JP2006071783A - Photosensitive resin composition and method for producing fine pattern using the same - Google Patents

Photosensitive resin composition and method for producing fine pattern using the same Download PDF

Info

Publication number
JP2006071783A
JP2006071783A JP2004252660A JP2004252660A JP2006071783A JP 2006071783 A JP2006071783 A JP 2006071783A JP 2004252660 A JP2004252660 A JP 2004252660A JP 2004252660 A JP2004252660 A JP 2004252660A JP 2006071783 A JP2006071783 A JP 2006071783A
Authority
JP
Japan
Prior art keywords
resin composition
photosensitive resin
film
polyimide
glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004252660A
Other languages
Japanese (ja)
Inventor
Masatoshi Hasegawa
匡俊 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004252660A priority Critical patent/JP2006071783A/en
Publication of JP2006071783A publication Critical patent/JP2006071783A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practically useful and alcohol-developable negative photosensitive resin composition having high transparency, a low dielectric constant, a low coefficient of thermal expansion, a high glass transition temperature and satisfactory toughness, and to provide a method for producing a fine pattern using the same. <P>SOLUTION: The photosensitive resin composition contains a polyimide precursor having a repeating unit represented by formula (1), a crosslinking agent, a crosslinking aid and a photopolymerization initiator. In the method for producing a fine pattern, the photosensitive resin composition is shaped into a film by casting and drying on a substrate, and this film is exposed through a photomask, developed with alcohol, glycol or monoalkyl ether of glycol, and subjected to dehydration ring closure by heating or with a cyclodehydrating reagent to form a polyimide film having a repeating unit represented by formula (2). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、感光性樹脂組成物及びそれを用いた微細パターンの製造方法に関し、詳しくは、高透明性を有するポリイミド前駆体、架橋剤、架橋補助剤及び光重合開始剤からなるネガ型感光性組成物及び、これを露光後、アルコール、グリコール、グリコールのモノアルキルエーテル類で現像して微細加工を施した後、イミド化反応せしめて得られ、低誘電率、低熱膨張係数、高ガラス転移温度、且つ十分な靭性を併せ持つ実用上有益なポリイミド膜微細パターンの製造方法に関する。   The present invention relates to a photosensitive resin composition and a method for producing a fine pattern using the same, and more specifically, a negative photosensitive material comprising a highly transparent polyimide precursor, a crosslinking agent, a crosslinking aid and a photopolymerization initiator. The composition, and after exposure to light, developed with alcohol, glycol, monoalkyl ethers of glycol and finely processed, and then obtained by imidization reaction, low dielectric constant, low thermal expansion coefficient, high glass transition temperature In addition, the present invention relates to a method for producing a practically useful polyimide film fine pattern having sufficient toughness.

ポリイミドは優れた耐熱性のみならず、耐薬品性、耐放射線性、電気絶縁性、優れた機械的性質などの特性を併せ持つことから、フレキシブルプリント配線回路用基板、テープオートメーションボンディング用基材、半導体素子の保護膜、集積回路の層間絶縁膜等、様々な電子デバイスに現在広く利用されている。
一般にポリイミドは、無水ピロメリット酸等の芳香族テトラカルボン酸二無水物とジアミノジフェニルエーテル等の芳香族ジアミンとをジメチルアセトアミド等の非プロトン性極性有機溶媒中で等モル反応させて得られる高重合度のポリイミド前駆体を、膜などに成形し加熱硬化して得られる。
しかしながらポリイミドの耐熱性を保持するためには、分子設計上、骨格構造を剛直にせざるを得ず、結果として多くのポリイミドは有機溶媒に不溶で、ガラス転移温度以上でも溶融しないため、ポリイミドそのものを成型加工することは通常容易ではない。
従って通常、アミド系有機溶媒に高い溶解性を示すポリイミド前駆体を経由する方法が用いられる。具体的にはポリイミド前駆体の非プロトン性有機溶媒溶液を金属基板上に塗布・乾燥後、250℃ないし350℃で加熱脱水閉環(イミド化)反応せしめることでポリイミド膜を形成する。
ポリイミド/金属基板積層体をイミド化温度から室温(25℃)へ冷却する過程で発生する熱応力はしばしばカーリング、膜の剥離、割れ等の深刻な問題を引き起こす。最近では電子回路の高密度化に伴い、多層配線基板が採用されるようになってきたが、たとえ膜の剥離や割れにまで至らなくても多層基板における応力の残留はデバイスの信頼性を著しく低下させる。
イミド化工程で発生する応力は金属基板とポリイミド膜との間の線熱膨張係数の差が大きいほど、またイミド化温度が高いほど増加する。
熱応力低減の方策として、ポリイミドの低熱膨張化が挙げられる。殆どのポリイミドでは線熱膨張係数が50〜90ppm/Kの範囲にあり、金属基板例えば銅の線熱膨張係数17ppm/Kよりもはるかに大きいため、銅の値に近い、およそ20ppm/K以下を示す低熱膨張性ポリイミドの研究開発が行われている。
ポリイミドの低熱膨張化には一般に、その主鎖構造が直線的でしかも内部回転が束縛され、剛直であることが必要条件であると報告されている(例えば、非特許文献1参照)。
現在実用的な低熱膨張性ポリイミド材料としては3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラフェニレンジアミンから形成されるポリイミドが最もよく知られている。このポリイミド膜は、膜厚や作製条件にもよるが、5〜10ppm/Kと非常に低い線熱膨張係数を示すことが知られている(例えば、非特許文献2参照)。
近年、特にマイクロプロセッサーの演算速度の高速化やクロック信号の立ち上がり時間の短縮化が情報処理・通信分野で重要な課題になってきているが、そのためには絶縁膜として使用されるポリイミド膜の誘電率を下げることが必要となる。また電気配線長の短縮のための高密度配線および多層基板化にとっても、絶縁膜の誘電率が低いほど絶縁層を薄くできる等の点で有利である。
ポリイミドの低誘電率化には骨格中へのフッ素置換基の導入が有効である(例えば、非特許文献3参照)。例えば2,2−ビス(3,4−カルボキシフェニル)ヘキサフルオロプロパン酸二無水物と2,2’−ビス(トリフルオロメチル)ベンジジンから得られるフッ素化ポリイミド膜は平均屈折率から見積もられた誘電率が2.65と非常に低い値を示す(例えば、非特許文献4参照)。
また芳香族単位を脂環族単位に置き換えてπ電子を減少することも低誘電率化に有効な手段である(例えば、非特許文献5参照)。例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4’−メチレンビス(シクロヘキシルアミン)から得られる非芳香族ポリイミド膜は平均屈折率から見積もられた誘電率が2.6と非常に低い値を示す(例えば、非特許文献6参照)。
しかしながら、低誘電率(一時的な目標値として3.0以下)と低熱膨張係数(一時的な目標値として25ppm/K以下)を同時に有し、かつハンダ耐熱性を保持しているポリイミドを得ることは分子設計上容易ではない。ポリイミド以外の低誘電率高分子材料や無機材料も検討されているが、誘電率、線熱膨張係数、耐熱性および靭性の点で要求特性が十分に満たされていないのが現状である。
一般にポリイミド骨格中へのフッ素置換基を導入すると分子間相互作用が弱まり、低熱膨張化の要因であるイミド化時の自発的分子配向が妨害される傾向がある。更に過剰なフッ素化はコスト面でも不利である。例えばフッ素化酸二無水物、2,2−ビス(3,4-カルボキシフェニル)ヘキサフルオロプロパン酸二無水物とフッ素化ジアミン、2,2’−ビス(トリフルオロメチル)ベンジジンから得られる全フッ素化ポリイミド膜は前述のように極めて低誘電率を示すが、線熱膨張係数は64ppm/Kと非常に高く、低熱膨張特性を満足しない(例えば、非特許文献4参照)。
また脂環式構造単位の導入もしばしばポリイミド主鎖骨格の直線性および剛直性を低下させ、線熱膨張係数の増大を引き起こすという問題がある。例えば4,4’−メチレンビス(シクロヘキシルアミン)のような屈曲性の高い脂環式ジアミンを用いた場合、各種酸二無水物と容易に重合が進行し、高重合度のポリイミド前駆体を生成するが、閉環反応により得られるポリイミド膜は低熱膨張特性を示さない。
1,2,3,4−シクロブタンテトラカルボン酸二無水物と4,4’−メチレンビス(シクロヘキシルアミン)から得られるポリイミド膜は前述のように低誘電率を示すが、線熱膨張係数は63ppm/Kと非常に高く、低熱膨張特性を示さない。
一方、低熱膨張特性発現を目論み、上記屈曲性脂環式ジアミンの代わりに剛直な脂環式ジアミン、トランス−1,4−シクロヘキサンジアミンを用いると、ポリイミド前駆体の重合時に強固な塩形成が起り、しばしば重合反応が進行しないという問題が生じる。
例えば、1,2,3,4−シクロブタンテトラカルボン酸二無水物と、トランス−1,4−シクロヘキサンジアミンから成るポリイミドは剛直で比較的直線状の骨格を有するため、低誘電率に加えて低熱膨張特性の発現が期待される。しかしながら実際には上記の理由によりポリイミド前駆体を重合することは困難である。
近年、ポリイミド膜の微細パターン形成工程を大幅に短縮する、感光性ポリイミド(あるいはその前駆体)の研究開発が活発に行われているが、低誘電率・低熱膨張・高ガラス転移温度を併せ持つ上記ポリイミド系に対して更に感光性も付与できれば、上記産業分野において極めて有益な材料を提供することができる。
最近では環境への配慮から、有機溶媒で現像を行うネガ型に比べ、アルカリ現像のポジ型感光性ポリイミド前駆体の重要性が高まりつつある。
アルカリに可溶なポリイミド前駆体(ポリアミド酸)膜中に溶解抑制剤としてジアゾナフトキノン系感光剤を分散させることで、アルカリに対する溶解度が低下し、露光部における感光剤が親水性のインデンカルボン酸に変化するため、露光部と未路後部の溶解度差が生じるため、ポジ型微細パターンを形成することは原理的に可能である。しかしながら、ポリアミド酸は、半導体レジスト用アルカリ現像液として一般に用いられるテトラメチルアンモニウムヒドロキシド水溶液に対して溶解度が高すぎるため、溶解抑制剤の添加効果が不十分であり、多くの場合鮮明なパターン形成が困難である。このため、ポリアミド酸の構造になんらかの化学修飾を施し、アルカリ水溶液に対する溶解性を制御する必要があるため、工程が煩雑である。
一方、ネガ型ポリイミド前駆体の場合、アクリル基あるいはメタクリル基をポリイミド前駆体のカルボキシ基に結合させ、光重合開始剤からのラジカル発生により架橋させて露光部を溶媒に不溶化する技術が用いられる。この際、結合様式としてエステル結合等の共有結合の場合と、カルボキシ基と3級アミンとの塩結合(イオン結合)とが知られている。塩結合型の場合は、ポリイミド前駆体とアクリル基あるいはメタクリル基含有3級アミンを溶液中で混合するだけでよく、工程が極めて単純である。
ネガ型の場合いずれにしても、未露光部を溶媒で溶解・除去しなければならないため、現像液として通常、ポリイミド前駆体をよく溶解するアミド系有機溶媒を含んでいるものが使用される。このためネガ型感光性ポリイミド前駆体は現像工程で環境に負荷を与えるという点で問題が残る。
通常、ポリイミド前駆体はN−メチル−2−ピロリドンやN,N−ジメチルアセトアミド等のアミド系非プロトン性溶媒やアルカリ水溶液以外に溶解しないが、アルコール、グリコール、グリコールのモノアルキルエーテル類に溶解すれば、環境に負荷の低いネガ型感光性ポリイミド前駆体を得ることが可能である。
ポジ型場合、紫外線領域での吸収の強いジアゾナフトキノン系感光剤がポリイミド前駆体膜中に多量に混合されるため、感光層を厚くすることが困難であり、通常、膜厚数ミクロン程度である。これに対してネガ型では、用いる架橋剤、架橋補助剤、光重合開始剤の紫外線(例えば高圧水銀灯のi線の波長、365nm)に対する吸収強度が低く、感光層を厚くすることが可能である。
このためポリアミド酸の透明性も重要である。i線で露光する場合、この波長における膜の透過率が十分高くないとポリアミド酸自身に照射光が遮蔽されて感光剤に光が到達しにくいため、露光に長時間を要したり、極端な場合は感光剤の光反応が妨害されて、パターン形成不能になる。
Polyimide has not only excellent heat resistance but also chemical resistance, radiation resistance, electrical insulation, excellent mechanical properties, etc., so it can be used for flexible printed circuit boards, tape automation bonding substrates, and semiconductors. Currently, it is widely used in various electronic devices such as protective films for elements and interlayer insulating films for integrated circuits.
Polyimide generally has a high degree of polymerization obtained by equimolar reaction of an aromatic tetracarboxylic dianhydride such as pyromellitic anhydride and an aromatic diamine such as diaminodiphenyl ether in an aprotic polar organic solvent such as dimethylacetamide. The polyimide precursor is formed into a film and cured by heating.
However, in order to maintain the heat resistance of polyimide, in terms of molecular design, the skeleton structure must be rigid, and as a result, many polyimides are insoluble in organic solvents and do not melt above the glass transition temperature. Molding is usually not easy.
Therefore, generally, a method is used that uses a polyimide precursor that exhibits high solubility in an amide organic solvent. Specifically, a polyimide film is formed by applying an aprotic organic solvent solution of a polyimide precursor onto a metal substrate and drying, followed by heat dehydration ring-closing (imidization) reaction at 250 ° C. to 350 ° C.
Thermal stress generated in the process of cooling the polyimide / metal substrate laminate from the imidization temperature to room temperature (25 ° C.) often causes serious problems such as curling, film peeling and cracking. Recently, with the increasing density of electronic circuits, multilayer wiring boards have come to be used. However, even if film peeling or cracking does not occur, residual stress in the multilayer board significantly increases device reliability. Reduce.
The stress generated in the imidization process increases as the difference in coefficient of linear thermal expansion between the metal substrate and the polyimide film increases and as the imidization temperature increases.
One way to reduce thermal stress is to reduce the thermal expansion of polyimide. Most polyimides have a linear thermal expansion coefficient in the range of 50 to 90 ppm / K, which is much larger than the linear thermal expansion coefficient of 17 ppm / K for metal substrates, such as copper, so it is close to the value of copper, approximately 20 ppm / K or less. Research and development of the low thermal expansion polyimide shown is underway.
In general, it has been reported that lowering the thermal expansion of polyimide is a necessary condition that the main chain structure is linear and the internal rotation is constrained and rigid (see Non-Patent Document 1, for example).
As a practically low thermal expansion polyimide material, polyimide formed from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine is best known. This polyimide film is known to exhibit a very low linear thermal expansion coefficient of 5 to 10 ppm / K depending on the film thickness and production conditions (see, for example, Non-Patent Document 2).
In recent years, increasing the calculation speed of microprocessors and shortening the rise time of clock signals have become important issues in the information processing and communication fields. To that end, the dielectric of polyimide films used as insulating films It is necessary to lower the rate. Also, for high-density wiring and a multilayer substrate for shortening the electrical wiring length, the lower the dielectric constant of the insulating film is advantageous in that the insulating layer can be made thinner.
In order to lower the dielectric constant of polyimide, it is effective to introduce a fluorine substituent into the skeleton (for example, see Non-Patent Document 3). For example, a fluorinated polyimide film obtained from 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic dianhydride and 2,2′-bis (trifluoromethyl) benzidine was estimated from the average refractive index. The dielectric constant is 2.65, which is a very low value (see, for example, Non-Patent Document 4).
In addition, replacing aromatic units with alicyclic units to reduce π electrons is an effective means for reducing the dielectric constant (see, for example, Non-Patent Document 5). For example, a non-aromatic polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4′-methylenebis (cyclohexylamine) has a dielectric constant estimated from an average refractive index of 2. 6 shows a very low value (see Non-Patent Document 6, for example).
However, a polyimide having a low dielectric constant (3.0 or less as a temporary target value) and a low thermal expansion coefficient (25 ppm / K or less as a temporary target value) at the same time and having solder heat resistance is obtained. This is not easy in terms of molecular design. Low dielectric constant polymer materials and inorganic materials other than polyimide are also being studied, but at present the required properties are not sufficiently satisfied in terms of dielectric constant, linear thermal expansion coefficient, heat resistance and toughness.
In general, when a fluorine substituent is introduced into the polyimide skeleton, the intermolecular interaction is weakened, and the spontaneous molecular orientation during imidation, which is a cause of low thermal expansion, tends to be disturbed. Further, excessive fluorination is disadvantageous in terms of cost. For example, total fluorine obtained from fluorinated acid dianhydride, 2,2-bis (3,4-carboxyphenyl) hexafluoropropanoic acid dianhydride and fluorinated diamine, 2,2'-bis (trifluoromethyl) benzidine As described above, the polyimide film exhibits a very low dielectric constant, but its linear thermal expansion coefficient is as extremely high as 64 ppm / K, and does not satisfy the low thermal expansion characteristics (see, for example, Non-Patent Document 4).
Also, the introduction of alicyclic structural units often causes a problem that the linearity and rigidity of the polyimide main chain skeleton are lowered and the linear thermal expansion coefficient is increased. For example, when a highly flexible alicyclic diamine such as 4,4′-methylenebis (cyclohexylamine) is used, the polymerization proceeds easily with various acid dianhydrides to produce a polyimide precursor with a high degree of polymerization. However, the polyimide film obtained by the ring closure reaction does not exhibit low thermal expansion characteristics.
A polyimide film obtained from 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 4,4′-methylenebis (cyclohexylamine) exhibits a low dielectric constant as described above, but its linear thermal expansion coefficient is 63 ppm / K is very high and does not show low thermal expansion characteristics.
On the other hand, when a rigid alicyclic diamine or trans-1,4-cyclohexanediamine is used in place of the flexible alicyclic diamine in order to develop low thermal expansion characteristics, strong salt formation occurs during polymerization of the polyimide precursor. Often, there is a problem that the polymerization reaction does not proceed.
For example, a polyimide composed of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and trans-1,4-cyclohexanediamine has a rigid and relatively linear skeleton, so that it has a low heat resistance in addition to a low dielectric constant. Expected to exhibit expansion characteristics. In practice, however, it is difficult to polymerize the polyimide precursor for the above reasons.
In recent years, research and development of photosensitive polyimide (or its precursor), which greatly shortens the fine pattern formation process of polyimide film, has been actively conducted, but it has the low dielectric constant, low thermal expansion, and high glass transition temperature. If photosensitivity can be further imparted to the polyimide system, a material extremely useful in the industrial field can be provided.
Recently, in consideration of the environment, the importance of a positive photosensitive polyimide precursor for alkali development is increasing compared to a negative type in which development is performed with an organic solvent.
Dispersing a diazonaphthoquinone photosensitizer as a dissolution inhibitor in an alkali-soluble polyimide precursor (polyamide acid) film reduces the solubility in alkali, and the photosensitizer in the exposed area becomes hydrophilic indenecarboxylic acid. Because of the change, a difference in solubility occurs between the exposed portion and the unpassed rear portion, so that a positive fine pattern can be formed in principle. However, since polyamic acid is too soluble in an aqueous tetramethylammonium hydroxide solution generally used as an alkali developer for semiconductor resists, the effect of adding a dissolution inhibitor is insufficient, and in many cases a sharp pattern is formed. Is difficult. For this reason, since it is necessary to perform some chemical modification to the structure of the polyamic acid and to control the solubility in the aqueous alkali solution, the process is complicated.
On the other hand, in the case of a negative polyimide precursor, a technique is used in which an acryl group or a methacryl group is bonded to a carboxy group of a polyimide precursor, and is crosslinked by generation of a radical from a photopolymerization initiator to insolubilize an exposed portion in a solvent. In this case, a covalent bond such as an ester bond and a salt bond (ionic bond) between a carboxy group and a tertiary amine are known as the bonding mode. In the case of the salt bond type, the polyimide precursor and an acrylic group or methacryl group-containing tertiary amine need only be mixed in a solution, and the process is extremely simple.
In any case of the negative type, since the unexposed portion must be dissolved and removed with a solvent, a developer containing an amide organic solvent that dissolves the polyimide precursor well is usually used. For this reason, the negative photosensitive polyimide precursor still has a problem in that it places a burden on the environment in the development process.
Normally, polyimide precursors are insoluble in amide-based aprotic solvents such as N-methyl-2-pyrrolidone and N, N-dimethylacetamide, and alkaline aqueous solutions, but can be dissolved in monoalkyl ethers of alcohol, glycol and glycol. For example, it is possible to obtain a negative photosensitive polyimide precursor having a low environmental impact.
In the case of the positive type, a diazonaphthoquinone photosensitizer having strong absorption in the ultraviolet region is mixed in a large amount in the polyimide precursor film, so it is difficult to increase the thickness of the photosensitive layer and is usually about several microns. . On the other hand, in the negative type, the absorption intensity of the crosslinking agent, crosslinking aid, and photopolymerization initiator used for ultraviolet rays (for example, the wavelength of i-line of a high-pressure mercury lamp, 365 nm) is low, and the photosensitive layer can be thickened. .
For this reason, the transparency of the polyamic acid is also important. In the case of exposure with i-line, if the transmittance of the film at this wavelength is not sufficiently high, the irradiation light is shielded by the polyamic acid itself and it is difficult for the light to reach the photosensitive agent. In this case, the photoreaction of the photosensitizer is hindered and the pattern cannot be formed.

「ポリマー(Polymer)」,28巻,1987年,p.2282−2288“Polymer”, 28, 1987, p. 2282-2288 「マクロモレキュール(Macromolecules)」,29巻,1996年,p.7897−7909“Macromolecules”, 29, 1996, p. 7897-7909 「マクロモレキュール(Macromolecules)」,24巻,1991年,p.5001−5005“Macromolecules”, 24, 1991, p. 5001-5005 「ハイパフォーマンスポリマー(High Performance Polymers)」,15巻,2003年,p.47−64“High Performance Polymers”, Volume 15, 2003, p. 47-64 「マクロモレキュール(Macromolecules)」,32巻,1999年,p.4933−4939“Macromolecules”, 32, 1999, p. 4933-4939 「リアクティブアンドファンクショナルポリマー(Reactive and Functional Polymers)」,30巻,1996年,p.61−69“Reactive and Functional Polymers”, Vol. 30, 1996, p. 61-69

本発明は、高透明性を有するポリイミド前駆体と架橋剤、架橋補助剤及び光重合開始剤を含有してなるネガ型の感光性樹脂組成物、及び、これを露光後、アルコール、グリコールまたはグリコールのモノアルキルエーテル類で現像して微細加工を施した後、イミド化反応せしめて得られ、低誘電率、低熱膨張係数、高ガラス転移温度、且つ十分な靭性を併せ持つ実用上有益なポリイミド膜微細パターンの製造方法を提供するものである。   The present invention relates to a negative photosensitive resin composition comprising a highly transparent polyimide precursor, a crosslinking agent, a crosslinking auxiliary agent and a photopolymerization initiator, and alcohol, glycol or glycol after exposure to the negative photosensitive resin composition. This is a practically useful polyimide film that has a low dielectric constant, a low thermal expansion coefficient, a high glass transition temperature, and sufficient toughness. A method for manufacturing a pattern is provided.

以上の問題を鑑み、鋭意研究を積み重ねた結果、ポリイミド前駆体としては、1,2,3,4−シクロブタンテトラカルボン酸二無水物と2,2’−ビス(トリフルオロメチル)ベンジジンとのポリイミド前駆体は、重合反応で問題となる塩形成は全く起こらず、容易に高分子量体を得ることができ、更に、そのポリイミド膜は低誘電率(2.66)、低熱膨張係数(21ppm/K)および高ガラス転移温度(356℃)を同時に満たし、ポリイミド膜の要求特性を満足する材料として最適であることがわかった。本発明ではこのポリイミド前駆体を使用する。
即ち、本発明は、式(1)で表される繰り返し単位を有するポリイミド前駆体、架橋剤、架橋補助剤及び光重合開始剤を含有してなる感光性樹脂組成物に関する。
In view of the above problems, as a result of intensive studies, polyimide precursors are polyimides of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 2,2′-bis (trifluoromethyl) benzidine. The precursor does not cause any salt formation which is a problem in the polymerization reaction, and can easily obtain a high molecular weight. Further, the polyimide film has a low dielectric constant (2.66) and a low thermal expansion coefficient (21 ppm / K). ) And a high glass transition temperature (356 ° C.) at the same time, and it has been found to be optimal as a material satisfying the required characteristics of the polyimide film. In the present invention, this polyimide precursor is used.
That is, this invention relates to the photosensitive resin composition formed by containing the polyimide precursor which has a repeating unit represented by Formula (1), a crosslinking agent, a crosslinking adjuvant, and a photoinitiator.

Figure 2006071783
また本発明は、前記感光性樹脂組成物を有機溶媒溶液として基板上に流延・乾燥して製膜し、フォトマスクを介してこれを露光し、アルコール、グリコールまたはグリコールのモノアルキルエーテルで現像後、加熱あるいは脱水環化試薬を用いて脱水閉環して、式(2)で表される繰り返し単位を有するポリイミド膜とすることを特徴とする、微細パターンの製造方法に関する。
Figure 2006071783
In the present invention, the photosensitive resin composition is cast as an organic solvent solution on a substrate, dried to form a film, exposed through a photomask, and developed with alcohol, glycol or a monoalkyl ether of glycol. Then, the present invention relates to a method for producing a fine pattern, characterized in that a polyimide film having a repeating unit represented by the formula (2) is formed by dehydration and ring closure using heating or a dehydrating cyclization reagent.

Figure 2006071783
Figure 2006071783

本発明は、高透明性を有するポリイミド前駆体と架橋剤、架橋補助剤及び光重合開始剤を含有する樹脂組成物を用いることで、環境低負荷の上記溶媒により現像可能で、かつその硬化膜が低誘電率、低熱膨張係数、高ガラス転移温度を有する微細パターンが得られ、フレキシブルプリント配線基板用カバー材、半導体素子の保護膜や集積回路の層間絶縁膜など様々な電子デバイスに利用可能である。   The present invention uses a resin composition containing a highly transparent polyimide precursor, a crosslinking agent, a crosslinking auxiliary agent, and a photopolymerization initiator, so that it can be developed with the above-mentioned solvent having a low environmental load, and its cured film. Provides a fine pattern with low dielectric constant, low thermal expansion coefficient, and high glass transition temperature, and can be used for various electronic devices such as cover materials for flexible printed wiring boards, protective films for semiconductor elements and interlayer insulating films for integrated circuits. is there.

以下に本発明を詳細に説明する。
本発明で用いるポリイミド前駆体は、以下のように重合を行うことで得ることができる。まずジアミン成分である、2,2’−ビス(トリフルオロメチル)ベンジジンをよく脱水した重合溶媒に溶解し、この溶液にジアミンと等モルの1,2,3,4−シクロブタンテトラカルボン酸二無水物粉末を徐々に添加し、メカニカルスターラーを用い、室温(25℃)で1〜24時間攪拌する。この際、モノマー濃度は好ましくは5〜40重量%、より好ましくは10〜30重量%である。
特に膜の靭性を必要とする用途では、ポリイミド前駆体の分子量をより高めるべく、重合の際モノマー濃度を高くすることが好ましい。
重合溶媒としてはN,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホオキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、1,2−ジメトキシエタン-ビス(2−メトキシエチル)エーテル、テロラヒドロフラン、1,4−ジオキサン、ピコリン、ピリジン、アセトン、クロロホルム、トルエン、キシレン等の非プロトン性溶媒および、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−クロロフェノール、m−クロロフェノール、p−クロロフェノール等のプロトン性溶媒が使用可能である。またこれらの溶媒は単独でも、2種類以上混合して用いてもよい。
The present invention is described in detail below.
The polyimide precursor used by this invention can be obtained by superposing | polymerizing as follows. First, diamine component 2,2'-bis (trifluoromethyl) benzidine is dissolved in a well-dehydrated polymerization solvent, and equimolar 1,2,3,4-cyclobutanetetracarboxylic dianhydride is added to this solution. The product powder is gradually added, and the mixture is stirred at room temperature (25 ° C.) for 1 to 24 hours using a mechanical stirrer. In this case, the monomer concentration is preferably 5 to 40% by weight, more preferably 10 to 30% by weight.
Particularly in applications that require film toughness, it is preferable to increase the monomer concentration during polymerization in order to further increase the molecular weight of the polyimide precursor.
As a polymerization solvent, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethylsulfoxide, γ-butyrolactone, 1,3 -Protons such as dimethyl-2-imidazolidinone, 1,2-dimethoxyethane-bis (2-methoxyethyl) ether, terahydrofuran, 1,4-dioxane, picoline, pyridine, acetone, chloroform, toluene, xylene And protic solvents such as phenol, o-cresol, m-cresol, p-cresol, o-chlorophenol, m-chlorophenol, and p-chlorophenol can be used. These solvents may be used alone or in combination of two or more.

本発明に係るポリイミド前駆体の重合反応性、膜の透明性、現像液に対する溶解性、微細パターン加工性ならびにポリイミド膜の要求特性を著しく損なわない範囲でその他のジアミンを使用してもよい。
2,2’−ビス(トリフルオロメチル)ベンジジン以外に使用可能な芳香族ジアミンとしては特に限定されないが、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4’−ジアミノジフェニルメタン、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、2,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフォン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノベンズアニリド、ベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメトキシベンジジン、o−トリジン、m−トリジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルフォン、ビス(4−(4−アミノフェノキシ)フェニル)スルフォン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、p−ターフェニレンジアミン等が例として挙げられる。またこれらを2種類以上併用することもできる。
Other diamines may be used as long as the polymerization reactivity of the polyimide precursor according to the present invention, the transparency of the film, the solubility in a developer, the fine pattern processability, and the required characteristics of the polyimide film are not significantly impaired.
The aromatic diamine that can be used in addition to 2,2′-bis (trifluoromethyl) benzidine is not particularly limited, but p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene. 2,4-diaminoxylene, 2,4-diaminodurene, 4,4′-diaminodiphenylmethane, 4,4′-methylenebis (2-methylaniline), 4,4′-methylenebis (2-ethylaniline), 4 , 4'-methylenebis (2,6-dimethylaniline), 4,4'-methylenebis (2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether, 2,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 3, 3'-diaminodiphenylsulfone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4 '-Bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4- Aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropa , 2,2-bis (4-aminophenyl) hexafluoropropane, p- terphenyl-phenylenediamine, and the like as examples. Two or more of these may be used in combination.

また、使用可能な脂肪族ジアミンとしては特に限定されないが、トランス−1,4−ジアミノシクロヘキサン、シス−1,4−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン(トランス/シス混合物)、1,3−ジアミノシクロヘキサン、イソホロンジアミン、1,4−シクロヘキサンビス(メチルアミン)、2,5−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6−ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8−ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3−ジアミノアダマンタン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、4,4’−メチレンビス(2−エチルシクロヘキシルアミン)、4,4’−メチレンビス(2,6−ジメチルシクロヘキシルアミン)、4,4’−メチレンビス(2,6−ジエチルシクロヘキシルアミン)、2,2−ビス(4−アミノシクロヘキシル)プロパン、2,2−ビス(4−アミノシクロヘキシル)ヘキサフルオロプロパン、1,3−プロパンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、1,9−ノナメチレンジアミン等が挙げられる。またこれらを2種類以上併用することもできる。   Further, usable aliphatic diamines are not particularly limited, but trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-diaminocyclohexane (trans / cis mixture), 1,3- Diaminocyclohexane, isophoronediamine, 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl) bicyclo [2.2 .1] Heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 4,4'-methylenebis (cyclohexylamine), 4,4'-methylenebis (2-methylcyclohexylamine), 4,4′-methylenebis (2-ethylcyclohexylamine), 4,4'-methylenebis (2,6-dimethylcyclohexylamine), 4,4'-methylenebis (2,6-diethylcyclohexylamine), 2,2-bis (4-aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1 , 8-octamethylenediamine, 1,9-nonamethylenediamine and the like. Two or more of these may be used in combination.

本発明に係るポリイミド前駆体の重合反応性、膜の透明性、現像液に対する溶解性、微細パターン加工性ならびにポリイミド膜の要求特性を著しく損なわない範囲で1,2,3,4−シクロブタンテトラカルボン酸二無水物以外の酸二無水物成分を部分的に使用しても差し支えない。共重合に用いられるテトラカルボン酸二無水物としては特に限定されないが、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物等が挙げられる。共重合成分としてこれらを単独あるいは2種類以上用いてもよい。   Polymerization reactivity of the polyimide precursor according to the present invention, film transparency, solubility in developer, fine pattern processability and 1,2,3,4-cyclobutanetetracarboxylic as long as the required characteristics of the polyimide film are not significantly impaired. A part of the acid dianhydride component other than the acid dianhydride may be partially used. The tetracarboxylic dianhydride used for copolymerization is not particularly limited, but pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenylsulfone tetracarboxylic dianhydride, 2 , 2′-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propanoic dianhydride, 1,4,5,8 -Naphthalene tetracarboxylic dianhydride etc. are mentioned. These may be used alone or in combination of two or more as copolymerization components.

得られたポリイミド前駆体の有機溶媒溶液に、ポリイミド前駆体を100重量部として、架橋剤をポリマーに対して好ましくは1〜100重量部、より好ましくは5〜50重量部、架橋補助剤を好ましくは0.5〜50重量部、より好ましくは1〜30重量部、光重合開始剤を好ましくは0.1〜10重量部、より好ましくは1〜7重量部になるように添加・溶解し、本発明の感光性樹脂組成物とすることができる。架橋剤、架橋補助剤、光重合開始剤の含有量が上記濃度範囲より低いと光架橋反応が十分に起こらず、露光部が完全に不要化しない恐れがある。また、上記濃度範囲より高いと、均一・透明なキャスト膜が得られない恐れがある。これをスピンコーターあるいはバーコーターを用いて銅、シリコンあるいはガラス等の基板上に塗布、遮光下40〜120℃で0.1〜3時間温風乾燥して、膜厚0.1〜50μmのネガ型感光性ポリイミド前駆体膜を得ることができる。   In the obtained organic solvent solution of the polyimide precursor, the polyimide precursor is 100 parts by weight, and the crosslinking agent is preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, and a crosslinking aid is preferable with respect to the polymer. Is 0.5 to 50 parts by weight, more preferably 1 to 30 parts by weight, and the photopolymerization initiator is preferably added to and dissolved at 0.1 to 10 parts by weight, more preferably 1 to 7 parts by weight, It can be set as the photosensitive resin composition of the present invention. If the content of the crosslinking agent, crosslinking aid, and photopolymerization initiator is lower than the above concentration range, the photocrosslinking reaction does not occur sufficiently and the exposed area may not be completely eliminated. On the other hand, when the concentration is higher than the above range, a uniform and transparent cast film may not be obtained. This is coated on a substrate of copper, silicon, glass or the like using a spin coater or bar coater, and dried in warm air at 40 to 120 ° C. for 0.1 to 3 hours under light shielding to obtain a negative having a film thickness of 0.1 to 50 μm. Type photosensitive polyimide precursor film can be obtained.

使用可能な架橋剤として特に限定されないが、メタクリル酸2−ジメチルアミノエチルエステル、アクリル酸2−ジメチルアミノエチルエステル等のビニル基含有第3級アミン化合物が好ましい例として挙げられる。これらを単独あるいは2種類以上併用してもよい。   Although it does not specifically limit as a crosslinking agent which can be used, A vinyl group containing tertiary amine compound, such as methacrylic acid 2-dimethylaminoethyl ester and acrylic acid 2-dimethylaminoethyl ester, is mentioned as a preferable example. These may be used alone or in combination of two or more.

使用可能な架橋補助剤として特に限定されないが、アジピン酸ジビニルエステル、メタクリル酸ビニルエステル、アクリル酸ビニルエステル等のジビニル化合物が好ましい例として挙げられる。これらを単独あるいは2種類以上併用しても差し支えない。
これらのビニル基含有化合物の市販品の多くはハイドロキノンやp−メトキシフェノール等の重合禁止剤を含んでいるので、使用する前に減圧蒸留あるいはカラム分離等の方法で、重合禁止剤を除去することが好ましい。
Although it does not specifically limit as a crosslinking adjuvant which can be used, Divinyl compounds, such as adipic acid divinyl ester, methacrylic acid vinyl ester, and acrylic acid vinyl ester, are mentioned as a preferable example. These may be used alone or in combination of two or more.
Since many of these commercially available vinyl group-containing compounds contain a polymerization inhibitor such as hydroquinone or p-methoxyphenol, the polymerization inhibitor should be removed by vacuum distillation or column separation before use. Is preferred.

使用可能な光重合開始剤として特に限定されないが、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等の光ラジカル発生剤が好ましい例として挙げられる。これらを単独あるいは2種類以上併用してもよい。   Although it does not specifically limit as a photoinitiator which can be used, 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2,2-dimethoxy-1,2-diphenylethane-1- Preferred examples include photo radical generators such as ON, 1-hydroxycyclohexyl phenyl ketone, and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one. These may be used alone or in combination of two or more.

上記感光性樹脂組成物膜にフォトマスクを介して高圧水銀灯のi線を室温(25℃)で10秒〜1時間照射し、アルコール、グリコール又はグリコールのモノアルキルエーテルを用いて室温で10秒〜10分間現像し、更に純水でリンスすることにより鮮明なネガ型パターンを得ることができる。
現像に使用可能なアルコールとして、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール等の1級アルコールが例として挙げられる。
The photosensitive resin composition film is irradiated with i-line of a high-pressure mercury lamp through a photomask at room temperature (25 ° C.) for 10 seconds to 1 hour, and alcohol, glycol, or monoalkyl ether of glycol is used for 10 seconds at room temperature. A clear negative pattern can be obtained by developing for 10 minutes and rinsing with pure water.
Examples of alcohols that can be used for development include primary alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 2-butanol.

現像に使用可能なグリコールとして、エチレングリコール、プロピレングリコール等が例として挙げられる。これらを単独あるいは2種類以上併用してもよい。
現像に使用可能なグリコールのモノアルキルエーテルとして、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が例として挙げられる。またこれらを単独あるいは2種類以上用いてもよい。
Examples of glycols that can be used for development include ethylene glycol and propylene glycol. These may be used alone or in combination of two or more.
Examples of glycol monoalkyl ethers that can be used for development include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether. These may be used alone or in combination of two or more.

基板上に形成されたポリイミド前駆体の微細パターンを空気中、窒素等の不活性ガス雰囲気中あるいは真空中、好ましくは200℃〜430℃、より好ましくは250℃〜400℃の温度で熱処理することで鮮明なポリイミド膜のパターンが得られる。
イミド化は脱水環化試薬を用いて化学的に行うこともできる。即ちピリジンあるいはトリエチルアミンの如き塩基性触媒を含む無水酢酸中に、基板上に形成されたポリ(アミド酸−イミド)共重合体膜を室温で1分〜数時間浸漬する方法によってもポリイミド膜を得ることができる。
得られたポリイミド膜中には必要に応じて酸化安定剤、末端封止剤、フィラー、シランカップリング剤、感光剤、増感剤等の添加物が混合されていても差し支えない。
Heat-treating the fine pattern of the polyimide precursor formed on the substrate in air, in an inert gas atmosphere such as nitrogen or in vacuum, preferably at a temperature of 200 ° C. to 430 ° C., more preferably 250 ° C. to 400 ° C. A clear polyimide film pattern can be obtained.
Imidization can also be performed chemically using a dehydrating cyclization reagent. That is, a polyimide film is also obtained by a method in which a poly (amide acid-imide) copolymer film formed on a substrate is immersed in acetic anhydride containing a basic catalyst such as pyridine or triethylamine at room temperature for 1 minute to several hours. be able to.
In the obtained polyimide film, additives such as an oxidation stabilizer, a terminal blocking agent, a filler, a silane coupling agent, a photosensitizer, and a sensitizer may be mixed as necessary.

以下に本発明を実施例により具体的に説明するが、これに限定されるものではない。尚、各例における分析値は以下の方法により求めた。
<固有粘度>
0.5重量%のポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
<ガラス転移温度(Tg)>
動的粘弾性測定により、周波数0.1Hz、昇温速度5℃/分における損失ピークから求めた。
<5%重量減少温度(Td)>
ポリイミド膜の熱重量変化を測定し、重量が5%減少した温度を求めた。
<線熱膨張係数(CTE)>
熱機械分析により、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値として線熱膨張係数を求めた。
<複屈折(Δn)>
ポリイミド膜に平行な方向(nin)と垂直な方向(nout)の屈折率をアッベ屈折計(ナトリウムランプ使用、波長589nm)で測定し、これらの屈折率の差から複屈折(Δn=nin−nout)を求めた。
<誘電率>
ポリイミド膜の平均屈折率〔nav=(2nin+nout)/3〕に基づいて、次式により1MHzにおける誘電率(ε)を算出した。
ε=1.1×nav2
EXAMPLES The present invention will be specifically described below with reference to examples, but it should not be construed that the invention is limited thereto. In addition, the analytical value in each example was calculated | required with the following method.
<Intrinsic viscosity>
A 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.
<Glass transition temperature (Tg)>
The dynamic viscoelasticity was measured from the loss peak at a frequency of 0.1 Hz and a heating rate of 5 ° C./min.
<5% weight loss temperature (Td 5 )>
The thermogravimetric change of the polyimide film was measured, and the temperature at which the weight was reduced by 5% was determined.
<Linear thermal expansion coefficient (CTE)>
The linear thermal expansion coefficient was determined as an average value in the range of 100 to 200 ° C. from the elongation of the test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min.
<Birefringence (Δn)>
The refractive index in the direction parallel to the polyimide film (nin) and the direction perpendicular to the polyimide film (nout) is measured with an Abbe refractometer (using a sodium lamp, wavelength 589 nm), and birefringence (Δn = nin−nout) is determined from the difference between these refractive indexes. )
<Dielectric constant>
Based on the average refractive index [nav = (2nin + nout) / 3] of the polyimide film, the dielectric constant (ε) at 1 MHz was calculated by the following formula.
ε = 1.1 × nav2

(実施例1)
攪拌機付密閉反応容器中に2,2’−ビス(トリフルオロメチル)ベンジジン20mmol(6.405g)を入れ、モレキュラーシーブス4Aで十分に脱水したN,N−ジメチルアセトアミド16.68gに溶解した後、1,2,3,4−シクロブタンテトラカルボン酸二無水物粉末20mmol(3.922g)を徐々に加えた。室温(25℃)で24時間撹拌し透明、均一で粘稠なポリイミド前駆体溶液を得た。N,N−ジメチルアセトアミド中、30℃で測定したポリイミド前駆体の固有粘度は1.56dL/gであった。この重合溶液をガラス基板上に流延し、60℃で2時間乾燥して得られたポリイミド前駆体膜(膜厚20μm)はカットオフ波長299nm、高圧水銀灯のi線の波長(365nm)での透過率は88%と、極めて高い透明性を示した。
次にポリイミド前駆体溶液に、架橋剤としてメタクリル酸2−ジメチルアミノエチルエステルをポリアミド酸のカルボキシ基に対して1当量(60.9重量%)、架橋補助剤としてアジピン酸ジビニルエステルを1/2当量(38.4重量%)、光重合開始剤として2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1(1〜7重量%)を混合し、均一に溶解させた。この溶液をシランカップリング剤で表面処理したガラス基板上に流延し、60℃で2時間、熱風乾燥器中で乾燥させて、膜厚10〜20μmの感光性フィルムを得た。i線の波長での吸光度は1.0〜1.4であった。これにフォトマスクを介し、落射式高圧水銀ランプのi線を、干渉フィルターを通して5〜10分間照射した。照射光強度はおよそ3mW/cm2である。プロピレングリコールモノメチルエーテルにて25℃で1〜5分間現像後、水でリンスを行い、線幅20μmの鮮明なパターンが得られた。これを減圧下330℃で2時間熱イミド化を行い、線幅20μmの鮮明なポリイミド膜パターンが得られた。イミド化によるパターンの崩れは見られなかった。エタノール、エタノール水溶液(50〜75容量%)を用いて現像を行ったところ、同様に線幅20μmの鮮明なパターンが得られた。
Example 1
In a closed reaction vessel equipped with a stirrer, 20 mmol (6.405 g) of 2,2′-bis (trifluoromethyl) benzidine was placed and dissolved in 16.68 g of N, N-dimethylacetamide sufficiently dehydrated with Molecular Sieves 4A. 20 mmol (3.922 g) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride powder was gradually added. The mixture was stirred at room temperature (25 ° C.) for 24 hours to obtain a transparent, uniform and viscous polyimide precursor solution. The intrinsic viscosity of the polyimide precursor measured at 30 ° C. in N, N-dimethylacetamide was 1.56 dL / g. A polyimide precursor film (film thickness 20 μm) obtained by casting this polymerization solution on a glass substrate and drying at 60 ° C. for 2 hours has a cutoff wavelength of 299 nm and a wavelength of i-line (365 nm) of a high-pressure mercury lamp. The transmittance was 88%, indicating extremely high transparency.
Next, in the polyimide precursor solution, 1 equivalent (60.9% by weight) of 2-dimethylaminoethyl methacrylate as a crosslinking agent with respect to the carboxy group of the polyamic acid and 1/2 of adipic acid divinyl ester as a crosslinking aid are added. Equivalent (38.4 wt%), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1 (1-7 wt%) as a photopolymerization initiator is mixed and dissolved uniformly. It was. This solution was cast on a glass substrate surface-treated with a silane coupling agent and dried in a hot air dryer at 60 ° C. for 2 hours to obtain a photosensitive film having a thickness of 10 to 20 μm. The absorbance at the i-line wavelength was 1.0 to 1.4. This was irradiated with i-line of an epi-illumination type high-pressure mercury lamp through an interference filter for 5 to 10 minutes through a photomask. The irradiation light intensity is approximately 3 mW / cm 2. After development with propylene glycol monomethyl ether at 25 ° C. for 1 to 5 minutes, rinsing with water was performed, and a clear pattern with a line width of 20 μm was obtained. This was subjected to thermal imidization at 330 ° C. for 2 hours under reduced pressure, and a clear polyimide film pattern having a line width of 20 μm was obtained. No pattern collapse due to imidization was observed. When development was performed using ethanol and an aqueous ethanol solution (50 to 75% by volume), a clear pattern having a line width of 20 μm was obtained in the same manner.

(実施例2)
実施例1に記載の感光性樹脂組成物膜を基板上で真空中330℃2時間、熱イミド化を行い、残留ひずみを除くため、基板から剥がして更に335℃で1時間熱処理を行い、膜厚10μmの透明で靭性のあるポリイミド膜を得た。ポリイミド膜の物性は以下の通りである。平均屈折率から見積もられた誘電率は2.67と極めて低誘電率であった。また線熱膨張係数は18ppm/Kと、銅基板に匹敵する低線熱膨張係数を示した。これは複屈折値(Δn=0.071)から判断して、実際にポリイミド鎖がある程度面内配向している事実に起因している。動的粘弾性測定から得られたガラス転移点は352℃であった。このように本発明の感光性樹脂組成物(ポリイミド)膜は低誘電率・低熱膨張係数・高ガラス転移温度を満足している。ガラス転移温度以上での貯蔵弾性率の低下は非常に小さく、熱可塑性は殆どないことがわかった。5%重量減少温度は窒素中で459℃、空気中で450℃であり、十分高い熱安定性を示した。これらのポリイミド膜物性は、架橋剤、架橋補助剤、光重合開始剤を用いずに作製したポリイミド膜の物性とほぼ同等であった。これは架橋剤、架橋補助剤、光重合開始剤等の添加物が、高温での熱イミド化の間、膜外へ殆ど揮散したためと考えられる。
(Example 2)
The photosensitive resin composition film described in Example 1 was subjected to thermal imidization on a substrate at 330 ° C. for 2 hours in a vacuum to remove residual strain, and then removed from the substrate and further subjected to heat treatment at 335 ° C. for 1 hour. A transparent and tough polyimide film having a thickness of 10 μm was obtained. The physical properties of the polyimide film are as follows. The dielectric constant estimated from the average refractive index was 2.67, which was an extremely low dielectric constant. The linear thermal expansion coefficient was 18 ppm / K, which was a low linear thermal expansion coefficient comparable to that of a copper substrate. Judging from the birefringence value (Δn = 0.071), this is due to the fact that the polyimide chains are actually in-plane oriented to some extent. The glass transition point obtained from the dynamic viscoelasticity measurement was 352 ° C. Thus, the photosensitive resin composition (polyimide) film of the present invention satisfies a low dielectric constant, a low thermal expansion coefficient, and a high glass transition temperature. It was found that the decrease in storage modulus above the glass transition temperature was very small and there was almost no thermoplasticity. The 5% weight loss temperature was 459 ° C. in nitrogen and 450 ° C. in air, indicating a sufficiently high thermal stability. These physical properties of the polyimide film were almost the same as those of the polyimide film prepared without using a crosslinking agent, a crosslinking auxiliary agent, and a photopolymerization initiator. This is presumably because additives such as a crosslinking agent, a crosslinking auxiliary agent, a photopolymerization initiator and the like were almost volatilized out of the film during thermal imidization at a high temperature.

(比較例1)
トランス−1,4−ジアミノシクロヘキサンおよび3,3’,4,4’−ビフェニルテトラカルボン酸二無水物よりポリイミド前駆体を重合した。これを熱イミド化して得られたポリイミド膜は、低誘電率(3.15)、低熱膨張係数(10ppm/K)を示した。しかし実施例1に記載の方法に従って作製した感光性ポリイミド前駆体膜はN−メチルピロリドンやN,N−ジメチルアセトアミド等のアミド系非プロトン性溶媒を含む有機溶媒には可溶で現像可能であったが、エタノールおよびプロピレングリコールモノメチルエーテルには不溶であり、環境低負荷溶媒で現像することが困難であった。

(Comparative Example 1)
A polyimide precursor was polymerized from trans-1,4-diaminocyclohexane and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. A polyimide film obtained by thermal imidization of this exhibited a low dielectric constant (3.15) and a low thermal expansion coefficient (10 ppm / K). However, the photosensitive polyimide precursor film produced according to the method described in Example 1 is soluble and developable in an organic solvent containing an amide aprotic solvent such as N-methylpyrrolidone or N, N-dimethylacetamide. However, it was insoluble in ethanol and propylene glycol monomethyl ether, and it was difficult to develop with an environmentally low load solvent.

Claims (5)

式(1)で表される繰り返し単位を有するポリイミド前駆体、架橋剤、架橋補助剤及び光重合開始剤を含有してなる感光性樹脂組成物。
Figure 2006071783
The photosensitive resin composition formed by containing the polyimide precursor which has a repeating unit represented by Formula (1), a crosslinking agent, a crosslinking adjuvant, and a photoinitiator.
Figure 2006071783
架橋剤がアクリロイル基またはメタクリロイル基を有する第3級アミン化合物である請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the crosslinking agent is a tertiary amine compound having an acryloyl group or a methacryloyl group. ポリイミド前駆体100重量部に対して架橋剤を1〜100重量部、架橋補助剤を0.5〜50重量部および光重合開始剤を0.1〜10重量部含有する請求項1または請求項2に記載の感光性樹脂組成物。 The cross-linking agent is 1 to 100 parts by weight, the cross-linking auxiliary agent is 0.5 to 50 parts by weight and the photopolymerization initiator is 0.1 to 10 parts by weight with respect to 100 parts by weight of the polyimide precursor. 2. The photosensitive resin composition according to 2. アルコール、グリコール、グリコールのモノアルキルエーテル類のいずれかに溶解することを特徴とする請求項1または請求項2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, which is soluble in any one of alcohol, glycol, and monoalkyl ethers of glycol. 請求項1ないし請求項4のいずれかに記載の感光性樹脂組成物を基板上に流延・乾燥して製膜し、フォトマスクを介してこれを露光し、アルコール、グリコールまたはグリコールのモノアルキルエーテルで現像後、加熱あるいは脱水環化試薬を用いて脱水閉環して、式(2)で表される繰り返し単位を有するポリイミド膜とすることを特徴とする微細パターンの製造方法。
Figure 2006071783
A photosensitive resin composition according to any one of claims 1 to 4 is cast on a substrate and dried to form a film, which is exposed through a photomask, and alcohol, glycol or monoalkyl of glycol A method for producing a fine pattern, characterized in that after development with ether, a polyimide film having a repeating unit represented by formula (2) is obtained by heating or dehydrating and ring-closing using a dehydrating cyclization reagent.
Figure 2006071783
JP2004252660A 2004-08-31 2004-08-31 Photosensitive resin composition and method for producing fine pattern using the same Pending JP2006071783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004252660A JP2006071783A (en) 2004-08-31 2004-08-31 Photosensitive resin composition and method for producing fine pattern using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004252660A JP2006071783A (en) 2004-08-31 2004-08-31 Photosensitive resin composition and method for producing fine pattern using the same

Publications (1)

Publication Number Publication Date
JP2006071783A true JP2006071783A (en) 2006-03-16

Family

ID=36152527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004252660A Pending JP2006071783A (en) 2004-08-31 2004-08-31 Photosensitive resin composition and method for producing fine pattern using the same

Country Status (1)

Country Link
JP (1) JP2006071783A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266843A (en) * 2009-04-14 2010-11-25 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition and circuit formation substrate using the same
JP2011013602A (en) * 2009-07-06 2011-01-20 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition, method for producing resist pattern, and hard disk suspension
JP2015127817A (en) * 2009-04-14 2015-07-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition and circuit formation substrate using the same
KR20160136406A (en) 2014-04-24 2016-11-29 제이에프이 케미칼 가부시키가이샤 Polyamide acid composition and polyimide composition
WO2017131037A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for manufacturing cured film, method for manufacturing laminate, and semiconductor device
JPWO2017051783A1 (en) * 2015-09-25 2018-07-12 三菱瓦斯化学株式会社 Polyimide resin and polyimide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210362A (en) * 1990-01-12 1991-09-13 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JPH0418560A (en) * 1990-05-14 1992-01-22 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JPH06102667A (en) * 1991-08-13 1994-04-15 Toray Ind Inc Photosensitive polyimide precursor composition and production there of
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
WO2003029899A1 (en) * 2001-09-26 2003-04-10 Nissan Chemical Industries, Ltd. Positive photosensitive polyimide resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210362A (en) * 1990-01-12 1991-09-13 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JPH0418560A (en) * 1990-05-14 1992-01-22 Sumitomo Bakelite Co Ltd Photosensitive resin composition
JPH06102667A (en) * 1991-08-13 1994-04-15 Toray Ind Inc Photosensitive polyimide precursor composition and production there of
JPH07316291A (en) * 1994-03-29 1995-12-05 Toshiba Corp Polyimide precursor, fluorinated aromatic diamine compound, cured bismaleimide resin precursor, and electronic part
JP2002161136A (en) * 2000-09-14 2002-06-04 Sony Chem Corp Polyimide precursor, method of producing the same, and photosensitive resin composition
JP2002167433A (en) * 2000-11-30 2002-06-11 Central Glass Co Ltd Polyimide and method for producing the same
WO2003029899A1 (en) * 2001-09-26 2003-04-10 Nissan Chemical Industries, Ltd. Positive photosensitive polyimide resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266843A (en) * 2009-04-14 2010-11-25 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition and circuit formation substrate using the same
JP2015127817A (en) * 2009-04-14 2015-07-09 日立化成デュポンマイクロシステムズ株式会社 Photosensitive resin composition and circuit formation substrate using the same
JP2011013602A (en) * 2009-07-06 2011-01-20 Hitachi Chemical Dupont Microsystems Ltd Photosensitive resin composition, method for producing resist pattern, and hard disk suspension
KR20160136406A (en) 2014-04-24 2016-11-29 제이에프이 케미칼 가부시키가이샤 Polyamide acid composition and polyimide composition
US10174165B2 (en) 2014-04-24 2019-01-08 Jfe Chemical Corporation Poly(amic acid) composition and polyimide composition
JPWO2017051783A1 (en) * 2015-09-25 2018-07-12 三菱瓦斯化学株式会社 Polyimide resin and polyimide film
WO2017131037A1 (en) * 2016-01-29 2017-08-03 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for manufacturing cured film, method for manufacturing laminate, and semiconductor device
JPWO2017131037A1 (en) * 2016-01-29 2018-12-20 富士フイルム株式会社 Photosensitive resin composition, cured film, laminate, method for producing cured film, method for producing laminate, and semiconductor device

Similar Documents

Publication Publication Date Title
JP5593548B2 (en) POLYIMIDE POLYMER, COPOLYMER THEREOF, AND POSITIVE PHOTOSENSITIVE RESIN COMPOSITION CONTAINING THE SAME
US7989578B2 (en) Negative photosensitive polyimide polymer and uses thereof
JP4858678B2 (en) Ester group-containing poly (imide-azomethine) copolymer, ester group-containing poly (amide acid-azomethine) copolymer, and positive photosensitive resin composition
JP4663720B2 (en) Positive photosensitive resin composition and pattern forming method
JP4678142B2 (en) Photosensitive resin composition of poly (amic acid-imide) copolymer having high transparency and cured film thereof
JP6294116B2 (en) Polyimide precursor resin composition, polyimide resin film, flexible printed wiring board, suspension with circuit, and hard disk drive
JP2007169585A (en) Polyesterimide having low liner thermal expansion coefficient and precursor thereof, and method for producing them
JP4639697B2 (en) Imide group-containing diamine, imide group-containing polyimide precursor, positive photosensitive resin composition containing the precursor, method for producing positive pattern, and electronic component
JP2008280261A (en) Polyimide having hydroxyamide group, precursor thereof, photosensitive resin composition using them, and cured product thereof
JP4788108B2 (en) Polyimide and its precursor with low dielectric constant, low linear thermal expansion coefficient, high transparency, and high glass transition temperature
KR102613669B1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, insulating film and multilayer wiring board
JP5263464B2 (en) Alicyclic polyimide precursor, positive photosensitive resin composition and cured film thereof
US9181381B2 (en) Photosensitive resin composition and cured film
JP2010134116A (en) Positive photosensitive resin composition
KR20070057898A (en) Poly(imide/azomethine) copolymer, poly(amic acid/azomethine) copolymer and positive type photosensitive resin compositions
JP4998679B2 (en) Polyimide precursor copolymer, varnish and positive photosensitive resin composition containing the same, polyimide copolymer, protective film for semiconductor element containing the same, and method for producing fine pattern of polyimide copolymer-containing film
JP2006028271A (en) Thermal ring closure curing type resin for microwave curing, thermal ring closure curing type resin composition containing the same and electronic component having electronic device with cured membrane obtained from the composition
JP2006071783A (en) Photosensitive resin composition and method for producing fine pattern using the same
US7635551B2 (en) Poly (imide-azomethine) copolymer, poly (amic acid-azomethine) copolymer, and positive photosensitive resin composition
WO1995004305A1 (en) Photosensitive fluorinated poly(amic acid) aminoacrylate salt
WO2022175169A1 (en) Polyimides having low dielectric loss
EP4294855A1 (en) Polyimides having low dielectric loss
KR100822679B1 (en) Positive type photosensitive polyimide composition containing photobase generator
JP5360074B2 (en) Optical transmission material and optical waveguide using the same
JP2022091355A (en) Negative photosensitive resin composition and method for manufacturing cured relief pattern using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100603