 온도에서 30∼90분 동안 탄화하는 단계와;After the step, the pellet was put in a kiln and injected with nitrogen at 10 to 30 ml / min to carbonize at a temperature of 550 to 650 ° C. for 30 to 90 minutes;

상기 단계 후 질소공급을 중단하고 150∼220℃로 예열된 수증기를 1g-steam/hr·g-coal로 공급하여 750∼950℃에서 1∼3시간 동안 활성화하는 단계와;Stopping the nitrogen supply after the step and supplying water vapor preheated to 150 to 220 ° C. with 1 g-steam / hr · g-coal to activate at 750 to 950 ° C. for 1 to 3 hours;

상기 활성화 단계 후 수증기의 공급을 중단하고 10∼30㎖/min으로 질소를 주입하면서 서서히 냉각하는 단계를 포함하는 것을 특징으로 한다(도 1참조).After the activation step it is characterized in that it comprises the step of slowly cooling while supplying nitrogen at 10 to 30ml / min after stopping the supply of steam (see Figure 1).

한편, 원료물질은 고탄소 석탄회 이거나 또는 흡착제의 강도증진을 위한 혼합제로서 고탄소 석탄회 100 wt%를 기준으로 무연탄 50∼100wt%를 고탄소 석탄회와 혼합한 혼합물질을 사용한다.On the other hand, the raw material is a high carbon coal ash or a mixture for increasing the strength of the adsorbent, using a mixture of 50-100 wt% of anthracite coal based on 100 wt% of high carbon coal ash with high carbon coal ash.

상기에서 원료물질 이외에 사용하는 물질의 역할에 대하여 알아보면, 핏치 용매제는 석탄회와 코올타르 핏치와의 접착력을 증가시켜 주기 위하여 사용하고, 바인더 첨가제는 흡착제의 표면의 거칠기를 조절해 주고 조립시 조립을 원활하게 하여 주고 있으며, 촉매제는 흡착제 제조시 활성화를 촉진하여 활성기공 생성을 증진시키는 역할을 하고, 물은 흡착제 배합시 혼합을 원활히 하여 조립시 적절한 펠렛 형성에 도움을 준다.As for the role of the material used in addition to the raw material, the pitch solvent is used to increase the adhesion between the coal ash and the coal tar pitch, and the binder additive controls the roughness of the surface of the adsorbent and is assembled during assembly. The catalyst is used to facilitate the activation of the adsorbent in the manufacture of the adsorbent to promote the generation of active pores, and the water to facilitate the mixing of the adsorbent when mixing to assist in the formation of appropriate pellets.

상기 본 발명의 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법을 보다 상세히 설명하면 다음과 같다.Referring to the manufacturing method of the molded adsorbent for wastewater treatment using the high carbon coal ash of the present invention in more detail as follows.

고탄소 석탄회에 국내 무연탄을 첨가하기 위하여 볼밀과 같은 분쇄기에서 4시간 동안 분쇄하여 200mesh 체를 95% 이상 통과하도록 하였다. 제품의 강도 증가 및 미분 방지를 위하여 석탄회, 무연탄 분말에 점결제로 코올타르 핏치, 피치 용매제로 중질 오일 , 바인더 첨가제로 전분 또는 당밀, 촉매제로 CaCO3또는 K2CO3와 같은 금속탄산염, 물을 첨가한 후 50∼60℃에서 혼합한다.In order to add domestic anthracite to high-carbon coal ash, it was pulverized in a mill such as a ball mill for 4 hours and passed through a 200mesh sieve more than 95%. Coal tar pitch as a binder for coal ash, anthracite powder, heavy oil as pitch solvent, starch or molasses as binder additive, metal carbonate such as CaCO 3 or K 2 CO 3 as catalyst, After addition, it mixes at 50-60 degreeC.

혼합된 시료를 페렛타이저(Pelletizer)를 이용하여 3∼8기압으로 압축 및 성형하여 6㎜×Ø3㎜ 크기의 원통형 펠렛을 제조하였다.The mixed samples were compressed and molded at a pressure of 3 to 8 atm using a pelletizer to prepare cylindrical pellets having a size of 6 mm × Ø 3 mm.

제조된 펠렛을 로타리 킬른내에 주입하고 주입된 원료의 균일한 반응을 위하여 킬른을 회전시킨다.The prepared pellet is injected into a rotary kiln and the kiln is rotated for uniform reaction of the injected raw material.

반응기내 산화를 방지하기 위하여 10∼30㎖/min으로 질소를 킬른에 주입하고 550∼650℃에서 30∼90분 동안 탄화를 하였다.In order to prevent oxidation in the reactor, nitrogen was injected into the kiln at 10 to 30 ml / min and carbonized at 550 to 650 ° C. for 30 to 90 minutes.

탄화과정 후 최적의 반응기공 생성을 촉진하기 위하여 질소공급을 중단하고 150∼220℃로 예열된 수증기를 1g-steam/ hr·g-coal로 공급하여 750∼950℃에서 1∼3시간 동안 활성화를 유지하였다.After the carbonization process, the nitrogen supply was stopped and the steam preheated to 150 ~ 220 ℃ was supplied to 1g-steam / hr · g-coal to activate optimum reactor hole and activated at 750 ~ 950 ℃ for 1 ~ 3 hours. Maintained.

활성화 후 수증기의 공급을 중지하고 10∼30㎖/min으로 질소를 주입하면서서서히 냉각함으로써 최종적으로 흡착제를 제조하게 된다.After the activation, the supply of water vapor is stopped and slowly cooled while injecting nitrogen at 10 to 30 ml / min to finally prepare the adsorbent.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited by the following examples.

실시예 1Example 1

실험에 사용한 석탄회는 서천화력발전소에서 생산되는 것을 분급에 의한 분리된 미연탄소분이 많은 고탄소 석탄회로서 표 1과 같은 물성을 가지고 있다. 고탄소 석탄회의 조성 및 물리적 성질은 석탄의 생산지와 화력발전소의 연소조건에 따라 달라질 수 있다.The coal ash used in the experiment is a high-carbon coal ash with a lot of unburned carbon powder separated by classification that is produced in Seocheon thermal power plant and has the properties shown in Table 1. The composition and physical properties of high carbon coal ash may vary depending on the location of coal production and the combustion conditions of the thermal power plant.

표 1. 고탄소 석탄회의 공업분석 및 구성성분Table 1. Industrial Analysis and Composition of High Carbon Fly Ash

공업분석(wt%)Industrial analysis (wt%) 구성성분Ingredient 무기물(wt%)Mineral (wt%) 중금속(㎎/g)Heavy metals (mg / g) 수분moisture 휘발분Volatility 회분Ash 고정탄소Fixed carbon SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO MgOMgO CrCr VV CuCu PbPb ZnZn -- -- 92.792.7 7.37.3 53.1253.12 26.2926.29 7.717.71 3.943.94 1.231.23 7171 136136 5959 4444 7878

실시예 2Example 2

실시예 1의 고탄소 석탄회 시료 60∼70wt%, 점결제로 연화점이 85℃ 이상인 코올타르 피치 15∼20 wt%, 피치 용매제로 중질 오일 2∼3 wt%, 바인더 첨가제로 전분 또는 당밀 2∼3 wt%, 촉매제로 K2CO3인 금속탄산염 4∼6 wt%, 물 8∼12 wt%를 흡착제의 원료로 사용하였다.60 to 70 wt% of the high carbon coal ash sample of Example 1, 15 to 20 wt% of coal tar pitch having a softening point of 85 ° C. or more as a binder, 2 to 3 wt% of heavy oil as a pitch solvent, and 2 to 3 starch or molasses as a binder additive. wt%, 4 to 6 wt% of metal carbonate K 2 CO 3 as catalyst and 8 to 12 wt% of water were used as raw materials for the adsorbent.

성형 및 활성화를 촉진하기 위해 사용된 혼합재의 최적 배합비율을 표 2에 나타내었다. 혼합된 시료는 펠렛타이저를 이용하여 3∼8기압의 조건으로 압축, 성형하였으며 이렇게 성형화한 원통형 펠렛을 도 2에 나타내었다.Table 2 shows the optimum mixing ratio of the mixture used to promote molding and activation. The mixed sample was compressed and molded under a condition of 3 to 8 atm using a pelletizer, and the cylindrical pellets thus formed were shown in FIG. 2.

표 2. 흡착제에 사용된 원료의 특성 및 배합비Table 2. Properties and Mixing Ratios of Raw Materials Used in Adsorbents

원 료 명Raw material name 공업분석(wt%)Industrial analysis (wt%) 충전밀도(g/㎖)Packing density (g / ml) 배합비(wt%)Compounding ratio (wt%) 수분moisture 휘발분Volatility 회분Ash 고정탄소Fixed carbon 고탄소 석탄회High carbon coal ash -- -- 92.792.7 7.37.3 0.7950.795 63.963.9 코올타르 핏치Kooltar Pitch -- 99.9099.90 0.100.10 -- 0.6720.672 17.917.9 핏치 용매제Pitch Solvent 0.550.55 60.7560.75 38.7038.70 -- 0.8030.803 1.91.9 바인더 첨가제Binder additive 0.030.03 28.3328.33 76.6476.64 -- 0.5720.572 1.61.6 촉매제Catalyst -- 99.099.0 -- -- 1.1261.126 5.15.1 water 100.0100.0 -- -- -- 1.0001.000 9.69.6

실시예 3Example 3

실시예 1의 고탄소 석탄회의 강도 증진과 흡착성능 향상을 위하여 원료물질로 고탄소 석탄회와 국내 무연탄인 장성탄(수분 3.8wt%, 휘발분 9.9wt%, 회분 36.1wt%, 고정탄소 50.2wt%)을 혼합한 펠렛을 제조하였으며, 그 배합비 및 공업분석 결과는 표 3에 나타내었다.In order to improve the strength and adsorption performance of the high carbon coal ash of Example 1, high carbon coal ash and Jangseong coal, which is domestic anthracite coal (water 3.8wt%, volatile matter 9.9wt%, ash 36.1wt%, fixed carbon 50.2wt%) To prepare a pellet was mixed, the compounding ratio and industrial analysis results are shown in Table 3.

표 3에서 원료물질을 제외한 첨가제는 실시예 2와 같은 비율로 혼합하였다. 이때 고탄소 석탄회만을 63.9wt% 혼합하여 제조하였을 경우를 Type Ⅰ, 고탄소 석탄회와 장성탄을 50:50 비율로 혼합하여 제조된 펠렛을 Type Ⅱ(전체의 비율중 고탄소 석탄회:장성탄 = 31.95wt%: 31.95wt%), 고탄소 석탄회와 장성탄을 75:25의 비율로 혼합한 펠렛을 Type Ⅲ(전체의 비율중 고탄소 석탄회:장성탄 = 48wt%:15.9wt%)로 명명하였다. 제조된 펠렛은 550∼650℃에서 30∼90분 동안 탄화와 750∼950℃에서 1∼3시간 동안 활성화 과정을 거침으로 최종 흡착제를 제조하였다.Except the raw materials in Table 3, the additives were mixed in the same ratio as in Example 2. In this case, the type I pellets prepared by mixing only 63.9 wt% of high carbon coal ash were prepared in the form of pellets prepared by mixing 50:50 ratio of type I, high carbon coal ash and Jangjae charcoal. wt%: 31.95 wt%), and a pellet containing a mixture of high-carbon coal ash and long charcoal at a ratio of 75:25 was designated as Type III (high carbon coal ash: long carbon charcoal = 48 wt%: 15.9 wt%). The prepared pellets were carbonized for 30 to 90 minutes at 550 to 650 ° C and activated for 1 to 3 hours at 750 to 950 ° C to prepare a final adsorbent.

표 3. 고탄소 석탄회 및 장성탄 배합에 따른 펠렛의 공업분석Table 3. Industrial Analysis of Pellets by Blending High Carbon Fly Ash and Chang Char

원 료 명Raw material name 배합비Compounding cost 휘발분(wt%)Volatilization (wt%) 회분(wt%)Ash (wt%) 고정탄소(wt%)Fixed Carbon (wt%) 총배합 기준1)(wt%) 1) (wt%) 원료배합 기준2)(wt%) 2) (wt%) of raw material mixture Type ⅠType Ⅰ FA3)(63.9)FA 3) (63.9) FA(100)FA (100) 19.3719.37 64.3164.31 16.3216.32 Type ⅡType II FA:JA3)(31.95:31.95)FA: JA 3) (31.95: 31.95) FA:JA(50:50)FA: JA (50:50) 21.4321.43 47.3647.36 31.3231.32 Type ⅢType Ⅲ FA:JA(48:15.9)FA: JA (48: 15.9) FA:JA(75:25)FA: JA (75:25) 16.4516.45 55.0555.05 28.5028.50

1) 펠렛 조립을 위한 원료의 총 배합비1) Total compounding ratio of raw materials for pellet assembly

2) 원료 중 석탄회, 장성탄을 기준으로 한 배합비2) Mixing ratio based on coal ash and Jangseong coal among raw materials

3) FA : 고탄소 석탄회, JA : 장성탄3) FA: high carbon coal ash, JA: Jangseongtan

장기간 사용이 가능한 수처리용 흡착제로 활용하기 위하여 흡착/재생을 연속적으로 할 경우 성형체를 유지할 수 조건, 즉, 강도가 가장 중요한 항목으로서 제조된 흡착제에 대한 강도 및 흡착성능의 지표인 요오드가를 표 4에 나타내었다. 표 4에서 고탄소 석탄회만을 이용한 Type Ⅰ인 경우에 강도 89.3%로서, KS M1421에 따른 입상활성탄의 품질규격에서 1급 활성탄인 경우 강도 90%이상임으로 성형 활성탄의 대체품으로 이용할 수 있다. 또한 첨가제를 제외한 전체시료 중 장성탄의 비율을 31.95wt% 사용한 Type Ⅱ인 경우 강도는 95.3%, 요오드 흡착가는 257.7㎎/g으로 증가하였으며, 또한 장성탄의 비율을 15.9wt% 사용한 Type Ⅲ인 경우 강도는96.3%, 요오드 흡착가도 287.6㎎/g으로 증가하였다. 이는 장성탄의 혼합비율을 증가시킴에 따라 강도와 요오드가를 증가시킬 수 있음을 보이고 있다.In order to use as adsorbent for water treatment that can be used for a long time, the iodine value, which is an indicator of strength and adsorption performance of the adsorbent prepared as the most important item when the adsorbent / regeneration is continuously maintained, that is, strength is the most important item Shown in In the case of Type I using only high carbon coal ash in Table 4, the strength is 89.3%. In the quality standard of granular activated carbon according to KS M1421, when the primary activated carbon is 90% or more, it can be used as a substitute for the activated activated carbon. In the case of Type II using 31.95wt% of total carbon except for additives, the strength increased to 95.3% and the adsorption value of iodine was 257.7mg / g. Also, in the case of Type III using 15.9wt% of carbon. The strength increased to 96.3% and iodine adsorption to 287.6 mg / g. This shows that the strength and iodine value can be increased by increasing the mixing ratio of the charcoal.

한편 요오드 흡착가는 흡착제의 흡착능력 측정하는 것으로 활성탄 시험방법(KS M 1802)으로 하였다.On the other hand, the iodine adsorption value was measured by the adsorption capacity of the adsorbent was set to the activated carbon test method (KS M 1802).

표 4. 장성탄 혼합비의 변화에 따른 흡착제의 강도 및 요오드 흡착가의 변화Table 4. Variation of Adsorbent Strength and Iodine Adsorption Rate According to Changes in Enteric Carbon Mixture

TypeType 장성탄 혼합비Wall Charcoal Mixing Ratio 탄화carbonization 활성화Activation 온도(℃)Temperature (℃) 시간(hr)Hours (hr) 온도(℃)Temperature (℃) 시간(hr)Hours (hr) 강도(%)burglar(%) 요오드 흡착가(㎎/g)Iodine adsorption value (mg / g) Type ⅠType Ⅰ 0%0% 600600 22 850850 1One 89.389.3 106.9106.9 Type ⅢType Ⅲ 25%25% 600600 22 850850 22 95.395.3 257.7257.7 Type ⅡType II 50%50% 600600 22 850850 22 96.396.3 287.6287.6

실시예 4Example 4

실시예 3에서 제조한 흡착제 중 Type I 흡착제의 표면을 주사전자현미경으로 촬영한 사진을 도 3으로 나타내었다. 도 3에서 보면 흡착제 표면에 거대기공이 형성되어 있음을 보이며, 이는 수처리시 오염물과의 접촉면적을 증대시켜 흡착능력을 상승시키며, 특히 생물활성담체로 활용할 경우 미생물의 번식공간을 제공할 수 있다.The photograph of the surface of the Type I adsorbent of the adsorbent prepared in Example 3 by scanning electron microscope is shown in FIG. 3. 3 shows that the large pores are formed on the surface of the adsorbent, which increases the contact area with contaminants during water treatment, thereby increasing the adsorption capacity, and in particular, can provide a breeding space for microorganisms when used as a bioactive carrier.

시험예 1 : 하폐수에 대한 제거성능Test Example 1 Removal Performance for Wastewater

실시예 3에서 제조된 흡착제를 이용하여 하폐수에 대한 제거성능을 시험하였다. 하폐수로는 생활하수를 처리하는 하수종말처리장의 1차 침전조 상등액을 채수하여 전처리로 여과과정을 거쳐 사용하였다. 초기의 CODMn농도는 19.6㎎/ℓ를 가지고 제거실험한 결과를 도 4에 나타내었다.The removal performance of the sewage water was tested using the adsorbent prepared in Example 3. The sewage wastewater was collected from the first sedimentation tank supernatant of the sewage terminal treatment plant to treat domestic sewage and used as a pretreatment. The initial COD Mn concentration was 19.6 mg / l and the results of the removal experiments are shown in FIG. 4.

제거율은 상용화된 활성탄인 Calgon(Cal), Norit, Kuraray(Ku)가 75.53%, 72.70%, 76.79%로 3시료 평균 74.34%의 제거율을 보이고 있다. 고탄소 석탄회는 5.7%의 제거율을 보이고 있으나 탄화 및 활성화를 거친 Type I과 Type II는 65.2%, 67.14%로 높은 제거율을 보이고 있다. 만약 활성탄의 제거율을 100%로 볼 때 Type I과 Type II는 87.7%, 90.3%로 활성탄에 비하여 거의 뒤지지 않은 흡착력을 보이고 있다. 이와 같은 결과는 석탄회 중 유기물질인 탄소성분의 기공발달과 더불어 석탄회의 주성분인 Si, Al, Fe산화물의 표면활성화에 의한 제거효율이 상승하였기 때문이다.The removal rate was 75.53%, 72.70%, 76.79% for Calgon (Cal), Norit, and Kuraray (Ku), which were commercially available activated carbon. High-carbon coal ash has a removal rate of 5.7%, while carbonized and activated Type I and Type II have high removal rates of 65.2% and 67.14%. If the removal rate of activated carbon is 100%, Type I and Type II are 87.7% and 90.3%, showing almost the same adsorption capacity compared to activated carbon. These results are due to the increase in pore development of the carbon component, which is an organic substance in the coal ash, and the removal efficiency due to the surface activation of Si, Al, and Fe oxides, which are the main components of the coal ash.

상기에서 COD(Chemical Oxygen Demand) 제거율 실험은 흡착제를 200mesh 이상으로 분쇄한 후 110℃에서 2시간 건조하고 100㎖의 폐수에 일정량의 흡착제를 첨가한 후 평형시간에 도달할 때까지 교반한 후 평형시간에 도달하면 흡착제를 여과한 후 여액의 CODMn를 측정하였다.COD (Chemical Oxygen Demand) removal rate experiment was pulverized adsorbent to 200 mesh or more, dried at 110 ℃ for 2 hours, and added to a certain amount of adsorbent in 100ml waste water and stirred until reaching equilibrium time equilibrium time When reached, the adsorbent was filtered and the COD Mn of the filtrate was measured.

시험예 2 : 계면활성제에 대한 제거성능Test Example 2 Removal Performance for Surfactant

실시예 3에서 제조된 흡착제를 이용하여 계면활성제에 대한 제거성능을 시험하였다. 현재 하천에 유입되는 폐수에서 문제시되고 있는 계면활성제는 세정 및 유화 그리고 탈묵제 산업에서 상당히 많은 양이 사용하고 있으며, 계면활성제의 분산력과 거품 때문에 수처리시 상당히 어려움을 가져왔다. 계면활성제로는 요즘 많은 사용을 하고 있는 음이온 계면활성제인 AOS(Alpha-Olefin-Sulfonate)를 선택하였다. AOS계면활성제로 CODMn100㎎/ℓ의 인공폐수를 만들어 제거실험을 수행하였으며, 그 결과를 도 5에 나타내었다. 제거율은 상용화된 활성탄인 Calgon, Norit, Kuraray가 89.9%, 87.3%, 88.7%로 3개 시료 평균 88.6%의 제거율을 보이고 있다. 고탄소 석탄회는 56.3%의 제거율을 보이고 있으며 탄화 및 활성화를 거친 Type I과 Type II는 79.7%, 83.8%로 높은 제거율을 보이고 있다. 만약 활성탄의 제거율을 100%로 볼 때 고탄소 석탄회, Type I 및 Type II는 63.5%, 89.9% 및 94.6%로 높은 제거율을 보이고 있다.The removal performance for the surfactant was tested using the adsorbent prepared in Example 3. Surfactants, which are currently a problem in wastewater flowing into rivers, are used in the cleaning, emulsifying and deinking industry, and the dispersion and foaming of the surfactants make water treatment difficult. As the surfactant, AOS (Alpha-Olefin-Sulfonate), an anionic surfactant that has been widely used these days, was selected. The removal experiment was performed by making artificial wastewater of COD Mn 100 mg / L with the AOS surfactant, and the results are shown in FIG. 5. The removal rate was 89.9%, 87.3% and 88.7% for Calgon, Norit and Kuraray, which were commercially available activated carbons. High-carbon coal ash has a removal rate of 56.3%, while carbonized and activated Type I and Type II have high removal rates of 79.7% and 83.8%. If the removal rate of activated carbon is 100%, high-carbon coal ash, Type I and Type II, shows high removal rate of 63.5%, 89.9% and 94.6%.

시험예 3 : 중금속에 대한 제거성능Test Example 3 Removal Performance for Heavy Metals

실시예 3에서 제조된 흡착제를 이용하여 중금속(납, 망간, 크롬)에 대한 제거성능을 시험하였으며, 그 결과를 도 6에 나타내었다. Type I, Type II는 Pb, Cr에 대한 탈월한 제거능력을 보이고 있다. 그러나 고탄소 석탄회 및 상용화 활성탄는 낮은 제거율를 보이고 있다.The removal performance of heavy metals (lead, manganese, chromium) was tested using the adsorbent prepared in Example 3, and the results are shown in FIG. Type I and Type II show superior removal to Pb and Cr. However, high-carbon coal ash and commercially available activated carbon show low removal rates.

중금속 제거 실험방법은 흡착제를 200mesh이상 분쇄한 후, 110℃에서 2시간이상 건조한 후 100㎖ 폐수에 흡착제 1g를 첨가한 후 60동안 20℃를 유지하는 수욕조 내에서 진탕하고 평형시간에 도달하면 필터를 이용하여 흡착제를 분리하였다.그 후 최종적으로 원액과 여액을 ICP(Inductively Coupled Plasma) 기기를 이용하여 중금속 농도를 측정하였다.Heavy metal removal test method is to pulverize adsorbent more than 200mesh, dry at 110 ℃ for 2 hours, add 1g adsorbent to 100ml waste water, shake in 60 ℃ water bath for 60 hours The adsorbents were separated by using. The concentration of the heavy metals was finally measured using an inductively coupled plasma (ICP) apparatus.

시험예 4 : 생물활성담체로서 암모니아성 질소 제거성능Test Example 4 Ammonia Nitrogen Removal Performance as Bioactive Carrier

실시예 3에서 제조된 Type I 흡착제의 생물활성담체로서 활성 가능성을 타진하기 위하여 활성탄과 유리구술을 비교 성능평가 흡착제로서 이용하였으며, 생물실험 장치도를 도 7에 나타내었다. 도 7에서 칼럼은 이중 아크릴 관으로 제작되었다. 이중관의 내부는 반응조로 흡착제를 충진하였으며, 이중관의 외부에서 일정온도를 가진 물이 순환하여 반응조의 온도를 유지하도록 하였다. 칼럼내부 반응조(1)는 직경 80㎜, 길이가 260㎜으로 1.3ℓ이다. 반응조는 40㎜ 간격으로 체(ø 3㎜)를 두어 층을 만들었으며, 각 층에 흡착제를 20㎜ 충진하였다. 이중관 외부의 순환수는 항온순환조를 이용하여 온도를 31.2±0.1℃로 유지하였다. 반응조로 유입되는 물과 반응조으로부터 유출되는 물의 온도를 측정하기 위하여 2개의 열전대(3)를 설치하였다. 반응조 하부에 기포발생기(4)를 두어 질산화에 필요한 산소를 공급하도록 하였다. 유효용적 2.4ℓ를 갖는 수조(5)를 설치하여 반응조를 통과한 물이 수조에서 모사폐수와 혼합되어 펌프를 통하여 30㎖/min의 일정속도로 다시 반응조에 유입될 수 있도록 하였다. 모사폐수는 3.5㎖/min으로 수조에 유입되었다. 수조에 들어오는 반응조를 통과한 물과 모사폐수가 완전 혼합되도록 하기 위하여 교반기(7)를 달았다. 또한 용존산소의 충분한 공급을 위하여 기포발생기를 수조 하부에 설치하였다. 모사폐수는 유효용적 60ℓ의 저장탱크(6)에 보관하였으며, 변질 및 조류의 성장을방지하기 위하여 10℃이하에서 저온 저장하였다.Activated charcoal and glass dictation were used as comparative performance evaluation adsorbents in order to investigate the possibility of activity as a bioactive carrier of the Type I adsorbent prepared in Example 3, and a diagram of a biological test apparatus is shown in FIG. 7. In FIG. 7 the column was made of a double acrylic tube. The inside of the double tube was filled with an adsorbent in the reactor, and water having a constant temperature circulated outside the double tube to maintain the temperature of the reactor. The column internal reaction tank 1 is 1.3 L of 80 mm in diameter and 260 mm in length. The reactor was formed by placing sieves (ø 3 mm) at intervals of 40 mm, and each layer was filled with 20 mm of an adsorbent. The circulating water outside the double tube was kept at a temperature of 31.2 ± 0.1 ° C. using a constant temperature circulation tank. Two thermocouples 3 were installed to measure the temperature of the water flowing into the reactor and the water flowing out of the reactor. A bubble generator 4 was placed at the bottom of the reactor to supply oxygen for nitrification. A water tank (5) having an effective volume of 2.4 liters was installed so that the water passed through the reaction tank was mixed with the simulated wastewater in the water tank to be introduced again into the reactor at a constant rate of 30 ml / min through the pump. The simulated wastewater was introduced into the tank at 3.5 ml / min. The stirrer 7 was attached to completely mix the water passed through the reactor into the tank and the simulated waste water. In addition, a bubble generator was installed at the bottom of the tank to supply sufficient dissolved oxygen. The simulated wastewater was stored in a storage tank (6) with an effective volume of 60 L and stored at low temperature below 10 ° C. to prevent alteration and algae growth.

성능실험에서는 표 5와 같은 물성을 가진 고탄소 석탄회 흡착제(Type I), 활성탄(AC) 및 유리구술(GB)를 생물담체로 이용하였다. 실험방법으로는 3일 동안 질산화균을 반응조에 순환시키면서 흡착제에 균을 부착시킨 후 모사폐수인 100ppm의 암모니아성 질소를 연속적으로 주입하면서 제거율을 측정하였다. 9일 동안 실험한 결과를 도 8에 나타내었는데, 활성탄의 제거율을 100%로 볼 때, Type I은 83.7%, 유리구술은 37.4%이였다. 따라서 고탄소 석탄회로 제조한 흡착제는 활성탄보다는 제거효율이 다소 떨어지지만 제조비용이 저렴하여 생물활성담체로의 이용 가능성이 높다.In the performance test, high carbon coal ash adsorbent (Type I), activated carbon (AC) and glass dictation (GB) having the properties shown in Table 5 were used as biocarriers. As a test method, the nitrate was circulated in the reaction tank for 3 days while the bacteria were attached to the adsorbent, and then the removal rate was measured while continuously injecting 100 ppm of ammonia nitrogen, which is a simulated wastewater. The results of the experiment for 9 days are shown in FIG. 8. When the removal rate of activated carbon was 100%, Type I was 83.7% and glass dictation was 37.4%. Therefore, the adsorbent prepared by the high carbon coal circuit is slightly lower in removal efficiency than activated carbon, but the manufacturing cost is low, and thus it is highly applicable to the bioactive carrier.

암모니아성 질소는 암모니아(NH3)가 물에서 이온(NH4 +)의 형태로 존재하는 양을 질소량으로 표시한 것으로 상기 암모니아성 질소 제거실험은 중금속 제거실험과 동일한 방법으로 수행하였다. 암모니아 농도를 분석하기 위하여 HACH사 DR/4000의 측정장치를 이용하였다. 암모니아성 질소의 농도는 Nessler 방법을 이용하여 측정하였으며, 이때 암모니아성 질소의 흡수파장은 425㎚이었다.Ammonia nitrogen represents the amount of ammonia (NH 3 ) present in the form of ions (NH 4 + ) in water as the amount of nitrogen. The ammonia nitrogen removal experiment was performed in the same manner as the heavy metal removal experiment. In order to analyze the ammonia concentration, a measuring device of HACH DR / 4000 was used. The concentration of ammonia nitrogen was measured using the Nessler method, where the absorption wavelength of ammonia nitrogen was 425 nm.

표 5. 반응조에 충진한 흡착제의 물리적 특성Table 5. Physical Properties of Adsorbents Filled in Reactors

TypeⅠ흡착제Type I adsorber 석탄계활성탄Coal-based activated carbon 유리구슬glass marble 메 디 아 직 경Media diameter 4 ㎜4 mm 4 ㎜4 mm 4 ㎜4 mm 메 디 아 길 이Media way 6∼7 ㎜6 to 7 mm 6∼7 ㎜6 to 7 mm -- 요 오 드 흡 착 량( I2)Iodine adsorption amount (I 2 ) 106 ㎎/g106 mg / g 1,012 ㎎/g1,012 mg / g -- 표 면 적(B.E.T.)Surface Area (B.E.T.) 56.5 ㎡/g56.5 ㎡ / g 989.5 ㎡/g989.5 ㎡ / g -- 평균세공(Average Pore)Average Pore 27 Å27 Å 12 Å12 Å -- 강 도( Hardness )Hardness 85 %85% 96 %96% -- 충 진 밀 도Filling wheat road 0.77 g/㎖0.77 g / ml 0.53 g/㎖0.53 g / ml 1.45 g/㎖1.45 g / ml 충 진 부 피Filling volume 400 ㎖400 ml 400 ㎖400 ml 400 ㎖400 ml 충 진 량Fill amount 309 g309 g 213 g213 g 580 g580 g

상기 실시예 및 실험예를 통해 알 수 있듯이, 본 발명은 고탄소 석탄회에 다량 함유되어 있는 미연탄소성분을 점결제로 사용하고 있는 코올타르 핏치과 더불어 활성화 과정을 통하여 성능이 향상된 흡착제를 제조함에 따라 하폐수, AOS, 중금속에 대한 우수한 제거성능을 보이고 있어 현재 범용적으로 사용하고 있는 활성탄 대체 흡착제로 활용 가능성이 높다. 또한 생물 부착성도 우수하여 앞으로 폐수 중 부영양화를 발생시키는 암모니아성 질소 제거용 활성담체로도 이용할 수 있다. 무엇보다도 현재 재폐기되고 있는 고탄소 석탄회를 재활용함으로서 자원 이용율을 향상시킴과 더불어 저렴한 가격으로 흡착제를 제조할 수 있다는 점에서 이용 가능성이 높을 것이다.As can be seen through the above examples and experimental examples, the present invention, along with the coal tar pitch using unburned carbon components contained in a large amount of high carbon coal ash as a caking agent, by producing an adsorbent improved performance through the activation process sewage water As it shows excellent removal performance against heavy metals, AOS and heavy metals, it is highly likely to be used as an alternative adsorbent for activated carbon that is currently used universally. In addition, it has excellent bioadhesive properties and can be used as an active carrier for ammonia nitrogen removal which causes eutrophication in wastewater. Above all, the high-carbon coal ash, which is currently being recycled, can be used to improve the resource utilization rate and to produce the adsorbent at a low price.

Claims (5)

원료물질 60∼70wt%, 연화점이 85℃ 이상인 코올타르 피치 15∼20 wt%, 피치 용매제 2∼3 wt%, 바인더 첨가제 2∼3 wt%, 촉매제 4∼6 wt%, 물 8∼12 wt%를 분쇄하는 단계와;60 to 70 wt% of raw material, 15 to 20 wt% of coal tar pitch having a softening point of 85 ° C. or higher, 2 to 3 wt% of pitch solvent, 2 to 3 wt% of binder additive, 4 to 6 wt% of catalyst, 8 to 12 wt of water Grinding%; 상기 단계 후 50∼60℃에서 30∼60분 혼합하는 단계와;Mixing for 30 to 60 minutes at 50 to 60 ° C. after the step; 상기 단계 후 압축 및 성형하여 펠렛을 제조하는 단계와;Compressing and molding after the step to produce pellets; 상기 단계후 펠렛을 킬른내에 넣은 후 10∼30㎖/min으로 질소를 주입하여 550∼650℃의 온도에서 30∼90분 동안 탄화하는 단계와;After the step, the pellet was put in a kiln and injected with nitrogen at 10 to 30 ml / min to carbonize at a temperature of 550 to 650 ° C. for 30 to 90 minutes; 상기 단계 후 질소공급을 중단하고 150∼220℃로 예열된 수증기를 1g-steam/hr·g-coal로 공급하여 활성화하는 단계와;Stopping the nitrogen supply after the step and activating by supplying steam preheated to 150 to 220 ° C. with 1 g-steam / hr · g-coal; 상기 활성화 단계 후 수증기의 공급을 중단하고 10∼30㎖/min으로 질소를 주입하면서 서서히 냉각하는 단계를 포함하는 것을 특징으로 하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법Method of producing a molded adsorbent for wastewater treatment using high carbon coal ash, characterized in that the step of stopping the supply of steam after the activation step and injecting nitrogen at 10 to 30ml / min slowly 제 1항에 있어서, 원료물질은 고탄소 석탄회 이거나 또는 고탄소 석탄회 100 wt%를 기준으로 무연탄 50∼100wt%를 고탄소 석탄회와 혼합한 혼합물질 임을 특징으로 하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법The method of claim 1, wherein the raw material is a high-carbon coal ash, or a mixture of 50-100 wt% anthracite coal with high carbon coal ash based on 100 wt% of high carbon coal ash. Manufacturing method of adsorbent 제 1항에 있어서, 피치 용매제는 중질 오일임을 특징으로 하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법The method of claim 1, wherein the pitch solvent is a heavy oil. 제 1항에 있어서, 바인더 첨가제는 전분 또는 당밀 임을 특징으로 하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법The method of claim 1, wherein the binder additive is starch or molasses. 제 1항에 있어서, 촉매제는 CaCO3또는 K2CO3임을 특징으로 하는 고탄소 석탄회를 이용한 오폐수 처리용 성형 흡착제의 제조방법The method of claim 1, wherein the catalyst is CaCO 3 or K 2 CO 3 .
KR10-2000-0075268A 2000-12-11 2000-12-11 Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash KR100388631B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0075268A KR100388631B1 (en) 2000-12-11 2000-12-11 Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0075268A KR100388631B1 (en) 2000-12-11 2000-12-11 Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash

Publications (2)

Publication Number Publication Date
KR20020045851A KR20020045851A (en) 2002-06-20
KR100388631B1 true KR100388631B1 (en) 2003-06-25

Family

ID=27680955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0075268A KR100388631B1 (en) 2000-12-11 2000-12-11 Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash

Country Status (1)

Country Link
KR (1) KR100388631B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548062B1 (en) * 2020-08-21 2023-06-27 (주)동부그린 apparatus for treating wastewater produced from manufacture process of oxydianiline and treating mothed using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571615A (en) * 1978-11-20 1980-05-29 Agency Of Ind Science & Technol Production of granular molecular sieve carbon material from coal
JPS55116612A (en) * 1979-03-05 1980-09-08 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of activated carbon
JPS6168312A (en) * 1984-09-11 1986-04-08 Mitsui Mining Co Ltd Production of molecular sieve comprising coal base carbonaceous material
KR19990053035A (en) * 1997-12-23 1999-07-15 이경운 Carrier for wastewater treatment using coal ash and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571615A (en) * 1978-11-20 1980-05-29 Agency Of Ind Science & Technol Production of granular molecular sieve carbon material from coal
JPS55116612A (en) * 1979-03-05 1980-09-08 Ishikawajima Harima Heavy Ind Co Ltd Manufacture of activated carbon
JPS6168312A (en) * 1984-09-11 1986-04-08 Mitsui Mining Co Ltd Production of molecular sieve comprising coal base carbonaceous material
KR19990053035A (en) * 1997-12-23 1999-07-15 이경운 Carrier for wastewater treatment using coal ash and its manufacturing method

Also Published As

Publication number Publication date
KR20020045851A (en) 2002-06-20

Similar Documents

Publication Publication Date Title
Johns et al. Agricultural by‐products as granular activated carbons for adsorbing dissolved metals and organics
US6914034B2 (en) Adsorbents for removing heavy metals and methods for producing and using the same
Chen et al. Upcycling food waste digestate for energy and heavy metal remediation applications
US7429551B2 (en) Adsorbents for removing heavy metals
CN107827197A (en) A kind of water purification agent process for producing sponge iron
KR100491329B1 (en) Method for treatment of sewage sludge by means of sludge-coal-oil agglomeration
CN113860497A (en) Urban and municipal sewage nitrogen and phosphorus removal filler and preparation method thereof
Fuadi et al. Review study for activated carbon from palm shell used for treatment of waste water
JP2012091167A (en) Method for treating water containing nutrient salts and oxidizing substance
WO2005061099A1 (en) Adsorbents for removing heavy metals and methods for producing and using the same
KR100614253B1 (en) Porous adsorbent media and the preparation method thereof
KR100388631B1 (en) Manufacturing Method of Pelletizied Adsorbent for Waste Water Treatment Using Highly Unburned Carbon Fly Ash
JP2006007186A (en) Scavenger for heavy metals and separation/removal method for heavy metals
KR100519097B1 (en) Graphite powder obtained by ball milling and the use thereof
JP6762459B1 (en) Porous carbon material and its manufacturing method and application
JPH0316908A (en) Active carbon for highly treating clean water
KR100417830B1 (en) A method for preparing enviromental conducts for sewage purification using peats and enviromental conducts prepared by the method
CN101816916A (en) Technology for preparing phosphorus adsorbent
Zayed et al. Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems
KR20210085322A (en) Media for Water Treatment Using Zeolite and Preparation Method thereof
KR100343563B1 (en) Biological activated carbon for advanced water purification treatment and method for preparing the same
SU1351876A1 (en) Method of producing active coal
KR19990053035A (en) Carrier for wastewater treatment using coal ash and its manufacturing method
CN87103293A (en) Utilize novel carbon raw material to prepare process of active carbon
Jagtoyen et al. Activated Carbons from Bituminous Coals: A Comparison of H~ 3PO~ 4 and KOH Activants

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee