JP5040059B2 - Polyimide precursor, polyimide and method for producing them - Google Patents

Polyimide precursor, polyimide and method for producing them Download PDF

Info

Publication number
JP5040059B2
JP5040059B2 JP2004295555A JP2004295555A JP5040059B2 JP 5040059 B2 JP5040059 B2 JP 5040059B2 JP 2004295555 A JP2004295555 A JP 2004295555A JP 2004295555 A JP2004295555 A JP 2004295555A JP 5040059 B2 JP5040059 B2 JP 5040059B2
Authority
JP
Japan
Prior art keywords
polyimide
polyimide precursor
general formula
trans
dianhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004295555A
Other languages
Japanese (ja)
Other versions
JP2005163012A (en
Inventor
匡俊 長谷川
博司 真見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2004295555A priority Critical patent/JP5040059B2/en
Publication of JP2005163012A publication Critical patent/JP2005163012A/en
Application granted granted Critical
Publication of JP5040059B2 publication Critical patent/JP5040059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

本発明は、高透明性、高ガラス転移温度、低複屈折及び高靭性を兼ね備えたフレキシブルフィルム液晶ディスプレー用基材として有用なポリイミドを与えるポリイミド前駆体、ポリイミド及びこれらの製造方法に関する。   The present invention relates to a polyimide precursor that gives a polyimide useful as a substrate for a flexible film liquid crystal display having high transparency, high glass transition temperature, low birefringence, and high toughness, a polyimide, and a method for producing them.

現在、液晶ディスプレーにはガラス基板が用いられているが、近年の大画面化の動向に伴い、液晶ディスプレイが厚く、また重くなってしまい、さらにコスト高になってしまうという問題が深刻化している。その解決策として、重いガラス基板の替わりにより軽量でより成型加工が容易なプラスチック基板の採用が考えらている。更に、ガラス並に高透明性でしかも高靭性のプラスチック基板があれば、曲げたり丸めたりして自在に収納可能なフレキシブルフィルム液晶ディスプレイが実現可能となる。このフレキシブルフィルム液晶ディスプレイに要求される熱的特性、光学的特性、機械的特性及び電気的特性としては、用いるプラスチック基板の耐熱性、透明性、ガラス転移温度、誘電率、低複屈折、靭性、破断伸び、線熱膨張係数等があり、なかでも高透明性、高ガラス転移温度、低複屈折、高靭性等が基本特性として特に重要である。   Currently, glass substrates are used for liquid crystal displays, but with the trend toward larger screens in recent years, the problem that liquid crystal displays become thicker and heavier and the cost becomes more serious. . As a solution, it is considered to use a plastic substrate that is lighter and easier to mold instead of a heavy glass substrate. Furthermore, if there is a highly transparent and tough plastic substrate comparable to that of glass, a flexible film liquid crystal display that can be bent and rolled and stored freely can be realized. The thermal characteristics, optical characteristics, mechanical characteristics and electrical characteristics required for this flexible film liquid crystal display include heat resistance, transparency, glass transition temperature, dielectric constant, low birefringence, toughness of the plastic substrate used. There are elongation at break, coefficient of linear thermal expansion, etc. Among them, high transparency, high glass transition temperature, low birefringence, high toughness, etc. are particularly important as basic characteristics.

しかしながら、これらの要求特性を兼ね備えたフレキシブルフィルム液晶ディスプレー用プラスチック基板として好適な材料は未だ知られていないのが現状である。耐熱性に優れるポリイミドがその候補として挙げられるが、これらの特性のうちいくつかを満足するポリイミドが知られているだけである。   However, the present condition is that the material suitable as a plastic substrate for flexible film liquid crystal displays which has these required characteristics is not yet known. Although the polyimide which is excellent in heat resistance is mentioned as the candidate, only the polyimide which satisfy | fills some of these characteristics is known.

例えば、芳香族酸二無水物とトランス−1,4−ジアミノシクロヘキサンとから形成されるポリイミド前駆体(還元粘度2.0dL/g以上)をイミド化して得られるポリイミド(特許文献1)が開示されている。しかしながら、ポリイミド前駆体(ポリアミド酸)を形成させる際に、通常の方法で重合反応を行うと反応初期に酸二無水物とジアミンとのアミン塩の形成が起こり、場合によっては重合反応が全く進行しないか、又は低い粘度の重合物しか得られないため、該アミン塩の煩雑な加熱溶解工程を必要するなどの問題がある。また、ポリイミドフィルム中に該アミン塩が微量残存した場合、フィルムの靭性や吸湿性に大きな影響を与える等の問題がある。   For example, a polyimide obtained by imidizing a polyimide precursor (reduced viscosity of 2.0 dL / g or more) formed from aromatic dianhydride and trans-1,4-diaminocyclohexane is disclosed (Patent Document 1). ing. However, when a polyimide precursor (polyamic acid) is formed, if a polymerization reaction is carried out by a usual method, an amine salt of acid dianhydride and diamine is formed at the initial stage of the reaction, and in some cases, the polymerization reaction proceeds at all. Or only a low-viscosity polymer is obtained, and there is a problem that a complicated heating and dissolving step of the amine salt is required. In addition, when a small amount of the amine salt remains in the polyimide film, there are problems such as greatly affecting the toughness and hygroscopicity of the film.

また、酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、ジアミン成分として1,4−ジアミノシクロヘキサンからなるポリイソイミドの熱転移生成物であるポリイミド(Tg 243℃、5%重量減少温度392℃)が開示(特許文献2)されている。しかしながら、該ポリイミドは、ジアミン成分として立体制御されていない1,4−シクロヘキサンジアミン(シス及びトランス混合物)を用いているため、Tgが243℃と低く、この温度では、液晶ディスプレイを大画面化する際に製造工程で要求される耐熱性が十分ではなく、大画面化できないという問題が生じる。   Further, polyimide (Tg 243) which is a thermal transition product of polyisoimide comprising 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component and 1,4-diaminocyclohexane as the diamine component. And 5% weight reduction temperature of 392 ° C.) are disclosed (Patent Document 2). However, since the polyimide uses 1,4-cyclohexanediamine (cis and trans mixture) which is not sterically controlled as a diamine component, Tg is as low as 243 ° C., and at this temperature, the liquid crystal display is enlarged. In this case, there is a problem that the heat resistance required in the manufacturing process is not sufficient and the screen cannot be enlarged.

特開2002−161136号公報JP 2002-161136 A 特開平8−3314号公報JP-A-8-3314

本発明は、高透明性、高ガラス転移温度、低複屈折及び高靭性などの特性を兼ね備えたフレキシブルフィルム液晶ディスプレー用基材として有用なポリイミドを与えるポリイミド前駆体、及びポリイミドを提供することを目的とする。また、本発明は、ポリイミド前駆体の製造の際にアミン塩を形成することないポリイミド前駆体及びポリイミドの製造方法を提供することを目的とする。   An object of the present invention is to provide a polyimide precursor that gives a polyimide useful as a base material for a flexible film liquid crystal display having characteristics such as high transparency, high glass transition temperature, low birefringence, and high toughness, and a polyimide. And Moreover, an object of this invention is to provide the manufacturing method of the polyimide precursor and polyimide which do not form an amine salt in the case of manufacture of a polyimide precursor.

本発明者らは、上記課題について鋭意検討した結果、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物とトランス−1,4−ジアミノシクロヘキサン化合物(特に、トランス−1,4−ジアミノシクロヘキサン)とを有機溶媒中、重合反応させて得られる特定の値以上の還元粘度を有するポリイミド前駆体をイミド閉環反応させることにより得られるポリイミドが、上記課題を解決し得ることを見出し、本発明を完成するに至った   As a result of intensive studies on the above problems, the present inventors have found that 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and a trans-1,4-diaminocyclohexane compound (particularly trans-1,4). -Diaminocyclohexane) in an organic solvent, a polyimide obtained by subjecting a polyimide precursor having a reduced viscosity equal to or higher than a specific value obtained by polymerization reaction to an imide ring-closing reaction, can solve the above problem, The present invention has been completed

即ち、本発明は、ポリイミド前駆体、ポリイミド及びこれらの製造方法を提供するものである。   That is, this invention provides a polyimide precursor, a polyimide, and these manufacturing methods.

項1
3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と一般式(1)

Figure 0005040059
[式中、Rは水素又は炭素数1〜4の直鎖状若しくは分岐鎖状アルキル基を表す。]
で表されるトランス−1,4−ジアミノシクロヘキサン化合物から得られる一般式(2)
Figure 0005040059
[式中、Rは一般式(1)と同義である。]
で表される重合構造単位を有し、0.5dL/g以上の還元粘度を有するポリイミド前駆体。 Item 1
3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and general formula (1)
Figure 0005040059
[Wherein, R 1 represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms. ]
General formula (2) obtained from a trans-1,4-diaminocyclohexane compound represented by formula (2)
Figure 0005040059
[Wherein, R 1 has the same meaning as in general formula (1). ]
And a polyimide precursor having a reduced viscosity of 0.5 dL / g or more.

項2 還元粘度が、2.0dL/g以上である上記項1に記載のポリイミド前駆体。   Item 2 The polyimide precursor according to Item 1, wherein the reduced viscosity is 2.0 dL / g or more.

項3 Rが、水素である上記項1又は2に記載のポリイミド前駆体。 Item 3 The polyimide precursor according to Item 1 or 2, wherein R 1 is hydrogen.

項4 3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と一般式(1)で表されるトランス−1,4−ジアミノシクロヘキサン化合物とを有機溶媒中、重合反応させることを特徴とする上記項1〜3のいずれかに記載のポリイミド前駆体の製造方法。   Item 4 A polymerization reaction of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and a trans-1,4-diaminocyclohexane compound represented by the general formula (1) in an organic solvent. Item 4. The method for producing a polyimide precursor according to any one of Items 1 to 3 above.

項5 上記項1〜3のいずれかに記載のポリイミド前駆体を、イミド閉環反応させることにより得られる一般式(3)

Figure 0005040059
[式中、Rは一般式(1)と同義である。]
で表されるポリイミド。 Item 5 General formula (3) obtained by subjecting the polyimide precursor according to any one of Items 1 to 3 to an imide ring-closing reaction
Figure 0005040059
[Wherein, R 1 has the same meaning as in general formula (1). ]
Polyimide represented by

項6 ガラス転移温度が350℃以上である上記項5に記載のポリイミド。   Item 6 The polyimide according to Item 5, wherein the glass transition temperature is 350 ° C. or higher.

項7 上記項5又は6に記載のポリイミドを主たる構成成分とするポリイミドフィルム。   Item 7 A polyimide film comprising the polyimide according to Item 5 or 6 as a main constituent.

項8 上記項4に記載の製造方法において得られるポリイミド前駆体の有機溶媒溶液を支持体の上に流延塗布し、イミド閉環してなる上記項7に記載のポリイミドフィルムの製造方法。   Item 8 The method for producing a polyimide film according to Item 7, wherein an organic solvent solution of the polyimide precursor obtained in the production method according to Item 4 is cast-coated on a support and imide is ring-closed.

項9 上記項5又は6に記載のポリイミドを主たる基材とするフレキシブルフィルム液晶ディスプレー用基材。   Item 9 A flexible film liquid crystal display substrate comprising the polyimide according to Item 5 or 6 as a main substrate.

本発明によれば、ポリイミド前駆体の製造時にアミン塩を形成することのない、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物とトランス−1,4−ジアミノシクロヘキサン化合物(特に、トランス−1,4−ジアミノシクロヘキサン)を有機溶媒中、重合反応させて得られる0.5dL/g以上(特に2.0dL/g以上)の還元粘度を有するポリイミド前駆体(ポリアミド酸)をイミド閉環反応させることにより高透明性、高ガラス転移温度、低複屈折及び高靭性など特性をバランスよく兼ね備えたポリイミドを得ることができる。このポリイミドは、フレキシブルフィルム液晶ディスプレー用基材として好適に使用できる。   According to the present invention, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and trans-1,4-diaminocyclohexane compound (form no amine salt during the production of the polyimide precursor) In particular, a polyimide precursor (polyamide acid) having a reduced viscosity of 0.5 dL / g or more (particularly 2.0 dL / g or more) obtained by polymerizing trans-1,4-diaminocyclohexane) in an organic solvent. By carrying out an imide ring-closing reaction, a polyimide having properties such as high transparency, high glass transition temperature, low birefringence and high toughness in a well-balanced manner can be obtained. This polyimide can be suitably used as a substrate for a flexible film liquid crystal display.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のポリイミド前駆体は、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(以下、「DSDA」と言う。)と一般式(1)

Figure 0005040059
[式中、Rは水素又は炭素数1〜4の直鎖状若しくは分岐鎖状アルキル基を表す。]
で表されるトランス−1,4−ジアミノシクロヘキサン化合物から得られる一般式(2)
Figure 0005040059
で表される重合構造単位を有し、その還元粘度としては、0.5dL/g以上、好ましくは0.8dL/g、特に好ましくは2.0dL/g以上であることが推奨される。これは、ポリイミドフィルムが充分に強靱であるためには、ポリイミド前駆体の重合度は高いほうがより好ましい。還元粘度が0.5dL/g未満だと強靱さが不足する傾向が見られる。 The polyimide precursor of the present invention comprises 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (hereinafter referred to as “DSDA”) and a general formula (1).
Figure 0005040059
[Wherein, R 1 represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms. ]
General formula (2) obtained from a trans-1,4-diaminocyclohexane compound represented by formula (2)
Figure 0005040059
It is recommended that the reduced viscosity be 0.5 dL / g or more, preferably 0.8 dL / g, particularly preferably 2.0 dL / g or more. For the polyimide film to be sufficiently tough, it is more preferable that the degree of polymerization of the polyimide precursor is higher. When the reduced viscosity is less than 0.5 dL / g, there is a tendency that the toughness is insufficient.

尚、還元粘度は、30℃で0.5重量%でオストワルド粘度計を用いて測定した値である。   The reduced viscosity is a value measured with an Ostwald viscometer at 30% by weight at 0.5% by weight.

本発明に用いられる酸二無水物成分であるDSDAは、市販されているか又は特開平3−294272、特開平1−197476号等の公知の製造方法に従って容易に製造できる。その純度としては、99.0%以上、好ましくは99.5%以上のものが推奨される。   DSDA, which is an acid dianhydride component used in the present invention, is commercially available or can be easily produced according to known production methods such as JP-A-3-294272 and JP-A-1-197476. The purity is recommended to be 99.0% or more, preferably 99.5% or more.

上記DSDAには本発明の効果及び重合反応性を著しく損なわない範囲で他の酸二水物を併用することができる。例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエ−テルテトラカルボン酸二無水物、2,2'−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物等を用いることができる。これらは単独で又は2種以上併用することもできる。   Other acid dihydrates can be used in combination with the above-mentioned DSDA as long as the effects of the present invention and the polymerization reactivity are not significantly impaired. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropanoic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and the like can be used. These may be used alone or in combination of two or more.

本発明に用いられるジアミン成分である一般式(1)で表されるトランス−1,4−ジアミノシクロヘキサン化合物としては、Rが水素又は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基等の炭素数1〜4の直鎖状若しくは分岐鎖状アルキル基を有する化合物が挙げられ、これらのうち、トランス−1,4−ジアミノシクロヘキサン、トランス−1,4−ジアミノ−2−メチルシクロヘキサン、トランス−1,4−ジアミノ−3−メチルシクロヘキサンが好ましく、特に、トランス−1,4−ジアミノシクロヘキサンが好ましい。 As the trans-1,4-diaminocyclohexane compound represented by the general formula (1) which is a diamine component used in the present invention, R 1 is hydrogen or a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Examples thereof include compounds having a linear or branched alkyl group having 1 to 4 carbon atoms such as n-butyl group, iso-butyl group and sec-butyl group, and among these, trans-1,4-diaminocyclohexane , Trans-1,4-diamino-2-methylcyclohexane and trans-1,4-diamino-3-methylcyclohexane are preferable, and trans-1,4-diaminocyclohexane is particularly preferable.

これらのトランス−1,4−ジアミノシクロヘキサン化合物には、1,4−位のアミノ基の立体配置がシス配置のシス体とトランス配置のトランス体が存在する。通常、トランス−1,4−ジアミノシクロヘキサン化合物は、前駆体であるp−フェニレンジアミン化合物を水添して得られ、シス体とトランス体の混合物である(例えば、特公昭51−481987号)。本発明に用いられる好適なトランス−1,4−ジアミノシクロヘキサン化合物としては、上記水添化合物を蒸留、再結晶等の公知の方法に従い分離精製したものが
用いられる。シス体含量としては、本発明の効果が損なわれない限り特に限定されず、通常、シス体含量は50重量%以下、好ましくは10重量%以下、更に好ましくは、5重量%以下に精製することが推奨される。シス体含量が多くなると、シス体の折れ曲がり構造に起因するポリイミドのガラス転移温度が低下する傾向や立体障害によるポリイミド前駆体の重合反応性が低下する傾向が見られるため好ましくない。
These trans-1,4-diaminocyclohexane compounds include a cis isomer in which the steric configuration of the 1,4-position amino group is a cis configuration and a trans isomer in a trans configuration. Usually, a trans-1,4-diaminocyclohexane compound is obtained by hydrogenating a precursor p-phenylenediamine compound, and is a mixture of a cis isomer and a trans isomer (for example, Japanese Patent Publication No. 51-481987). As a suitable trans-1,4-diaminocyclohexane compound used in the present invention, a product obtained by separating and purifying the hydrogenated compound according to a known method such as distillation or recrystallization is used. The cis-isomer content is not particularly limited as long as the effects of the present invention are not impaired, and the cis-isomer content is usually purified to 50% by weight or less, preferably 10% by weight or less, more preferably 5% by weight or less. Is recommended. If the cis-isomer content is increased, the glass transition temperature of the polyimide due to the bent structure of the cis-isomer and the polymerization reactivity of the polyimide precursor due to steric hindrance tend to be reduced.

また、これらのトランス−1,4−ジアミノシクロヘキサン化合物は、得られるポリイミドフィルムが著しく着色する場合があるため必要に応じてn−ヘキサン等の溶媒を用いて着色油性分を分離後、再結晶・精製して使用することが好ましい。   In addition, these trans-1,4-diaminocyclohexane compounds may be recrystallized after separating the colored oily component using a solvent such as n-hexane as necessary because the resulting polyimide film may be remarkably colored. It is preferable to use it after purification.

上記トランス−1,4−ジアミノシクロヘキサン化合物には、本発明の効果を損なわない範囲で他のジアミン化合物を併用することができる。例えば、2,2'−ビス(トリフルオロメチル)ベンジジン、p−フェニレンジアミン、m−フェニレンジアミン、2,4−ジアミノトルエン、2,5−ジアミノトルエン、2,4−ジアミノキシレン、2,4−ジアミノデュレン、4,4'−ジアミノジフェニルメタン、4,4'−ジアミノジフェニルエ−テル、3,4'−ジアミノジフェニルエ−テル、4,4'−ジアミノジフェニルスルホン、3,3'−ジアミノジフェニルスルホン、4,4'−ジアミノベンゾフェノン、3,3'−ジアミノベンゾフェノン、4,4'−ジアミノベンズアニリド、ベンジジン、3,3'−ジヒドロキシベンジジン、3,3'−ジメトキシベンジジン、o−トリジン、m−トリジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、p−タ−フェニレンジアミン等を用いることができる。これらは単独で又は2種以上併用することもできる。   The trans-1,4-diaminocyclohexane compound may be used in combination with other diamine compounds within a range not impairing the effects of the present invention. For example, 2,2′-bis (trifluoromethyl) benzidine, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4- Diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-diaminobenzanilide, benzidine, 3,3′-dihydroxybenzidine, 3,3′-dimethoxybenzidine, o-tolidine, m- Tolidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) ) Benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4 -Aminophenoxy) phenyl) sulfone, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2- Bis (4-aminophenyl) hexafluoropropane, p-terphenylenediamine and the like can be used. These may be used alone or in combination of two or more.

最初にポリイミド前駆体の製造方法について説明する。ポリイミド前駆体は、有機溶媒中、DSDAとトランス−1,4−ジアミノシクロヘキサン化合物を重合反応させることにより得られる。アルゴン、窒素等の不活性ガス雰囲気中において、ジアミンを有機溶媒中に溶解させ、DSDAを有機溶媒中に溶解又は固体の状態で徐々に添加する。この場合の酸二無水物成分とジアミン成分のモル比は、0.95〜1.05の範囲に調整することが好ましい。   First, a method for producing a polyimide precursor will be described. The polyimide precursor is obtained by polymerizing DSDA and a trans-1,4-diaminocyclohexane compound in an organic solvent. In an inert gas atmosphere such as argon or nitrogen, diamine is dissolved in an organic solvent, and DSDA is dissolved in the organic solvent or gradually added in a solid state. In this case, the molar ratio of the acid dianhydride component and the diamine component is preferably adjusted to a range of 0.95 to 1.05.

上記添加方法を逆にし、DSDAを先に加え、ジアミン成分を後から添加してもよい。   The addition method may be reversed, DSDA may be added first, and the diamine component added later.

このときの酸二無水物とジアミンとの溶剤に対する濃度は、種々の条件に応じて適宜設定しうるが、酸二水物とジアミンとの合計した重量が、全溶液重量に対して、5〜30重量%、好ましくは10〜20重量%である。5重量%未満の低濃度では、ポリイミド前駆体の重合度が十分高くならず、最終的に得られるポリイミドフィルムが脆弱になる傾向が見られる。一方、30重量%を越える高濃度ではわずかに塩形成が起り、形成された塩が溶解、消失するまでに長い重合時間を必要とし、生産性が低下する傾向が見られる。この濃度範囲内では、アミン塩の形成がほとんど見られず、アミン塩の加熱溶解(例えば、特開平2002−161136号、80〜150℃)工程を必要としない。従って、従来の製造方法と比較して、煩雑なアミン塩の加熱溶解工程を必要としない簡便で、生産性の高い製造方法である。   The concentration of acid dianhydride and diamine in the solvent at this time can be appropriately set according to various conditions, but the total weight of acid dihydrate and diamine is 5 to 5% of the total solution weight. 30% by weight, preferably 10 to 20% by weight. When the concentration is less than 5% by weight, the degree of polymerization of the polyimide precursor is not sufficiently high, and the polyimide film finally obtained tends to be brittle. On the other hand, salt formation occurs slightly at a high concentration exceeding 30% by weight, and a long polymerization time is required until the formed salt dissolves and disappears, and productivity tends to decrease. Within this concentration range, the formation of amine salt is hardly observed, and the step of heating and dissolving the amine salt (for example, JP-A No. 2002-161136, 80 to 150 ° C.) is not required. Therefore, compared with the conventional manufacturing method, it is a simple and highly productive manufacturing method that does not require a complicated heating and dissolving step of the amine salt.

このときの反応温度は、10〜60℃、好ましくは20〜40℃の範囲である。反応時間は、30分〜24時間程度である。   The reaction temperature at this time is in the range of 10 to 60 ° C, preferably 20 to 40 ° C. The reaction time is about 30 minutes to 24 hours.

ここでポリイミド前駆体の生成反応に用いられる有機溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン等の非プロトン性極性溶媒が挙げることができ、これらは単独で又は混合物として用いられる。溶媒は、ポリイミド前駆体を溶解するものであれば特に限定されない。   Here, the organic solvent used for the reaction for forming the polyimide precursor includes N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphoramide, dimethyl sulfoxide, and γ-butyrolactone. And aprotic polar solvents such as 1,3-dimethyl-2-imidazolidinone, which may be used alone or as a mixture. The solvent is not particularly limited as long as it dissolves the polyimide precursor.

上記ポリイミド前駆体溶液は室温及び−20℃で1ヶ月間放置しても沈澱、ゲル化は全く起こらず、極めて高い溶液貯蔵安定性を示す。   Even when the polyimide precursor solution is allowed to stand at room temperature and −20 ° C. for 1 month, it does not precipitate or gel at all, and exhibits extremely high solution storage stability.

次に、ポリミド前駆体をイミド閉環反応する工程について説明する。ポリイミド前駆体がイミド閉環する際には、水が生成する。この生成した水は、ポリイミド前駆体を容易に加水分解し分子量低下を引き起こす。この水を系外に除去しながらイミド閉環する方法として、通常、100〜400℃において0.5〜24時間加熱する方法、又は無水酢酸等の脂肪族酸二無水物、及び必要に応じてトリエチルアミン、ピリジン、ピコリン等の3級アミンを加える化学的方法により一般式(3)で表されるポリイミドを得ることができる。得られたポリイミドのガラス転移温度としては、350℃以上が特に好ましい。   Next, the process of imide ring-closing reaction of the polyimide precursor will be described. When the polyimide precursor is ring-closed with imide, water is generated. The generated water easily hydrolyzes the polyimide precursor and causes a decrease in molecular weight. As a method for ring closure of the imide while removing this water out of the system, usually, a method of heating at 100 to 400 ° C. for 0.5 to 24 hours, or an aliphatic acid dianhydride such as acetic anhydride, and, if necessary, triethylamine Polyimide represented by the general formula (3) can be obtained by a chemical method of adding a tertiary amine such as pyridine, picoline or the like. The glass transition temperature of the obtained polyimide is particularly preferably 350 ° C. or higher.

更に、本発明のポリイミドフィルムの製造方法としては、特に限定されないが、例えば、ポリイミド前駆体の反応溶媒溶液を支持体(例えば、ガラス板、ステンレス板、銅板、アルミニウム板等)上に塗布後、乾燥、加熱してイミド閉環する方法、上記方法で得られたポリイミドを有機溶媒に溶解した後、ガラス板上に塗布して、脱溶媒する方法等が可能である。これらの支持体への塗布方法は、特に限定されず、従来公知の塗布方法が適用できる。   Furthermore, the method for producing the polyimide film of the present invention is not particularly limited. For example, after applying a reaction solvent solution of a polyimide precursor on a support (for example, a glass plate, a stainless plate, a copper plate, an aluminum plate, etc.) A method of imide ring closure by drying and heating, a method of dissolving the polyimide obtained by the above-described method in an organic solvent, applying the solution on a glass plate, and removing the solvent are possible. The application method to these supports is not particularly limited, and conventionally known application methods can be applied.

上記有機溶剤としては、溶解性の観点から非プロトン性極性溶剤が好ましく、具体的には、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ヘキサメチルホスホルアミド、ジメチルスルホキシド、γ−ブチロラクトン、1,3−ジメチル−2−イミダゾリジノン等が好適な例として挙げられる。これらは、単独で又は混合系として用いることができる。また、この場合のポリイミド樹脂の含有量は、5〜50重量%、特に10〜30重量%の範囲とすることが好ましい。   As the organic solvent, an aprotic polar solvent is preferable from the viewpoint of solubility. Specifically, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, hexamethylphosphor Preferable examples include amide, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-2-imidazolidinone and the like. These can be used alone or as a mixed system. Moreover, it is preferable to make content of the polyimide resin in this case into the range of 5 to 50 weight%, especially 10 to 30 weight%.

より具体的には、ガラス板上に塗布されたポリイミド前駆体は、乾燥温度が50〜150℃、乾燥時間が0.5〜80分間程度で乾燥され、更に、200〜400℃、好ましくは250〜350℃程度の温度で加熱処理することによりポリイミドフィルムを得ることができる。400℃を越えるとポリイミドフィルムが著しく着色する傾向が見られ好ましくない。更に、イミド閉環をポリイミドフィルムの着色を抑制するために減圧又は窒素雰囲気中で行うことが好ましいが、特に高温でない限り空気中で行っても差し支えない。   More specifically, the polyimide precursor coated on the glass plate is dried at a drying temperature of 50 to 150 ° C. and a drying time of about 0.5 to 80 minutes, and further 200 to 400 ° C., preferably 250. A polyimide film can be obtained by heat treatment at a temperature of about ˜350 ° C. If it exceeds 400 ° C., the polyimide film tends to be remarkably colored, which is not preferable. Further, the imide ring closure is preferably performed under reduced pressure or in a nitrogen atmosphere in order to suppress coloring of the polyimide film, but may be performed in air unless the temperature is particularly high.

また、減圧する場合の圧力としては、小さい方が好ましいが、上記加熱条件、水が除去できる圧力であれば特に制限されないが、具体的には、0.09MPa〜0.0001MPa程度である。   Moreover, although the smaller one is preferable as a pressure in pressure reduction, if it is the said heating conditions and the pressure which can remove water, it will not restrict | limit in particular, Specifically, it is about 0.09 MPa-0.0001 MPa.

更に、このようにして得られたポリイミドフィルムには、本発明の効果を損なわない範囲で、ポリイミド前駆体からポリイミドを製造する際に、他のポリイミドを少量ブレンド或いは他の架橋性樹脂、熱硬化性樹脂を配合してもよく、また、必要に応じて酸化安定剤、末端封止剤、フィラ−、シランカップリング剤、感光剤、光重合開始剤及び増感剤等の添加剤を混合してもよい。   Furthermore, in the polyimide film obtained in this way, within the range that does not impair the effects of the present invention, when producing polyimide from a polyimide precursor, a small amount of other polyimides are blended or other crosslinkable resins, thermosetting. In addition, additives such as oxidation stabilizers, end-capping agents, fillers, silane coupling agents, photosensitizers, photopolymerization initiators, and sensitizers may be mixed as necessary. May be.

こうして得られたポリイミドは、高透明性、高ガラス転移温度、低複屈折及び高靭性等の基本特性を兼ね備えていることからフレキシブルフィルム液晶ディスプレー用基材として用いることができる。   The polyimide thus obtained has basic characteristics such as high transparency, high glass transition temperature, low birefringence and high toughness, and therefore can be used as a substrate for flexible film liquid crystal displays.

以下に本発明を実施例により具体的に説明するが、これに限定されるものではない。尚、各例における分析値及び物性値は以下の方法により求めた。   EXAMPLES The present invention will be specifically described below with reference to examples, but it should not be construed that the invention is limited thereto. In addition, the analysis value and physical property value in each example were determined by the following methods.

還元粘度
0.5wt%ポリイミド前駆体溶液を、オストワルド粘度計を用いて30℃で測定した。
A reduced viscosity 0.5 wt% polyimide precursor solution was measured at 30 ° C. using an Ostwald viscometer.

ガラス転移温度(Tg)
動的粘弾性測定装置(商品名「TMA−DTA4010」、(株)マック・サイエンス製)を用いて、動的粘弾性を測定し、周波数0.1Hz、昇温速度5℃/分における損失ピークから求めた。
Glass transition temperature (Tg)
Using a dynamic viscoelasticity measuring device (trade name “TMA-DTA4010”, manufactured by Mac Science Co., Ltd.), dynamic viscoelasticity was measured, and a loss peak at a frequency of 0.1 Hz and a heating rate of 5 ° C./min. I asked for it.

5%重量減少温度
示差熱熱重量同時測定装置(商品名「TG−DTA2000」、(株)マック・サイエンス製)を用いて、ポリイミドフィルムの熱重量変化(TG)を空気又は窒素流量100ml/min;昇温速度10℃/min;試料量10mgの条件で測定し、重量が5%減少した温度を求めた。
Using a 5% weight reduction temperature differential thermothermal weight simultaneous measurement device (trade name “TG-DTA2000”, manufactured by Mac Science Co., Ltd.), the thermogravimetric change (TG) of the polyimide film was measured using an air or nitrogen flow rate of 100 ml / min. Measured at a rate of temperature increase of 10 ° C./min; sample amount of 10 mg, and the temperature at which the weight decreased by 5% was determined

破断伸び
ポリイミドフィルム試験片(幅1cm、長さ10cm)の引っ張り試験(インストロン測定)を実施し、フィルムが破断した時の伸び率(%)を求めた。
Breaking elongation polyimide film specimen (width 1 cm, length 10 cm) was carried out tensile test (Instron measurements) was determined elongation when the film was broken (percent).

線熱膨張係数
動的粘弾性測定装置(商品名「TMA−DTA4010」、(株)マック・サイエンス製)を用いて、荷重0.5g/膜厚1μm、昇温速度5℃/分における試験片の伸びより、100〜200℃の範囲での平均値として線熱膨張係数を求めた。
Using a linear thermal expansion coefficient dynamic viscoelasticity measuring device (trade name “TMA-DTA4010”, manufactured by Mac Science Co., Ltd.), a test piece at a load of 0.5 g / film thickness of 1 μm and a heating rate of 5 ° C./min. From the elongation, the linear thermal expansion coefficient was determined as an average value in the range of 100 to 200 ° C.

カットオフ波長(透明性)
分光光度計(商品名「V−520」、日本分光(株)製)により200nmから1000nmの可視・紫外線透過率を測定した。透過率が1%以下となる波長(カットオフ波長)を透明性の指標とした。カットオフ波長が短い程、透明性が良好であることを意味する。
Cut-off wavelength (transparency)
Visible / ultraviolet transmittance from 200 nm to 1000 nm was measured with a spectrophotometer (trade name “V-520”, manufactured by JASCO Corporation). The wavelength (cutoff wavelength) at which the transmittance was 1% or less was used as an index of transparency. The shorter the cutoff wavelength, the better the transparency.

複屈折
アッベ屈折計(商品名「アッベ屈折計4T」、(株)アタゴ社製)を用いて、ポリイミドフィルムに平行な方向(nin)と垂直な方向(nout)の屈折率(ナトリウムランプ使用、波長589nm)を測定し 、これらの屈折率の差から複屈折を下式により算出した。
Δn=nin−nout
Using a birefringence Abbe refractometer (trade name “Abbe refractometer 4T”, manufactured by Atago Co., Ltd.), the refractive index (sodium lamp) in the direction parallel to the polyimide film (n in ) and the direction (n out ) Use, wavelength 589 nm), and birefringence was calculated from the difference between these refractive indexes according to the following equation.
Δn = n in −n out

誘電率
アッベ屈折計(商品名「アッベ屈折計4T」、(株)アタゴ社製)を用いて測定した屈折率を用いて、ポリイミドフィルムの平均屈折率〔nav=(2nin+nout)/3〕に基づいて、次式により1MHzにおける誘電率(ε)を下式により算出した。実用上、誘電率は低いほど好ましい。
ε=1.1×nav (1MHz)
Using the refractive index measured using a dielectric constant Abbe refractometer (trade name “Abbe Refractometer 4T”, manufactured by Atago Co., Ltd.), the average refractive index of the polyimide film [n av = (2n in + n out ) / 3], the dielectric constant (ε) at 1 MHz was calculated by the following equation using the following equation. In practice, the lower the dielectric constant, the better.
ε = 1.1 × n av 2 (1 MHz)

実施例1
よく乾燥した攪拌機付密閉型反応容器中に再結晶・精製済みのトランス−1,4−ジアミノシクロヘキサン5.710g(0.05モル)を入れ、十分に脱水したN,N−ジメチルアセトアミド200mlに溶解した後、この溶液に3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物17.91g(0.05モル)を徐々に加え、室温で2時間撹拌し透明で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体溶液は室温および−20℃で1ヶ月間放置しても沈澱、ゲル化は全く起こらず、極めて高い溶液貯蔵安定性を示した。N,N−ジメチルアセトアミド中、30℃で測定したポリイミド前駆体の還元粘度は2.0dL/gであり、極めて高重合体であった。このポリイミド前駆体溶液をガラス基板に塗布し、60℃、1時間で乾燥して得られたポリイミド前駆体膜を基板上で減圧下250℃で30分、更に300℃で30分間段階的に熱処理してイミド化を行い膜厚30μmの透明で強靭なポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Example 1
Put recrystallized / purified trans-1,4-diaminocyclohexane (5.710 g, 0.05 mol) in a well-dried sealed reaction vessel with a stirrer and dissolve in 200 ml of fully dehydrated N, N-dimethylacetamide. After that, 17.91 g (0.05 mol) of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride was gradually added to this solution and stirred for 2 hours at room temperature to obtain a transparent and viscous polyimide. A precursor solution was obtained. This polyimide precursor solution did not precipitate or gel at all even when allowed to stand at room temperature and −20 ° C. for 1 month, and exhibited extremely high solution storage stability. The reduced viscosity of the polyimide precursor measured at 30 ° C. in N, N-dimethylacetamide was 2.0 dL / g, which was a very high polymer. The polyimide precursor film obtained by applying this polyimide precursor solution to a glass substrate and drying at 60 ° C. for 1 hour is heat-treated stepwise on the substrate for 30 minutes at 250 ° C. under reduced pressure and further for 30 minutes at 300 ° C. Then, imidization was performed to obtain a transparent and tough polyimide film having a thickness of 30 μm. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

得られたポリイミド前駆体膜及びポリイミドフィルムの赤外線吸収スペクトル分析の結果、ポリイミド前駆体膜は、ポリアミド酸の特性吸収(1640、2800〜3600cm−1)が確認され、また、ポリイミドフィルムは、ポリイミド前駆体に基づく特性吸収は観測されず、1780、1720cm−1のイミド環カルボニル基の特性吸収が確認された。 As a result of infrared absorption spectrum analysis of the obtained polyimide precursor film and polyimide film, the polyimide precursor film was confirmed to have characteristic absorption of polyamic acid (1640, 2800 to 3600 cm −1 ), and the polyimide film was a polyimide precursor. Characteristic absorption based on the body was not observed, and characteristic absorption of imide ring carbonyl groups at 1780 and 1720 cm −1 was confirmed.

実施例2
反応溶媒N,N−ジメチルアセトアミドの使用量100ml、反応時間を4時間とした他は実施例1と同様に行い透明で粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体の還元粘度は0.83dL/gであり、この前駆体溶液から実施例1と同様に行いポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Example 2
A transparent and viscous polyimide precursor solution was obtained in the same manner as in Example 1 except that the reaction solvent N, N-dimethylacetamide was used in an amount of 100 ml and the reaction time was 4 hours. The reduced viscosity of this polyimide precursor was 0.83 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

比較例1
ジアミン成分としてトランス−1,4−ジアミノシクロヘキサンの代わりに4,4’−オキシジアニリン(0.05モル)を用いた以外は実施例1と同様に行い、粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体の還元粘度は0.97dL/gであり、この前駆体溶液から実施例1と同様に行いポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Comparative Example 1
A viscous polyimide precursor solution was obtained in the same manner as in Example 1 except that 4,4′-oxydianiline (0.05 mol) was used instead of trans-1,4-diaminocyclohexane as the diamine component. It was. The reduced viscosity of this polyimide precursor was 0.97 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

得られたポリイミドフィルムは、耐熱性およびフィルム靭性の点では要求特性を十分満たしてるが、フィルムの着色が著しく、透明性の点で全く不十分であった。   The obtained polyimide film sufficiently satisfies the required characteristics in terms of heat resistance and film toughness, but the film was remarkably colored and was completely insufficient in terms of transparency.

比較例2
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりに3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(0.05モル)を用いた以外は実施例1と同様に重合反応を行いポリイミド前駆体溶液を調製した。しかしながら、粘稠で均一なポリイミド前駆体溶液が得られるまで3日以上の反応時間を要した。これは重合反応初期に生成した塩の溶解度が非常に低いために重合反応が円滑に進行しなかった結果であり、得られたポリイミド前駆体の固有粘度は0.58dL/gであった。このポリイミド前駆体から実施例1と同様に行い、ポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Comparative Example 2
3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (0.05 mol) instead of 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride as the acid dianhydride component A polyimide precursor solution was prepared by conducting a polymerization reaction in the same manner as in Example 1 except that was used. However, a reaction time of 3 days or more was required until a viscous and uniform polyimide precursor solution was obtained. This is a result of the polymerization reaction not proceeding smoothly because the solubility of the salt formed at the initial stage of the polymerization reaction was very low, and the intrinsic viscosity of the obtained polyimide precursor was 0.58 dL / g. It carried out similarly to Example 1 from this polyimide precursor, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

比較例3
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(0.05モル)を用いた以外は実施例1と同様に行い粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体の還元粘度は0.88dL/gであり、この前駆体溶液から実施例1と同様に行いポリイイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Comparative Example 3
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (0.05 mol) instead of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component A viscous polyimide precursor solution was obtained in the same manner as in Example 1 except that was used. The reduced viscosity of this polyimide precursor was 0.88 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

比較例4
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりに2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(0.05モル)を用いた以外は実施例1と同様に行い粘稠なポリイミド前駆体溶液を得た。このポリイミド前駆体の還元粘度は0.77dL/gであり、この前駆体溶液から実施例1と同様に行いポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Comparative Example 4
Instead of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (0 0.05 mol) was carried out in the same manner as in Example 1 to obtain a viscous polyimide precursor solution. The reduced viscosity of this polyimide precursor was 0.77 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

比較例5
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりにピロメリット酸二無水物を用いた他は実施例1と同様に行い、ポリイミド前駆体溶液の調製を行った。しかしながら、反応初期に極めて頑強なアミン塩が形成され、150℃以上で加熱しても、この塩は溶解せず重合反応は全く進行しなかった。
Comparative Example 5
A polyimide precursor solution was prepared in the same manner as in Example 1 except that pyromellitic dianhydride was used instead of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component. Was prepared. However, an extremely strong amine salt was formed at the beginning of the reaction, and even when heated at 150 ° C. or higher, this salt did not dissolve and the polymerization reaction did not proceed at all.

比較例6
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりに1,2,3,4−シクロブタンテトラカルボン酸二無水物(0.05モル)を用いた他は実施例1と同様に行い、ポリイミド前駆体溶液の調製を行った。しかしながら、反応初期に極めて頑強なアミン塩が形成され、150℃以上で加熱しても、この塩は溶解せず重合反応は全く進行しなかった。
Comparative Example 6
1,2,3,4-Cyclobutanetetracarboxylic dianhydride (0.05 mol) is used in place of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component The polyimide precursor solution was prepared in the same manner as in Example 1. However, an extremely strong amine salt was formed at the beginning of the reaction, and even when heated at 150 ° C. or higher, this salt did not dissolve and the polymerization reaction did not proceed at all.

比較例7
酸二無水物成分として3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物の代わりに1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、反応時間を48時間とした以外は実施例1と同様に行い、重合初期に塩が生成したが透明で粘稠なポリイミド前駆体溶液が得られた。このポリイミド前駆体の還元粘度は0.40dL/gであり、この前駆体溶液から実施例1と同様に行いポリイミドフィルムを得た。得られたポリイミドフィルムの物性評価結果を表1に示した。
Comparative Example 7
1,2,4,5-cyclohexanetetracarboxylic dianhydride instead of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride as the acid dianhydride component, the reaction time was 48 hours Except for the above, the same procedure as in Example 1 was performed, and a salt was formed at the initial stage of polymerization, but a transparent and viscous polyimide precursor solution was obtained. The reduced viscosity of this polyimide precursor was 0.40 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. The physical property evaluation results of the obtained polyimide film are shown in Table 1.

このポリイミドフィルムは、極めて高い透明性と高いガラス転移温度(350℃以上)を示したが、重合度が上がらなかったため、靭性に乏しく脆弱であった。   This polyimide film exhibited extremely high transparency and a high glass transition temperature (350 ° C. or higher), but was poor in toughness and fragile because the degree of polymerization did not increase.

比較例8
ジアミン成分としてトランス−1,4−ジアミノシクロヘキサンの代わりに1,4−ジアミノシクロヘキサン(トランス/シス混合物、トランス/シス比25/75)とした以外は実施例1と同様に行いポリイミド前駆体の調製を行った。重合の際、塩形成は全く起らず、2時間攪拌後、粘稠で均一な溶液が得られた。このポリイミド前駆体の還元粘度は0.42dL/gであり、この前駆体溶液から実施例1と同様に行いポリイミドフィルムを得た。しかしながら、得られたポリイミドフィルムは、重合度が上がらなかったため、靭性に乏しく脆弱であった。
Comparative Example 8
Preparation of polyimide precursor in the same manner as in Example 1 except that 1,4-diaminocyclohexane (trans / cis mixture, trans / cis ratio 25/75) was used instead of trans-1,4-diaminocyclohexane as the diamine component. Went. During polymerization, no salt formation occurred, and after stirring for 2 hours, a viscous and uniform solution was obtained. The reduced viscosity of this polyimide precursor was 0.42 dL / g, and it carried out similarly to Example 1 from this precursor solution, and obtained the polyimide film. However, since the degree of polymerization did not increase, the obtained polyimide film had poor toughness and was brittle.

Figure 0005040059
Figure 0005040059

表1において、各略号はそれぞれ以下の化合物を指す。
DSDA:3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
s−BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸に無水物
6FDA:2,2’−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物
PMDA:ピロメリット酸二無水物
CBDA:1,2,3,4−シクロブタンテトラカルボン酸二無水物
HPMDA:1,2,4,5−シクロヘキサンテトラカルボン酸二無水物
CHDA:トランス−1,4−ジアミノシクロヘキサン
ODA:4,4’−オキシジアニリン
In Table 1, each abbreviation refers to the following compound.
DSDA: 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride s-BPDA: 3,3 ′, 4 4'-biphenyltetracarboxylic acid and anhydride 6FDA: 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride
PMDA: pyromellitic dianhydride CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride HPMDA: 1,2,4,5-cyclohexanetetracarboxylic dianhydride CHDA: trans-1,4- Diaminocyclohexane ODA: 4,4'-oxydianiline

本発明により、高透明性、高ガラス転移温度、低復屈折、高靭性などの特性を兼ね備えたポリイミドを効率よく工業的に有利に製造することができる。このポリイミドはフレキシブルフィルム液晶ディスプレー用基材として好適に用いることができ、極めて工業的利用価値が高い。
特許出願人 新日本理化株式会社












According to the present invention, a polyimide having characteristics such as high transparency, high glass transition temperature, low birefringence, and high toughness can be efficiently and industrially produced advantageously. This polyimide can be suitably used as a substrate for a flexible film liquid crystal display, and has extremely high industrial utility value.
Patent applicant New Nippon Rika Co., Ltd.












Claims (9)

3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と一般式(1)
Figure 0005040059
[式中、R は水素又は炭素数1〜4の直鎖状若しくは分岐鎖状アルキル基を表す。]
で表されるトランス−1,4−ジアミノシクロヘキサン化合物から得られる一般式(2)
Figure 0005040059
[式中、Rは一般式(1)と同義である。]
で表される重合構造単位を有し、0.5dL/g以上の還元粘度(測定溶媒;N,N−ジメチルアセトアミド,測定温度;30℃)を有するポリイミド前駆体。
3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and general formula (1)
Figure 0005040059
[Wherein, R 1 represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms. ]
General formula (2) obtained from a trans-1,4-diaminocyclohexane compound represented by formula (2)
Figure 0005040059
[Wherein, R 1 has the same meaning as in general formula (1). ]
And a polyimide precursor having a reduced viscosity (measuring solvent: N, N-dimethylacetamide, measuring temperature: 30 ° C.) of 0.5 dL / g or more.
還元粘度が、2.0dL/g以上である請求項1に記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein the reduced viscosity is 2.0 dL / g or more. が、水素である請求項1又は2に記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein R 1 is hydrogen. 3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と一般式(1)で表されるトランス−1,4−ジアミノシクロヘキサン化合物とを有機溶媒中、重合反応させることを特徴とする請求項1〜3のいずれかに記載のポリイミド前駆体の製造方法。 Characterized in that 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and a trans-1,4-diaminocyclohexane compound represented by the general formula (1) are polymerized in an organic solvent. The manufacturing method of the polyimide precursor in any one of Claims 1-3 to do. 請求項1〜3のいずれかに記載のポリイミド前駆体を、イミド閉環反応させることにより得られる一般式(3)
Figure 0005040059
[式中、R は一般式(1)と同義である。]
で表されるポリイミド。
General formula (3) obtained by carrying out the imide ring-closing reaction of the polyimide precursor in any one of Claims 1-3.
Figure 0005040059
[Wherein, R 1 has the same meaning as in general formula (1). ]
Polyimide represented by
ガラス転移温度が350℃以上である請求項5に記載のポリイミド。 The polyimide according to claim 5, which has a glass transition temperature of 350 ° C. or higher. 請求項5又は6に記載のポリイミドを主たる構成成分とするポリイミドフィルム。 The polyimide film which uses the polyimide of Claim 5 or 6 as a main structural component. 請求項4に記載の製造方法において得られるポリイミド前駆体の有機溶媒溶液を支持体の上に流延塗布し、イミド閉環してなる請求項7に記載のポリイミドフィルムの製造方法。 The method for producing a polyimide film according to claim 7, wherein an organic solvent solution of the polyimide precursor obtained in the production method according to claim 4 is cast-coated on a support, and imide ring closure is performed. 請求項5又は6に記載のポリイミドを主たる基材とするフレキシブルフィルム液晶ディスプレー用基材。 The base material for flexible film liquid crystal displays which uses the polyimide of Claim 5 or 6 as a main base material.
JP2004295555A 2003-11-13 2004-10-08 Polyimide precursor, polyimide and method for producing them Expired - Fee Related JP5040059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295555A JP5040059B2 (en) 2003-11-13 2004-10-08 Polyimide precursor, polyimide and method for producing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003383451 2003-11-13
JP2003383451 2003-11-13
JP2004295555A JP5040059B2 (en) 2003-11-13 2004-10-08 Polyimide precursor, polyimide and method for producing them

Publications (2)

Publication Number Publication Date
JP2005163012A JP2005163012A (en) 2005-06-23
JP5040059B2 true JP5040059B2 (en) 2012-10-03

Family

ID=34741723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295555A Expired - Fee Related JP5040059B2 (en) 2003-11-13 2004-10-08 Polyimide precursor, polyimide and method for producing them

Country Status (1)

Country Link
JP (1) JP5040059B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961726B2 (en) * 2005-11-24 2012-06-27 新日本理化株式会社 Polyimide precursor and polyimide, and polyimide-based plastic substrate and method for producing the same.
TWI387812B (en) 2006-11-13 2013-03-01 Ind Tech Res Inst Transparent substrate with optical compensation ability and liquide crystal display using the same
TWI332580B (en) 2007-05-14 2010-11-01 Ind Tech Res Inst Transparent substrate with low birefringence
JP2010202729A (en) * 2009-03-02 2010-09-16 Hitachi Chemical Dupont Microsystems Ltd Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device
JP4991943B2 (en) 2010-02-26 2012-08-08 キヤノン株式会社 Optical member, polyimide, and manufacturing method thereof
JP2012140399A (en) * 2010-12-15 2012-07-26 Ube Industries Ltd Powdery coloration-suppressed trans-1,4-diaminocyclohexane, and polyimide using the same
US20130265530A1 (en) * 2010-12-21 2013-10-10 Sharp Kabushiki Kaisha Display device and thin film transistor substrate and manufacturing method therefor
JP5932222B2 (en) 2011-01-19 2016-06-08 キヤノン株式会社 Optical member and manufacturing method thereof
WO2013170135A1 (en) 2012-05-11 2013-11-14 Akron Polymer Systems, Inc. Thermally stable, flexible substrates for electronic devices
JP6206446B2 (en) * 2015-05-26 2017-10-04 日立化成デュポンマイクロシステムズ株式会社 Polyimide precursor resin composition for forming flexible device substrate, method for producing flexible device using the same, flexible device
WO2023032648A1 (en) * 2021-08-30 2023-03-09 三井化学株式会社 Poly(amic acid) varnish and method for producing poly(amic acid) varnish

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055370B2 (en) * 1993-08-31 2000-06-26 松下電器産業株式会社 Method for manufacturing flexible liquid crystal display panel
JPH083314A (en) * 1994-06-16 1996-01-09 Japan Synthetic Rubber Co Ltd Polyisoimide and its production
JP3972600B2 (en) * 2000-09-14 2007-09-05 ソニーケミカル&インフォメーションデバイス株式会社 Polyimide precursor, method for producing the same, and photosensitive resin composition
JP4815690B2 (en) * 2001-04-26 2011-11-16 新日本理化株式会社 Polyimide, polyimide precursor and method for producing them
JP3859984B2 (en) * 2001-05-07 2006-12-20 セントラル硝子株式会社 Polyimide and method for producing the same

Also Published As

Publication number Publication date
JP2005163012A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP6837974B2 (en) Polyamide-imide film and display device containing it
KR102062939B1 (en) Polyimide and molded body thereof
JP5667392B2 (en) Laminated body and use thereof
JP2020037709A (en) Polyimide-polybenzoxazole precursor solution, polyimide-polybenzoxazole film, and preparation method therefor
WO2013121917A1 (en) Diamine, polyimide, and polyimide film and utilization thereof
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
CN110790929A (en) Colorless transparent high-modulus polyimide film and preparation method thereof
JP6236349B2 (en) Polyimide and its use
JP2007091701A (en) Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP5040059B2 (en) Polyimide precursor, polyimide and method for producing them
KR20210127910A (en) Polyamic acid, Polyimide Resin, Polyimide Film and Display Device Comprising Thereof
KR20160127756A (en) Resin composition for display substrate, resin thin film for display substrate, and method for producing resin thin film for display substrate
JP2017504701A (en) Polyimide and film using the same
JP2006336009A (en) New polyimide copolymer and molded article of polyimide obtained by molding the same
KR102591070B1 (en) Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide
JPH047333A (en) New polyimide
JP6980919B2 (en) Method for producing polyamic acid, polyamic acid, polyimide resin, and polyimide film produced from this.
JP2022515829A (en) Polyamic acid composition and transparent polyimide film using it
WO2019172460A2 (en) Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
WO2023100806A1 (en) Film, production method therefor, and image display device
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
JP2024031304A (en) Resin compositions and films
WO2023085325A1 (en) Resin composition, molded body and film
JP5386797B2 (en) Flexible polyimide film and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5040059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees