JP3974853B2 - 付着物検出装置およびそれを用いた制御装置 - Google Patents

付着物検出装置およびそれを用いた制御装置 Download PDF

Info

Publication number
JP3974853B2
JP3974853B2 JP2002569912A JP2002569912A JP3974853B2 JP 3974853 B2 JP3974853 B2 JP 3974853B2 JP 2002569912 A JP2002569912 A JP 2002569912A JP 2002569912 A JP2002569912 A JP 2002569912A JP 3974853 B2 JP3974853 B2 JP 3974853B2
Authority
JP
Japan
Prior art keywords
light
detection
light receiving
pattern
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002569912A
Other languages
English (en)
Other versions
JPWO2002071041A1 (ja
Inventor
啓司 常友
史敏 小林
治信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niles Co Ltd
Original Assignee
Niles Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niles Co Ltd filed Critical Niles Co Ltd
Publication of JPWO2002071041A1 publication Critical patent/JPWO2002071041A1/ja
Application granted granted Critical
Publication of JP3974853B2 publication Critical patent/JP3974853B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Description

技術分野
本発明は、検知面上に付着した付着物の存在を高感度に検知できる付着物検出装置およびそれを用いた制御装置に関する。
背景技術
付着物の有無を検出し、付着物の存在が検出されたことを契機として制御内容を変更するシステムには様々なものがある。付着物の一例として雨滴を考えると、車のウィンドシールドのウィンドウワイパー制御装置は、天候の変化があり降雨が始まったことを契機として制御内容を臨機応変に変更する必要が生じる。このウィンドウワイパー制御装置の利便性を高めるための重要な課題の一つとして、降雨中であるのか否かを検知するレインセンサの開発が挙げられる。以下に、従来の付着物検出装置として、車のウィンドシールドにおける雨滴を付着物として検出する従来のレインセンサを説明する。
一般に普及している手動操作によるウィンドウワイパーの場合、運転者自身が降雨が始まったことを認識し、自動車の走行状態、ウィンドシールドに付着する雨滴の量の変化を勘案し、自動車運転時に必要とするウィンドシールド越しの視界を確保すべく、ウィンドウワイパーのスイッチをオフからオンに手動で切り替える必要がある。この手動によるウィンドウワイパーのスイッチ切替操作の煩わしさを緩和するため、レインセンサを設けて自動車のウィンドシールドの検知面上の雨滴など付着物の存在を検知し、ウィンドウの払拭が必要か否かを判定している。
従来のレインセンサには、雨滴の検知方法に応じて反射光検知型レインセンサなどが知られている。図21は、従来技術の反射光検知型レインセンサによる雨滴検出原理を簡単に説明した図である。図21において、1000は自動車のウィンドシールドである。説明の便宜上、ウィンドシールド1000の上側空間を自動車内部側、つまり運転者側の空間、下側空間を外界とした。1010は光源、1020はプリズム、1030は反射光をウィンドシールド内から導き出すためのプリズム、1040はレンズ、1050は受光素子(電荷結合素子)、1110が検知面である。1120が検知面上に付着した雨滴である。光源1010からは検知面全体をカバーしうる広がりを持つ光束が照射され、そのうち1130が雨滴が付着した部分に対して入射した光の軌跡、1130以外の光1140が雨滴が付着していない検知面に対して入射した光の軌跡を表している。
反射光検知型レインセンサでは、各要素の取り付け角度と材質(特に材質が持つ屈折率)の調整が重要である。雨滴検出原理を簡単に言えば、検知面のうち雨滴が付着した部分に対して入射した光はウィンドシールド1000の外界面において全反射条件が満足されずに外界に逃げ、検知面のうち雨滴が付着していない部分に対して入射した光はウィンドシールド1000の外界面において全反射条件が満足されて全反射し、当該反射光の強度差を検出するわけである。
そのため、光源1010とプリズム1020は、照射光がウィンドシールド1000内部に入射する入射条件を満たす角度、材質が選ばれ、また、ウィンドシールド1000の外界面上の検知面において全反射する角度が選ばれる。さらに、雨滴付着による屈折率の変化により検知面1110における全反射条件の満足・不満足が切り換わるように検知面に対する光入射角度が選ばれる。
プリズム1030も反射光がウィンドシールド1000外部に出射できるように出射条件を満たす、つまり全反射条件が満足されないように材質、角度が選ばれている。レンズ1040と受光素子1050は、レンズ1040に入射した光が受光素子1050のセンサ部分に集光するように角度と距離が調整されている。
なお、これら1010〜1050の要素は、ウィンドシールド1000以外の場所、例えばボンネットの上や屋根の上などにも取り付け可能であるが、検知対象はウィンドシールド1000の状態であるのでウィンドシールド1000の一部に取り付けることが好ましい。また、運転者の視界を狭めないように取り付けられることが好ましい。例えば、もともとバックミラーが取り付けられて視界が遮られているウィンドシールド部分などに取り付けることが好ましい。
以上の従来の反射光検知型レインセンサの動作を簡単に説明すると、光源1010から照射された光束は、プリズム1020によりウィンドシールド1000内部に導入され、検知面1110全面にわたり入射する。いま、検知面1110上には雨滴1120が付着していたものとする。検知面1110に入射した光のうち雨滴1120が付着した部分に対して入射した光1130は、ウィンドシールド1000の外界面において、屈折率nが約1.3である雨滴の存在により全反射条件が満足されず、外界に逃げ、当該光が受光素子1050において検知されることはない。一方、検知面1110に入射した光のうち雨滴が付着していない部分に対して入射した光1140は、ウィンドシールド1000の外界面には屈折率nが1である空気の存在により全反射条件が満足されて全反射する。全反射した光はウィンドシールド1000の自動車内側の面のプリズム1030の存在により全反射せずに自動車内に出射する。出射した光はレンズ1040において受光素子1050上の光センサ部分に集光される。
このように、受光素子1050が検知する光量は、雨滴1120が存在すると減少し、雨滴1120が検知面1110上を覆う面積が大きくなるほど受光する光量は減少することとなる。この光量の変化を検出して検知面1110上の雨滴の存在を検知する。以上が従来の反射光検知型レインセンサによる雨滴検出原理である。
なお、それぞれのタイプのレインセンサは、上記したような信号変化を検知すれば雨滴検出信号を出力するように構成されている。レインセンサからの雨滴検出信号は、ウィンドウワイパーの制御部に入力され、当該雨滴検出信号の入力を契機として所定のウィンドウワイパーの制御などが行われる。
しかし、上記従来のレインセンサには以下に示すような問題点があった。
従来の反射光検知型レインセンサは、ウィンドシールド1000上での運転者の視界を確保する必要性や車の美観を確保する理由から、レインセンサを実装できる位置がバックミラー付近のウインドシールドなどに制約されていた。しかし雨滴検知確率は検知面積に依存するため、雨滴検知確率を高めるべくできるだけ検知面1110を広くとり、該検知面1110からの反射光を一つの受光素子1050で受けて反射光量の変化を検出していた。
しかし、従来技術における反射光検知型レインセンサには以下の問題があった。
第1の問題は、従来技術における反射光検知型レインセンサでは、人間の感性を考慮した運転者の視界の妨げ自体を検出することができないという問題である。ウィンドシールド1000上の雨滴などの付着物を検出する本来的な目的は、ウィンドシールド1000上の雨滴など運転者の視界を歪めたり妨げたりする可能性のある付着物を検出することである。運転者が認識するであろう視界の歪みを検知することができれば、人間の感性に応じた付着物検出が可能となる。
第2の問題は、従来の反射光検知型レインセンサでは感度が低いという問題である。従来の反射光検知型レインセンサによって雨滴を検知するためにはウィンドシールド1000上の検知面1110からの反射光量の変化を感度良く検知する必要があるが、ウィンドシールド1000上への雨滴付着により生じた反射光量変化を高感度に把捉することを困難にする以下の理由がある。
一般に、運転者が雨滴などウィンドシールド上の付着物の存在を認識し、ワイパーによるウィンドシールドの払拭が必要であると感じる場合とは、雨滴など付着物のウィンドシールド上に占める面積が0.5%を超えた場合であると言われている。つまり、ウィンドシールド面上に設けた検知面においても、0.5%の面積分の付着物の存在を検出しなければならない。従来技術における反射光検知型レインセンサは、検知面積全体からの反射光をレンズで集光するため、検知面積全体からの反射光量が基準信号値を決定し、検知面中で雨滴が付着した部分から外界に逃げる光量のみが信号変化分を決定する。結局、出力信号において0.5%分の信号変化を検出しなければならない。外界光の入射によるノイズや走行中の車のウィンドシールド面という過酷な環境での動作を鑑みれば、一般にわずか0.5%の信号変化を検出するのは極めて困難である。結局、従来技術では、検知面1110の面積と検出すべき一粒の雨滴面積との違いに依存して、検出信号全体に対する信号変化分が埋没してしまうこととなる。
上記理由により、従来の反射光検知型レインセンサでは、雨滴付着により生じた反射光量変化の高感度把捉が困難となっている。
第3の問題は、検知面積が狭くなるという問題である。検知面積と感度はトレードオフの関係にあり、上記第1の問題である感度の低さをカバーするために結像光学系により検知面上1110に焦点を設定して受光素子1050上にシャープな像を結像させれば感度は向上する。しかし、検知面上1110に焦点を設定するため、その分検知できる検知面上1110の面積は小さくなってしまう。もし結像光学系の焦点からの光を受光素子1050上に結像するものではなく、デフォーカスした状態の光を受光素子1050上に結像する構成とすれば、シャープな像を結像することができず、小さな付着物の存在を感度良く判別するために必要とされる変化を含んだ光検出信号を得ることはできない。
発明の開示
本発明は、上記問題点に鑑み、検知面上に付着した雨滴など付着物を感度良く検知でき、かつ、検知面積を広くして検知確率を高めた付着物検出装置および当該付着物検出装置を用いた制御装置を提供することを目的とする。
また、本発明は、上記問題点に鑑み、検知面上に付着した雨滴など付着物による、運転者の視界の歪みや妨げを評価・検知することのできる付着物検出装置および当該付着物検出装置を用いた制御装置を提供することを目的とする。
上記課題を解決するために、本発明の付着物検出装置は、検知面を持つ透明性基板と、前記検知面に対して光を照射する光源と、前記光源と前記検知面の間に設けられ、光透過率または光反射率が異なる部分を持つ基準パターンと、焦点を前記基準パターンに合わせ、前記基準パターンおよび前記検知面を通過した光を受けて結像させるレンズと、複数の微小受光素子を備え、前記レンズにより結像された光を受光し、各微小受光素子の光検出信号をそれら微小受光素子の並びに対応して並べて信号パターンとして出力する受光手段と、前記受光手段が検出した信号パターンを解析し、前記基準パターンを基に前記信号パターンの歪みを検出する信号パターン歪み検出部を備え、前記信号パターン歪み検出部が信号パターンの歪みを検出すれば前記検知面上の付着物の存在を検出することを特徴とする。
上記構成により、各微小受光素子において受光される光は検知面を通過して来るので検知面上での光学的条件による影響を受けたものとなっており、基準パターンの形状から想定される信号パターンと実際に得られた信号パターンの形状の比較により検知面上での光学的影響を検知することが可能となる。つまり、従来の付着物検出装置のように、付着物自体に焦点を合わせてその存在を検出するものではなく、焦点自体は付着物のある検知面ではない基準パターンに合わせつつ、付着物により与えられる信号パターンにおける影響を検出するものであり、基準パターンを見る者の視界の歪みや妨げを評価・検知することができる。また、基準パターンに焦点が合った状態で、当該基準パターンの結像を受光手段において受光するので、高精度に感度良く基準パターンの結像を捉えることができる。
また、上記構成ではそれぞれの微小受光素子から検出される光検出信号を並べて一種の信号パターン(信号波形)を得る。この信号パターンは一つ一つの微小受光素子から得られる信号レベルをつなぎ合わせてパターン化したものであり、検知面により受けた影響が信号パターンの歪み、つまり、微小区間の相対的変化として表れることとなる。本発明は、信号パターン中の相対的変化を解析することにより、検知面上の付着物の影響などによる基準パターンを見る者の視界の歪みや妨げを評価・検知する。さらに、信号パターンの微小区間同士の相対的な変化を解析するので、細かい影響も精度良く検出することができ、また、温度特性などによる環境の変化の影響も受けにくい。
また、上記構成によれば検知面積を大きくすることができる。付着物の存在する検知面は基準パターンと受光手段との間に設けられており、結像光学系の持つ焦点距離と当該結像光学系と検知面との距離の関係から受光手段が受光する光が通過した検知面上の面積が決まる。上記両者の距離の関係を調整すれば、検知面上での付着物の存在を検知できる検知面積を大きくすることができる。
なお、前記光源が光発射口上に前記基準パターンを持ち、前記光源と前記基準パターンを一体化したものとすることができる。
上記構成により、装置構成を簡素化することができ、装置全体の大きさを小型化することができる。
また、上記構成において、前記受光手段における、前記受光素子の一つあたりの受光面積、受光素子の数、受光素子の配置が、前記信号パターン歪み検出部が検出すべき信号パターンの歪みを解析できる解像度の信号パターンが得られるものであることが好ましい。
検知面上に設けた検知面積に占める付着物の面積の割合に応じて信号パターンが歪む割合が決まるので、検出すべき付着物の面積に応じて受光手段に求められる解像度も決まる。受光手段において当該解像度を得るために必要とされる受光素子の受光面積、数、配置とすれば良い。
また、本発明の付着物検出装置は、前記信号パターン歪み検出部が検出した前記信号パターンの歪みの大きさから前記検知面上に付着した付着物の表面形状を推定することができる。
なぜなら信号パターンに生じる歪みは、雨滴など付着物の厚さなどの表面形状効果に応じて生じるため、信号パターンの歪みを検出すれば、検知面上の付着物の表面形状を推定することができるからである。
また、本発明の付着物検出装置は、信号パターン歪み検出部が検出した信号パターンのぼかし度合いから検知面上に付着した付着物の光散乱性を推定することができる。
なぜなら信号パターンに生じるぼかしは、埃や泥水など光散乱性を有する付着物の光散乱により生じるため、信号パターンのぼかしを検出すれば、検知面上の付着物の光散乱性を推定することができるからである。
なお、上記の付着物検出装置において、前記検知面を自動車のウィンドシールド上に設ければ、前記ウィンドシールドに付着した雨滴の存在を検知するレインセンサとして用いることができる。
さらに、上記課題を解決するため、本発明の付着物検出装置を用いた制御装置は、上記レインセンサとして用いる本発明の付着物検出装置と、ウィンドウワイパー駆動手段と、ウィンドウワイパー制御手段を備え、前記ウィンドウワイパー制御手段が前記付着物検出装置からの付着物の検出信号を受け、前記検出信号に基づいてウィンドウワイパー駆動手段の制御内容を変更するウィンドウワイパーとする。
上記構成により、降雨の始まりを即座かつ確実に検出し、適切なタイミングでウィンドウワイパー駆動を開始することができるウィンドウワイパー装置を提供することができる。
発明を実施するための最良の形態
本発明の付着物検出装置およびそれを用いた制御装置の実施形態について図を参照しつつ説明する。
(実施形態1)
本実施形態1の付着物検出装置は、検知面を見る者の視界の歪みや妨げを評価・検知することができる装置である。本実施形態1の付着物検出装置は、光源と検知面の間に基準パターンを設け、焦点を前記基準パターンに合わせた結像光学系を配置し、基準パターンから検知面を通過した光を複数の微小受光素子を備えた受光手段に結像させ、各受光素子が受光した光検出信号を並べて信号パターンとして解析し、信号パターンの歪みを検出して検知面上の付着物の影響による視界の歪みや妨げを評価・検知するものである。
まず、検知面を見る者の視界の歪みや妨げを評価・検知する原理を簡単に説明する。
図1は実施形態1の装置構成を簡単に表わしたもので、装置を上から見た構成を模式的に表わしたものであり、水平断面となっている。図1において、100は透明基板であり、その表面には検知面110が設けられている。10は光源であり、均一光を出射して基準パターン200に向けて照射する。200は基準パターンであり、光源10と検知面110との間に配置されている。分かりやすいように厚み(水平方向)を持たせて描いている。基準パターンは光透過率や光反射率が異なる部分を持つパターンであり、図1の例では、光透過率が小さい黒色部分と光透過率が大きい透明部分を持つゼブラパターンとなっており、該ゼブラパターンを上から見た様子を模式的に描いている。図2に正面から見た基準パターンの例を示す。(a)はゼブラパターン、(b)は市松模様である。基準パターンは光透過率が小さい黒色部分と光透過率が大きい透明部分の境界のエッジがはっきりし、その像におけるコントラストが明瞭となるパターンであれば良く、その形状は特に問わない。
光源10から出射した光が基準パターン200に当たり、基準パターン200の像を持つ光が光学結像系であるレンズ40に向けて出射される。
40は、光学結像系としてのレンズである。図1においては、レンズは単レンズで示しているが、群レンズで良いことは言うまでもない。この例ではレンズ40の入力側の焦点は基準パターンに合わされ、出力側の焦点は微小受光素子に合わされている。つまり、基準パターンの各部を通過した光が微小受光素子に結像するように配置されている。
50は、受光手段としての受光素子部であり、後述するように基準パターンの像を一定の解像度で検出するため、複数の受光素子を並べたアレイ構成とする。後述するように検出すべき信号パターンの歪みの大きさを解析するために必要な解像度の信号パターンが得られるように受光素子の数と配置を調整する。例えば、一定間隔のピッチ数で並べられた1次元状のラインセンサや2次元状のマトリックスセンサなどである。図1の例では水平方向に受光素子を並べた一次元ラインセンサとなっている。
受光素子部50は、各受光素子が検出した光検出信号の信号レベルを微小アレイ構成の配置に従って信号レベルをつなぎ合わせ、信号パターンを生成する。つまり、受光素子部50により受光された光検出信号は、微小受光素子の並びに対応した一つの信号パターンとして得ることが可能となる。
図1には、光源からの出射光が受光素子部50に受光されるまでの一例が示されている。光源から出射した光が基準パターンに当たり、基準パターンの形状に合わせて基準パターンの間隙から光が透過して出射する。図1にはある一つの基準パターン間隙から出射した光が検知面110、レンズ40を介して受光素子部50の一つに結像される様子が示されている。光学結像系の入力側の焦点が基準パターンに合うように調整されており、受光素子部50の複数の微小受光素子をまたがって基準パターン像が明瞭に結像されている。複数の微小受光素子にまたがって得られた光検出信号をつなぎ合わせることにより基準パターンに対応するパターンを持つ信号パターンが得られる。
いま、この基準パターン間隙から出射した光の経路を追うと、検知面110を通過してレンズ40に入射している。つまり、レンズ40の入力側の焦点は基準パターンに合わされているので受光素子は基準パターン像を明瞭に結像するが、検知面110を通過するので検知面110上の表面の付着物の表面形状効果など光学的影響を受け得ることとなる。上記の基準パターン200と検知面110と受光素子部50で受光される光検出信号の関係を考えると、運転者により見られる外界の対象物と、ウィンドシールド面と、運転者の視覚との関係になっていることが分かる。つまり、検知面110上に付着物があり受光素子部50で受光される光検出信号に影響がある場合は、ウィンドシールド面に付着物が存在し、運転者の視覚が歪められたり妨げられたりしている場合であることが推定できるわけである。
図3は、検知面110上に光学的な影響を与える付着物が存在しない場合に検知される信号パターンを模式的に説明したものである。図3上段は、基準パターン200の形状と配置された受光素子部50の微小光源の配列との関係を模式的に示している。光源10から発射された光の方向から見た、ゼブラパターンの配置と受光素子部50の配置を重ねて描いている。図3上段に示すようにゼブラパターンが正面にありその後方に水平に並んだ受光素子部50が存在する関係にある。図3下段は、受光素子部50において得られた光検出信号の信号パターンを模式的に示している。図3下段の信号パターンは、分かりやすく説明するため、横軸に各受光素子の光検出信号レベルを受光素子の配置に従って並べ、縦軸は検出した光信号レベルとなっている。受光素子部50の光検出信号を解析して各信号を配置すれば、図3下段に示すように図2の基準パターンを水平に走査した場合に対応した信号パターンが得られている。
ここで、図3下段に示したように光検出信号は、信号パターンとして分析することが可能であることが分かる。つまり、基準パターンの黒色部分に相当する箇所の信号が落ち込み、基準パターンの透明部分に相当する箇所の信号が高く検出され、基準パターンを水平方向に走査した場合の光透過性の変化パターンに対応する信号値の変化パターンが得られていることが分かる。このように本願の付着物検出装置は、光検出信号の値の絶対値そのものを解析することなく、相対的な信号変化パターンを解析すれば正しく基準パターンに対応した光信号が得られているか否かを解析できる。
次に、図4は、検知面110上に雨滴130など、表面形状効果を持ち、光学的な影響を与える付着物が存在する場合に検知される光検出信号を模式的に説明したものである。光源10から発射された光の方向から見た、ゼブラパターンの配置と検知面上の雨滴130の位置とCCD部50の配置を重ねて描いている。図4上段に示すように正面にゼブラパターンが見え、その後方に検知面上の雨滴130があり、さらにその後方に水平方向に並んだCCD部50が存在する関係となっている。図4下段はCCD部50において得られた光検出信号を模式的に示しており、CCD部50の光検出信号を解析して各信号を配置した結果を示している。図3下段と同様、分かりやすく説明するため、横軸に各受光素子の光検出信号レベルを受光素子の配置に従って並べ、縦軸は検出した光信号レベルである信号パターンとなっている。図4下段に示すように、図4下段で検出される信号パターンは、図3下段の信号パターンと比べ、信号レベルの高さ、信号が検出される山のピッチなどに変化・歪みがあることが分かる。この歪みは検知面110上に付着した雨滴130の表面形状効果により、検知面110を通過する光が影響を受けた結果、生じたものである。
ここで、図4下段に示した光検出信号の歪みもパターンとして分析することが可能であることが分かる。つまり、光検出信号の値の絶対値そのものを解析することなく、信号パターンの波形としての相対的な山の高さ、ピッチの変化、歪みを解析すれば良い。このように信号パターンの変化、歪みを検出することにより検知面上の雨滴130の存在を検出することができる。
次に、図5は検知面110上に埃、土、泥水など光散乱性を有する付着物140が存在する場合に、CCD部50において得られた光検出信号を模式的に示しており、CCD部50の光検出信号を解析して各信号を配置した結果を示している。図5上段は、光源10から発射された光の方向から見た、ゼブラパターンの配置と検知面上の光散乱性付着物140の位置とCCD部50の配置を重ねて描いている。図5上段に示すように正面にゼブラパターンが見え、その後方に検知面上の泥などの付着物140があり、さらにその後方に水平方向に並んだCCD部50が存在する関係となっている。図5下段はCCD部50において得られた光検出信号を模式的に示しており、CCD部50の光検出信号を解析して各信号を配置した結果を示している。図3下段と同様、分かりやすく説明するため、横軸に各受光素子の光検出信号レベルを受光素子の配置に従って並べ、縦軸は検出した光信号レベルである信号パターンとなっている。図5下段に示すように、図5下段で検出される信号パターンは、図3下段の信号パターンと比べ、パターンエッジが崩れてぼやけていることが分かる。このエッジの崩れ、ぼかしは検知面110上に付着した付着物140の光散乱性により、検知面110を通過する光が影響を受けた結果、生じたものである。
以上のように、検出されるパターン像のぼやけ具合を解析することにより、付着物の大きさ・種類を推定することができることが分かる。
上記のように、受光素子部50の光検出信号を各受光素子の配列を考慮して信号パターンを解析すれば、形成される信号パターンのエッジの崩れ、ぼやけ、歪みを検出することができ、当該エッジの崩れ、ぼやけ、歪み検出をもって、検知面110上の付着物140による視界の歪みや妨げを評価・検知することができる。
上記が検知面を見る者の視界の歪みや妨げを評価・検知する原理である。
次に、本発明の付着物検出装置が検知面を大きく保つことができる点を説明する。図1に示すように、基準パターン200から出射した光は検知面110上を通過するときには一定の広がりを持つ領域120を通過していることが分かる。この領域120上に付着物がある場合、焦点自体は当該領域120に合っていないので付着物自体は、受光素子においては明瞭な像としては捉えることはできないが、基準パターンの歪みとして捉えることができる。この歪みを解析することにより付着物の表面形状効果や散乱性を推定するわけである。なお、領域120の大きさは、レンズ40の持つ焦点距離と、当該レンズ40と検知面110までの距離との関係により決まるものである。この両者の距離関係を調整することにより領域120の大きさを調整することが可能である。
なお、上記基準パターンの歪み検出による付着物の表面形状効果や光散乱性による視界の歪みや妨げを評価・検知処理は、外観環境の変化、外界光の入射など光ノイズが多い環境であっても十分なSN比を得ることができる。外界光の入射などの影響は受光素子部50の光検出信号レベル絶対値に影響を与えるが、光検出信号を解析して各信号間に見られる基準パターンの形は維持される。そのため光ノイズが多い環境であっても十分なSN比を得ることができるわけである。
以上、本実施形態1の付着物検出装置は、上記原理を適用して検知面を見る者の視界の歪みや妨げを評価・検知することができる。
(実施形態2)
実施形態2は、基準パターン200の位置を工夫した例である。基準パターン200の位置は光源10と検知面110の間に設けられていれば良い。従って、実施形態1の図1に示したような基準パターン200の位置関係のほか、様々な配置パターンが有り得る。一例としては、図6に示すような基準パターン200の位置関係も可能である。さらに、光源10がその光発射口において上記基本原理で説明した基準パターンを備えている構成も可能である。その様子を図7に示す。図7において14が内部から照射光が発射される光発射口であり、本発明では光遮蔽部分と光透過部分が水平方向に交互に並ぶゼブラパターンが基準パターン200として設けられている。結局基準パターン200の光透過部分からの光が検知面110に対して照射される。
図8は、上記の実施形態1に示した本発明の付着物検出原理を適用した構成例であり、上記図7の基準パターン200の位置関係とした付着物検出装置の装置構成例を簡単に示した模式図である。光源10がその光発射口において上記基本原理で説明した基準パターンを備え、光源10から照射した光を検知面において全反射させ、当該反射光を受光する構成例とした。
図8において、100が透明性基板の一例としてのウィンドシールド100である。ウィンドシールド100の下層は外界である。検知面110はウィンドシールド100と外界との境界面の一定領域にある。10は光源、20および30がプリズムである。40がレンズ、50が受光手段としての受光素子部である。60が付着物推定部である。
図8は装置構成の断面を示している。各構成要素が紙面垂直方向に微小アレイ構成となっているものとする。
光源10から発射されプリズム20を介してウィンドシールド100に導入された光が検知面110に入射し、図8(c)のように検知面110に付着物がない場合、つまり、空気が接している場合、検知面上での全反射条件が満足されるように調整されている。なお、プリズム30、レンズ40、受光素子部50は、検知面110においてウィンドシールド100内に全反射した反射光がウィンドシールド100表面に取り付けられたプリズム30を介してウィンドシールド100外に出射し、レンズ40により受光素子部50の受光面上に結像するように調整されている。さらに、光源10や上記要素の配置および取り付け角度は、図8(b)のように雨滴130(水分)が接している場合には検知面110上での全反射条件が満足されないように調整される。
いま、外界の媒質の屈折率をn、ウィンドシールド100の屈折率をnとし、照射光の検知面への入射角度をθとすると、全反射条件は(数1)で表される。
Figure 0003974853
ここで、図8(c)のように雨滴130がない場合の外界の媒質、つまり、空気の屈折率としてnが1となり、ウィンドシールド100の屈折率nの例として約1.51とすると(数1)より、41.47°<θとなる。さらに、図8(b)のように雨滴130付着の場合は、水の屈折率が約1.33であるので、θ<61.74°であれば良いこととなる。つまり、検知面110において(数1)で示した全反射条件の満足・不満足が切り換わる光入射角度θは、41.47°<θ<61.74°の範囲で選ばれる。これら条件を満たす要素の配置および取り付け角度の例としてこの例では、光源10からの照射光の検知面110への入射角度および反射角度を47°となるように調整する。
次に、各要素を詳しく説明する。
光源10は、複数のLEDなどの光源を一端または両端など端部に持ち、線状に設けられている開口部から光を取り出すものであり、線状の開口部から光線が取り出される。光源10は、光線が検知面110に対して所定角度で入射するような位置および角度で配置されている。なお、開口部には図7に示したような基準パターン200を持つ。
図9(a)は光源10の端面を表し、図9(b)は開口部14が見える面を正面から様子を示している。なお、開口部14には基準パターン200の図示を省略した。光源10は例えば複数の微小光源を端部に設け、線状に設けられている開口部14から取り出すものであり、線状の開口部14から光15として出射される。図9(a)において、11が光源としてのLED、12が透光性材料よりなる導光体、13が光を遮蔽するカバー、14がLED光を取り出す開口部、15がLED11から出射された光線である。なお、LED11は図9(b)の左右の一端または両端部に設け、カバー13の内面における反射を繰り返して開口部14の各部分に導く構成である。また、LEDは導光体12の開口部14に対向する面に等間隔で配置しても良い。
図9(b)の開口部14から取り出された光はプリズム20に入射する。
プリズム20は、光源10とウィンドシールド100の両者を光学的にコンタクトさせる媒体となるプリズムであり、光源10から照射された光をウィンドシールド100内に導く働きをする。
検知面110は透明性基板100の表面に設けられ、光源10からの照射光が反射する面となっている。
次に、結像レンズ40を説明する。結像レンズ40は基準パターン200の像を受光素子部50の微小受光素子上に結像させる。結像レンズ40と受光素子部50は、基準パターン200の像が受光素子部50上で結像するように角度と距離が調整されている。図8に示すように、レンズ40の入射側の焦点は光源10の光発射口にある基準パターン200に合わされており、検知面110に合わされてはいない。レンズ40の出射側の焦点は受光素子部50に合わされている。この構成により、受光素子部50には基準パターン200の像が明瞭に結像されることとなる。図10は、結像レンズ40の一例を模式的に示した図である。図10の例は、等倍結像系の屈折率分布型レンズアレイの一種である、SLA(R)(Selfoc Lense Array)の簡単な構成図である。41が微小レンズとしてのロッドレンズ、42黒色樹脂、43がFRP板である。ロッドレンズ41は棒状のものであり、図10ではそのレンズ面が見えている。また、図8の構成図はこのロッドレンズ41一つのみの側断面を示している。このSLAを用いれば、入射された光線を屈曲させて所定位置に正立等倍の像を結像させることができる。つまり、ゼブラパターン等の基準パターン200と受光面が結像関係にあり、基準パターン200の像をそのまま受光素子上に結像させることができる。上記例は、ロッドレンズ41が直線状に配置されたものであるが、光源10から取り出す光線の並び、後述する受光素子部50の各受光素子の配置に応じたレンズ配置とする。なお、上記説明は、等倍結像系の例であるが、受光素子部50の微小受光素子であるそれぞれの受光素子受光面と基準パターンとが結像光学系を形成するものであれば良い。
受光手段である受光素子部50は、照射光量に応じて光検出信号を出力する受光素子を備えているもので、レンズ40と受光素子部50の受光素子は、レンズ40に入射した光が受光素子部50の受光素子上で結像するように角度と距離が調整されている。この例では、受光素子は、図11に示すように、直線状に配置した構成となっているものとする。なお、受光素子一つ当たりの大きさは基準パターン200のゼブラパターンのピッチよりも細かいものであることが好ましい。必要な解像度をもってゼブラパターンの歪みを検出するためである。受光素子部50は、全反射用光源10からの照射光の検知面110への入射角度および反射角度に合わせて透明性基板100に対して47°の角度で配置する。51は各受光素子であり受光面を概念的に示したものである。なお、受光素子51内部のキャパシタやトランジスタ回路、センスアンプ回路などは図示を省略し、受光素子51の受光面が直線状に配置されていることが分かる図とした。
次に、基準パターン200を説明する。基準パターン200の位置は、光源10と検知面110の間に設けられていれば良い。従って基準パターン200の位置は様々なパターンが有り得る。実施形態1の図1に示したような位置関係、本実施形態1の図6に示したような位置関係、さらに、光源10がその光発射口において基準パターンを備えている実施形態1の図7の構成も可能である。本実施形態2では光源10がその光発射口において基準パターンを備えている実施形態1の図7の構成とする。
付着物推定部60は、受光素子部50からの光検出信号を受け、光検出信号を解析することにより、各受光素子が受光した光検出信号を解析して基準パターンの像に歪みがあるか否かを検出し、検知面上での付着物の存在を推定する部分である。この実施形態2では付着物推定部60は、信号パターン歪み検出部61を備えている。
信号パターン歪み検出部61は、受光素子部50が受光した基準パターン200の信号パターンを解析し、信号パターンの歪みを検出する部分である。なお、信号パターン歪み検出部61は検出すべき信号パターンの歪みの大きさを解析・評価できるものであるとする。信号パターン歪みの大きさを解析・評価できれば付着物の光学的影響の大きさを解析・評価できる。この実施形態2では基準パターン200の歪みを数量的に解析・評価する手法として、MTF値を用いた方法を用いる。図12は、MTF値による解析・評価方法を模式的に説明する図である。まず、図12(a)はMTF値の計算式を説明する図である。横軸は受光素子アレイ上の位置、縦軸は受光素子部50で受光された光の強度の信号値を示している。MTF値は(数2)で与えられる。
Figure 0003974853
図12(b)上段は、ゼブラパターンを受光素子上に結像させた場合に得られた光の強度分布を示したものである。なお、図12(b)でも横軸は受光素子アレイ上の位置、縦軸は受光された光の強度を示している。ここで、受光素子には大きさがあるため、実際に得られる信号は、図12(b)上段のパターンをサンプリングしたとびとびの離散値が得られている。そこで、得られた画素数>パターンの幅となることを条件とし、(数3)によりMTF値を計算する。
Figure 0003974853
ここで、Sは、N番目の画素の信号を表わすものとする。
(数3)により得られた信号Mの値を用いて、検知面上の雨滴付着を判定する。
図12(b)下段は、(数3)で計算された信号Mをプロットした波形である。実線は雨滴が検知面に付着していない場合、破線は雨滴が検知面に付着している場合に得られる光の強度分布である。図12(b)下段に見るように、検知面に雨滴が付着するとMTF値の絶対値が低下し、検知面を覆う水膜部分が大きくなるにつれ、その周期がずれる(周期が変動するため符号が反転する場合も有り得る)。なお、周期ずれとは、信号パターンの周期が不安定になることをいう。
付着物推定部60は、信号パターン歪み検出部61が検出した信号パターンの歪みの大きさから検知面上110に付着した付着物の表面形状や種類を推定する。信号パターンにおける歪みの割合を評価し、当該歪みが付着物の表面形状効果によるものと推定するものである。表面形状効果が大きいほど雨滴など付着物の厚さが厚く盛り上がった形状をしていると評価する。
また、付着物推定部60は、信号パターン歪み検出部61が検出した信号パターンのぼかし度合いから検知面上110に付着した付着物の光散乱性を推定する。信号パターンにおけるぼかしを評価し、付着物の光散乱性により散乱された光により本来明瞭であるはずのエッジがぼやけてしまったと推定するものである。ぼかし度合いが大きいほど付着物の散乱性が大きいものであると推定するものである。散乱性をもって付着物の種類などの推定も可能となる。
次に、付着物の種類が変わった場合でも、図12で示したようにMTF値を(数3)に従って計算し、その信号パターンを解析することにより、付着物検出部60が付着物を検出し、その種類を推定できることを示す。
まず、付着物が小雨(霧雨)の場合を説明する。
図13は、付着物が小雨(霧雨)の場合に得られるMTF値(M)分布である。小雨(霧雨)付着前のMTF値に比べると、小雨(霧雨)付着後のMTF値は、コントラストが低下(MTF値が減少)する。小雨(霧雨)であって雨量が大きくないので、降雨当初には検知面を覆う水膜が小さいため周期のずれは見られない。このようなMTF信号パターンが得られた場合に、付着物推定部60は、雨滴の付着を検出し、その雨滴が小雨(霧雨)であることを推定する。
次に、付着物が大粒の雨である場合を説明する。この場合、降る雨滴の粒が大きいが、降り始めなどでまだ水膜が検知面を覆う部分が大きくない状態とする。
図14は、付着物が大粒の雨の場合に得られるMTF値(M)分布である。大粒の雨付着前のMTF値に比べると、大粒の雨付着後のMTF値は、コントラストが部分的に低下(MTF値が減少)する。つまり雨粒が検知面の一部分しか付着しておらず、その部分のコントラストが大きく低下している。降雨当初であれば検知面を覆う水膜が小さいため周期のずれは見られない。このようなMTF信号パターンが得られた場合に、付着物推定部60は、雨滴の付着を検出し、その雨滴が大粒の雨であることを推定する。
このように、雨滴の粒が小さい、中程度、大きいなど、雨滴の大きさは、MTF値のコントラストの低下度合いを評価することにより可能となる。
次に、雨量が大きい場合を説明する。この場合、雨量が多いため、検知面を覆う水膜部分が大きい状態とする。
図15は、雨量が大きい場合に得られるMTF値(M)分布である。雨滴付着前のMTF値に比べると、大量の雨付着後のMTF値はコントラストが低下するとともに周期のずれが見られる。信号パターンの山谷の位置がずれ、符号が反転する部分も散見される場合も有り得る。このようなMTF信号パターンが得られた場合に、付着物推定部60は雨滴の付着を検出し、雨量が大きいと推定する。
このように、雨量が小さい、雨量が中程度、雨量が大きいなど、雨量の大小は、信号パターンにおける周期ずれの大きさを評価することにより可能となる。
次に、実際に透明基板上の雨滴越しに見たゼブラパターンの様子を撮影した例を示す。図16に示した例は、上から、(a)検知面が撥水面で霧雨が付着した場合、(b)検知面が撥水面で大粒の雨が付着した場合、(c)検知面が撥水面で付着物がない場合、(d)検知面が親水面で雨量が小さい場合、(e)検知面が親水面で雨量が中程度の場合、(f)検知面が親水面で雨量が大きい場合、(g)検知面が親水面で水膜が張っている場合を示している。なお、(c)の検知面が撥水面で付着物がない場合でも、右に行くにつれ、ゼブラパターンの周期が小さくなっているが、これはもともとこのようなゼブラパターンを用いたためである。各パターン(a),(b),(d)〜(g)は、パターン(c)を基準としてそのコントラスト低下や周期ずれを見れば良い。なお、図16において、黒いゼブラパターンがぼやけている部分がコントラストが低下していることに対応している。
なお、図16において、泥水など光散乱性を持つ付着物が付着している場合の実測データは示していないが、光散乱性が大きくなると光源の光が受光素子まで届かないので、コントラストは0、つまり、信号値Mの絶対値は0に近づく。このコントラスト低下を信号パターン歪み検出部61で検出すれば良く、また、エッジの崩れも大きいのでコントラスト低下およびエッジ崩れの大きさより泥水の付着を推定する。
付着物検出部60は、簡単には次の図17のフローにより付着物の有無を検出する。
まず、受光素子部50の各受光素子から信号を取り込む。つまり、各画素(総数N)データを取り込む(ステップS1701)。
次に、各画素データを使い、(数3)よりMTF信号値Mを計算する(ステップS1702)。これによりN−1個の信号値Mが得られる。
基準となる大きさの判定値(X)を設定しておき、各M値の絶対値とX値を比較し、|M|<Xとなっている数Yをカウントする(ステップS1703)。
Yが0であるか否かをチェックし(ステップS1704)、Y=0ならば(ステップS1704:Y)、検知面上に雨滴付着がないと判定し(ステップS1705)、Y>0ならば(ステップS1704:N)、検知面上に雨滴付着があると判定する(ステップS1706)。
なお、実施形態3に示すように、本発明の付着物検出装置をレインセンサとしてウィンドウワイパー制御装置に用いた場合であれば、本発明の付着物検出装置が、計算したYをウィンドウワイパー制御装置に出力することにより、ウィンドウワイパー制御装置は、Y>0ならば、降雨があるとしてウィンドウワイパーを駆動させれば良い。
以上、本実施形態2の付着物検出装置によれば、基準パターンから検知面を通過した光を受光手段に結像させ、受光手段が受光した信号パターンを解析し、信号パターンの歪みを検出して付着物による視界の歪みや妨げを評価・検知することができる。
(実施形態3)
本実施形態3は、本発明の付着物検出装置を用いた制御装置の一実施形態として、付着物検出装置をレインセンサとして用いるウィンドウワイパー制御装置の装置構成例を示すものである。
図18は、付着物検出装置をレインセンサとして用いるウィンドウワイパー制御装置のブロック図の例である。700が実施形態1において示した本発明の付着物検出装置であるレインセンサの機能ブロック、710がウィンドウワイパー制御手段、720がウィンドウワイパー駆動手段、730がウィンドウワイパーであり、図示のように接続されている。また、図19は、本実施形態3のウィンドウワイパー制御装置の処理動作の流れの一例を示すフローチャートである。
レインセンサ700は実施形態1や実施形態2において説明したように各要素の取付け角度や材質が選択されたものであり、ウィンドシールドを検知面とし、例えば雨滴などを検知対象として各受光素子からの光検出信号を出力するものである。また、レインセンサとして使用する付着物検出装置の付着物推定部60は、実施形態2で示したように雨滴など付着物による視界の歪みや妨げを評価・検知することができるものである。
レインセンサ700は付着物推定部60の出力信号として、“視界歪みなし”推定信号、“視界歪みあり”推定信号、“散乱性付着物あり”推定信号の検出信号を出力するものとする。
ウィンドウワイパー制御手段710は、レインセンサ700の付着物推定部60からの各種推定信号を入力とし、ウィンドウワイパー駆動手段720に対して、ウィンドシールド表面の各推定状態に応じたワイパー制御信号を出力するものである。
例えば、“視界歪みなし”推定信号に対しては、ワイパー停止状態とする制御信号を出力する。
“視界歪み有り”推定信号に対しては、ワイパー駆動状態とする制御信号を出力する。
“散乱性付着物あり”推定信号に対しては、洗浄液噴射とともにワイパー駆動状態とする制御信号を出力する。土や泥水など散乱性を有する付着物の払拭には洗浄液とともにワイパーで払拭することが好ましいと想定されるからである。
ウィンドウワイパー駆動手段720はウィンドウワイパー制御手段710からの制御信号を入力とし、ウィンドウワイパー730の駆動を制御するものである。
ウィンドウワイパー730は、ウィンドウワイパー駆動手段720によりトルクなどが与えられて駆動され、停止状態、駆動状態を持つ。駆動状態には間欠駆動のピッチが短いものや長いものなど複数の状態がありうる。駆動状態においてウィンドシールドの所定表面を払拭する。
図19のフローチャートを参照しつつ、ウィンドウワイパー制御装置の処理動作の流れを説明する。
ウィンドウワイパー制御装置が稼動中の場合(ステップS1901:Y)、ウィンドウワイパー制御手段710は、レインセンサ700の付着物推定部60からの制御信号をモニタする(ステップS1902)。
ウィンドウワイパー制御手段710は、付着物推定部60からの制御信号をデコードし、その制御内容を解析する(ステップS1903)。
ウィンドウワイパー制御手段710は、ステップS1903で得た制御内容に従い、ウィンドウワイパー730の駆動を制御する(ステップS1904)。ステップS1904の後、再度ステップS1901にループして制御を継続する(ステップS1901へ戻る)。
図20は、本発明の付着物検出装置をレインセンサとして用いたウィンドウワイパー制御装置の取り付け構成例を簡単に示した図である。図20に示すように、付着物検出装置であるレインセンサ700を、車のバックミラー900の裏面にあるウィンドシールド部分910に取り付けている。このようにバックミラー900の裏面のウィンドシールド部分910に取り付けることにより運転者の運転視界を不必要に遮ることなく、かつ、検知面をウィンドシールド上に確保できる。ウィンドウワイパー制御手段710とウィンドウワイパー駆動手段720は図示していないが、ウィンドウワイパー730付近の車装品としてキャビン内に格納されているものとする。
以上、本実施形態3に示した付着物検出装置を用いた制御装置は、一例であり、本発明の付着物検出装置は、上記の具体的装置構成例に限定されることなく、本発明の技術的思想に基づいて他の装置構成も可能であり、ウィンドウワイパー制御装置以外の用途にも用いることができることは言うまでもない。
産業上の利用可能性
本発明の付着物検出装置によれば、基準パターンから検知面を通過した光を受光手段に結像させ、受光手段が受光した信号パターンを解析し、信号パターンの歪みを検出して付着物による視界の歪みや妨げを評価・検知することができる。
本発明の付着物検出装置によれば、光検出信号の値の絶対値そのものを解析することなく、相対的な信号変化パターンを解析すれば正しく基準パターンに対応した光信号が得られているか否かを解析できる。
また、本発明の付着物検出装置を用いた制御装置によれば、本発明の付着物検出装置により付着物の存在や種類などの推定に応じてその制御内容を制御することができ、例えば、付着物検出装置をレインセンサとし、付着物検出装置を用いた制御装置をワイパー制御装置とすれば、付着物検出装置の検出結果に基づいてワイパー駆動状態を制御することができる。
【図面の簡単な説明】
図1は、本発明の実施形態1の付着物検出装置の構成例および検知面を見る者の視界の歪みや妨げを評価・検知する原理を説明する図である。
図2は、基準パターンの例を示す図である。
図3は、検知面上に付着物がない場合における本発明の付着物検出装置により検出される光検出信号の信号パターンを模式的に示した図である。
図4は、検知面上に雨滴などの形状効果を持つ付着物がある場合において検出される光検出信号の信号パターンを模式的に示した図である。
図5は、検知面上に光散乱性を持つ付着物がある場合において検出される光検出信号の信号パターンを模式的に示した図である。
図6は、本発明の実施形態2の付着物検出装置の構成例を簡単に示した図である。
図7は、開口部において基準パターンを備えている光源の例を示した図である。
図8は、本発明の実施形態2にかかる、開口部において基準パターンを備えている光源を用いた場合の付着物検出装置の構成例を示す図である。
図9(a)は、光源部10aの端面を模式的に示した図、図9(b)は、光源部10を開口部14の見える面を正面とした図である。
図10は、レンズ40の一例を模式的に示した図である。
図11は、受光素子部50の受光素子の配列の例を示した図である。
図12は、MTF値による解析・評価方法を模式的に説明する図である。
図13は、付着物が小雨(霧雨)の場合に得られるMTF値を示す図である。
図14は、付着物が大粒の雨の場合に得られるMTF値を示す図である。
図15は、雨量が大きい場合に得られるMTF値を示す図である。
図16は、実際に透明基板上の雨滴越しに見たゼブラパターンの様子を撮影した例を示す図である。
図17は、付着物検出部60における、付着物の有無を検出する処理の流れを説明するフローチャートである。
図18は、付着物検出装置をレインセンサとして用いるウィンドウワイパー制御装置のブロック図である。
図19は、本実施形態3のウィンドウワイパー制御装置の処理動作の流れの一例を示すフローチャートである。
図20は、本発明の付着物検出装置をレインセンサとして用いたウィンドウワイパー制御装置の取り付け構成例を簡単に示した図である。
図21は、従来の反射光検知型レインセンサによる雨滴検出原理を簡単に説明した図である。

Claims (5)

  1. 外界との境界面に検知面を持つ透明性基板と、
    前記透明性基板を介して前記検知面に対して光を照射する光源と、
    前記検知面で反射した光を前記透明性基板を介して受光する受光手段とを備えた雨滴検出装置において、
    前記光源と前記検知面の間に設けられ、光透過率または光反射率が異なる部分を持つ基準パターンと、
    焦点を前記基準パターンに合わせ、前記基準パターンを介し前記検知面で反射した光を受けて結像させるレンズとを備え、
    前記受光手段は、複数の微小受光素子を備え、前記レンズにより結像された光を受光し、各微小受光素子の光検出信号をそれら微小受光素子の並びに対応して並べて信号パターンとして出力し、
    前記受光手段が検出した信号パターンを解析し、前記基準パターンを基に前記信号パターンの歪みを検出する信号パターン歪み検出部
    前記信号パターン歪み検出部が検出した前記信号パターンの歪みの大きさから前記検知面上に付着した雨滴の種類と状態を推定する雨滴推定部とを備えたことを特徴とする雨滴検出装置。
  2. 前記光源が、光発射口上に前記基準パターンを持ち、前記光源と前記基準パターンを一体化した請求項1に記載の雨滴検出装置。
  3. 前記受光手段における、前記受光素子の一つあたりの受光面積、受光素子の数、受光素子の配置が、前記信号パターン歪み検出部が検出すべき信号パターンの歪みを解析できる解像度の信号パターンが得られるものである請求項1または2に記載の雨滴検出装置。
  4. 請求項1に記載の雨滴検出装置と、ウィンドウワイパー駆動手段と、ウィンドウワイパー制御手段を備え、
    前記ウィンドウワイパー制御手段が、前記雨滴推定部からの雨滴の種類と状態についての推定結果に基づいて前記ウィンドウワイパー駆動手段の制御内容を変更するウィンドウワイパー装置。
  5. 透明性基板の外表面を検知面とし、前記透明性基板を介して前記検知面に対して光源から光を照射し、前記検知面で反射した光を前記透明性基板を介して、複数の微小受光素子を備えた受光手段により受光する付着物検出方法であって、
    前記光源と前記検知面の間に、光透過率または光反射率が異なる部分を持つ基準パターンを設け、
    レンズの焦点を前記基準パターンに合わせ、前記基準パターンを介し前記検知面で反射した光を受けて結像させ、
    前記受光手段が、前記レンズにより結像された光を受光し、各微小受光素子の光検出信号をそれら微小受光素子の並びに対応して並べて信号パターンとして出力し、
    前記受光手段が検出した信号パターンを解析し、前記基準パターンを基に前記信号パターンの歪みを検出し、
    前記信号パターンの歪みの大きさから、前記検知面上に付着した雨滴の種類と状態を推定することを特徴とする雨滴検出方法。
JP2002569912A 2001-02-28 2002-01-30 付着物検出装置およびそれを用いた制御装置 Expired - Fee Related JP3974853B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001055174 2001-02-28
JP2001055174 2001-02-28
PCT/JP2002/000740 WO2002071041A1 (fr) 2001-02-28 2002-01-30 Detecteur de depots et appareil de commande comprenant ce dernier

Publications (2)

Publication Number Publication Date
JPWO2002071041A1 JPWO2002071041A1 (ja) 2004-07-02
JP3974853B2 true JP3974853B2 (ja) 2007-09-12

Family

ID=18915392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002569912A Expired - Fee Related JP3974853B2 (ja) 2001-02-28 2002-01-30 付着物検出装置およびそれを用いた制御装置

Country Status (2)

Country Link
JP (1) JP3974853B2 (ja)
WO (1) WO2002071041A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935803B1 (fr) * 2008-09-08 2014-08-08 Ecole Polytech Dispositif et procede de mesure optique de transmission et de diffusion de milieux oculaires
FR2944602B1 (fr) * 2009-04-16 2016-11-18 Valeo Vision Systeme de detection de gouttes d'eau sur une glace
JP2012037418A (ja) * 2010-08-09 2012-02-23 Asmo Co Ltd 視界情報取得方法、及び視界情報取得装置
JP6432260B2 (ja) * 2014-09-30 2018-12-05 富士通株式会社 振動検出部品、これを用いた音響装置及び情報機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209639A (ja) * 1982-05-31 1983-12-06 Nippon Denso Co Ltd ワイパ制御装置
JPS59128033A (ja) * 1983-01-12 1984-07-24 Nippon Denso Co Ltd ワイパ制御装置
JPS59152449U (ja) * 1983-03-31 1984-10-12 株式会社東海理化電機製作所 雨滴センサ
JPS6353444A (ja) * 1986-08-22 1988-03-07 Nippon Denso Co Ltd 光学式液体検出装置

Also Published As

Publication number Publication date
WO2002071041A1 (fr) 2002-09-12
JPWO2002071041A1 (ja) 2004-07-02

Similar Documents

Publication Publication Date Title
KR100634961B1 (ko) 표면습기 검출방법
KR100556992B1 (ko) 부착물 검출장치 및 이를 이용한 제어장치
JP4131700B2 (ja) ウィンドウ部分用の透過検出器、並びに、ウィンドウ部分の視界領域用のクリーニング装置
RU2516033C2 (ru) Оптический модуль с мультифокальной оптикой для регистрации дальней и ближней зоны в одном изображении
JP3641250B2 (ja) 透光体表面の異物検出装置
JP4668838B2 (ja) 雨滴検出装置およびワイパー制御装置
US8031224B2 (en) Camera system, method for operation of a camera system and sensor device of a camera system
EP0832798B1 (en) Image recognition system
JP2004538481A6 (ja) ウィンドウ部分用の透過検出器、並びに、ウィンドウ部分の視界領域用のクリーニング装置
JP2005515565A (ja) 画像センサシステムにおける視界妨害物の識別方法および識別装置
JPWO2002021107A1 (ja) 付着物検出装置およびそれを用いた制御装置
JP4605975B2 (ja) 付着物検出装置およびそれを用いた制御装置
JP3974853B2 (ja) 付着物検出装置およびそれを用いた制御装置
JP4565460B2 (ja) 付着物検出装置、およびそれを用いたワイパー制御装置
JP2004271404A (ja) 車両用障害物検出装置
JP4420558B2 (ja) 付着物検出装置およびそれを用いた制御装置
JP2002257716A (ja) 付着物検出装置およびそれを用いた制御装置
JP2002323443A (ja) 付着物検出装置およびそれを用いた制御装置
JP2002082044A (ja) 付着物検出装置およびそれを用いた制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees