JP3972600B2 - Polyimide precursor, method for producing the same, and photosensitive resin composition - Google Patents

Polyimide precursor, method for producing the same, and photosensitive resin composition Download PDF

Info

Publication number
JP3972600B2
JP3972600B2 JP2001134324A JP2001134324A JP3972600B2 JP 3972600 B2 JP3972600 B2 JP 3972600B2 JP 2001134324 A JP2001134324 A JP 2001134324A JP 2001134324 A JP2001134324 A JP 2001134324A JP 3972600 B2 JP3972600 B2 JP 3972600B2
Authority
JP
Japan
Prior art keywords
polyimide precursor
polyimide
film
resin composition
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001134324A
Other languages
Japanese (ja)
Other versions
JP2002161136A (en
Inventor
匡俊 長谷川
亮二 小嶋
常雄 花田
麻美子 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemical and Information Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemical and Information Device Corp filed Critical Sony Chemical and Information Device Corp
Priority to JP2001134324A priority Critical patent/JP3972600B2/en
Publication of JP2002161136A publication Critical patent/JP2002161136A/en
Application granted granted Critical
Publication of JP3972600B2 publication Critical patent/JP3972600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高透明性、高ガラス転移温度、低線熱膨張係数、低誘電率、及び十分な強靱さを併せ持つ実用上有益なポリイミドに容易に変換できるポリイミド前駆体、その製造方法及びそのポリイミド前駆体を含有する感光性樹脂組成物に関する。
【0002】
【従来の技術】
無水ピロメリット酸などの芳香族テトラカルボン酸二無水物と、ジアミノジフェニルエーテル等の芳香族ジアミンとを、等モルで反応させることにより容易に得られる高重合度のポリイミド前駆体(ポリアミド酸等)を硬化(イミド化)させることにより得られる全芳香族ポリイミドは、優れた耐熱性、耐薬品性、耐放射線性、電気絶縁性、機械的性質などの性質を併せ特つことから各種電気材料や電子材料として現在広く利用されている。
【0003】
最近では、このような全芳香族ポリイミドに感光性を持たせ、それを半導体素子における保護膜や層間絶縁膜などに利用することが行われており、更に回路基板などに適用することも試みられている。ここで、後者の場合、半導体素子の場合と異なり、10μm以上の厚膜が要求されるが、全芳香族ポリイミド膜は分子内共役及び電荷移動錯体形成により著しく着色しており、またその前駆体の膜でさえも紫外線から可視光域に亘る光透過率が著しく低いため、10μm以上の厚膜となると、通常のパターン加工の際に用いられるg線(436nm)やi線(365nm)ではポリイミド膜底部まで光が届かず、精緻なパターン形成ができないという問題がある。
【0004】
そこで、ポリイミドを透明化するために、ポリイミド分子の中にフッ素原子を導入すること(Macromolecules,24,5001(1991))や、ジアミン成分として脂環式化合物を用いることにより分子内共役及び電荷移動錯体形成を妨害すること(特開平1-53445号公報、特開平7-56030号公報、特開平9-73172号公報等)が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、フッ素原子が導入されたポリイミドの場合、線熱膨張係数が高くなるという場合がある。例えば、2,2−ビス(3,4−ジカルボキシフェニル)へキサフルオロプロパンと2,2′−ビス(トリフルオロメチル)4,4′−ジアミノビフェニルからなる含フッ素ポリイミドの場合、高透明性、高ガラス転移温度(335℃)及び低誘電率(2.8)を達成していると報告されているが、線熱膨張係数が50×10-6-1と非常に高い。従って、このポリイミドを用いてポリイミド膜/金属基板積層体を作製すると、金属基板の線熱膨張係数(例えば銅の場合18×10-6-1、シリコンの場合3×10-6-1)とポリイミド膜の線熱膨張係数との間の大きな差のために、残留応力が発生し、はがれやクラックの発生を引き起こし、電子デバイスの信頼性を著しく低下させるという問題が生ずる。
【0006】
また、ジアミン成分として脂環式化合物を用いたポリイミドの場合であって、例えば4,4′−メチレンビス(シクロヘキシルアミン)等の屈曲性の高い脂環式ジアミンを用いた場合には、生成するポリイミドの分子配向や結晶性の低下を招き、耐熱性の低下、線熱膨張係数の増大を引き起こすという問題がある。
【0007】
また、トランス1,4−ジアミノシクロヘキサンのような剛直な脂環式ジアミンを用いた場合には、耐熱性の低下と線熱膨張係数の増大を抑制しつつ、透明性の向上を期待できるが、通常の方法で重合しようとすると、反応溶液中に強固な錯塩形成が起こり、重合反応が全く進行しないという問題がある。この場合、公知の方法と逆の仕込み方法、即ち、先に酸二無水物をアミド系溶媒に溶解し、その溶液中にジアミンを徐々に添加する方法で塩形成をある程度回避することができるが、この方法では所望する高い重合度のポリイミド前駆体を得ることは困難である。
【0008】
このように、回路基板用途に使用するための感光性ポリイミドとして要求される性能(即ち、高透明性、高ガラス転移温度、低線熱膨張係数、低誘電率、及び十分な強籾さ)を満足する実用的なポリイミドは存在しないというのが現状である。しかも、そのような実用的なポリイミドを与えることのできる、ポリイミド前駆体を含む感光性樹脂組成物も知られていない。
【0009】
本発明は、上述の課題を解決しようとするものであり、高透明性、高ガラス転移温度、低線熱膨張係数、低誘電率、及び十分な強靱さを併せ持つ実用上有益なポリイミドに容易に変換できるポリイミド前駆体及びその製造方法、並びにそのポリイミド前駆体を含有する感光性樹脂組成物を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、芳香族酸二無水物と脂環式ジアミンであるトランス1,4−ジアミノシクロヘキサンとから形成されるポリイミド前駆体の中で、所定の値以上の還元粘度を有するものが、上述の目的を達成できることを見出し、本発明を完成させるに至った。
【0011】
即ち、本発明は、芳香族酸二無水物とシス体を含まないトランス1,4−ジアミノシクロヘキサンとから形成される式(1)
【0012】
【化2】

Figure 0003972600
【0013】
(式中、Rは芳香族残基である。)
の重合構造単位を有し、該芳香族酸二無水物が3,3′,4,4′−ビフェニルテトラカルボン酸二無水物であり、還元粘度が2.0dL/g以上であるポリイミド前駆体を提供する。
【0014】
また、本発明は、前述のポリイミド前駆体の製造方法であって、溶媒中で、芳香族酸二無水物とトランス1,4−ジアミノシクロヘキサンとを反応させて塩を形成し、得られた塩含有反応液を80℃〜150℃に加熱して重合反応を開始させ、少なくとも一部の塩を溶解させた後、更に室温で撹拌することにより重合反応させることを特徴とするポリイミド前駆体の製造方法も提供する。
【0015】
更に、本発明は、上述のポリイミド前駆体を加熱してイミド化することにより得られるポリイミドも提供する。
【0016】
また、本発明は、このポリイミド前駆体に加えて、架橋剤及び光重合開始剤を含有する感光性樹脂組成物を提供する。
【0017】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0018】
本発明のポリイミド前駆体は、芳香族酸二無水物とトランス1,4−ジアミノシクロヘキサンとから形成される式(1)
【0019】
【化3】
Figure 0003972600
【0020】
(式中、Rは芳香族残基(例えば、ビフェニル残基、ベンゼン残基)である。)の重合構造単位を有するが、重合度の大きさの指標となる還元粘度が2.0dL/g以上を示すことが必要である。これは、電子材料用途にポリイミドを利用する場合、ポリイミド膜が十分に強靱であることが要求されるが、この要求に応えるためにはポリイミド前駆体の重合度が極めて高くなければならないからであり、この数値を下回ると、電子材料用途には強靭さが不足する。
【0021】
なお、還元粘度は、30℃で0.5wt%という条件で、オストワルド粘度計を使用して測定した値である。
【0022】
また、本発明のポリイミド前駆体を構成するトランス1,4−ジアミノシクロヘキサンとしては、通常、特公昭51−48198号公報に開示されているように、パラフェニレンジアミンを水添して得られる以下に示すトランス体とシス体との混合物
【0023】
【化4】
Figure 0003972600
【0024】
を使用することができる。これをそのまま重合に供した場合は公知の反応条件で問題なく重合が進行するが、シス体の存在によりポリイミド分子鎖の剛直性が低下するため、耐熱性の低下と線熱膨張係数の増大が生ずる傾向がある。そこで、本発明においては、ポリイミド分子鎖の剛直性を低下させず、且つ後述するように、本発明の製造方法により高い重合度のポリイミド前駆体を与えることができるトランス1,4−ジアミノシクロヘキサンとして、二つのアミノ置換基の立体構造が共にエクアトリアル配置であるものを使用することが特に好ましい。
【0025】
芳香族酸二無水物としては、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物を使用する、ピロリメリット酸二無水物と併用してもよい。この場合、ピロメリット酸二無水物は30mol%以下とすることが望ましく、30mol%を超えると強固な塩形成が起こり重合が進行しないおそれがある。
【0026】
本発明のポリイミド前駆体は、公知のポリイミド前駆体の製造方法(反応熱を除去するため反応器を氷冷するか、室温乃至60℃程度の低い温度で重合を行う方法)では重合が進行しないか、又は低い粘度の重合物しか得られないので、以下に説明するように製造する。
【0027】
即ち、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホオキシド等の非プロトン性溶媒中で、芳香族酸二無水物とトランス1,4−ジアミノシクロヘキサンとを反応させて塩を形成し、得られた塩含有反応液を、例えばオイルバス上、80℃〜150℃で数十秒〜数分間加熱して重合反応を開始させ、少なくとも一部の塩を溶解させた後、オイルバスを取り去り、更に室温(約15〜35℃)で数時間撹拌を続けることにより重合反応させる。これにより、還元粘度が2.0dL/g以上の高重合度のポリイミド前駆体が得られる。例えば、3,3′,4,4′−ビフェニルテトラカルボン酸二無水物とトランス1,4−ジアミノシクロヘキサンとの反応では120℃で数分間加熱することにより、−20℃〜5℃での長期保存中でも沈殿物の生成が全く認められない、還元粘度2.5dL/g、イミド化率10%以下の高重合度ポリイミド前駆体溶液が得られる。
【0028】
なお、加熱温度や加熱時間が上記範囲を大きく外れると、更にイミド化が進行して沈殿物の生成や分子量低下が生じるので注意が必要である。
【0029】
また、ポリイミド前駆体、例えばポリアミド酸の従来の製造方法においては、合成困難なポリアミド酸の重合を促進するために、重合系にリチウムブロマイドやリチウムクロライドのような金属塩類を添加することが知られているが、このような方法では、形成したポリイミド膜中に金属イオンが残留するために、最終的に得られる電子デバイスの信頼性が低下する。一方、本発明におけるポリイミド前駆体の製造方法では、加熱により重合を促進するため、形成したポリイミド膜に金属イオンなどの混入がなく、最終的に得られる電子デバイスの信頼性が高まる。
【0030】
本発明のポリイミド前駆体は、回路基板等の基板上に塗布され、50℃〜150℃の温度範囲で乾燥され、更に200℃〜400℃、好ましくは300℃〜400℃の温度で熱処理硬化(イミド化)することにより、膜状のポリイミドとなる。また、イミド化反応はポリイミド前駆体を脱水試薬と化学反応させることにより行うこともできる。
【0031】
なお、本発明のポリイミド前駆体からポリイミドを形成する際に、本発明の効果を損なわない範囲内であれば本発明のポリイミド前駆体に他のポリミド前駆体を少量ブレンド或いは他のモノマー成分を添加してもよく、また、必要に応じて酸化安定剤、無機フィラー、シランカップリング剤、感光剤、光重合開始剤、増感剤等の添加物を混合してもよい。
【0032】
例えば、本発明のポリイミド前駆体に、架橋剤及び光重合開始剤、更に必要に応じて架橋助剤や溶媒を配合すると感光性樹脂組成物が得られる。この感光性樹脂組成物からキャスト法等で厚く成膜した樹脂膜は、i線(365nm)の透過率が90%程度もある透明性に優れた本発明のポリイミド前駆体を含有するので、紫外線などの露光光線が樹脂膜の底部まで十分に届く。従って、露光した部分の樹脂膜全体の架橋反応を十分に進行させることができる。このため、この樹脂膜は、使用した微細なフォトマスクパターンに忠実な樹脂パターンを与えることができる。例えば、深さ20μm、ライン&スペースが10μmの微細なレリーフパターンも形成可能である。また、本発明の感光性樹脂組成物は、厚膜の紫外線硬化型電子回路保護層として利用可能である。
【0033】
本発明の感光性樹脂組成物おいて使用できる架橋剤としては、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル、メタクリル酸ジエチルアミノプロピル、N,N−ジメチルアミノエチルメタクリルアミド、N,N−ジメチルアミノプロピルメタクリルアミド、N,N−ジエチルアミノエチルメタクリルアミド、N,N−ジエチルアミノプロピルメタクリルアミド、アクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル、アクリル酸ジメチルアミノプロピル、N,N−ジメチルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノエチルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミド等を挙げることができる。これらは、単独又は二種以上を混合して用いることができる。中でもアクロイル基又はメタクロイル基を有する第三級アミン化合物を好ましく使用することができる。そのような第三級アミン化合物の具体例としては、メタクリル酸N,N−ジメチルアミノエチルエステル等を挙げることができる。
【0034】
本発明の感光性樹脂組成物における架橋剤の配合割合は、少なすぎると鮮明なレリーフパターンが得られず、多すぎると熱硬化後のポリイミド膜の特性の低下を招くおそれがあるので、ポリイミド前駆体100重量部に対し、好ましくは10〜100重量部、より好ましくは50〜80重量部である。
【0035】
光重合開始剤としては、一般の紫外線による樹脂や塗料の硬化用の光重合開始剤として使用されている各種化合物を使用することができる。例えば、2,2′−ジメトキシ−2−フェニルアセトフェノン(別名;ベンジルメチルケタール)、2,2′−ビス(o−クロロフェニル)−4,4′−5,5′−テトラフェニル−1,2′−ビイミダゾール、4−フェノキシクロロアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパノン、ベンゾイン、ベンゾインメチルケタール、ベンゾフェノン、4−フェニルベンドフェノン、チオキサンソン、2,4−ジメチルチロキサンソン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン等を挙げることができる。これらは、単独又は二種以上を混合して使用することができる。
【0036】
本発明の感光性樹脂組成物における光重合開始剤の配合割合は、少なすぎると鮮明なレリーフパターンが得られず、多すぎると膜内部へ照射光の侵入を妨げ、更にポリイミド膜の特性の低下を招くおそれがあるので、ポリイミド前駆体100重量部に対し、好ましくは0.5〜10重量部、より好ましくは2〜8重量部である。
【0037】
架橋助剤としては、ビニル化合物やジビニル化合物が挙げられる。ビニル化合物の具体例としては、2−ヒドロキシエチルメタクリレート等が挙げられる。ジビニル化合物の具体例としては、メタクリル酸ビニルエステル、アジピン酸ジビニルエステル、エチレングリコールジメタクリレート等が挙げられる。中でも、キャスト膜の透明性の点でメタクリル酸ビニルエステルが特に好ましい。
【0038】
本発明の感光性樹脂組成物における架橋助剤の配合割合は、少なすぎても重大な問題は生じないがポリイミド膜の特性の低下を招くおそれがあるので、ポリイミド前駆体100重量部に対し、好ましくは10〜100重量部、より好ましくは10〜50重量部である。
【0039】
本発明の感光性樹脂組成物に対して、光反応によりナイトレンを生成し、二重結合に挿入反応して架橋形成可能なビスアジド化合物等の光架橋助剤を、光透過性を損なわない範囲で添加することもできる。ビスアジド化合物の具体例としては、2,6−ビス(4−アジドベンジリデン)シクロヘキサノン、ビス(4−アジドフェニル)メタン、ビス(4−アジドニル)オキシド、ビス(4−アジドニル)スルホン、ビス(4−アジドニル)エチレン、2,6−ビス(アジドベンジリデン)−4−メチルシクロヘキサノン等が挙げられる。
【0040】
本発明の感光性樹脂組成物に使用可能な溶剤としては、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル2−ピロリドン等を使用することができる。使用量は、感光性樹脂組成物の塗工方法や使用目的等に応じて適宜決定することができる。
【0041】
本発明の感光性樹脂組成物は、本発明のポリイミド前駆体に、架橋剤及び光重合開始剤、更に必要に応じて架橋助剤や溶媒を加え、常法により均一に混合することにより製造することができる。
【0042】
本発明の感光成樹脂組成物から樹脂パターンを作成する方法を説明する。即ち、まず、基板上に感光性樹脂組成物をキャスト法等で塗布し、乾燥してポリイミド前駆体を主体とする樹脂膜を形成し、次に80〜120℃の温度でプリべークした後、フォトマスクを介して紫外線を照射し、露光させる。そして現像液(例えば、N,N−ジメチルアセトアミド/N−メチル2−ピロリドン/水/エタノールの混合液)で現像し、未露光部の樹脂膜を除去し、最後にイミド化することによりポリイミドパターンを得る。
【0043】
以上説明したように、本発明のポリイミド前駆体又は感光性樹脂組成物から得られるポリイミドは脂環構造を有するため、これを含まない全芳香族ポリイミドに比べると長期熱安定性に劣るが、ガラス転移温度が300℃以上であり、半田耐性の如き短期耐熱性は充分高く、上記産業分野への応用には問題がなく、半導体のパッシベーション膜、バッファーコート膜、多層集積回路の層間絶縁膜、フレキシブルプリント回路用保護膜等の電子材料用途として有用である。
【0044】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0045】
実施例1
反応容器中にトランス1,4−ジアミノシクロヘキサン(11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド867gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.46g(0.1モル)を徐々に加えた。形成された白色の錯塩溶液をオイルバスにて120℃で5分間激しく撹拌しながら加熱すると、塩の一部が溶解し始め、反応容器をオイルバスからはずして室温で数時間撹拌することにより、透明で粘稠なポリイミド前駆体溶液を得た。得られたポリイミド前駆体の薄膜(約5μm厚)について透過法で測定したIRスペクトルを図1に示す。
【0046】
得られたポリイミド前駆体溶液をガラス基板に塗布し、70℃で1時間乾燥してポリイミド前駆体膜を形成した後、350℃で1時間、熱的にイミド化を行うことにより15μm厚のポリイミド膜を得た。得られたポリイミド膜のIRスペクトルを図2に示す。
【0047】
得られたポリイミド前駆体膜に関し、以下に説明するように、還元粘度及び透明性を評価した。また、ポリイミド膜に関しても、ガラス転移温度、線熱膨張係数及び誘電率について評価した。得られた評価結果を表1に示す。
【0048】
表1から分かるように、実施例1のポリイミドは、透明性が高く、バランスのとれた性能を示していた。
【0049】
還元粘度
オストワルド粘度計を用いて、0.5wt%、30℃において還元粘度を求めた。
【0050】
透明性
分光光度計により200nmから1000nmの可視・紫外線透過率を測定した。透過率が1%以下となる波長(カットオフ波長)を透明性の指標とした。透過率が1%以下となる波長が短い程、透明性が良好であることを意味する。
【0051】
ガラス転移温度
動的粘弾性測定により、周波数0.1Hz、昇温速度5℃/分における損失ピークからガラス転移温度(Tg(℃))を求めた。実用上、ガラス転移温度が300℃より高いことが望まれる。
【0052】
線熱膨張係数
熱機械分析により、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100℃〜200℃の範囲での平均値として線熱膨張係数を求めた。銅箔の熱線膨張係数(18×10-6-1)とほぼ同レベルであることが望まれる。
【0053】
誘電率
ポリイミド膜の膜厚方向の屈折率(n)を測定し、次式により膜厚方向の1kHzにおける誘電率(ε)を算出した。実用上、誘電率ができるだけ低いことが望まれる。
【0054】
【数1】
ε=1.1×n2(1kHz)
【0055】
実施例2
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド360gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末26.46g(0.09モル)とピロメリット酸二無水物2.18g(0.01モル)を徐々に加えた。形成された塩溶液をオイルバスにて150℃で5分間激しく撹拌しながら加熱したところ、塩の一部が溶解し始めたので、反応容器をオイルバスからはずして室温で数時間撹拌することにより、透明で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0056】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、透明性が良好であり、バランスのとれた性能を示すことがわかる。
【0057】
比較例1
反応容器中にパラフェニレンジアミン10.8g(0.1モル)を入れ、N,N−ジメチルアセトアミド362gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.4g(0.1モル)を徐々に加えた。この場合、塩は形成されず、室温で数時間撹拌後、粘稠なポリイミド前駆体溶液が容易に得られた。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0058】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、高いガラス転移温度を示すが、透明性が十分でなく、しかも誘電率が高いことがわかる。これはジアミン成分に芳香族ジアミンを用いたことが原因である。
【0059】
比較例2
反応容器中に4,4′−メチレンビス(シクロヘキシルアミン)21.0g(0.1モル)を入れ、N,N−ジメチルアセトアミド454gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.4g(0.1モル)を徐々に加えた。60℃で数時間撹拌後、粘稠なポリイミド前駆体溶液が容易に得られた。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0060】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、透明性は良好であるものの、ガラス温度及び線熱膨張係数の点で満足のいく物性が得られなかった。これはジアミン成分に屈曲性の脂環族ジアミンを用いたことが原因である。
【0061】
比較例3
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド367gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.4g(0.1モル)を徐々に加えた。60℃で48時間撹拌した後、ポリイミド前駆体溶液が得られたが、粘度の低いものであった。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0062】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、透明性、線熱膨張係数などは実施例1と同等であるが、膜の強度が弱く、わずかな力で亀裂が入った。
【0063】
比較例4
反応容器中に3,3′,4,4′−ビフェニルテトラカルボン酸二無水物29.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド367gに懸濁させた後、撹拌しながらトランス1,4−ジアミノシクロヘキサンの粉末11.4g(0.1モル)を徐々に加えた。室温または60℃で撹拌を数日間続けた結果、透明なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0064】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、実施例1と類似な物性が得られたが、脆弱な膜しか得られなかった。これは酸二無水物を先に溶液に懸濁したため、溶媒中の微量の水分により酸二無水物の一部が加水分解を受けて、低重合度のポリイミド前駆体が生成したためである。
【0065】
比較例5
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド299gに溶解した後、撹拌しながらピロメリット酸二無水物の粉末21.8g(0.1モル)を徐々に加えた。形成された塩溶液をオイルバスにて150℃で加熱したが、塩は全く溶解せず重合が全く進行しなかった。また比較例4の如く、酸二無水物の溶液にジアミンを加えていく方法でも同様に重合しなかった。これは形成された錯塩結合が極めて強固であることが原因である。
【0066】
比較例6
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド392gに溶解した後、撹拌しながら3,3′,4,4′−ベンゾフェノンテトラカルボン酸二無水物の粉末32.2g(0.1モル)を徐々に加えた。形成された塩溶液をオイルバスにて120℃で5分間激しく撹拌しながら加熱したところ、塩の一部が溶解し始めたので、反応容器をオイルバスからはずして室温で数時間撹拌することにより、透明で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0067】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、透明性は良好であるものの、線熱膨張係数、機械的強度の点で満足のいく物性が得られなかった。これは屈曲点を有する酸二無水物成分を用いたことが原因である。
【0068】
比較例7
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド382gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルエーテルテトラカルボン酸二無水物の粉末31.0g(0.1モル)を徐々に加えた。形成された白色の塩溶液をオイルバスにて120℃で5分間激しく撹拌しながら加熱したところ、塩の一部が溶解し始めたので、反応容器をオイルバスからはずして室温で数時間撹拌することにより、透明で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施すことによりポリイミド膜を得た。
【0069】
得られたポリイミド前駆体膜及びポリイミド膜について実施例1と同様に評価し、その評価結果を表1に示す。表1から分かるように、透明性は良好であるが、線熱膨張係数の点で満足のいく物性が得られなかった。これは屈曲点を有する酸二無水物成分を用いたことが原因である。
【0070】
比較例8
反応容器中にトランス1,4−ジアミノシクロヘキサン11.4g(0.1モル)を入れ、N,N−ジメチルアセトアミド367gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.4g(0.1モル)を徐々に加えた。形成された塩溶液をオイルバスにて160℃で8分間激しく撹拌しながら加熱したところ、塩の一部が溶解し始めたので、反応容器をオイルバスからはずして室温で数時間撹拌することにより、透明で粘稠なポリイミド前駆体溶液を得たが、溶液中に析出物が観察された。これは、高温により、部分的にイミド化が進行したためと考えられる。
【0071】
比較例9
反応容器中にパラフェニレンジアミンの水添により得られた1,4−ジアミノシクロヘキサン(シス/トランス混合物)11.46g(0.1モル)を入れ、N,N−ジメチルアセトアミド367gに溶解した後、撹拌しながら3,3′,4,4′−ビフェニルテトラカルボン酸二無水物の粉末29.4g(0.1モル)を徐々に加えた。室温で数時間撹拌することにより、透明なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液に対し、実施例1と同様なイミド化処理を施したが、イミド化の際に膜中に亀裂が生じ、正常なポリイミド膜を得ることができなかった。
【0072】
【表1】
Figure 0003972600
【0073】
実施例3
実施例1で得られたポリイミド前駆体のN,N−ジメチルアセトアミド溶液を15重量%に調整し、その溶液100gに対し、架橋剤として減圧蒸留により重合禁止剤を除去したメタクリル酸N,N−ジメチルアミノエチルエステル11.55g、架橋助剤としてシリカゲルカラムを通して重合禁止剤を除去したメタクリル酸ビニルエステル4.12g、及び光重合開始剤として2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン1.03gを加えて溶解し、60℃で1時間キャストして約20μm膜厚のポリイミド前駆体膜を得た。
【0074】
得られたポリイミド前駆体膜を80℃で10分間プリベイクした後、フォトマスクを介して高圧水銀灯(照射光量24mW/cm)の光を5分間照射し、現像液(N,N−ジメチルアセトアミド/N−メチル2−ピロリドン/水/エタノールの混合液(体積比10/8/1/1))を用いて40℃で10分間現像した。続いて、リンス液(N−メチル2−ピロリドン/水/エタノールの混合液(体積比1/1/8))を用いて20℃でリンス処理をして、深さ20μm、ライン&スペース10μmの鮮明なポリイミド前駆体のレリーフパターンを得た。そのポリイミド前駆体のレリーフパターンを300℃でイミド化することにより、同様のサイズのポリイミドレリーフパターンを得ることができた。
これは、ポリイミド前駆体膜がi線(365nm)に対し90%以上の透過率を示すため、膜の底部にまで十分に架橋反応を生じさせることができたためである。
【0075】
比較例10
比較例1で得られたポリイミド前駆体溶液150gに対し、実施例3と同様に架橋剤と架橋助剤と光重合開始剤とを配合して成膜し、同様な条件で露光、現像、リンスを行ったが、深さ20μmの鮮明なレリーフパターンを得ることができなかった。構成成分の体積比を徐々に変化させた現像液を使用して現像したが、やはり深さ20μmの鮮明なレリーフパターンを得ることができなかった。これは、用いたポリイミド前駆体膜(20μm厚)自体の紫外線に対する透明性が殆どなく(i線に対する透過率が0.1%)、照射した光がポリイミド前駆体膜の内部まで到達しなかったためである。
【0076】
比較例11
比較例3に記載のポリイミド前駆体(還元粘度0.8dl/g)を用い、実施例3記載の方法と同様な方法で感光性樹脂組成物を調製し、同様な操作により現像を行ったところ、現像工程中にポリイミド前駆体膜にクラックが生じ、良好なレリーフパターンを得ることができなかった。これは、用いたポリイミド前駆体の分子量が十分に高くなく、膜強度が低いためであった。
【0077】
【発明の効果】
本発明のポリイミド前駆体によれば、高透明性、高ガラス転移温度、低線熱膨張係数、低誘電率及び十分な強靱さを併せ持つ実用上有益なポリイミドに容易に変換できる。
【図面の簡単な説明】
【図1】実施例1で得られたポリイミド前駆体薄膜のIRスペクトルである。
【図2】実施例1で得られたポリイミド膜薄膜のIRスペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide precursor that can be easily converted into a practically useful polyimide having high transparency, high glass transition temperature, low linear thermal expansion coefficient, low dielectric constant, and sufficient toughness, its production method, and its polyimide The present invention relates to a photosensitive resin composition containing a precursor.
[0002]
[Prior art]
A polyimide precursor (polyamic acid, etc.) having a high degree of polymerization that can be easily obtained by reacting an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride with an aromatic diamine such as diaminodiphenyl ether in an equimolar amount. The wholly aromatic polyimide obtained by curing (imidization) has excellent heat resistance, chemical resistance, radiation resistance, electrical insulation, mechanical properties, etc. Currently widely used as a material.
[0003]
Recently, such a wholly aromatic polyimide has been made photosensitive, and it has been used for a protective film or an interlayer insulating film in a semiconductor element, and further applied to a circuit board or the like. ing. In the latter case, unlike the case of the semiconductor element, a thick film of 10 μm or more is required, but the wholly aromatic polyimide film is remarkably colored due to intramolecular conjugation and charge transfer complex formation, and its precursor Even in the case of the film, the light transmittance from the ultraviolet ray to the visible light region is remarkably low. Therefore, when the film is thicker than 10 μm, it is polyimide for g-line (436 nm) and i-line (365 nm) used for normal pattern processing. There is a problem in that light does not reach the bottom of the film and a precise pattern cannot be formed.
[0004]
Therefore, in order to make the polyimide transparent, the introduction of fluorine atoms into the polyimide molecule (Macromolecules, 24, 5001 (1991)) and the use of an alicyclic compound as the diamine component allows intramolecular conjugation and charge transfer. It has been proposed to prevent complex formation (JP-A-1-53445, JP-A-7-56030, JP-A-9-73172, etc.).
[0005]
[Problems to be solved by the invention]
However, in the case of polyimide introduced with fluorine atoms, the linear thermal expansion coefficient may increase. For example, in the case of a fluorine-containing polyimide comprising 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane and 2,2'-bis (trifluoromethyl) 4,4'-diaminobiphenyl, high transparency Have been reported to achieve a high glass transition temperature (335 ° C.) and a low dielectric constant (2.8), but have a linear thermal expansion coefficient of 50 × 10-6K-1And very high. Therefore, when a polyimide film / metal substrate laminate is produced using this polyimide, the linear thermal expansion coefficient of the metal substrate (for example, 18 × 10 in the case of copper).-6K-13 × 10 for silicon-6K-1) And the linear thermal expansion coefficient of the polyimide film, residual stress is generated, causing peeling and cracks, resulting in a problem of significantly reducing the reliability of the electronic device.
[0006]
Further, in the case of a polyimide using an alicyclic compound as a diamine component, for example, when a highly flexible alicyclic diamine such as 4,4'-methylenebis (cyclohexylamine) is used, the resulting polyimide There is a problem that the molecular orientation and crystallinity of the resin are lowered, causing a decrease in heat resistance and an increase in the coefficient of linear thermal expansion.
[0007]
In addition, when a rigid alicyclic diamine such as trans 1,4-diaminocyclohexane is used, an improvement in transparency can be expected while suppressing a decrease in heat resistance and an increase in linear thermal expansion coefficient. When attempting to polymerize by a normal method, there is a problem that a strong complex salt is formed in the reaction solution and the polymerization reaction does not proceed at all. In this case, salt formation can be avoided to some extent by a charging method opposite to the known method, that is, a method in which acid dianhydride is first dissolved in an amide solvent and diamine is gradually added to the solution. In this method, it is difficult to obtain a polyimide precursor having a desired high degree of polymerization.
[0008]
Thus, the performance required as a photosensitive polyimide for use in circuit board applications (ie, high transparency, high glass transition temperature, low linear thermal expansion coefficient, low dielectric constant, and sufficient strength) The current situation is that there is no satisfactory practical polyimide. And the photosensitive resin composition containing the polyimide precursor which can give such a practical polyimide is not known.
[0009]
The present invention is intended to solve the above-mentioned problems, and it is easy to obtain a practically useful polyimide having both high transparency, high glass transition temperature, low linear thermal expansion coefficient, low dielectric constant, and sufficient toughness. It aims at providing the photosensitive resin composition containing the polyimide precursor which can be converted, its manufacturing method, and the polyimide precursor.
[0010]
[Means for Solving the Problems]
Among the polyimide precursors formed from trans 1,4-diaminocyclohexane that is an aromatic dianhydride and an alicyclic diamine, the present inventors have a reduced viscosity of a predetermined value or more. The inventors have found that the above object can be achieved and have completed the present invention.
[0011]
  That is, the present invention relates to an aromatic dianhydride andDoes not contain cisFormula (1) formed from trans 1,4-diaminocyclohexane
[0012]
[Chemical 2]
Figure 0003972600
[0013]
(In the formula, R is an aromatic residue.)
Having a polymerization structural unit ofThe aromatic dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride;A polyimide precursor having a reduced viscosity of 2.0 dL / g or more is provided.
[0014]
The present invention also relates to a method for producing the polyimide precursor described above, wherein a salt is formed by reacting an aromatic dianhydride and trans 1,4-diaminocyclohexane in a solvent to form a salt. Production of a polyimide precursor characterized by heating a contained reaction liquid to 80 ° C. to 150 ° C. to initiate a polymerization reaction, dissolving at least a part of the salt, and further stirring at room temperature. A method is also provided.
[0015]
Furthermore, this invention also provides the polyimide obtained by heating and imidating the above-mentioned polyimide precursor.
[0016]
Moreover, this invention provides the photosensitive resin composition containing a crosslinking agent and a photoinitiator in addition to this polyimide precursor.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0018]
The polyimide precursor of the present invention has the formula (1) formed from aromatic dianhydride and trans 1,4-diaminocyclohexane.
[0019]
[Chemical 3]
Figure 0003972600
[0020]
(In the formula, R is an aromatic residue (for example, biphenyl residue, benzene residue)), but has a reduced viscosity of 2.0 dL / g, which is an indicator of the degree of polymerization. It is necessary to show the above. This is because when polyimide is used for electronic material applications, the polyimide film is required to be sufficiently strong, but in order to meet this requirement, the degree of polymerization of the polyimide precursor must be extremely high. Below this value, the toughness is insufficient for electronic materials.
[0021]
The reduced viscosity is a value measured using an Ostwald viscometer under the condition of 0.5 wt% at 30 ° C.
[0022]
The trans 1,4-diaminocyclohexane constituting the polyimide precursor of the present invention is usually obtained by hydrogenating paraphenylenediamine as disclosed in Japanese Patent Publication No. 51-48198. A mixture of trans and cis forms shown
[0023]
[Formula 4]
Figure 0003972600
[0024]
Can be used. When this is used for polymerization as it is, the polymerization proceeds without problems under known reaction conditions. However, the rigidity of the polyimide molecular chain decreases due to the presence of the cis isomer, resulting in decreased heat resistance and increased linear thermal expansion coefficient. There is a tendency to occur. Therefore, in the present invention, as described below, trans 1,4-diaminocyclohexane that does not decrease the rigidity of the polyimide molecular chain and can give a polyimide precursor having a high degree of polymerization by the production method of the present invention. It is particularly preferable to use one in which the three-dimensional structures of the two amino substituents are both in an equatorial configuration.
[0025]
  As aromatic dianhydride3, 3 ', 4,4'-biphenyltetracarboxylic dianhydrideuseUseBut, May be used in combination with pyromellitic dianhydride. In this case, it is desirable that pyromellitic dianhydride be 30 mol% or less. If it exceeds 30 mol%, strong salt formation may occur and polymerization may not proceed.
[0026]
Polymerization of the polyimide precursor of the present invention does not proceed in a known polyimide precursor production method (a method in which a reactor is ice-cooled to remove reaction heat or polymerization is performed at a low temperature of room temperature to about 60 ° C.). Or a polymer having a low viscosity can be obtained, and it is produced as described below.
[0027]
Namely, in an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, aromatic dianhydride and trans 1,4-diaminocyclohexane To form a salt, and the resulting salt-containing reaction liquid is heated, for example, on an oil bath at 80 ° C. to 150 ° C. for several tens of seconds to several minutes to initiate the polymerization reaction, and at least some of the salts Then, the oil bath is removed and the polymerization reaction is continued by further stirring at room temperature (about 15 to 35 ° C.) for several hours. Thereby, a polyimide precursor having a high degree of polymerization having a reduced viscosity of 2.0 dL / g or more is obtained. For example, in the reaction of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and trans 1,4-diaminocyclohexane, by heating at 120 ° C. for several minutes, a long period at −20 ° C. to 5 ° C. A highly polymerized polyimide precursor solution having a reduced viscosity of 2.5 dL / g and an imidization rate of 10% or less, in which no precipitate is formed even during storage, is obtained.
[0028]
It should be noted that if the heating temperature or heating time deviates significantly from the above range, imidization proceeds further, resulting in the formation of precipitates and a decrease in molecular weight.
[0029]
In addition, in the conventional method for producing a polyimide precursor, for example, polyamic acid, it is known to add metal salts such as lithium bromide and lithium chloride to the polymerization system in order to promote polymerization of polyamic acid which is difficult to synthesize. However, in such a method, since metal ions remain in the formed polyimide film, the reliability of the finally obtained electronic device is lowered. On the other hand, in the method for producing a polyimide precursor in the present invention, polymerization is accelerated by heating, so that the formed polyimide film does not contain metal ions or the like, and the reliability of the finally obtained electronic device is improved.
[0030]
The polyimide precursor of the present invention is applied onto a substrate such as a circuit board, dried in a temperature range of 50 ° C. to 150 ° C., and further heat treated and cured at a temperature of 200 ° C. to 400 ° C., preferably 300 ° C. to 400 ° C. By imidization, a film-like polyimide is obtained. The imidation reaction can also be performed by chemically reacting a polyimide precursor with a dehydrating reagent.
[0031]
In addition, when forming a polyimide from the polyimide precursor of the present invention, if it is within the range that does not impair the effects of the present invention, a small amount of other polyimide precursors or other monomer components are added to the polyimide precursor of the present invention. Moreover, you may mix additives, such as an oxidation stabilizer, an inorganic filler, a silane coupling agent, a photosensitive agent, a photoinitiator, and a sensitizer, as needed.
[0032]
For example, a photosensitive resin composition can be obtained by blending the polyimide precursor of the present invention with a crosslinking agent and a photopolymerization initiator and, if necessary, a crosslinking aid or solvent. Since the resin film formed thick from this photosensitive resin composition by the cast method or the like contains the polyimide precursor of the present invention having excellent transparency with i-line (365 nm) transmittance of about 90%, The exposure light such as reaches sufficiently to the bottom of the resin film. Therefore, the cross-linking reaction of the entire exposed resin film can be sufficiently advanced. For this reason, this resin film can give a resin pattern faithful to the fine photomask pattern used. For example, a fine relief pattern having a depth of 20 μm and a line and space of 10 μm can be formed. Moreover, the photosensitive resin composition of this invention can be utilized as a thick film ultraviolet curable electronic circuit protective layer.
[0033]
  Photosensitive resin composition of the present inventionInExamples of crosslinking agents that can be used in the present invention include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, diethylaminopropyl methacrylate, N, N-dimethylaminoethyl methacrylamide, N, N-dimethylaminopropyl methacrylamide, N, N-diethylamino. Ethyl methacrylamide, N, N-diethylaminopropyl methacrylamide, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, dimethylaminopropyl acrylate, N, N-dimethylaminoethyl acrylamide, N, N-dimethylaminopropyl acrylamide, N, N-diethylaminoethyl acrylamide, N, N-diethylaminopropyl acrylamide, etc. can be mentioned. These can be used individually or in mixture of 2 or more types. Among these, tertiary amine compounds having an acroyl group or a methacryloyl group can be preferably used. Specific examples of such tertiary amine compounds include methacrylic acid N, N-dimethylaminoethyl ester.
[0034]
If the blending ratio of the crosslinking agent in the photosensitive resin composition of the present invention is too small, a clear relief pattern cannot be obtained, and if it is too large, there is a possibility of deteriorating the properties of the polyimide film after thermosetting. Preferably it is 10-100 weight part with respect to 100 weight part of a body, More preferably, it is 50-80 weight part.
[0035]
As the photopolymerization initiator, various compounds that are used as photopolymerization initiators for curing resins and paints using general ultraviolet rays can be used. For example, 2,2'-dimethoxy-2-phenylacetophenone (also known as benzylmethyl ketal), 2,2'-bis (o-chlorophenyl) -4,4'-5,5'-tetraphenyl-1,2 ' -Biimidazole, 4-phenoxychloroacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone, benzoin, Examples thereof include benzoin methyl ketal, benzophenone, 4-phenylbendphenone, thioxanthone, 2,4-dimethyltyloxanthone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone and the like. These can be used individually or in mixture of 2 or more types.
[0036]
If the blending ratio of the photopolymerization initiator in the photosensitive resin composition of the present invention is too small, a clear relief pattern cannot be obtained, and if it is too large, the penetration of irradiation light into the film is prevented, and the characteristics of the polyimide film are further deteriorated. Therefore, the amount is preferably 0.5 to 10 parts by weight, more preferably 2 to 8 parts by weight with respect to 100 parts by weight of the polyimide precursor.
[0037]
Examples of the crosslinking aid include vinyl compounds and divinyl compounds. Specific examples of the vinyl compound include 2-hydroxyethyl methacrylate. Specific examples of the divinyl compound include methacrylic acid vinyl ester, adipic acid divinyl ester, ethylene glycol dimethacrylate, and the like. Of these, vinyl methacrylate is particularly preferred from the viewpoint of the transparency of the cast film.
[0038]
Since the blending ratio of the crosslinking aid in the photosensitive resin composition of the present invention is too small, no serious problem arises, but there is a possibility that the characteristics of the polyimide film may be deteriorated. Therefore, with respect to 100 parts by weight of the polyimide precursor, Preferably it is 10-100 weight part, More preferably, it is 10-50 weight part.
[0039]
For the photosensitive resin composition of the present invention, a photocrosslinking aid such as a bisazide compound that forms nitrene by a photoreaction and can be cross-linked by an insertion reaction in a double bond, as long as the light transmittance is not impaired. It can also be added. Specific examples of the bisazide compound include 2,6-bis (4-azidobenzylidene) cyclohexanone, bis (4-azidophenyl) methane, bis (4-azidonyl) oxide, bis (4-azidonyl) sulfone, bis (4- Azidonyl) ethylene, 2,6-bis (azidobenzylidene) -4-methylcyclohexanone, and the like.
[0040]
As a solvent that can be used in the photosensitive resin composition of the present invention, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl 2-pyrrolidone and the like can be used. The amount used can be appropriately determined according to the coating method and intended use of the photosensitive resin composition.
[0041]
The photosensitive resin composition of the present invention is produced by adding a crosslinking agent and a photopolymerization initiator to the polyimide precursor of the present invention and, if necessary, a crosslinking aid and a solvent, and mixing them uniformly by a conventional method. be able to.
[0042]
A method for producing a resin pattern from the photosensitive resin composition of the present invention will be described. That is, first, a photosensitive resin composition was applied on a substrate by a casting method, etc., dried to form a resin film mainly composed of a polyimide precursor, and then prebaked at a temperature of 80 to 120 ° C. Then, it exposes by irradiating an ultraviolet-ray through a photomask. Then, development is performed with a developer (for example, a mixed solution of N, N-dimethylacetamide / N-methyl 2-pyrrolidone / water / ethanol), the resin film in the unexposed area is removed, and finally imidization is performed to obtain a polyimide pattern. Get.
[0043]
As described above, since the polyimide obtained from the polyimide precursor or photosensitive resin composition of the present invention has an alicyclic structure, it is inferior in long-term thermal stability compared to wholly aromatic polyimide not containing this, but glass Transition temperature is 300 ° C or higher, short-term heat resistance such as solder resistance is sufficiently high, there is no problem for application to the above industrial fields, semiconductor passivation film, buffer coat film, multilayer insulating film interlayer insulation film, flexible It is useful as an electronic material application such as a protective film for a printed circuit.
[0044]
【Example】
Hereinafter, the present invention will be specifically described by way of examples.
[0045]
Example 1
Trans 1,4-diaminocyclohexane (11.4 g (0.1 mol)) was placed in a reaction vessel, dissolved in 867 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyl. 29.46 g (0.1 mol) of tetracarboxylic dianhydride powder was gradually added, and the white complex salt solution formed was heated in an oil bath at 120 ° C. with vigorous stirring for 5 minutes to give a salt. The reaction vessel was removed from the oil bath and stirred at room temperature for several hours to obtain a transparent and viscous polyimide precursor solution.About the resulting polyimide precursor thin film (about 5 μm thick) The IR spectrum measured by the transmission method is shown in FIG.
[0046]
The obtained polyimide precursor solution was applied to a glass substrate, dried at 70 ° C. for 1 hour to form a polyimide precursor film, and then thermally imidized at 350 ° C. for 1 hour to obtain a 15 μm thick polyimide. A membrane was obtained. The IR spectrum of the obtained polyimide film is shown in FIG.
[0047]
With respect to the obtained polyimide precursor film, reduced viscosity and transparency were evaluated as described below. In addition, the polyimide film was also evaluated for glass transition temperature, linear thermal expansion coefficient, and dielectric constant. The obtained evaluation results are shown in Table 1.
[0048]
As can be seen from Table 1, the polyimide of Example 1 was highly transparent and exhibited a balanced performance.
[0049]
Reduced viscosity
Using an Ostwald viscometer, the reduced viscosity was determined at 0.5 wt% and 30 ° C.
[0050]
transparency
Visible / ultraviolet transmittance from 200 nm to 1000 nm was measured with a spectrophotometer. The wavelength (cutoff wavelength) at which the transmittance was 1% or less was used as an index of transparency. The shorter the wavelength at which the transmittance is 1% or less, the better the transparency.
[0051]
Glass-transition temperature
The glass transition temperature (Tg (° C.)) was determined from the loss peak at a frequency of 0.1 Hz and a temperature increase rate of 5 ° C./min by dynamic viscoelasticity measurement. In practice, the glass transition temperature is desired to be higher than 300 ° C.
[0052]
Linear thermal expansion coefficient
The linear thermal expansion coefficient was determined as an average value in the range of 100 ° C. to 200 ° C. from the elongation of the test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min by thermomechanical analysis. Thermal expansion coefficient of copper foil (18 × 10-6K-1) Is almost the same level.
[0053]
Dielectric constant
The refractive index (n) in the film thickness direction of the polyimide film was measured, and the dielectric constant (ε) at 1 kHz in the film thickness direction was calculated by the following formula. In practice, it is desirable that the dielectric constant be as low as possible.
[0054]
[Expression 1]
ε = 1.1 × n2(1 kHz)
[0055]
Example 2
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was put in a reaction vessel, dissolved in 360 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyltetra. Carboxylic dianhydride powder 26.46 g (0.09 mol) and pyromellitic dianhydride 2.18 g (0.01 mol) were gradually added. When the formed salt solution was heated in an oil bath at 150 ° C. with vigorous stirring for 5 minutes, a part of the salt began to dissolve, so the reaction vessel was removed from the oil bath and stirred at room temperature for several hours. A transparent and viscous polyimide precursor solution was obtained. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0056]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, it can be seen that the transparency is good and the performance is balanced.
[0057]
Comparative Example 1
10.8 g (0.1 mol) of paraphenylenediamine was put in a reaction vessel, dissolved in 362 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. 29.4 g (0.1 mol) of the product powder was gradually added. In this case, no salt was formed, and a viscous polyimide precursor solution was easily obtained after stirring for several hours at room temperature. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0058]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, the glass transition temperature is high, but the transparency is not sufficient and the dielectric constant is high. This is because aromatic diamine is used for the diamine component.
[0059]
Comparative Example 2
In a reaction vessel, 21.0 g (0.1 mol) of 4,4′-methylenebis (cyclohexylamine) was added and dissolved in 454 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4 ′. -29.4 g (0.1 mol) of biphenyltetracarboxylic dianhydride powder was gradually added. After stirring for several hours at 60 ° C., a viscous polyimide precursor solution was easily obtained. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0060]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, although the transparency was good, satisfactory physical properties were not obtained in terms of glass temperature and linear thermal expansion coefficient. This is because a flexible alicyclic diamine is used as the diamine component.
[0061]
Comparative Example 3
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was placed in a reaction vessel, dissolved in 367 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyltetra. 29.4 g (0.1 mol) of carboxylic dianhydride powder was gradually added. After stirring at 60 ° C. for 48 hours, a polyimide precursor solution was obtained, but the viscosity was low. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0062]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, the transparency, the linear thermal expansion coefficient, and the like are the same as those in Example 1, but the strength of the film was weak and cracking occurred with a slight force.
[0063]
Comparative Example 4
Into a reaction vessel, 29.4 g (0.1 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was placed, suspended in 367 g of N, N-dimethylacetamide, and stirred. 11.4 g (0.1 mol) of powder of trans 1,4-diaminocyclohexane was gradually added. As a result of continuing stirring at room temperature or 60 ° C. for several days, a transparent polyimide precursor solution was obtained. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0064]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, physical properties similar to those of Example 1 were obtained, but only a fragile film was obtained. This is because the acid dianhydride was previously suspended in the solution, so that a part of the acid dianhydride was hydrolyzed by a small amount of water in the solvent, and a polyimide precursor having a low polymerization degree was generated.
[0065]
Comparative Example 5
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was put in a reaction vessel, dissolved in 299 g of N, N-dimethylacetamide, and then 21.8 g of pyromellitic dianhydride powder with stirring ( 0.1 mol) was added slowly. The formed salt solution was heated in an oil bath at 150 ° C., but the salt did not dissolve at all and the polymerization did not proceed at all. Similarly, as in Comparative Example 4, polymerization was not carried out in the same manner by adding diamine to the acid dianhydride solution. This is because the formed complex salt bond is extremely strong.
[0066]
Comparative Example 6
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was placed in a reaction vessel, dissolved in 392 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-benzophenone tetra. 32.2 g (0.1 mol) of carboxylic dianhydride powder was gradually added. When the formed salt solution was heated in an oil bath at 120 ° C. with vigorous stirring for 5 minutes, a part of the salt began to dissolve, so the reaction vessel was removed from the oil bath and stirred at room temperature for several hours. A transparent and viscous polyimide precursor solution was obtained. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0067]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, although transparency was good, satisfactory physical properties were not obtained in terms of linear thermal expansion coefficient and mechanical strength. This is because an acid dianhydride component having a bending point is used.
[0068]
Comparative Example 7
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was placed in a reaction vessel, dissolved in 382 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyl ether. Tetracarboxylic dianhydride powder (31.0 g, 0.1 mol) was gradually added. When the formed white salt solution was heated in an oil bath at 120 ° C. with vigorous stirring for 5 minutes, a part of the salt began to dissolve, so the reaction vessel was removed from the oil bath and stirred at room temperature for several hours. As a result, a transparent and viscous polyimide precursor solution was obtained. A polyimide film was obtained by subjecting this polyimide precursor solution to an imidization treatment similar to that in Example 1.
[0069]
The obtained polyimide precursor film and polyimide film were evaluated in the same manner as in Example 1, and the evaluation results are shown in Table 1. As can be seen from Table 1, the transparency was good, but satisfactory physical properties were not obtained in terms of linear thermal expansion coefficient. This is because an acid dianhydride component having a bending point is used.
[0070]
Comparative Example 8
11.4 g (0.1 mol) of trans 1,4-diaminocyclohexane was placed in a reaction vessel, dissolved in 367 g of N, N-dimethylacetamide, and then stirred with 3,3 ′, 4,4′-biphenyltetra. 29.4 g (0.1 mol) of carboxylic dianhydride powder was gradually added. When the formed salt solution was heated in an oil bath at 160 ° C. with vigorous stirring for 8 minutes, a part of the salt began to dissolve, so the reaction vessel was removed from the oil bath and stirred at room temperature for several hours. A clear and viscous polyimide precursor solution was obtained, but precipitates were observed in the solution. This is probably because imidization partially progressed due to high temperature.
[0071]
Comparative Example 9
After putting 11.46 g (0.1 mol) of 1,4-diaminocyclohexane (cis / trans mixture) obtained by hydrogenation of paraphenylenediamine into a reaction vessel and dissolving in 367 g of N, N-dimethylacetamide, With stirring, 29.4 g (0.1 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride powder was gradually added. By stirring at room temperature for several hours, a transparent polyimide precursor solution was obtained. The polyimide precursor solution was imidized in the same manner as in Example 1. However, a crack occurred in the film during imidation, and a normal polyimide film could not be obtained.
[0072]
[Table 1]
Figure 0003972600
[0073]
Example 3
The N, N-dimethylacetamide solution of the polyimide precursor obtained in Example 1 was adjusted to 15% by weight, and methacrylic acid N, N- from which the polymerization inhibitor was removed by distillation under reduced pressure as a crosslinking agent with respect to 100 g of the solution. 11.55 g of dimethylaminoethyl ester, 4.12 g of vinyl methacrylate from which the polymerization inhibitor was removed through a silica gel column as a crosslinking aid, and 2-benzyl-2-dimethylamino-1- (4-morpholine as a photopolymerization initiator Linophenyl) -butanone (1.03 g) was added and dissolved, and cast at 60 ° C. for 1 hour to obtain a polyimide precursor film having a thickness of about 20 μm.
[0074]
The obtained polyimide precursor film was pre-baked at 80 ° C. for 10 minutes, and then passed through a photomask and a high-pressure mercury lamp (irradiation light amount: 24 mW / cm2) For 5 minutes, and using a developer (N, N-dimethylacetamide / N-methyl-2-pyrrolidone / water / ethanol mixture (volume ratio 10/8/1/1)) at 40 ° C. Developed for 10 minutes. Subsequently, rinsing was performed at 20 ° C. using a rinsing liquid (N-methyl 2-pyrrolidone / water / ethanol mixture (volume ratio 1/1/8)), and the depth was 20 μm, and the line and space was 10 μm. A clear polyimide precursor relief pattern was obtained. By imidizing the relief pattern of the polyimide precursor at 300 ° C., a polyimide relief pattern having the same size could be obtained.
This is because the polyimide precursor film exhibits a transmittance of 90% or more with respect to i-line (365 nm), and thus the crosslinking reaction can be sufficiently caused to the bottom of the film.
[0075]
Comparative Example 10
150 g of the polyimide precursor solution obtained in Comparative Example 1 was blended with a crosslinking agent, a crosslinking assistant, and a photopolymerization initiator in the same manner as in Example 3, and exposed, developed, and rinsed under the same conditions. However, a clear relief pattern having a depth of 20 μm could not be obtained. Development was performed using a developing solution in which the volume ratios of the constituent components were gradually changed, but a clear relief pattern having a depth of 20 μm could not be obtained. This is because the polyimide precursor film used (20 μm thick) itself has little transparency to ultraviolet rays (i-line transmittance is 0.1%), and the irradiated light did not reach the inside of the polyimide precursor film. It is.
[0076]
Comparative Example 11
A photosensitive resin composition was prepared in the same manner as in Example 3 using the polyimide precursor described in Comparative Example 3 (reduced viscosity 0.8 dl / g), and developed by the same operation. The polyimide precursor film was cracked during the developing process, and a good relief pattern could not be obtained. This was because the molecular weight of the polyimide precursor used was not sufficiently high and the film strength was low.
[0077]
【The invention's effect】
According to the polyimide precursor of the present invention, it can be easily converted into a practically useful polyimide having high transparency, high glass transition temperature, low linear thermal expansion coefficient, low dielectric constant and sufficient toughness.
[Brief description of the drawings]
1 is an IR spectrum of a polyimide precursor thin film obtained in Example 1. FIG.
2 is an IR spectrum of the polyimide film thin film obtained in Example 1. FIG.

Claims (10)

芳香族酸二無水物とシス体を含まないトランス1,4−ジアミノシクロヘキサンとから形成される式(1)
Figure 0003972600
(式中、Rは芳香族残基である。)
の重合構造単位を有し、該芳香族酸二無水物が3,3′,4,4′−ビフェニルテトラカルボン酸二無水物であり、還元粘度が2.0dL/g以上であるポリイミド前駆体。
Formula (1) formed from aromatic dianhydride and cis-free trans 1,4-diaminocyclohexane
Figure 0003972600
(In the formula, R is an aromatic residue.)
Polyimide precursor having the following structural unit: the aromatic dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and the reduced viscosity is 2.0 dL / g or more .
トランス1,4−ジアミノシクロヘキサンの二つのアミノ置換基の立体構造が共にエクアトリアル配置である請求項1記載のポリイミド前駆体。The polyimide precursor according to claim 1, wherein the three-dimensional structure of the two amino substituents, trans 1,4-diaminocyclohexane are both equatorial configuration. 該芳香族酸二無水物が、更に、ピロメリット酸二無水物を含有する請求項1又は2記載のポリイミド前駆体。  The polyimide precursor according to claim 1 or 2, wherein the aromatic dianhydride further contains pyromellitic dianhydride. 溶媒中で、トランス1,4−ジアミノシクロヘキサンと芳香族酸二無水物として3,3′,4,4′−ビフェニルテトラカルボン酸二無水物とを反応させて塩を形成し、得られた塩含有反応液を80℃〜150℃に加熱して重合反応を開始させ、少なくとも一部の塩を溶解させた後、更に室温で撹拌することにより重合反応させることを特徴とする請求項1記載のポリイミド前駆体の製造方法。The salt obtained by reacting trans 1,4-diaminocyclohexane with 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an aromatic dianhydride in a solvent to form a salt. heating the contained reaction solution 80 ° C. to 150 DEG ° C. to initiate the polymerization reaction, after dissolving at least a portion of the salt, according to claim 1, further characterized in that the polymerization reaction by stirring at room temperature A method for producing a polyimide precursor. 芳香族酸二無水物とシス体を含まないトランス1,4−ジアミノシクロヘキサンとから形成される式(1)
Figure 0003972600
(式中、Rは芳香族残基である。)
の重合構造単位を有し、該芳香族酸二無水物が3,3′,4,4′−ビフェニルテトラカルボン酸二無水物であり、還元粘度が2.0dL/g以上であるポリイミド前駆体を加熱してイミド化することにより得られるポリイミド。
Formula (1) formed from aromatic dianhydride and cis-free trans 1,4-diaminocyclohexane
Figure 0003972600
(In the formula, R is an aromatic residue.)
Polyimide precursor having the following structural unit: the aromatic dianhydride is 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and the reduced viscosity is 2.0 dL / g or more the, obtained by imidization by heating the polyimide.
請求項1又は2記載のポリイミド前駆体、架橋剤及び光重合開始剤を含有する感光性樹脂組成物。The photosensitive resin composition containing the polyimide precursor of Claim 1 or 2 , a crosslinking agent, and a photoinitiator. ポリイミド前駆体100重量部に対し、架橋剤10〜100重量部と、光重合開始剤0.5〜10重量部とを含有する請求項6記載の感光性樹脂組成物。  The photosensitive resin composition of Claim 6 containing 10-100 weight part of crosslinking agents and 0.5-10 weight part of photoinitiators with respect to 100 weight part of polyimide precursors. 架橋剤がアクリロイル基又はメタクリロイル基を有する第三級アミン化合物である請求項6又は7記載の感光性樹脂組成物。  The photosensitive resin composition according to claim 6 or 7, wherein the crosslinking agent is a tertiary amine compound having an acryloyl group or a methacryloyl group. 更に、架橋助剤を含有する請求項6〜8のいずれかに記載の感光性樹脂組成物。  Furthermore, the photosensitive resin composition in any one of Claims 6-8 containing a crosslinking adjuvant. 更に、ポリイミド前駆体100重量部に対し架橋助剤10〜100重量部含有する請求項9記載の感光性樹脂組成物。  Furthermore, the photosensitive resin composition of Claim 9 which contains 10-100 weight part of crosslinking adjuvant with respect to 100 weight part of polyimide precursors.
JP2001134324A 2000-09-14 2001-05-01 Polyimide precursor, method for producing the same, and photosensitive resin composition Expired - Lifetime JP3972600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134324A JP3972600B2 (en) 2000-09-14 2001-05-01 Polyimide precursor, method for producing the same, and photosensitive resin composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000280916 2000-09-14
JP2000-280916 2000-09-14
JP2001134324A JP3972600B2 (en) 2000-09-14 2001-05-01 Polyimide precursor, method for producing the same, and photosensitive resin composition

Publications (2)

Publication Number Publication Date
JP2002161136A JP2002161136A (en) 2002-06-04
JP3972600B2 true JP3972600B2 (en) 2007-09-05

Family

ID=26600069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134324A Expired - Lifetime JP3972600B2 (en) 2000-09-14 2001-05-01 Polyimide precursor, method for producing the same, and photosensitive resin composition

Country Status (1)

Country Link
JP (1) JP3972600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602069A (en) * 2011-01-19 2012-07-25 佳能株式会社 Optical member and method of producing the same
US9145473B2 (en) 2010-02-26 2015-09-29 Canon Kabushiki Kaisha Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047367A1 (en) * 2003-11-13 2005-05-26 Sony Chemicals Corp. Polyimide precursor, method for producing polyimide precursor, method for producing polyimide precursor solution in organic solvent, method for producing cast film, and method for producing polyimide film
JP4620946B2 (en) * 2003-11-13 2011-01-26 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing polyimide precursor, method for producing polyimide precursor organic solvent solution, method for producing polyimide film, polyimide precursor, method for producing polyimide
JP5040059B2 (en) * 2003-11-13 2012-10-03 新日本理化株式会社 Polyimide precursor, polyimide and method for producing them
JP4538216B2 (en) * 2003-11-13 2010-09-08 ソニーケミカル&インフォメーションデバイス株式会社 A polyimide precursor, a polyimide precursor manufacturing method, a polyimide precursor organic solvent solution manufacturing method, a cast film manufacturing method, and a polyimide film manufacturing method.
JP4811553B2 (en) * 2004-08-31 2011-11-09 ソニーケミカル&インフォメーションデバイス株式会社 Poly (imide-azomethine) copolymer, poly (amidic acid-azomethine) copolymer, and positive photosensitive resin composition
JP2006071783A (en) * 2004-08-31 2006-03-16 Hitachi Chem Co Ltd Photosensitive resin composition and method for producing fine pattern using the same
JP2006323193A (en) * 2005-05-19 2006-11-30 Kaneka Corp Photosensitive resin composition and its use
JP4858678B2 (en) 2005-05-24 2012-01-18 ソニーケミカル&インフォメーションデバイス株式会社 Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
US7635551B2 (en) 2005-07-27 2009-12-22 Sony Corporation Poly (imide-azomethine) copolymer, poly (amic acid-azomethine) copolymer, and positive photosensitive resin composition
CA2655025C (en) * 2006-06-09 2014-11-18 Dentsply International Inc. Photopolymerizable compositions featuring novel amine accelerator for improved color stability and reduced polymerization stress thereby
JP2008093930A (en) * 2006-10-11 2008-04-24 Toyobo Co Ltd Transparent electrically conductive polyimide film
US8222365B2 (en) 2006-12-12 2012-07-17 Toyo Boseki Kabushiki Kaisha Polyamideimide resin, as well as a colorless and transparent flexible metal-clad laminate and circuit board obtained therefrom
WO2009107429A1 (en) 2008-02-25 2009-09-03 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor composition, polyimide film and transparent flexible film
WO2010100874A1 (en) * 2009-03-04 2010-09-10 三井化学株式会社 Polyamic acid and polyimide, processes for the production of same, compositions containing same, and uses thereof
CN102369233B (en) * 2009-03-31 2013-10-16 三井化学株式会社 Low-thermal-expansion block polyimide, precursor thereof, and use thereof
CN110105572A (en) 2010-07-22 2019-08-09 宇部兴产株式会社 Material used in polyimide precursor, polyimides and its preparation
WO2013024820A1 (en) 2011-08-12 2013-02-21 宇部興産株式会社 Polyimide precursor, polyimide, polyimide film, and method for manufacturing triazine compound used for manufacturing same
KR102044260B1 (en) 2011-10-05 2019-11-13 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 Highly transparent polyimide
JP5845911B2 (en) 2012-01-13 2016-01-20 宇部興産株式会社 Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
JP5695276B2 (en) * 2012-07-02 2015-04-01 株式会社カネカ Use of polyamic acid, polyimide, polyamic acid solution, and polyimide
EP2708569B1 (en) * 2012-09-12 2018-05-23 Ems-Patent Ag Transparent polyamide-imides
KR20190095556A (en) 2012-09-19 2019-08-14 혼슈우 카가쿠고교 가부시키가이샤 Polyimide and molded body thereof
KR101752079B1 (en) 2013-04-25 2017-06-28 미쓰이 가가쿠 가부시키가이샤 Block polyimide, block polyamide acid imide and use thereof
US9850346B2 (en) 2013-05-14 2017-12-26 Mitsui Chemicals, Inc. Transparent polyimide and precursor thereof
CN104395375B (en) 2013-06-26 2017-04-05 东丽株式会社 Polyimide precursor, polyimides, the flexible base board for having used them, color filter and its manufacture method and flexible display device
JP2016122101A (en) * 2014-12-25 2016-07-07 東レ株式会社 Black matrix substrate, color filter substrate, organic el display, and method for producing the same
KR102339091B1 (en) 2016-05-20 2021-12-15 에스케이이노베이션 주식회사 Polyamic acid composition, polyamideimide film thereof and method for preparing the polyamindeimide film
US10316145B2 (en) 2016-05-20 2019-06-11 Sk Innovation Co., Ltd. Polyamic acid composition, polyamideimide film thereof and method for preparing polyamideimide film
US10370495B2 (en) 2016-08-11 2019-08-06 Sk Innovation Co., Ltd. Polyamic acid resin, polyamideimide film, and method for preparing the same
KR102385244B1 (en) 2016-08-11 2022-04-12 에스케이이노베이션 주식회사 Polyamic acid resin and polyamideimide film
US10370496B2 (en) 2016-08-11 2019-08-06 Sk Innovation Co., Ltd. Polyamic acid resin and polyamideimide film
KR102385237B1 (en) 2016-08-11 2022-04-12 에스케이이노베이션 주식회사 Polyamic acid resin, polyamideimide film and method for preparing the same
CN110382626B (en) 2017-03-22 2021-12-07 东丽株式会社 Resin composition
JP7126311B2 (en) 2017-05-11 2022-08-26 株式会社カネカ Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR102386217B1 (en) 2017-09-12 2022-04-13 에스케이이노베이션 주식회사 Polyamic acid resin and polyamideimde film
KR102452136B1 (en) * 2018-12-20 2022-10-07 코오롱인더스트리 주식회사 Polyamic acid, Polyimide and Polyimide Film
CN113613904A (en) 2019-03-20 2021-11-05 株式会社钟化 Polyamic acid composition and method for producing same, polyamic acid solution, polyimide film, laminate and method for producing same, and flexible device and method for producing same
WO2023182071A1 (en) * 2022-03-23 2023-09-28 東レ株式会社 Resin composition, cured product, electronic component, and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219719A (en) * 1988-02-26 1989-09-01 Hitachi Chem Co Ltd Liquid crystal orientation film and liquid crystal display element
JPH0756030A (en) * 1993-08-19 1995-03-03 Fujitsu Ltd Plastic optical waveguide
JPH0973172A (en) * 1995-09-06 1997-03-18 Toray Ind Inc Chemical ray-sensitive polymer composition
JPH11209470A (en) * 1998-01-30 1999-08-03 Hitachi Chem Co Ltd Production of polyimide resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145473B2 (en) 2010-02-26 2015-09-29 Canon Kabushiki Kaisha Optical member, polyimide, method for manufacturing optical member, and method for producing polyimide
CN102602069A (en) * 2011-01-19 2012-07-25 佳能株式会社 Optical member and method of producing the same
US8980401B2 (en) 2011-01-19 2015-03-17 Canon Kabushiki Kaisha Optical member and method of producing the same
CN102602069B (en) * 2011-01-19 2015-08-12 佳能株式会社 Optics and preparation method thereof

Also Published As

Publication number Publication date
JP2002161136A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3972600B2 (en) Polyimide precursor, method for producing the same, and photosensitive resin composition
JP6172139B2 (en) Resin composition, polyimide resin film using the same, display substrate and method for producing the same
JP4663720B2 (en) Positive photosensitive resin composition and pattern forming method
US20080103275A1 (en) Negative photosensitive polyimide polymer and uses thereof
WO2004086146A1 (en) Transparent, highly heat-resistant polyimide precursor and photosensitive polyimide composition thereof
JP4199294B2 (en) Photosensitive resin composition and circuit board using the same
JP5931286B2 (en) Transparent polyimide and its precursor
JP5543811B2 (en) Negative photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP2010155987A (en) Precursor composition for polyimide and use thereof
JPWO2015125469A1 (en) Resin composition, cured film and pattern cured film formed thereby, and method for producing the same
JP6637480B2 (en) Polyimide precursor composition and use thereof
WO2019044874A1 (en) Photosensitive resin composition
JP6164070B2 (en) POLYIMIDE PRECURSOR, RESIN COMPOSITION CONTAINING THE POLYIMIDE PRECURSOR, METHOD FOR PRODUCING PATTERN CURED FILM USING SAME, AND SEMICONDUCTOR DEVICE
KR100291376B1 (en) Photosensitive resin composition
JP2005336243A (en) Highly transparent poly(amic acid-imide) copolymer and positive-type photosensitive resin composition containing the same, and cured film of the composition
JP6427383B2 (en) Resin composition, method of producing cured relief pattern, and semiconductor device
JP5121115B2 (en) Method for producing cured film and method for producing electronic device
JP4592999B2 (en) Novel terminal-modified polyamic acid and photosensitive resin composition containing the same
JP5100716B2 (en) Negative photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP2017021113A (en) Photosensitive resin composition, production method of cured relief pattern, and semiconductor device
JP2962103B2 (en) Photosensitive polyimide precursor composition for i-line
JP5459590B2 (en) Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
TWI534204B (en) Modified polymer and composition employing the same
JP2006071783A (en) Photosensitive resin composition and method for producing fine pattern using the same
CN112142974B (en) Chain extender for improving elongation of photosensitive polyimide and formulation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3972600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term