KR102591070B1 - Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide - Google Patents

Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide Download PDF

Info

Publication number
KR102591070B1
KR102591070B1 KR1020187011187A KR20187011187A KR102591070B1 KR 102591070 B1 KR102591070 B1 KR 102591070B1 KR 1020187011187 A KR1020187011187 A KR 1020187011187A KR 20187011187 A KR20187011187 A KR 20187011187A KR 102591070 B1 KR102591070 B1 KR 102591070B1
Authority
KR
South Korea
Prior art keywords
polyimide
tetracarboxylic dianhydride
solution
formula
polyamic acid
Prior art date
Application number
KR1020187011187A
Other languages
Korean (ko)
Other versions
KR20180061248A (en
Inventor
준이치 이시이
마사토시 하세가와
Original Assignee
혼슈우 카가쿠고교 가부시키가이샤
가꼬우 호우징 도호다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 혼슈우 카가쿠고교 가부시키가이샤, 가꼬우 호우징 도호다이가쿠 filed Critical 혼슈우 카가쿠고교 가부시키가이샤
Priority to KR1020237015346A priority Critical patent/KR102619074B1/en
Publication of KR20180061248A publication Critical patent/KR20180061248A/en
Application granted granted Critical
Publication of KR102591070B1 publication Critical patent/KR102591070B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Furan Compounds (AREA)

Abstract

다양한 종류의 유기 용매에 대한 용해성이 우수하고, 또한 열가소성도 겸비하기 때문에 가공성이 우수하며, 낮은 선열팽창계수 및 높은 광투과성(투명성)을 겸비한 신규한 테트라카르복실산 이무수물로부터 유도되는 폴리이미드, 및 그 폴리이미드의 성형체의 제공을 과제로 한다. 상기 과제는 하기 화학식 1로 표시되는 테트라카르복실산 이무수물로부터 유도되는 폴리이미드에 의해 해결할 수 있다.
[화학식 1]
A polyimide derived from a novel tetracarboxylic dianhydride that has excellent solubility in various types of organic solvents, has excellent processability because it is also thermoplastic, and has a low coefficient of linear thermal expansion and high light transmittance (transparency). and provision of molded articles of the polyimide. The above problem can be solved by a polyimide derived from tetracarboxylic dianhydride represented by the following formula (1).
[Formula 1]

Description

신규한 테트라카르복실산 이무수물, 그 테트라카르복실산 이무수물로부터 유도되는 폴리이미드, 및 그 폴리이미드로 이루어지는 성형체{Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide}Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article made of the polyimide {Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide}

본 발명은 신규한 테트라카르복실산 이무수물로부터 유도되는 폴리이미드로서, 가공성이 우수하며, 낮은 선열팽창계수 및 높은 광투과성(투명성)을 겸비한 폴리이미드, 및 그 폴리이미드로 이루어지는 성형체에 관한 것이다. 이 폴리이미드는 우수한 용액 가공성뿐 아니라 열가소성도 나타내기 때문에, 용액 캐스트법에 의한 제막뿐 아니라 용융 성형이 가능하다. 또한 이 폴리이미드로 이루어지는 성형체는 종래의 용매 가용성 폴리이미드나 열가소성 폴리이미드에 비해 낮은 선열팽창계수를 나타냄과 동시에 투명성도 우수하다. 이러한 특징으로부터, 열에 대한 치수 안정성과 투명성을 필요로 하는 액정 디스플레이(LCD), 유기 일렉트로루미네센스(EL) 디스플레이, 전자 페이퍼, 발광 다이오드(LED) 디바이스, 태양전지 등에 사용되는 투명 기판, 투명 보호막 재료, 접착 재료로서 유용하다.The present invention relates to a novel polyimide derived from tetracarboxylic dianhydride, which has excellent processability, a low linear thermal expansion coefficient, and high light transmittance (transparency), and a molded article made of the polyimide. Since this polyimide exhibits not only excellent solution processability but also thermoplasticity, it can be melt-molded as well as film-formed by the solution casting method. In addition, the molded body made of this polyimide exhibits a lower coefficient of linear thermal expansion compared to conventional solvent-soluble polyimide or thermoplastic polyimide and is also excellent in transparency. From these characteristics, transparent substrates and transparent protective films used in liquid crystal displays (LCDs), organic electroluminescence (EL) displays, electronic papers, light-emitting diode (LED) devices, and solar cells require dimensional stability and transparency against heat. It is useful as a material and adhesive material.

성형 가공 가능한 종래의 투명 수지로서 폴리에틸렌테레프탈레이트, 폴리카보네이트, 폴리에테르설폰 등이 알려져 있는데, 이들 수지는 용액 가공성과 용융 성형성이 우수하나, 열에 대한 치수 변화(선열팽창계수)가 크다. 성형체로서의 선열팽창계수가 큰 경우, LCD, 유기 EL 디스플레이, 전자 페이퍼, LED 등의 표시 디바이스나 조명 디바이스에 사용되고 있는 저열팽창성 무기 재료와 적층하면 다양한 문제가 발생할 가능성이 있어 바람직하지 않다. 예를 들면 상기 투명 수지 성형체와 투명 전극(ITO;Indium Tin Oxide), 동, 은, 알루미늄 등의 배선, 또는 박막 트랜지스터(TFT;Thin-Film Transistor) 등 소자를 형성할 때의 열공정에 의해, 저열팽창성 무기 재료와 종래의 고열팽창성 수지 사이에서 선열팽창계수의 부정합이 발생하고, 그 계면에서 변형이 생겨 층간 박리나 기판의 변형, 그리고 소자의 파괴로 이어질 우려가 있다. Polyethylene terephthalate, polycarbonate, polyethersulfone, etc. are known as conventional transparent resins that can be molded and processed. These resins have excellent solution processability and melt moldability, but have large dimensional changes (coefficient of linear thermal expansion) against heat. If the linear thermal expansion coefficient as a molded body is large, various problems may occur when laminated with low thermal expansion inorganic materials used in display devices or lighting devices such as LCDs, organic EL displays, electronic papers, and LEDs, so it is not preferable. For example, by a thermal process when forming the transparent resin molded body and elements such as transparent electrodes (ITO; Indium Tin Oxide), wiring of copper, silver, aluminum, etc., or thin film transistors (TFT; Thin-Film Transistor), A mismatch in linear thermal expansion coefficient may occur between a low thermal expansion inorganic material and a conventional high thermal expansion resin, and deformation may occur at the interface, which may lead to interlayer separation, deformation of the substrate, and destruction of the device.

한편, 우수한 열 치수 안정성을 갖는 수지로서 방향족 폴리이미드가 알려져 있다. 화학구조가 강직하고 직선적인 방향족 폴리이미드로 이루어지는 성형체, 예를 들면 폴리이미드 필름은 플렉시블 프린트 배선기판의 베이스 필름이나 반도체의 층간 절연막 등 높은 치수 안정성(저선열팽창계수)이 요구되는 분야에서 널리 사용되고 있다. 그러나, 저선열팽창계수를 갖는 방향족 폴리이미드는 분자 내 공액 및 분자 내·분자 간 전하이동 상호작용에 의해 강하게 착색되기 때문에, 상기 광학 용도에 적용하는 것은 곤란하다. 또한 폴리이미드는 분자간력이 매우 강하기 때문에, 종종 용매에 대한 용해성 및 열가소성을 나타내지 않아 가공성이 부족하다. On the other hand, aromatic polyimide is known as a resin with excellent thermal dimensional stability. Molded articles made of aromatic polyimide with a rigid and linear chemical structure, for example polyimide film, are widely used in fields that require high dimensional stability (low linear thermal expansion coefficient), such as base films for flexible printed wiring boards and interlayer insulating films for semiconductors. . However, aromatic polyimide with a low linear thermal expansion coefficient is strongly colored due to intramolecular conjugation and intra- and intermolecular charge transfer interactions, so it is difficult to apply it to the above optical applications. In addition, because polyimide has very strong intermolecular forces, it often does not exhibit solubility in solvents and thermoplasticity, resulting in poor processability.

한편, 이들 결점을 극복한 폴리이미드가 제안되어 있다. 예를 들면 폴리이미드 구조 중에 불소원자를 도입하는 방법(비특허문헌 1)이나, 폴리이미드를 구성하는 디아민 성분과 테트라카르복실산 이무수물 성분 중 한쪽, 또는 양쪽에 지환식 화합물을 사용함으로써 분자 내 공역 및 전하이동 상호작용을 억제하여 투명성을 높이는 방법이 제안되어 있다(비특허문헌 2, 3). 이들 선행기술에 의해 투명성과 용액 가공성을 양립시킨 폴리이미드가 개발되었으나, 가공성뿐 아니라 저열팽창성을 겸비하는 폴리이미드의 보고예는 제한되어 있다.On the other hand, polyimide that overcomes these drawbacks has been proposed. For example, by introducing a fluorine atom into the polyimide structure (Non-Patent Document 1), or by using an alicyclic compound in one or both of the diamine component and tetracarboxylic dianhydride component that make up the polyimide, A method to increase transparency by suppressing conjugate and charge transfer interactions has been proposed (Non-Patent Documents 2 and 3). Although polyimides that achieve both transparency and solution processability have been developed through these prior technologies, there are limited reported examples of polyimides that have not only processability but also low thermal expansion properties.

그 몇 안 되는 보고예로서, 에스테르기를 갖는 특정 폴리이미드가 제안되어 있다(특허문헌 1). 이 폴리이미드는 투명성, 내열성뿐 아니라 무기 재료와 동등한 저선열팽창계수를 갖지만, 다양한 종류의 유기 용매에 대한 용해성이 충분하지 않아, 이 점에서 개선의 여지가 있었다. As one of the few reported examples, a specific polyimide having an ester group is proposed (Patent Document 1). This polyimide has not only transparency and heat resistance, but also a low linear thermal expansion coefficient equivalent to that of inorganic materials, but its solubility in various types of organic solvents is not sufficient, so there is room for improvement in this respect.

또한, 열가소성도 겸비하는 우수한 가공성을 갖는 폴리이미드는 알려져 있지 않다. Additionally, there is no known polyimide that has excellent processability and is also thermoplastic.

일본국 특허공개 제2013-082876호 공보Japanese Patent Publication No. 2013-082876

Macromolecules, 24, 5001(1991) Macromolecules, 24, 5001 (1991) J. Polym. Sci., PartA, Polym. Chem., 51, 575(2013) J. Polym. Sci., PartA, Polym. Chem., 51, 575 (2013) Polymer, 55, 4693(2014) Polymer, 55, 4693(2014)

본 발명은 신규한 테트라카르복실산 이무수물로부터 유도되는 폴리이미드로서, 다양한 종류의 유기 용매에 대한 용해성이 우수하고, 또한 열가소성도 겸비하기 때문에 가공성이 우수하며, 낮은 선열팽창계수 및 높은 광투과성(투명성)을 겸비한 폴리이미드, 및 그 폴리이미드로 이루어지는 성형체를 제공하는 것을 목적으로 한다. The present invention is a polyimide derived from a novel tetracarboxylic dianhydride, which has excellent solubility in various types of organic solvents, has excellent processability because it is also thermoplastic, and has a low linear thermal expansion coefficient and high light transmittance ( The purpose is to provide a polyimide that also has transparency, and a molded article made of the polyimide.

상기 배경기술을 감안하여 본 발명자들은 예의 연구를 거듭한 결과, 하기 화학식 1로 표시되는 테트라카르복실산 이무수물로부터 가공성이 우수한 폴리이미드가 얻어져, 당해 분야에 있어서 매우 유용한 재료가 되는 것을 발견하고, 본 발명을 완성하기에 이르렀다. In view of the above background technology, the present inventors have conducted extensive research and discovered that a polyimide with excellent processability was obtained from tetracarboxylic dianhydride represented by the following formula (1), making it a very useful material in the field. , the present invention has been completed.

본 발명은 아래와 같다. The present invention is as follows.

1. 하기 화학식 1로 표시되는 테트라카르복실산 이무수물.1. Tetracarboxylic dianhydride represented by the following formula (1).

2. 하기 화학식 2로 표시되는 반복단위를 갖는 폴리이미드. 2. Polyimide having a repeating unit represented by the following formula (2).

3. 화학식 2로 표시되는 반복단위의 함유율이 폴리이미드 중의 모든 반복단위에 대해 55 mol% 이상인 것을 특징으로 하는 2에 기재된 폴리이미드. 3. The polyimide according to 2, wherein the content of the repeating unit represented by the formula (2) is 55 mol% or more for all repeating units in the polyimide.

4. 2 또는 3에 기재된 폴리이미드와 유기 용매를 함유하는 폴리이미드 용액으로서, 고형분 농도가 5 중량% 이상인 것을 특징으로 하는 폴리이미드 용액. 4. A polyimide solution containing the polyimide according to 2 or 3 and an organic solvent, characterized in that the solid content concentration is 5% by weight or more.

5. 2 또는 3에 기재된 폴리이미드 성형체. 5. The polyimide molded body according to 2 or 3.

본 발명에 의하면, 종래기술에서는 얻을 수 없었던 특성, 즉 다양한 종류의 유기 용매에 대한 용해성이 우수하고, 또한 열가소성도 겸비하기 때문에 가공성이 우수하며, 낮은 선열팽창계수 및 높은 광투과성(투명성)을 모두 겸비한 폴리이미드, 및 그 폴리이미드로 이루어지는 성형체는 중앙 페닐렌기에 부피가 큰 시클로헥실기가 치환되어 있는 것을 특징으로 하는 테트라카르복실산 이무수물을 사용함으로써 얻어진다. According to the present invention, properties that could not be obtained in the prior art, namely, excellent solubility in various types of organic solvents, excellent processability due to thermoplasticity, low linear thermal expansion coefficient, and high light transmittance (transparency) are all achieved. Polyimide and a molded article made of the polyimide are obtained by using tetracarboxylic dianhydride, which is characterized in that the central phenylene group is substituted with a bulky cyclohexyl group.

도 1은 실시예 2의 폴리이미드 필름의 적외 흡수 스펙트럼을 나타내는 도면이다.
도 2는 실시예 2의 폴리이미드 필름의 동적 점탄성 곡선을 나타내는 도면이다.
도 3은 실시예 3의 폴리이미드 필름의 적외 흡수 스펙트럼을 나타내는 도면이다.
도 4는 실시예 3의 폴리이미드 필름의 동적 점탄성 곡선을 나타내는 도면이다.
도 5는 실시예 4의 폴리이미드 필름의 적외 흡수 스펙트럼을 나타내는 도면이다.
도 6은 실시예 4의 폴리이미드 필름의 동적 점탄성 곡선을 나타내는 도면이다.
도 7은 비교예 2의 폴리이미드 필름의 동적 점탄성 곡선을 나타내는 도면이다.
1 is a diagram showing the infrared absorption spectrum of the polyimide film of Example 2.
Figure 2 is a diagram showing the dynamic viscoelastic curve of the polyimide film of Example 2.
Figure 3 is a diagram showing the infrared absorption spectrum of the polyimide film of Example 3.
Figure 4 is a diagram showing the dynamic viscoelastic curve of the polyimide film of Example 3.
Figure 5 is a diagram showing the infrared absorption spectrum of the polyimide film of Example 4.
Figure 6 is a diagram showing the dynamic viscoelastic curve of the polyimide film of Example 4.
Figure 7 is a diagram showing the dynamic viscoelastic curve of the polyimide film of Comparative Example 2.

본 발명의 테트라카르복실산 이무수물은 하기 화학식 1로 표시되는 구조를 갖는다. Tetracarboxylic dianhydride of the present invention has a structure represented by the following formula (1).

[화학식 1][Formula 1]

본 발명의 화학식 1로 표시되는 테트라카르복실산 이무수물(이후, TACHQ로 약칭하는 경우가 있음)의 화학구조적인 특징은, 에스테르 결합을 매개로 중앙 페닐렌기의 파라 위치에 2개의 무수 프탈산 구조가 결합되고, 또한 중앙 페닐렌기에 부피가 큰 시클로헥실기가 치환되어 있는 점이다. The chemical structural characteristic of tetracarboxylic dianhydride (hereinafter sometimes abbreviated as TACHQ) represented by Formula 1 of the present invention is that two phthalic anhydride structures are formed at the para position of the central phenylene group through an ester bond. It is bonded, and a bulky cyclohexyl group is substituted on the central phenylene group.

본 발명의 화학식 1로 표시되는 TACHQ의 합성방법은 특별히 한정되지 않으나, 예를 들면 하기 화학식 3으로 표시되는 디올, 즉 시클로헥실하이드로퀴논 또는 그의 디아세테이트체와 하기 화학식 4로 표시되는 트리멜리트산 또는 그의 유도체로부터 공지의 에스테르화 반응에 의해 합성된다. The method for synthesizing TACHQ represented by Formula 1 of the present invention is not particularly limited, but for example, a diol represented by Formula 3 below, that is, cyclohexylhydroquinone or its diacetate form and trimellitic acid represented by Formula 4 below, or It is synthesized from its derivatives by a known esterification reaction.

트리멜리트산 유도체로서는 무수 트리멜리트산, 무수 트리멜리트산 할라이드 등을 들 수 있다. Examples of trimellitic acid derivatives include trimellitic anhydride and trimellitic anhydride halide.

본 발명의 폴리이미드는 하기 화학식 2로 표시되는 반복단위를 갖는다.The polyimide of the present invention has a repeating unit represented by the following formula (2).

[화학식 2][Formula 2]

본 발명의 화학식 2로 표시되는 반복단위를 갖는 폴리이미드의 제1 특징은, 테트라카르복실산 이무수물 부위의 중앙 페닐렌기의 파라 위치에 2개의 에스테르 결합이 존재하고, 디아민 부위에서는 파라 위치에서 결합한 비페닐렌 구조를 가지고 있기 때문에, 폴리이미드 주쇄 구조가 직선적이고 강직한 구조를 형성하고 있는 점이다. 이 특징에 의해, 폴리이미드 사슬이 고도로 필름 평면방향을 따라 배향(면내 배향)되어, 우수한 열 치수 안정성(저선열팽창계수)을 나타내는 것으로 생각된다. 그러나, 이러한 직선적이고 강직한 구조를 갖는 저열팽창성 폴리이미드는 폴리이미드 사슬 간의 응집력이 강하기 때문에 통상 유기 용매에 녹지 않고, 용융되지도 않아 가공성이 부족하다. 이에 일반적으로 폴리이미드 주쇄 중에 실록산 결합, 에테르 결합, 메타 결합을 도입하여 폴리이미드 주쇄 구조를 굴곡시키는 방법이나, 폴리이미드 반복단위 중의 이미드기 농도를 저감시키는 방법, 그리고 폴리이미드 측쇄에 부피가 큰 치환기를 도입하여 폴리이미드 사슬 간의 응집력을 약화시켜 가공성을 높이는 방법이 채용된다. 그러나, 이들 방법은 폴리이미드 성형체, 특히 필름에 있어서의 면내 배향을 저해하여, 결과적으로 선열팽창계수를 증대시킨다. 즉, 가공성과 저열팽창성을 양립시키는 것은 매우 곤란하다. The first characteristic of the polyimide having a repeating unit represented by Formula 2 of the present invention is that two ester bonds exist in the para position of the central phenylene group in the tetracarboxylic dianhydride portion, and a bond is bonded in the para position in the diamine portion. Because it has a biphenylene structure, the polyimide main chain structure forms a straight and rigid structure. Due to this characteristic, the polyimide chains are highly oriented along the film plane direction (in-plane orientation), and it is believed that excellent thermal dimensional stability (low linear thermal expansion coefficient) is exhibited. However, low thermal expansion polyimide, which has such a straight and rigid structure, usually does not dissolve or melt in organic solvents due to the strong cohesion between polyimide chains, and thus lacks processability. Accordingly, in general, there is a method of bending the polyimide main chain structure by introducing a siloxane bond, an ether bond, and a meta bond into the polyimide main chain, a method of reducing the concentration of imide groups in the polyimide repeating unit, and a method of adding a bulky substituent to the polyimide side chain. A method of increasing processability by introducing a weakening of the cohesion between polyimide chains is adopted. However, these methods inhibit the in-plane orientation of the polyimide molded body, especially the film, and consequently increase the coefficient of linear thermal expansion. In other words, it is very difficult to achieve both processability and low thermal expansion properties.

이에, 본 발명의 화학식 2로 표시되는 반복단위를 갖는 폴리이미드의 다음에 기재는 제2 특징에 의해 이 문제를 해결하는 것이 가능해진다. 즉, 테트라카르복실산 이무수물 부위의 중앙 페닐렌기에 부피가 큰 시클로헥실기가 치환되고, 또한 디아민 부위의 측쇄에 전자구인성이며 부피가 큰 트리플루오로메틸기를 치환함으로써, 폴리이미드 사슬 간의 면내 배향을 저해하지 않고 응집력만을 약화시킬 수 있다. 이 절묘한 밸런스를 실현시킨 화학식 2로 표시되는 반복단위를 갖는 폴리이미드는 다양한 종류의 유기 용매에 대한 용해성이 우수하고, 또한 열가소성도 겸비하기 때문에 가공성이 우수하며, 그리고 본래 양립이 곤란하였던 낮은 선열팽창계수를 나타내고, 더 나아가서는 폴리이미드의 전하이동 상호작용도 억제되어 높은 투명성도 실현시킬 수 있다. Accordingly, it becomes possible to solve this problem by the second feature described below of the polyimide having a repeating unit represented by the formula (2) of the present invention. That is, by substituting a bulky cyclohexyl group on the central phenylene group of the tetracarboxylic dianhydride site and also substituting an electron-withdrawing and bulky trifluoromethyl group on the side chain of the diamine site, the in-plane between polyimide chains It can only weaken cohesion without impairing orientation. Polyimide, which has a repeating unit represented by Chemical Formula 2, which achieves this exquisite balance, has excellent solubility in various types of organic solvents, and also has thermoplasticity, so it has excellent processability and low linear thermal expansion, which was originally difficult to achieve. coefficient, and furthermore, the charge transfer interaction of polyimide is suppressed, making it possible to realize high transparency.

본 발명의 화학식 2로 표시되는 반복단위를 갖는 폴리이미드는 화학식 1로 표시되는 TACHQ를 원료로 함으로써, 상기와 같은 우수한 특성을 갖는 폴리이미드를 합성할 수 있다. 이 폴리이미드의 제조방법에 대해서는 특별히 한정되지 않으나, 예를 들면 화학식 1로 표시되는 TACHQ와, 디아민으로서 하기 화학식 5로 표시되는 2,2'-비스(트리플루오로메틸)벤지딘(이후, TFMB로 약칭하는 경우가 있음)과 반응시켜서, 화학식 2로 표시되는 반복단위를 갖는 폴리이미드의 전구체(폴리아미드산)를 얻는 공정 및 폴리아미드산을 이미드화하는 공정을 거쳐 제조할 수 있다. The polyimide having the repeating unit represented by Formula 2 of the present invention can be synthesized using TACHQ represented by Formula 1 as a raw material and having the excellent properties described above. There are no particular limitations on the production method of this polyimide, but for example, TACHQ represented by the formula (1) and 2,2'-bis(trifluoromethyl)benzidine (hereinafter referred to as TFMB) represented by the following formula (5) as a diamine. It can be produced through a process of reacting with (sometimes abbreviated) to obtain a polyimide precursor (polyamic acid) having a repeating unit represented by Formula 2 and a process of imidizing the polyamic acid.

[화학식 2][Formula 2]

[화학식 1][Formula 1]

폴리아미드산을 중합할 때, 중합 반응성 및 폴리이미드의 요구 특성을 현저히 손상시키지 않는 범위에서, 화학식 1로 표시되는 TACHQ 이외의 방향족 또는 지방족 테트라카르복실산 이무수물을 공중합 성분으로서 병용할 수 있다. When polymerizing polyamic acid, an aromatic or aliphatic tetracarboxylic dianhydride other than TACHQ represented by Formula 1 can be used together as a copolymerization component to the extent that the polymerization reactivity and the required properties of the polyimide are not significantly impaired.

이때 사용 가능한 방향족 테트라카르복실산 이무수물로서는 특별히 한정되지 않으나, 예를 들면 피로멜리트산 이무수물, 3,3',4,4'-비페닐테트라카르복실산 이무수물, 하이드로퀴논-비스(트리멜리테이트 무수물), 메틸하이드로퀴논-비스(트리멜리테이트 무수물), 1,4,5,8-나프탈렌테트라카르복실산 이무수물, 2,3,6,7-나프탈렌테트라카르복실산 이무수물, 3,3',4,4'-벤조페논테트라카르복실산 이무수물, 3,3',4,4'-비페닐에테르테트라카르복실산 이무수물, 3,3',4,4'-비페닐설폰테트라카르복실산 이무수물, 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물, 2,2'-비스(3,4-디카르복시페닐)프로판산 이무수물 등을 들 수 있다. The aromatic tetracarboxylic dianhydride that can be used at this time is not particularly limited, but examples include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, and hydroquinone-bis(tri). mellitate anhydride), methylhydroquinone-bis(trimellitate anhydride), 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3 ,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-biphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-biphenyl Sulfone tetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, and 2,2'-bis(3,4-dicarboxyphenyl)propanoic acid dianhydride.

지방족 테트라카르복실산 이무수물로서는 특별히 한정되지 않으나, 예를 들면 지환식의 것으로서는 비시클로[2. 2. 2]옥토-7-엔-2,3,5,6-테트라카르복실산 이무수물, 5-(디옥소테트라히드로푸릴-3-메틸-3-시클로헥센-1,2-디카르복실산 무수물, 4-(2,5-디옥소테트라히드로푸란-3-일)테트랄린-1,2-디카르복실산 무수물, 테트라히드로푸란-2,3,4,5-테트라카르복실산 이무수물, 비시클로-3,3',4,4'-테트라카르복실산 이무수물, 1,2,3,4-시클로부탄테트라카르복실산 이무수물, 1,2,3,4-시클로펜탄테트라카르복실산 이무수물 등을 들 수 있다. 또한 이들을 2종류 이상 병용하는 것도 가능하다. There are no particular limitations on the aliphatic tetracarboxylic dianhydride, but examples of alicyclic dianhydrides include bicyclo [2. 2. 2] Octo-7-N-2,3,5,6-tetracarboxylic dianhydride, 5-(dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxyl Acid anhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)tetralin-1,2-dicarboxylic acid anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic acid Dianhydride, bicyclo-3,3',4,4'-tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentane Examples include tetracarboxylic dianhydride, etc. It is also possible to use two or more types of these in combination.

폴리이미드의 용해성, 내열성, 투명성을 더욱 높이는 관점에서, 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(이후, 6FDA로 약칭하는 경우가 있음), 폴리이미드 성형체의 추가적인 저열팽창성 발현이라는 관점에서, 강직하고 직선적인 구조를 갖는 테트라카르복실산 이무수물, 즉 피로멜리트산 이무수물, 3,3',4,4'-비페닐테트라카르복실산 이무수물이 공중합 성분으로서 바람직하다. From the viewpoint of further improving the solubility, heat resistance, and transparency of polyimide, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (hereinafter sometimes abbreviated as 6FDA) was used to develop additional low thermal expansion properties of polyimide molded products. From this point of view, tetracarboxylic dianhydrides having a rigid and linear structure, namely pyromellitic dianhydride and 3,3',4,4'-biphenyltetracarboxylic dianhydride, are preferred as copolymerization components.

화학식 1로 표시되는 TACHQ 이외의 방향족 또는 지방족 테트라카르복실산 이무수물을 공중합 성분으로서 병용하는 경우에는, 모든 테트라카르복실산 이무수물에 대한 TACHQ의 비율은 바람직하게는 55 mol% 이상, 보다 바람직하게는 70 mol% 이상, 더욱 바람직하게는 80 mol% 이상, 특히 바람직하게는 90 mol% 이상이면 된다.When aromatic or aliphatic tetracarboxylic dianhydrides other than TACHQ represented by Formula 1 are used together as copolymerization components, the ratio of TACHQ to all tetracarboxylic dianhydrides is preferably 55 mol% or more, more preferably It may be 70 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.

본 발명의 폴리아미드산을 중합할 때, 중합 반응성 및 폴리이미드의 요구 특성을 현저히 손상시키지 않는 범위에서, 화학식 5로 표시되는 TFMB 이외의 방향족 또는 지방족 디아민을 공중합 성분으로서 병용할 수 있다. When polymerizing the polyamic acid of the present invention, aromatic or aliphatic diamines other than TFMB represented by the formula (5) can be used together as a copolymerization component to the extent that the polymerization reactivity and the required properties of the polyimide are not significantly impaired.

이때 사용 가능한 방향족 디아민으로서는 특별히 한정되지 않으나, 예를 들면 p-페닐렌디아민, m-페닐렌디아민, 2,4-디아미노톨루엔, 2,5-디아미노톨루엔, 2,4-디아미노크실렌, 2,4-디아미노듀렌, 4,4'-디아미노디페닐메탄, 4,4'-메틸렌비스(2-메틸아닐린), 4,4'-메틸렌비스(2-에틸아닐린), 4,4'-메틸렌비스(2,6-디메틸아닐린), 4,4'-메틸렌비스(2,6-디에틸아닐린), 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐에테르, 3,3'-디아미노디페닐에테르, 2,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐설폰, 3,3'-디아미노디페닐설폰, 4,4'-디아미노벤조페논, 3,3'-디아미노벤조페논, 4,4'-디아미노벤즈아닐리드, 4-아미노페닐-4'-아미노벤조에이트, 벤지딘, 3,3'-디히드록시벤지딘, 3,3'-디메톡시벤지딘, o-톨리딘, m-톨리딘, 1,4-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 4,4'-비스(4-아미노페녹시)비페닐, 비스(4-(3-아미노페녹시)페닐)설폰, 비스(4-(4-아미노페녹시)페닐)설폰, 2,2-비스(4-(4-아미노페녹시)페닐)프로판, 2,2-비스(4-(4-아미노페녹시)페닐)헥사플루오로프로판, 2,2-비스(4-아미노페닐)헥사플루오로프로판, p-터페닐렌디아민 등을 들 수 있다. The aromatic diamine that can be used at this time is not particularly limited, but examples include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis(2-methylaniline), 4,4'-methylenebis(2-ethylaniline), 4,4 '-methylenebis(2,6-dimethylaniline), 4,4'-methylenebis(2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl Ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4' -Diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, 4-aminophenyl-4'-aminobenzoate, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3 -bis(3-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis(4-(3-aminophenoxy)phenyl)sulfone, bis(4-(4-amino) Phenoxy)phenyl)sulfone, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 2, 2-bis(4-aminophenyl)hexafluoropropane, p-terphenylenediamine, etc. are mentioned.

또한, 지방족 디아민으로서는 쇄상 지방족 내지 지환식 디아민이고, 지환식 디아민으로서는 특별히 한정되지 않으나, 예를 들면 4,4'-메틸렌비스(시클로헥실아민), 이소포론디아민, 트랜스-1,4-디아미노시클로헥산, 시스-1,4-디아미노시클로헥산, 1,4-시클로헥산비스(메틸아민), 2,5-비스(아미노메틸)비시클로〔2. 2. 1〕헵탄, 2,6-비스(아미노메틸)비시클로〔2. 2. 1〕헵탄, 3,8-비스(아미노메틸)트리시클로〔5. 2. 1. 0〕데칸, 1,3-디아미노아다만탄, 2,2-비스(4-아미노시클로헥실)프로판, 2,2-비스(4-아미노시클로헥실)헥사플루오로프로판, 쇄상 지방족 디아민으로서는 특별히 한정되지 않으나, 예를 들면 1,3-프로판디아민, 1,4-테트라메틸렌디아민, 1,5-펜타메틸렌디아민, 1,6-헥사메틸렌디아민, 1,7-헵타메틸렌디아민, 1,8-옥타메틸렌디아민, 1,9-노나메틸렌디아민, 디아미노실록산 등을 들 수 있다. 또한 이들을 2종류 이상 병용하는 것도 가능하다. In addition, aliphatic diamines include chain aliphatic to alicyclic diamines, and alicyclic diamines are not particularly limited, but examples include 4,4'-methylenebis(cyclohexylamine), isophorone diamine, and trans-1,4-diamino. Cyclohexane, cis-1,4-diaminocyclohexane, 1,4-cyclohexanebis(methylamine), 2,5-bis(aminomethyl)bicyclo [2. 2. 1〕heptane, 2,6-bis(aminomethyl)bicyclo〔2. 2. 1〕heptane, 3,8-bis(aminomethyl)tricyclo〔5. 2. 1. 0] decane, 1,3-diaminoadamantane, 2,2-bis(4-aminocyclohexyl)propane, 2,2-bis(4-aminocyclohexyl)hexafluoropropane, chain aliphatic The diamine is not particularly limited, but examples include 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1 , 8-octamethylenediamine, 1,9-nonamethylenediamine, diaminosiloxane, etc. It is also possible to use two or more of these together.

중합 반응 시에 사용되는 용매로서는 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, 디메틸설폭시드 등의 비프로톤성 용매가 바람직한데, 원료 모노머와 생성되는 폴리아미드산, 그리고 이미드화된 폴리이미드가 용해되면 어떠한 용매여도 전혀 문제없이 사용할 수 있고, 특별히 그 용매 구조는 한정되지 않는다. 구체적으로는 예를 들면 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈 등의 아미드 용매, γ-부티로락톤, γ-발레로락톤, δ-발레로락톤, γ-카프로락톤, ε-카프로락톤, α-메틸-γ-부티로락톤, 초산부틸, 초산에틸, 초산이소부틸 등의 에스테르 용매, 에틸렌카보네이트, 프로필렌카보네이트 등의 카보네이트 용매, 디에틸렌글리콜디메틸에테르, 트리에틸렌글리콜, 트리에틸렌글리콜디메틸에테르 등의 글리콜계 용매, 페놀, m-크레졸, p-크레졸, o-크레졸, 3-클로로페놀, 4-클로로페놀 등의 페놀계 용매, 시클로펜타논, 시클로헥사논, 아세톤, 메틸에틸케톤, 디이소부틸케톤, 메틸이소부틸케톤 등의 케톤계 용매, 테트라히드로푸란, 1,4-디옥산, 디메톡시에탄, 디에톡시에탄, 디부틸에테르 등의 에테르계 용매, 기타 범용 용매로서 아세토페논, 1,3-디메틸-2-이미다졸리디논, 설포란, 디메틸설폭시드, 프로필렌글리콜메틸아세테이트, 에틸셀로솔브, 부틸셀로솔브, 2-메틸셀로솔브아세테이트, 에틸셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올, 에탄올, 크실렌, 톨루엔, 클로로벤젠, 테레빈유, 미네랄 스피릿, 석유 나프타계 용매 등도 사용할 수 있고, 이들을 2종류 이상 혼합해서 사용해도 된다. The solvent used during the polymerization reaction is preferably an aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, or dimethyl sulfoxide. The raw material monomer and Once the resulting polyamic acid and imidized polyimide are dissolved, any solvent can be used without any problem, and the solvent structure is not particularly limited. Specifically, for example, amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ- Ester solvents such as valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, butyl acetate, ethyl acetate, and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, and diethylene. Glycol-based solvents such as glycol dimethyl ether, triethylene glycol, triethylene glycol dimethyl ether, phenol-based solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, and 4-chlorophenol, cyclopenta Ketone solvents such as rice paddy, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, etc. Ether-based solvents and other general-purpose solvents include acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, and 2-methyl. Cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, turpentine, mineral spirits, petroleum naphtha-based solvents, etc. can also be used, and two or more types of these can be mixed. It's okay too.

화학식 1로 표시되는 TACHQ와 화학식 5로 표시되는 TFMB를 중부가 반응시켜서 폴리아미드산을 얻은 후, 이어서 이것을 이미드화함으로써 당해 산업상 매우 유용한 본 발명의 폴리이미드를 얻을 수 있다. The polyimide of the present invention, which is very useful in the industry, can be obtained by performing a polyaddition reaction between TACHQ represented by Formula 1 and TFMB represented by Formula 5 to obtain polyamic acid, and then imidizing this.

본 발명의 폴리이미드는 고분자 주쇄의 직선성, 강직성, 측쇄에 부피가 큰 치환기가 존재한다는 화학구조 상의 특징으로부터, 폴리이미드 수지로 했을 때 다양한 종류의 유기 용매에 대한 용해성이 우수하고, 또한 열가소성도 겸비하기 때문에 가공성이 우수하며, 또한 그 폴리이미드의 성형체, 특히 필름은 낮은 선열팽창계수, 그리고 높은 투명성을 겸비하는 재료로 할 수 있다. The polyimide of the present invention has excellent solubility in various types of organic solvents when used as a polyimide resin due to its chemical structural characteristics such as the linearity and rigidity of the polymer main chain and the presence of bulky substituents in the side chains, and also has thermoplasticity. Because it has both properties, it has excellent processability, and the polyimide molded product, especially the film, can be made of a material that has both a low coefficient of linear thermal expansion and high transparency.

통상, 테트라카르복실산 이무수물과 디아민의 중합 반응성은 최종적으로 얻어지는 폴리이미드 성형체의 인성(靭性)에 커다란 영향을 미친다. 중합 반응성이 충분히 높지 않으면 고중합체가 얻어지지 않고, 결과적으로 폴리머 사슬끼리의 얽힘 정도가 낮아져 폴리이미드 성형체가 취약해질 우려가 있다. 본 발명에서 사용하는 화학식 1의 TACHQ와 화학식 5의 TFMB는 충분히 높은 중합 반응성을 나타내기 때문에 그러한 염려가 없다.Usually, the polymerization reactivity of tetracarboxylic dianhydride and diamine has a great influence on the toughness of the finally obtained polyimide molded body. If the polymerization reactivity is not sufficiently high, a high polymer cannot be obtained, and as a result, the degree of entanglement between polymer chains may decrease, making the polyimide molded article vulnerable. There is no such concern because TACHQ of Chemical Formula 1 and TFMB of Chemical Formula 5 used in the present invention exhibit sufficiently high polymerization reactivity.

본 발명의 폴리이미드를 제조하는 방법은 특별히 한정되지 않고, 공지의 방법을 적절히 적용할 수 있다. 구체적으로는 예를 들면 아래의 방법으로 합성할 수 있다. 먼저 화학식 5의 TFMB를 중합용매에 용해하고, 이 용액에 화학식 5의 TFMB와 실질적으로 등몰의 화학식 1의 TACHQ 분말을 서서히 첨가하여, 메커니컬 스터러 등을 사용해서 0~100℃의 범위, 바람직하게는 20~60℃에서 0.5~150시간 바람직하게는 1~48시간 교반한다. 이때 모노머 농도는 통상 5~50 중량%의 범위, 바람직하게는 10~40 중량%의 범위이다. 이러한 모노머 농도 범위에서 중합을 행함으로써 균일하고 고중합도인 폴리아미드산을 얻을 수 있다. 폴리아미드산의 중합도가 지나치게 증가하여 중합용액이 교반하기 어려워진 경우는, 적당히 동일 용매로 희석하는 것도 가능하다. 폴리이미드 성형체 인성의 관점에서 폴리아미드산의 중합도는 될 수 있는 한 높은 것이 바람직하다. 상기 모노머 농도 범위에서 중합을 행함으로써 폴리머의 중합도가 충분히 높고, 모노머 및 폴리머의 용해성도 충분히 확보할 수 있다. 상기 범위보다 낮은 농도에서 중합을 행하면, 폴리아미드산의 중합도가 충분히 높아지지 않는 경우가 있고, 또한 상기 모노머 농도 범위보다 고농도로 중합을 행하면, 모노머나 생성되는 폴리머의 용해가 불충분해지는 경우가 있다. 또한 지방족 디아민을 사용한 경우, 중합 초기에 종종 염 형성이 일어나 중합이 방해되는데, 염 형성을 억제하면서 될 수 있는 한 중합도를 올리기 위해서는, 중합 시의 모노머 농도를 상기의 바람직한 농도 범위로 관리하는 것이 바람직하다. The method for producing the polyimide of the present invention is not particularly limited, and known methods can be appropriately applied. Specifically, it can be synthesized by, for example, the following method. First, TFMB of Formula 5 is dissolved in a polymerization solvent, and TFMB of Formula 5 and substantially equimolar TACHQ powder of Formula 1 are gradually added to this solution, and the mixture is stirred in the range of 0 to 100° C. using a mechanical stirrer, etc. is stirred at 20 to 60°C for 0.5 to 150 hours, preferably 1 to 48 hours. At this time, the monomer concentration is usually in the range of 5 to 50% by weight, preferably in the range of 10 to 40% by weight. By performing polymerization in this monomer concentration range, a polyamic acid with a uniform and high degree of polymerization can be obtained. If the degree of polymerization of the polyamic acid increases too much and the polymerization solution becomes difficult to stir, it is also possible to dilute it with the same solvent as appropriate. From the viewpoint of the toughness of the polyimide molded body, it is preferable that the degree of polymerization of the polyamic acid is as high as possible. By performing polymerization in the above monomer concentration range, the polymerization degree is sufficiently high and the solubility of the monomer and polymer can also be sufficiently ensured. If polymerization is performed at a concentration lower than the above range, the degree of polymerization of the polyamic acid may not be sufficiently high, and if polymerization is performed at a concentration higher than the above monomer concentration range, dissolution of the monomer or the resulting polymer may become insufficient. In addition, when aliphatic diamine is used, salt formation often occurs in the early stages of polymerization, hindering polymerization. In order to increase the degree of polymerization as much as possible while suppressing salt formation, it is desirable to manage the monomer concentration during polymerization within the above-mentioned preferable concentration range. do.

다음으로 폴리아미드산을 이미드화하는 방법에 대해서 설명한다. 본 발명의 폴리이미드는 공지의 방법으로 이미드화가 가능하다. 예를 들면 탈수 환화 시약에 의해 폴리아미드산을 이미드화하는 화학 이미드화법, 폴리아미드산을 고비점 용매 중에서 중합한 후, 계속해서 크실렌 등의 공비제 존재하에서 150℃ 이상으로 가열하여 부생되는 물을 계내로부터 제거하여 고중합도의 폴리이미드를 용액 상태로 얻는 용액 열 이미드화법, 또는 폴리아미드산 용액을 유리 기판 등의 지지체 상에 유연(流延)하고 건조하여 얻어진 폴리아미드산의 필름 형상 성형체를 가열로 등으로 250℃ 이상, 바람직하게는 300℃ 이상에서 가열하여 이미드화하는 열 이미드화법을 들 수 있다. 투명성이 높은 폴리이미드 성형체를 얻기 위해서는, 이들 이미드화 방법 중 온화한 조건하에서 이미드화가 가능한 화학 이미드화법이 바람직하다. Next, a method for imidizing polyamic acid will be described. The polyimide of the present invention can be imidized by a known method. For example, the chemical imidization method of imidizing polyamic acid using a dehydration cyclization reagent, polymerizing polyamic acid in a high boiling point solvent and then heating it to 150°C or higher in the presence of an azeotrope such as xylene, resulting in water by-produced. A film-shaped molded body of polyamic acid obtained by removing a polyimide with a high degree of polymerization in a solution state by removing it from the system, or by casting and drying a polyamic acid solution on a support such as a glass substrate. A thermal imidization method of imidizing by heating at 250°C or higher, preferably 300°C or higher, using a heating furnace or the like, may be included. In order to obtain a highly transparent polyimide molded body, among these imidization methods, the chemical imidization method, which allows imidization under mild conditions, is preferable.

화학 이미드화 방법에 대해서 상세하게 설명한다. 앞서 기재한 방법으로 얻어진 폴리아미드산 용액을 중합 시에 사용한 용매와 동일한 용매로 희석한다. 교반하기 쉬운 적당한 용액 점도로 희석한 폴리아미드산 용액을 메커니컬 스터러 등으로 교반하면서, 이 중에 유기산의 무수물과 염기성 촉매로서 3급 아민으로 이루어지는 탈수 폐환제(화학 이미드화제)를 적하하고 0~100℃, 바람직하게는 10~50℃에서 1~72시간 교반함으로써 화학적으로 이미드화를 완결시킨다. 이때 사용 가능한 유기산 무수물로서는 특별히 한정되지 않으나, 무수 초산, 무수 프로피온산 등을 들 수 있다. 시약의 취급이나 정제의 용이함으로부터 무수 초산이 바람직하게 사용된다. 또한 염기성 촉매로서는 피리딘, 트리에틸아민, 퀴놀린 등을 사용할 수 있는데 시약의 취급이나 분리의 용이함으로부터 피리딘이 바람직하게 사용되는데, 이들에 한정되지 않는다. 화학 이미드화제 중의 유기산 무수물량은 폴리아미드산의 이론 탈수량의 1~10배몰의 범위이고, 보다 바람직하게는 1~5배몰이다. 또한 염기성 촉매의 양은 유기산 무수물량에 대해 0.1~2배몰의 범위이고, 보다 바람직하게는 0.1~1배몰의 범위이다. The chemical imidization method will be described in detail. The polyamic acid solution obtained by the method described above is diluted with the same solvent as the solvent used during polymerization. While stirring the polyamic acid solution diluted to an appropriate solution viscosity that is easy to stir with a mechanical stirrer, a dehydrating ring-closing agent (chemical imidizing agent) consisting of an anhydride of an organic acid and a tertiary amine as a basic catalyst is added dropwise to 0~ Imidization is completed chemically by stirring at 100°C, preferably 10 to 50°C, for 1 to 72 hours. The organic acid anhydride that can be used at this time is not particularly limited, but includes acetic anhydride, propionic anhydride, and the like. Acetic anhydride is preferably used because of the ease of handling and purification of the reagent. In addition, as a basic catalyst, pyridine, triethylamine, quinoline, etc. can be used. Pyridine is preferably used because of the ease of handling and separation of reagents, but is not limited to these. The amount of organic acid anhydride in the chemical imidizing agent is in the range of 1 to 10 times the mole of the theoretical dehydration amount of polyamic acid, and is more preferably 1 to 5 times the mole. Additionally, the amount of the basic catalyst is in the range of 0.1 to 2 times the mole relative to the amount of the organic acid anhydride, and more preferably in the range of 0.1 to 1 times the mole.

상기와 같이 화학 이미드화 후의 반응용액 중에는 화학 이미드화제나 카르복실산 등의 부생성물(이하, 불순물이라 함)이 혼입되어 있기 때문에, 이들을 제거하여 폴리이미드를 정제할 필요가 있다. 정제는 공지의 방법을 이용할 수 있다. 예를 들면 가장 간편한 방법으로서는, 이미드화한 반응용액을 교반하면서 대량의 빈용매(poor solvent) 중에 적하하여 폴리이미드를 석출시킨 후, 폴리이미드 분말을 회수하여 불순물이 제거될 때까지 반복 세정하고, 감압 건조하여 폴리이미드 분말을 얻는 방법을 적용할 수 있다. 이때 사용할 수 있는 빈용매로서는 폴리이미드를 석출시켜 불순물을 효율적으로 제거할 수 있고, 건조하기 쉬운 용매라면 특별히 한정되지 않으나, 예를 들면 물, 메탄올, 에탄올, 이소프로판올 등의 알코올류가 바람직하고, 이들을 혼합해서 사용해도 된다. 빈용매 중에 적하하여 석출시킬 때의 폴리이미드 용액의 농도는 지나치게 높으면 석출되는 폴리이미드가 입자 덩어리가 되어, 그 조대한 입자 중에 불순물이 잔류할 가능성이나, 얻어진 폴리이미드 분말을 용매에 용해하는 시간이 장시간 소요될 우려가 있다. 한편, 폴리이미드 용액의 농도를 지나치게 묽게 하면 다량의 빈용매가 필요해져, 폐용제 처리에 의한 환경부하 증대나 제조비용이 높아지기 때문에 바람직하지 않다. 따라서, 빈용매 중에 적하할 때의 폴리이미드 용액의 농도는 20 중량% 이하, 보다 바람직하게는 10 중량% 이하이다. 이때 사용하는 빈용매의 양은 폴리이미드 용액의 등량 이상이 바람직하고, 5~100배량이 매우 바람직하다. 얻어진 폴리이미드 분말을 회수하여 잔류 용매를 진공 건조나 열풍 건조 등으로 제거한다. 건조 온도와 시간은 폴리이미드가 변질되지 않고, 잔류 용매가 증발되는 온도라면 제한은 없고, 30~200℃의 온도 범위에 있어서 48시간 이하로 건조시키는 것이 바람직하다. As described above, since by-products (hereinafter referred to as impurities) such as chemical imidizing agent and carboxylic acid are mixed in the reaction solution after chemical imidization, it is necessary to purify the polyimide by removing these. For purification, known methods can be used. For example, in the simplest method, the imidized reaction solution is dropped dropwise into a large amount of poor solvent while stirring to precipitate the polyimide, and then the polyimide powder is recovered and washed repeatedly until the impurities are removed. A method of obtaining polyimide powder by drying under reduced pressure can be applied. The poor solvent that can be used at this time is not particularly limited as long as it can efficiently remove impurities by precipitating polyimide and is easy to dry, but for example, alcohols such as water, methanol, ethanol, and isopropanol are preferred, and these are preferred. You may mix and use them. If the concentration of the polyimide solution when deposited dropwise in a poor solvent is too high, the precipitated polyimide may become a lump of particles, and impurities may remain in the coarse particles, and the time required to dissolve the obtained polyimide powder in the solvent may increase. There are concerns that it may take a long time. On the other hand, excessively diluting the concentration of the polyimide solution is undesirable because a large amount of poor solvent is required, which increases the environmental load due to waste solvent treatment and increases manufacturing costs. Therefore, the concentration of the polyimide solution when dropped into a poor solvent is 20% by weight or less, more preferably 10% by weight or less. At this time, the amount of poor solvent used is preferably equal to or greater than that of the polyimide solution, and 5 to 100 times the amount is highly preferable. The obtained polyimide powder is recovered and the residual solvent is removed by vacuum drying, hot air drying, etc. There is no limit to the drying temperature and time as long as the polyimide is not deteriorated and the residual solvent is evaporated, and it is preferable to dry for 48 hours or less in the temperature range of 30 to 200 ° C.

본 발명의 폴리이미드는 폴리이미드 성형체의 인성 및 용액의 핸들링성의 관점에서, 폴리이미드의 고유점도로서 바람직하게는 0.1~10.0 dL/g의 범위이고, 보다 바람직하게는 0.3~5.0 dL/g의 범위이다. The polyimide of the present invention has an intrinsic viscosity of preferably 0.1 to 10.0 dL/g, and more preferably 0.3 to 5.0 dL/g, from the viewpoint of the toughness of the polyimide molded body and the handleability of the solution. am.

본 발명의 폴리이미드는 다양한 종류의 유기 용매에 잘 녹는 것으로부터, 사용 용도나 가공 조건에 맞춰 용매를 선택할 수 있다. 예를 들면 장시간에 걸쳐 연속 도공하는 경우, 폴리이미드 용액 중의 용매가 대기 중의 수분을 흡습하여 폴리이미드가 석출될 우려가 있기 때문에, 트리에틸렌글리콜디메틸에테르, γ-부티로락톤 또는 시클로펜타논 등의 저흡습성 용매를 사용하는 것이 바람직하다. 따라서, 본 발명의 폴리이미드는 저흡습성을 나타내는 다양한 용매나 혼합 용매를 선택할 수 있다. 사용되는 저흡습성 용매는 특별히 한정되지 않으나, 예를 들면 γ-부티로락톤, γ-발레로락톤, δ-발레로락톤, γ-카프로락톤, ε-카프로락톤, α-메틸-γ-부티로락톤, 초산부틸, 초산에틸, 초산이소부틸 등의 에스테르 용매, 에틸렌카보네이트, 프로필렌카보네이트 등의 카보네이트 용매, 디에틸렌글리콜디메틸에테르, 트리에틸렌글리콜, 트리에틸렌글리콜디메틸에테르 등의 글리콜계 용매, 페놀, m-크레졸, p-크레졸, o-크레졸, 3-클로로페놀, 4-클로로페놀 등의 페놀계 용매, 시클로펜타논, 시클로헥사논, 아세톤, 메틸에틸케톤, 디이소부틸케톤, 메틸이소부틸케톤 등의 케톤계 용매, 테트라히드로푸란, 1,4-디옥산, 디메톡시에탄, 디에톡시에탄, 디부틸에테르 등의 에테르계 용매, 기타 범용 용매로서 아세토페논, 1,3-디메틸-2-이미다졸리디논, 설포란, 디메틸설폭시드, 프로필렌글리콜메틸아세테이트, 에틸셀로솔브, 부틸셀로솔브, 2-메틸셀로솔브아세테이트, 에틸셀로솔브아세테이트, 부틸셀로솔브아세테이트, 클로로포름, 부탄올, 에탄올, 크실렌, 톨루엔, 클로로벤젠, 테레빈유, 미네랄 스피릿, 석유 나프타계 용매 등도 사용할 수 있고, 이들을 2종류 이상 혼합해서 사용해도 된다. 또한, 흡습성 용매인 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈 등의 아미드 용매여도, 상기 저흡습성 용매와 혼합함으로써 흡습에 의한 폴리이미드의 석출을 억제하는 것도 가능하다. Since the polyimide of the present invention is highly soluble in various types of organic solvents, the solvent can be selected according to the intended use or processing conditions. For example, in the case of continuous coating over a long period of time, there is a risk that the solvent in the polyimide solution will absorb moisture in the air and cause the polyimide to precipitate, so use a solvent such as triethylene glycol dimethyl ether, γ-butyrolactone, or cyclopentanone. It is preferable to use a low hygroscopic solvent. Therefore, the polyimide of the present invention can be selected from various solvents or mixed solvents that exhibit low hygroscopicity. The low hygroscopic solvent used is not particularly limited, but examples include γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, and α-methyl-γ-butyrolactone. Ester solvents such as lactone, butyl acetate, ethyl acetate, and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol-based solvents such as diethylene glycol dimethyl ether, triethylene glycol, and triethylene glycol dimethyl ether, phenol, m Phenolic solvents such as -cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone, etc. ketone-based solvents, ether-based solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, and dibutyl ether, and other general-purpose solvents such as acetophenone and 1,3-dimethyl-2-imida. Zolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, chloroform, butanol, ethanol. , xylene, toluene, chlorobenzene, turpentine, mineral spirits, petroleum naphtha-based solvents, etc. can also be used, and two or more types of these can be mixed. In addition, even if it is an amide solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, or N-methyl-2-pyrrolidone, which is a hygroscopic solvent, precipitation of polyimide by moisture absorption occurs when mixed with the low hygroscopic solvent. It is also possible to suppress.

본 발명의 폴리이미드를 용매에 용해하여 용액으로 할 때의 고형분 농도로서는, 폴리이미드의 분자량, 제조방법이나 제조하는 필름의 두께에 따라서도 다르나, 5 중량% 이상이 바람직하다. 고형분 농도가 지나치게 낮으면 충분한 막 두께의 필름을 형성하는 것이 곤란해진다. 본 발명의 폴리이미드를 용매에 용해할 때의 방법으로서는, 예를 들면 용매를 교반하면서 본 발명의 폴리이미드 분말을 첨가하여, 공기 중 또는 불활성 가스 중에서 실온~용매의 비점 이하의 온도 범위에서 1~48시간에 걸쳐 용해시켜 폴리이미드 용액으로 할 수 있다. The solid content concentration when the polyimide of the present invention is dissolved in a solvent to form a solution varies depending on the molecular weight of the polyimide, the production method, and the thickness of the film to be produced, but is preferably 5% by weight or more. If the solid content concentration is too low, it becomes difficult to form a film with sufficient film thickness. As a method for dissolving the polyimide of the present invention in a solvent, for example, the polyimide powder of the present invention is added while stirring the solvent, and the polyimide powder of the present invention is added in the air or in an inert gas at a temperature range from room temperature to the boiling point of the solvent or less. It can be dissolved over 48 hours to form a polyimide solution.

또한, 본 발명의 폴리이미드에는 필요에 따라 이형제, 필러, 염료, 안료, 실란 커플링제, 가교제, 말단 봉지제, 산화 방지제, 소포제, 레벨링제 등의 첨가물을 첨가할 수 있다. Additionally, additives such as release agents, fillers, dyes, pigments, silane coupling agents, crosslinking agents, end capping agents, antioxidants, antifoaming agents, and leveling agents may be added to the polyimide of the present invention as needed.

얻어진 폴리이미드 용액은 공지의 방법으로 제막하여 폴리이미드 성형체나 필름을 형성할 수 있다. 예를 들면 폴리이미드 용액을 유리 기판 등의 지지체 상에 닥터 블레이드 등을 사용하여 유연하고, 열풍 건조기, 적외선 건조기, 진공 건조기, 이너트 오븐 등을 사용하여, 통상 40~300℃의 범위, 바람직하게는 50~250℃의 범위에서 건조함으로써 폴리이미드 필름을 형성할 수 있다. The obtained polyimide solution can be formed into a film by a known method to form a polyimide molded body or film. For example, the polyimide solution is spread on a support such as a glass substrate using a doctor blade, etc., and is dried using a hot air dryer, infrared dryer, vacuum dryer, inner oven, etc., usually in the range of 40 to 300°C, preferably. A polyimide film can be formed by drying in the range of 50 to 250°C.

실시예Example

아래에 본 발명을 실시예에 의해 구체적으로 설명하는데, 이들 실시예에 한정되는 것은 아니다. The present invention will be described in detail below by way of examples, but is not limited to these examples.

또한, 아래의 예에 있어서의 물성값은 다음의 방법으로 측정하였다. In addition, the physical properties in the examples below were measured by the following method.

<적외 흡수 스펙트럼><Infrared absorption spectrum>

퓨리에 변환 적외 분광광도계 FT/IR4100(일본 분광사 제조)을 사용하여 KBr 투과법으로 테트라카르복실산 이무수물의 적외 흡수 스펙트럼을 측정하였다. 또한, 폴리이미드 박막의 적외 흡수 스펙트럼은 투과법으로 측정하였다. The infrared absorption spectrum of tetracarboxylic dianhydride was measured by the KBr transmission method using a Fourier transform infrared spectrophotometer FT/IR4100 (manufactured by Nippon Spectrophotometer). Additionally, the infrared absorption spectrum of the polyimide thin film was measured using a transmission method.

1H-NMR 스펙트럼>1H -NMR spectrum>

퓨리에 변환 핵자기공명 분광광도계 JNM-ECP400(JEOL 제조)을 사용하여 중수소화 디메틸설폭시드 중에서 테트라카르복실산 이무수물 및 화학 이미드화한 폴리이미드 분말의 1H-NMR 스펙트럼을 측정하였다. The 1 H-NMR spectrum of tetracarboxylic dianhydride and chemically imidized polyimide powder in deuterated dimethyl sulfoxide was measured using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL).

<시차 주사 열량분석(융점)><Differential scanning calorimetry (melting point)>

 테트라카르복실산 이무수물의 융점은 시차 주사 열량분석장치 DSC3100(네치사)을 사용하여 질소 분위기중, 승온속도 5℃/분으로 측정하였다. 융점이 높고 융해 피크가 샤프할수록 고순도인 것을 나타낸다. The melting point of tetracarboxylic dianhydride was measured using a differential scanning calorimeter DSC3100 (Nechi) in a nitrogen atmosphere at a temperature increase rate of 5°C/min. The higher the melting point and the sharper the melting peak, the higher the purity.

<고유점도><Intrinsic viscosity>

0.5 중량%의 폴리아미드산 용액 또는 폴리이미드 용액의 환원점도는 오스왈드 점도계를 사용하여 30℃에서 측정하였다. 이값을 고유점도로 간주하였다. The reduced viscosity of a 0.5% by weight polyamic acid solution or polyimide solution was measured at 30°C using an Oswald viscometer. This value was regarded as the intrinsic viscosity.

<폴리이미드 분말의 유기 용매에 대한 용해성 시험><Solubility test of polyimide powder in organic solvents>

폴리이미드 분말 10 ㎎에 대해 표 1에 기재된 유기 용매 1 g(고형분 농도 1 중량%)을 샘플관에 넣고, 시험관 믹서를 사용하여 5분간 교반하여 용해상태를 육안으로 확인하였다. 용매로서 클로로포름(CF), 아세톤, 테트라히드로푸란(THF), 1,4-디옥산(DOX), 초산에틸, 시클로펜타논(CPN), 시클로헥사논(CHN), N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드(DMAc), N-메틸-2-피롤리돈(NMP), m-크레졸, 디메틸설폭시드(DMSO), γ-부티로락톤(GBL), 트리에틸렌글리콜디메틸에테르(Tri-GL)를 사용하였다. For 10 mg of polyimide powder, 1 g (solid concentration 1% by weight) of the organic solvent shown in Table 1 was added to a sample tube, stirred for 5 minutes using a test tube mixer, and the dissolution state was visually confirmed. Solvents include chloroform (CF), acetone, tetrahydrofuran (THF), 1,4-dioxane (DOX), ethyl acetate, cyclopentanone (CPN), cyclohexanone (CHN), and N,N-dimethylformamide. (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL), triethylene Glycol dimethyl ether (Tri-GL) was used.

평가결과는 실온에서 용해된 경우를 ++, 가열에 의해 용해되고 또한 실온까지 방랭 후에도 균일성을 유지하고 있었던 경우를 +, 팽윤/일부 용해된 경우를 ±, 녹지 않은 경우를 -로 표시하였다. The evaluation results were indicated as ++ when dissolved at room temperature, + when dissolved by heating and maintaining uniformity even after cooling to room temperature, ± when swollen/partially dissolved, and - when not dissolved.

<유리 전이 온도:Tg, 열가소성><Glass transition temperature: T g , thermoplastic>

TA Instruments사 제조 동적 점탄성 측정장치(Q800)를 사용하여 주파수 0.1 Hz, 진폭 0.1%, 승온속도 5℃/분에 있어서의 손실 피크로부터 폴리이미드 필름의 유리 전이 온도를 구하였다. 또한, 유리 전이 온도 직후의 저장 탄성률 곡선 저하의 급준함으로부터 열가소성을 평가하였다. Using a dynamic viscoelasticity measuring device (Q800) manufactured by TA Instruments, the glass transition temperature of the polyimide film was determined from the loss peak at a frequency of 0.1 Hz, an amplitude of 0.1%, and a temperature increase rate of 5°C/min. In addition, thermoplasticity was evaluated from the steepness of the decline in the storage modulus curve immediately after the glass transition temperature.

<선열팽창계수:CTE><Coefficient of linear thermal expansion: CTE>

폴리이미드 필름의 선열팽창계수는 네치사 제조 TMA4000을 사용하여(샘플 사이즈 폭 5 ㎜, 길이 15 ㎜), 하중을 막 두께(㎛)×0.5 g으로 하여, 5℃/min로 150℃까지 일단 승온(1회째 승온)시킨 후, 20℃까지 냉각하고, 추가로 5℃/min로 승온(2회째 승온)시켜서 2회째 승온 시의 TMA 곡선으로부터 계산하였다. 선열팽창계수는 100~200℃ 사이의 평균값으로서 구하였다. The linear thermal expansion coefficient of the polyimide film was determined using TMA4000 manufactured by Nechi (sample size width 5 mm, length 15 mm), the load was set to film thickness (μm) x 0.5 g, and the temperature was raised to 150°C at 5°C/min. After (the first temperature increase), it was cooled to 20°C, and the temperature was further raised at 5°C/min (the second temperature increase), and the temperature was calculated from the TMA curve at the second temperature increase. The linear thermal expansion coefficient was obtained as the average value between 100 and 200°C.

<폴리이미드막의 투과율:T400<Transmittance of polyimide film: T 400

일본 분광사 제조 자외 가시 근적외 분광광도계(V-650)를 사용하여 폴리이미드 필름(20 ㎛ 두께)의 200-700 nm에 있어서의 광투과율을 측정하여, 400 nm의 파장에 있어서의 광투과율을 투명성의 지표로서 사용하였다. 또한, 투과율이 0.5% 이하가 되는 파장(컷오프 파장)도 구하였다. The light transmittance at 200-700 nm of polyimide film (20 ㎛ thickness) was measured using an ultraviolet-visible/near-infrared spectrophotometer (V-650) manufactured by Nippon Spectrophotometer, and the light transmittance at a wavelength of 400 nm was measured. It was used as an indicator of transparency. Additionally, the wavelength (cutoff wavelength) at which the transmittance is 0.5% or less was also determined.

<황색도(Yellowness Index):YI><Yellowness Index:YI>

자외-가시 분광광도계 V-530(일본 분광사 제조)을 사용하여 파장 380~780 nm에 있어서의 폴리이미드 필름의 광투과율(T%)로부터 VWCT-615형 컬러 진단 프로그램(일본 분광사 제조)에 의해 JISK77373에 준거하여 황색도(YI)를 산출하였다. Using an ultraviolet-visible spectrophotometer V-530 (manufactured by Nippon Spectrophotometer), the light transmittance (T%) of the polyimide film at a wavelength of 380 to 780 nm was measured using the VWCT-615 type color diagnostic program (manufactured by Nippon Spectrophotometer). The yellowness (YI) was calculated based on JISK77373.

<전광선 투과율 및 헤이즈><Total light transmittance and haze>

Haze Meter NDH4000(닛폰 덴쇼쿠 공업 제조)을 사용하여 JISK7361에 준거한 폴리이미드 필름의 전광선 투과율과 JISK7136에 준거한 헤이즈(탁도)를 구하였다. Using Haze Meter NDH4000 (manufactured by Nippon Denshoku Industries), the total light transmittance of the polyimide film based on JISK7361 and the haze (turbidity) based on JISK7136 were determined.

<복굴절:Δn><Double refraction: Δn>

아타고사 제조 아베 굴절계(아베 1T)를 사용하여 폴리이미드 필름면에 평행한 방향(nin)과 수직인 방향(막 두께 방향)(nout)의 굴절률을 아베 굴절계(나트륨 램프 사용, 파장 589 nm)로 측정하여, 이들 굴절률의 차로부터 복굴절(Δn=nin-nout)을 구하였다. 복굴절값이 높을수록 폴리머 사슬의 면내 배향도가 높은 것을 의미한다. Using an Abbe refractometer (Abbe 1T) manufactured by Atago, the refractive index in the direction parallel to the polyimide film surface (n in ) and the direction perpendicular to the film thickness (n out ) was measured using an Abbe refractometer (using a sodium lamp, wavelength 589 nm). ) was measured, and the birefringence (Δn=n in -n out ) was obtained from the difference in these refractive indices. A higher birefringence value means a higher degree of in-plane orientation of the polymer chain.

<합성예 1><Synthesis Example 1>

A. TAHQ의 합성A. Synthesis of TAHQ

하기 화학식 6으로 표시되는 테트라카르복실산 이무수물(TAHQ)은 다음과 같이 합성하였다. 가지형 플라스크에 무수 트리멜리트산 클로라이드 12.6751 g(60.1940 ㎜ol)을 넣고, 탈수 테트라히드로푸란(THF) 33 mL에 실온에서 용해시켜 격막 밀봉(septum seal)하여 용액 A를 조제하였다. 또한 별도의 플라스크 중에서 하이드로퀴논(HQ) 2.2209 g(20.1700 ㎜ol)을 탈수 THF 8.2 mL, 피리딘 9.7 mL(120 ㎜ol)를 첨가하고 격막 밀봉하여 용액 B를 조제하였다. 얼음 욕조(ice bath) 중에서 냉각, 교반하면서 용액 A에 용액 B를 시린지에 의해 약 5분간에 걸쳐 서서히 적하하고, 그 후 실온에서 24시간 교반하였다. 반응 종료 후, 백색 침전을 여과 분별하고 THF 및 이온 교환수로 세정하였다. 피리딘 염산염의 제거는 세정액에 질산은 수용액을 첨가하여 백색 침전이 보이지 않게 된 것으로 확인하였다. 세정한 생성물을 회수하여 100℃에서 12시간 진공 건조하였다. 얻어진 생성물은 백색 분말이며, 수량은 8.0287 g, 수율은 87.6%였다. Tetracarboxylic dianhydride (TAHQ) represented by the following formula (6) was synthesized as follows. Solution A was prepared by adding 12.6751 g (60.1940 mmol) of anhydrous trimellitic acid chloride to a eggplant-shaped flask, dissolving it in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealing it with a septum. Additionally, in a separate flask, 2.2209 g (20.1700 mmol) of hydroquinone (HQ) was added to 8.2 mL of dehydrated THF and 9.7 mL (120 mmol) of pyridine and sealed with a septum to prepare solution B. While cooling and stirring in an ice bath, solution B was slowly added dropwise to solution A using a syringe over about 5 minutes, and then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was separated by filtration and washed with THF and ion-exchanged water. Removal of pyridine hydrochloride was confirmed by adding an aqueous solution of silver nitrate to the cleaning solution so that no white precipitate was visible. The washed product was recovered and vacuum dried at 100°C for 12 hours. The obtained product was a white powder, the quantity was 8.0287 g, and the yield was 87.6%.

B. TAHQ의 동정B. TAHQ’s Sympathy

생성물은 퓨리에 변환 적외 분광광도계 FT/IR4100(일본 분광사 제조)으로부터, 3082 ㎝-1에 방향족 C-H 신축진동 흡수띠, 1847 ㎝-1 및 1781 ㎝-1에 산무수물기 C=O 신축진동 흡수띠, 1742 ㎝-1에 에스테르기 C=O 신축진동 흡수띠를 확인하였다. The product was measured using a Fourier transform infrared spectrophotometer FT/IR4100 (manufactured by Nippon Spectrophotometer), showing an aromatic CH stretching vibration absorption band at 3082 cm -1 , an acid anhydride group C=O stretching vibration absorption band at 1847 cm -1 and 1781 cm -1 , and 1742 The ester group C=O stretching vibration absorption band was confirmed at cm -1 .

또한, 퓨리에 변환 핵자기공명 분광광도계 JNM-ECP400(JEOL 제조)을 사용하여 1H-NMR 측정을 행한 결과, (DMSO-d6, δ, ppm):7.54(s, 4H), 8.30(d, J=7.9Hz, 2H), 8.65(sd, J=0.72Hz, 2H), 8.67(dd, J=8.0Hz, 1.3Hz, 2H)로 귀속되며, 원소 분석값은 추정값 C:62.89%, H:2.20%, 실측값 C:62.69%, H:2.42%이고, 생성물은 TAHQ인 것이 확인되었다. In addition, as a result of 1 H-NMR measurement using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 7.54 (s, 4H), 8.30 (d, J = 7.9Hz, 2H), 8.65 (sd, J = 0.72Hz, 2H), 8.67 (dd, J = 8.0Hz, 1.3Hz, 2H), and the elemental analysis values are estimated values C: 62.89%, H: It was confirmed that the actual values were 2.20%, C: 62.69%, H: 2.42%, and the product was TAHQ.

또한, 시차 주사 열량분석장치 DSC3100(네치사)에 의해 융점을 측정한 결과, 272.4℃에 샤프한 융해 피크를 나타낸 것으로부터 이 생성물은 고순도인 것이 시사되었다. Additionally, the melting point was measured using a differential scanning calorimeter DSC3100 (Nechi), and a sharp melting peak was observed at 272.4°C, suggesting that this product was of high purity.

<합성예 2><Synthesis Example 2>

A. 테트라카르복실산 이무수물 TAPh의 합성A. Synthesis of tetracarboxylic dianhydride TAPh

하기 화학식 7로 표시되는 테트라카르복실산 이무수물(TAPh)은 다음과 같이 합성하였다. 가지형 플라스크에 무수 트리멜리트산 클로라이드 15.1116 g(71.8 ㎜ol)을 넣고, 탈수 테트라히드로푸란(THF) 16.5 mL에 실온에서 용해시켜 격막 밀봉하여 용액 A를 조제하였다. 또한 별도의 플라스크 중에서 2-페닐하이드로퀴논 6.2721 g(34 ㎜ol)을 탈수 THF 23.5 mL, 피리딘 8.7 mL(108 ㎜ol)를 첨가하고 격막 밀봉하여 용액 B를 조제하였다. 얼음 욕조 중에서 냉각, 교반하면서 용액 A에 용액 B를 시린지에 의해 약 5분에 걸쳐 서서히 적하하고, 그 후 실온에서 24시간 교반하였다. 반응 종료 후, 백색 침전을 여과 분별하고 THF 및 이온 교환수로 세정하였다. 피리딘 염산염의 제거는 세정액에 질산은 수용액을 첨가하여 백색 침전이 보이지 않게 된 것으로 확인하였다. 세정한 생성물을 회수하여 80℃에서 1시간, 추가로 100℃에서 12시간 진공 건조하였다. 얻어진 생성물은 백색 분말이며, 수량은 17.93 g, 수율은 98.7%였다. Tetracarboxylic dianhydride (TAPh) represented by the following formula (7) was synthesized as follows. Solution A was prepared by adding 15.1116 g (71.8 mmol) of anhydrous trimellitic acid chloride to a eggplant-shaped flask, dissolving it in 16.5 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealing it with a septum. Additionally, in a separate flask, 6.2721 g (34 mmol) of 2-phenylhydroquinone was added to 23.5 mL of dehydrated THF and 8.7 mL (108 mmol) of pyridine and sealed with a septum to prepare solution B. While cooling and stirring in an ice bath, solution B was slowly added dropwise to solution A using a syringe over about 5 minutes, and the solution was then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was separated by filtration and washed with THF and ion-exchanged water. Removal of pyridine hydrochloride was confirmed by adding an aqueous solution of silver nitrate to the cleaning solution so that no white precipitate was visible. The washed product was recovered and vacuum dried at 80°C for 1 hour and further at 100°C for 12 hours. The obtained product was a white powder, the quantity was 17.93 g, and the yield was 98.7%.

B. TAPh의 동정B. Identification of TAPh

생성물은 퓨리에 변환 적외 분광광도계 FT/IR4100(일본 분광사 제조)으로부터, 3092, 3065 ㎝-1에 방향족 C-H 신축진동 흡수띠, 1847 ㎝-1 및 1775 ㎝-1에 산무수물기 C=O 신축진동 흡수띠, 1752 ㎝-1에 에스테르기 C=O 신축진동 흡수띠를 확인하였다. The product was measured using a Fourier transform infrared spectrophotometer FT/IR4100 (manufactured by Nippon Spectrophotometer), with aromatic C-H stretching vibration absorption bands at 3092 and 3065 cm -1 , and acid anhydride group C=O stretching at 1847 cm -1 and 1775 cm -1. Vibration absorption band, ester group C=O stretching vibration absorption band was confirmed at 1752 cm -1 .

또한, 퓨리에 변환 핵자기공명 분광광도계 JNM-ECP400(JEOL제)을 사용하여 1H-NMR 측정을 행한 결과, (DMSO-d6, δ, ppm):7.30-7.40(m, 3H), 7.55-7.66(m, 5H), 8.23(d, J=7.8Hz, 1H), 8.29-8.32(m, 1H), 8.50-8.56(m, 2H), 8.66-8.70(m, 2H)로 귀속되며, 원소 분석값은 추정값 C:67.42%, H:2.64%, 실측값 C:67.49%, H:2.82%이고, 생성물은 TAPh인 것이 확인되었다.Additionally, as a result of 1 H-NMR measurement using Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 7.30-7.40 (m, 3H), 7.55- It is attributed to 7.66(m, 5H), 8.23(d, J=7.8Hz, 1H), 8.29-8.32(m, 1H), 8.50-8.56(m, 2H), 8.66-8.70(m, 2H), element The analysis values were estimated values of C: 67.42%, H: 2.64%, actual values of C: 67.49%, H: 2.82%, and the product was confirmed to be TAPh.

또한, 시차 주사 열량분석장치 DSC3100(네치사)에 의해 융점을 측정한 결과, 198.4℃에 샤프한 융해 피크를 나타낸 것으로부터 이 생성물은 고순도인 것이 시사되었다. Additionally, the melting point was measured using a differential scanning calorimeter DSC3100 (Nechi), and a sharp melting peak was observed at 198.4°C, suggesting that this product was of high purity.

<실시예 1><Example 1>

A. 화학식 1로 표시되는 테트라카르복실산 이무수물 TACHQ의 합성A. Synthesis of tetracarboxylic dianhydride TACHQ represented by Formula 1

화학식 1로 표시되는 TACHQ는 다음과 같이 합성하였다. 가지형 플라스크에 무수 트리멜리트산 클로라이드 12.7003 g(60.3137 ㎜ol)을 넣고, 탈수 테트라히드로푸란(THF) 33 mL에 실온에서 용해시켜 격막 밀봉하여 용액 A를 조제하였다. 또한 별도의 플라스크 중에서 2-시클로헥실하이드로퀴논(CHQ) 3.8551 g(20.0661 ㎜ol)을 탈수 THF 6.5 mL, 피리딘 9.7 mL(120 ㎜ol)을 첨가하고 격막 밀봉하여 용액 B를 조제하였다. TACHQ represented by Formula 1 was synthesized as follows. Solution A was prepared by adding 12.7003 g (60.3137 mmol) of anhydrous trimellitic acid chloride to a eggplant-shaped flask, dissolving it in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealing it with a septum. Additionally, in a separate flask, 3.8551 g (20.0661 mmol) of 2-cyclohexylhydroquinone (CHQ), 6.5 mL of dehydrated THF, and 9.7 mL (120 mmol) of pyridine were added and sealed with a septum to prepare solution B.

얼음 욕조 중에서 냉각, 교반하면서 용액 A에 용액 B를 시린지에 의해 약 5분에 걸쳐 서서히 적하하고, 그 후 실온에서 24시간 교반하였다. 반응 종료 후, 백색 침전을 여과 분별하고 THF 및 이온 교환수로 세정하였다. 피리딘 염산염의 제거는 세정액에 질산은 수용액을 첨가하여 백색 침전이 보이지 않게 된 것으로 확인하였다. 세정한 조생성물을 회수하여 100℃에서 12시간 진공 건조하였다. 얻어진 조생성물은 백색 분말이며, 수량은 6.54 g, 수율은 87.6%였다. While cooling and stirring in an ice bath, solution B was slowly added dropwise to solution A using a syringe over about 5 minutes, and the solution was then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was separated by filtration and washed with THF and ion-exchanged water. Removal of pyridine hydrochloride was confirmed by adding an aqueous solution of silver nitrate to the cleaning solution so that no white precipitate was visible. The washed crude product was recovered and dried under vacuum at 100°C for 12 hours. The obtained crude product was a white powder, the quantity was 6.54 g, and the yield was 87.6%.

(정제)(refine)

얻어진 조생성물 2.5526 g을 무수 초산과 톨루엔(체적비 1:10) 혼합 용매에 90℃에서 용해시킨 후, 자연 방랭하여 72시간 정치하였다. 석출된 백색 분말을 여과 분별하고 160℃에서 12시간 진공 건조하였다. 얻어진 백색 분말의 수량은 1.3602 g, 재결정 수율은 53.3%였다.2.5526 g of the obtained crude product was dissolved in a mixed solvent of acetic anhydride and toluene (volume ratio 1:10) at 90°C, then allowed to cool naturally and left to stand for 72 hours. The precipitated white powder was filtered and dried under vacuum at 160°C for 12 hours. The yield of the obtained white powder was 1.3602 g, and the recrystallization yield was 53.3%.

[화학식 1][Formula 1]

B. TACHQ의 동정B. Sympathy of TACHQ

재결정에 의해 정제한 생성물은 퓨리에 변환 적외 분광광도계 FT/IR4100(일본 분광사 제조)으로부터, 2928 ㎝-1에 지방족 C-H 신축진동 흡수띠, 1861 ㎝-1 및 1778 ㎝-1에 산무수물기 C=O 신축진동 흡수띠, 1745 ㎝-1에 에스테르기 C=O 신축진동 흡수띠를 확인하였다. The product purified by recrystallization was measured by Fourier transform infrared spectrophotometer FT/IR4100 (manufactured by Nippon Spectrophotometer), showing an aliphatic C-H stretching vibration absorption band at 2928 cm -1 and an acid anhydride group C at 1861 cm -1 and 1778 cm -1 . =O stretching vibration absorption band, ester group C=O stretching vibration absorption band was confirmed at 1745 cm -1 .

또한, 퓨리에 변환 핵자기공명 분광광도계 JNM-ECP400(JEOL제)을 사용하여 1H-NMR 측정을 행한 결과, (DMSO-d6, δ, ppm):1.80-1.23(m, 10H), 2.69(t, J=12Hz, 1H), 7.50-7.18(m, 3H), 8.33-8.29(m, 2H), 8.71-8.65(m, 4H)로 귀속되며, 원소 분석값은 이론값 C:66.67%, H:3.73%, 실측값 C:66.27%, H:3.78%이고, 생성물은 TACHQ인 것이 확인되었다. Additionally, as a result of 1 H-NMR measurement using Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 1.80-1.23 (m, 10H), 2.69 ( t, J = 12Hz, 1H), 7.50-7.18 (m, 3H), 8.33-8.29 (m, 2H), 8.71-8.65 (m, 4H), and the elemental analysis values are theoretical value C: 66.67%, H: 3.73%, actual value C: 66.27%, H: 3.78%, and the product was confirmed to be TACHQ.

또한, 시차 주사 열량분석장치 DSC3100(네치사)에 의해 융점을 측정한 결과, 229.1℃에 샤프한 융해 피크를 나타낸 것으로부터 이 생성물은 고순도인 것이 시사되었다. In addition, the melting point was measured using a differential scanning calorimeter DSC3100 (Nechi) and showed a sharp melting peak at 229.1°C, suggesting that this product was of high purity.

<실시예 2><Example 2>

A. 화학식 8로 표시되는 반복단위의 폴리이미드의 합성A. Synthesis of polyimide of the repeating unit represented by Formula 8

(폴리아미드산의 중합) TACHQ/TFMB(Polymerization of polyamic acid) TACHQ/TFMB

2,2'-비스(트리플루오로메틸)벤지딘(TFMB) 3 ㎜ol을 탈수 N,N-디메틸아세트아미드(DMAc)에 용해하였다. 여기에 실시예 1에 기재된 TACHQ 분말 3 ㎜ol을 천천히 첨가하여 실온에서 72시간 교반하고, 적당히 DMAc를 첨가하여 폴리이미드 전구체인 폴리아미드산을 얻었다(고형분 농도 16.7 중량%). 얻어진 폴리아미드산의 고유점도는 1.72 dL/g이었다. 3 mmol of 2,2'-bis(trifluoromethyl)benzidine (TFMB) was dissolved in dehydrated N,N-dimethylacetamide (DMAc). 3 mmol of the TACHQ powder described in Example 1 was slowly added here, stirred at room temperature for 72 hours, and DMAc was added appropriately to obtain polyamic acid, a polyimide precursor (solid content concentration: 16.7% by weight). The intrinsic viscosity of the obtained polyamic acid was 1.72 dL/g.

(화학 이미드화 반응)(Chemical imidization reaction)

얻어진 폴리아미드산 용액을 탈수 DMAc로 고형분 농도 약 10.0 중량%로 희석 후, 이것을 교반하면서 2.8 mL(30 ㎜ol)의 무수 초산과 1.2 mL(15 ㎜ol)의 피리딘의 혼합 용액을 실온에서 천천히 적하하고, 적하 종료 후 추가로 24시간 교반하였다. 얻어진 폴리이미드 용액을 대량의 메탄올에 천천히 적하하여 폴리이미드를 침전시켰다. 얻어진 백색 침전물을 메탄올로 충분히 세정하고, 100℃에서 12시간 진공 건조하였다. 얻어진 섬유상 폴리이미드 분말에 대해서 1H-NMR 측정을 행한 결과, 폴리아미드산에 특유의 COOH 프로톤(δ=13 ppm 부근) 및 NHCO 프로톤(δ=11 ppm 부근)은 관측되지 않은 것으로부터, 화학 이미드화 반응은 완결되어 있는 것이 시사되었다. 얻어진 폴리이미드의 고유점도는 2.55 dL/g이고, 고분자량체였다. 또한, 폴리이미드 분말의 용매에 대한 용해성을 표 1에 나타낸다. 표 1로부터 우수한 용매 용해성을 나타내는 것을 알 수 있다. After diluting the obtained polyamic acid solution with dehydrated DMAc to a solid content concentration of about 10.0% by weight, a mixed solution of 2.8 mL (30 mmol) acetic anhydride and 1.2 mL (15 mmol) pyridine was slowly added dropwise while stirring. and stirred for an additional 24 hours after the dropwise addition was completed. The obtained polyimide solution was slowly added dropwise to a large amount of methanol to precipitate polyimide. The obtained white precipitate was thoroughly washed with methanol and dried under vacuum at 100°C for 12 hours. As a result of 1 H-NMR measurement on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm), which are characteristic of polyamic acid, were not observed, indicating a chemical image. It was suggested that the dehydration reaction was complete. The obtained polyimide had an intrinsic viscosity of 2.55 dL/g and was a high molecular weight material. Additionally, the solubility of polyimide powder in solvents is shown in Table 1. From Table 1, it can be seen that it exhibits excellent solvent solubility.

B. 폴리이미드 용액의 조제 및 폴리이미드 필름의 제막B. Preparation of polyimide solution and film formation of polyimide film

상기 폴리이미드 분말을 γ-부티로락톤(GBL)에 가온하면서 재용해하여 6.0 중량%의 균일 용액을 조제하였다. 이 폴리이미드 용액을 유리 기판 상에 유연하고, 80℃로 2시간 열풍 건조기 중에서 건조하였다. 그 후, 기판째로 진공 중 200℃에서 1시간 건조하여 실온까지 방랭 후, 유리 기판으로부터 폴리이미드 필름을 박리하였다. 이 폴리이미드 필름을 한번 더 진공 중 200℃에서 1시간 열처리하여 잔류 변형을 제거하였다. The polyimide powder was re-dissolved in γ-butyrolactone (GBL) while heating to prepare a 6.0% by weight homogeneous solution. This polyimide solution was spread on a glass substrate and dried in a hot air dryer at 80°C for 2 hours. After that, the entire substrate was dried in vacuum at 200°C for 1 hour and allowed to cool to room temperature, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200°C for 1 hour to remove residual strain.

얻어진 폴리이미드 필름의 적외 흡수 스펙트럼을 도 1, 동적 점탄성 곡선을 도 2, 열적 특성·광학적 특성을 표 2에 나타낸다. 도 1로부터 목적의 폴리이미드인 것을 동정할 수 있다. 도 2로부터 급준한 저장 탄성률의 저하가 225℃ 부근에서 관측되어, 높은 열가소성을 나타내는 것을 알 수 있다. 표 2로부터 선열팽창계수(CTE)가 11.9 ppm/K로 낮고, 무색 투명한 필름인 것을 알 수 있다. 이들의 우수한 특성은 화학식 2의 구조에 따른 효과이다. The infrared absorption spectrum of the obtained polyimide film is shown in Figure 1, the dynamic viscoelastic curve is shown in Figure 2, and the thermal and optical properties are shown in Table 2. From Figure 1, it can be identified that it is the target polyimide. From Figure 2, it can be seen that a sharp decrease in storage modulus is observed around 225°C, indicating high thermoplasticity. From Table 2, it can be seen that the coefficient of linear thermal expansion (CTE) is low at 11.9 ppm/K and that it is a colorless and transparent film. Their excellent properties are an effect of the structure of Chemical Formula 2.

<실시예 3><Example 3>

A. 하기 화학식 9로 표시되는 반복단위의 폴리이미드의 합성A. Synthesis of polyimide with a repeating unit represented by the following formula (9)

(폴리아미드산의 중합) TACHQ(80)6FDA(20)/TFMB(Polymerization of polyamic acid) TACHQ(80)6FDA(20)/TFMB

2,2'-비스(트리플루오로메틸)벤지딘(TFMB) 3 ㎜ol을 탈수 N,N-디메틸아세트아미드(DMAc)에 용해하였다. 여기에 실시예 1에 기재된 TACHQ 분말 2.4 ㎜ol과 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6FDA) 분말 0.6 ㎜ol을 천천히 첨가하여 실온에서 72시간 교반하고, 적당히 DMAc를 첨가하여 폴리이미드 전구체인 폴리아미드산을 얻었다(고형분 농도 22.7 중량%). 얻어진 폴리아미드산의 고유점도는 0.91 dL/g이었다. 3 mmol of 2,2'-bis(trifluoromethyl)benzidine (TFMB) was dissolved in dehydrated N,N-dimethylacetamide (DMAc). Here, 2.4 mmol of TACHQ powder and 0.6 mmol of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) powder described in Example 1 were slowly added and stirred at room temperature for 72 hours, and DMAc was added as appropriate. By addition, polyamic acid, a polyimide precursor, was obtained (solid content concentration 22.7% by weight). The intrinsic viscosity of the obtained polyamic acid was 0.91 dL/g.

(화학 이미드화 반응)(Chemical imidization reaction)

얻어진 폴리아미드산 용액을 탈수 DMAc로 고형분 농도 약 10.0 중량%로 희석 후, 이것을 교반하면서 2.8 mL(30 ㎜ol)의 무수 초산과 1.2 mL(15 ㎜ol)의 피리딘의 혼합 용액을 실온에서 천천히 적하하고, 적하 종료 후 추가로 24시간 교반하였다. 얻어진 폴리이미드 용액을 대량의 메탄올에 천천히 적하하여 폴리이미드를 침전시켰다. 얻어진 백색 침전물을 메탄올로 충분히 세정하고, 100℃에서 12시간 진공 건조하였다. 얻어진 섬유상 폴리이미드 분말에 대해서 1H-NMR 측정을 행한 결과, 폴리아미드산에 특유의 COOH 프로톤(δ=13 ppm 부근) 및 NHCO 프로톤(δ=11 ppm 부근)은 관측되지 않은 것으로부터, 화학 이미드화 반응은 완결되어 있는 것이 시사되었다. 얻어진 폴리이미드의 고유점도는 1.75 dL/g이고, 고분자량체였다. 또한, 폴리이미드 분말의 용매에 대한 용해성을 표 1에 나타낸다. 표 1로부터 우수한 용매 용해성을 나타내는 것을 알 수 있다. After diluting the obtained polyamic acid solution with dehydrated DMAc to a solid content concentration of about 10.0% by weight, a mixed solution of 2.8 mL (30 mmol) acetic anhydride and 1.2 mL (15 mmol) pyridine was slowly added dropwise while stirring. and stirred for an additional 24 hours after the dropwise addition was completed. The obtained polyimide solution was slowly added dropwise to a large amount of methanol to precipitate polyimide. The obtained white precipitate was thoroughly washed with methanol and dried under vacuum at 100°C for 12 hours. As a result of 1 H-NMR measurement on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm), which are characteristic of polyamic acid, were not observed, indicating a chemical image. It was suggested that the dehydration reaction was complete. The obtained polyimide had an intrinsic viscosity of 1.75 dL/g and was a high molecular weight material. Additionally, the solubility of polyimide powder in solvents is shown in Table 1. From Table 1, it can be seen that it exhibits excellent solvent solubility.

B. 폴리이미드 용액의 조제 및 폴리이미드 필름의 제막B. Preparation of polyimide solution and film formation of polyimide film

상기 폴리이미드 분말을 시클로펜타논(CPN)에 가온하면서 재용해하여 8.0 중량%의 균일 용액을 조제하였다. 이 폴리이미드 용액을 유리 기판 상에 유연하고, 60℃에서 2시간 열풍 건조기로 건조하였다. 그 후, 기판째 진공 중 200℃에서 1시간 건조하여 실온까지 방랭 후, 유리 기판으로부터 폴리이미드 필름을 박리하였다. 이 폴리이미드 필름을 한번 더 진공 중 200℃에서 1시간 열처리하여 잔류 변형을 제거하였다. 얻어진 폴리이미드 필름의 적외 흡수 스펙트럼을 도 3, 동적 점탄성 곡선을 도 4, 열적 특성·광학적 특성을 표 2에 나타낸다. 도 3으로부터 목적의 폴리이미드인 것을 동정할 수 있다. 도 4로부터 급준한 저장 탄성률의 저하가 225℃ 부근에서 관측되어, 높은 열가소성을 나타내는 것을 알 수 있다. 표 2로부터 선열팽창계수(CTE)가 24.7 ppm/K로 낮고, 무색 투명한 필름인 것을 알 수 있다. 이들의 우수한 특성은 화학식 2의 구조에 따른 효과이다. The polyimide powder was re-dissolved in cyclopentanone (CPN) while heating to prepare an 8.0% by weight homogeneous solution. This polyimide solution was spread on a glass substrate and dried with a hot air dryer at 60°C for 2 hours. After that, the entire substrate was dried in vacuum at 200°C for 1 hour and left to cool to room temperature, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200°C for 1 hour to remove residual strain. The infrared absorption spectrum of the obtained polyimide film is shown in Figure 3, the dynamic viscoelastic curve is shown in Figure 4, and the thermal and optical properties are shown in Table 2. From Figure 3, it can be identified that it is the target polyimide. From Figure 4, it can be seen that a sharp decrease in storage modulus is observed around 225°C, indicating high thermoplasticity. From Table 2, it can be seen that the coefficient of linear thermal expansion (CTE) is low at 24.7 ppm/K and that it is a colorless and transparent film. Their excellent properties are an effect of the structure of Chemical Formula 2.

<실시예 4><Example 4>

A. 하기 화학식 10으로 표시되는 반복단위의 폴리이미드의 합성A. Synthesis of polyimide with a repeating unit represented by the following formula (10)

(폴리아미드산의 중합) TACHQ(50)6FDA(50)/TFMB(Polymerization of polyamic acid) TACHQ(50)6FDA(50)/TFMB

2,2'-비스(트리플루오로메틸)벤지딘(TFMB) 2 ㎜ol을 탈수 N,N-디메틸아세트아미드(DMAc)에 용해하였다. 여기에 실시예 1에 기재된 TACHQ 분말 1.0 ㎜ol과 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6FDA) 분말 1.0 ㎜ol을 천천히 첨가하여 실온에서 72시간 교반하고, 적당히 DMAc를 첨가하여 폴리이미드 전구체인 폴리아미드산을 얻었다(고형분 농도 30 중량%). 얻어진 폴리아미드산의 고유점도는 0.56 dL/g이었다.2 mmol of 2,2'-bis(trifluoromethyl)benzidine (TFMB) was dissolved in dehydrated N,N-dimethylacetamide (DMAc). Here, 1.0 mmol of TACHQ powder and 1.0 mmol of 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) powder described in Example 1 were slowly added and stirred at room temperature for 72 hours, and DMAc was added as appropriate. By addition, polyamic acid, a polyimide precursor, was obtained (solid concentration 30% by weight). The intrinsic viscosity of the obtained polyamic acid was 0.56 dL/g.

(화학 이미드화 반응)(Chemical imidization reaction)

얻어진 폴리아미드산 용액을 탈수 DMAc로 고형분 농도 약 10.0 중량%로 희석 후, 이를 교반하면서 1.9 mL(20 ㎜ol)의 무수 초산과 0.8 mL(10 ㎜ol)의 피리딘의 혼합 용액을 실온에서 천천히 적하하고, 적하 종료 후 추가로 24시간 교반하였다. 얻어진 폴리이미드 용액을 대량의 메탄올에 천천히 적하하여 폴리이미드를 침전시켰다. 얻어진 백색 침전물을 메탄올로 충분히 세정하고, 100℃에서 12시간 진공 건조하였다. 얻어진 섬유상 폴리이미드 분말에 대해서 1H-NMR 측정을 행한 결과, 폴리아미드산에 특유의 COOH 프로톤(δ=13 ppm 부근) 및 NHCO 프로톤(δ=11 ppm 부근)은 관측되지 않은 것으로부터, 화학 이미드화 반응은 완결되어 있는 것이 시사되었다. 얻어진 폴리이미드의 고유점도는 0.76 dL/g이었다. 또한, 폴리이미드 분말의 용매에 대한 용해성을 표 1에 나타낸다. 표 1로부터 우수한 용매 용해성을 나타내는 것을 알 수 있다. After diluting the obtained polyamic acid solution with dehydrated DMAc to a solid content concentration of about 10.0% by weight, a mixed solution of 1.9 mL (20 mmol) acetic anhydride and 0.8 mL (10 mmol) pyridine was slowly added dropwise while stirring. and stirred for an additional 24 hours after the dropwise addition was completed. The obtained polyimide solution was slowly added dropwise to a large amount of methanol to precipitate polyimide. The obtained white precipitate was thoroughly washed with methanol and dried under vacuum at 100°C for 12 hours. As a result of 1 H-NMR measurement on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm), which are characteristic of polyamic acid, were not observed, indicating a chemical image. It was suggested that the dehydration reaction was complete. The intrinsic viscosity of the obtained polyimide was 0.76 dL/g. Additionally, the solubility of polyimide powder in solvents is shown in Table 1. From Table 1, it can be seen that it exhibits excellent solvent solubility.

B. 폴리이미드 용액의 조제 및 폴리이미드 필름의 제막B. Preparation of polyimide solution and film formation of polyimide film

상기 폴리이미드 분말을 실온에서 시클로펜타논(CPN)에 재용해하여 23 중량%의 균일 용액을 조제하였다. 이 폴리이미드 용액을 유리 기판 상에 유연하고, 60℃에서 2시간 열풍 건조기로 건조하였다. 그 후, 기판째 진공 중 200℃에서 1시간 건조하여 실온까지 방랭 후, 유리 기판으로부터 폴리이미드 필름을 박리하였다. 이 폴리이미드 필름을 한번 더 진공 중 200℃에서 1시간 열처리하여 잔류 변형을 제거하였다. The polyimide powder was re-dissolved in cyclopentanone (CPN) at room temperature to prepare a 23% by weight homogeneous solution. This polyimide solution was spread on a glass substrate and dried with a hot air dryer at 60°C for 2 hours. After that, the entire substrate was dried in vacuum at 200°C for 1 hour and left to cool to room temperature, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200°C for 1 hour to remove residual strain.

얻어진 폴리이미드 필름의 적외 흡수 스펙트럼을 도 5, 동적 점탄성 곡선을 도 6, 열적 특성·광학적 특성을 표 2에 나타낸다. 도 5로부터 목적의 폴리이미드인 것을 동정할 수 있다. 도 6으로부터 급준한 저장 탄성률의 저하가 230℃ 부근에서 관측되어 높은 열가소성을 나타내는 것을, 더 나아가서는 표 2로부터 무색 투명한 필름인 것을 알 수 있다. The infrared absorption spectrum of the obtained polyimide film is shown in Figure 5, the dynamic viscoelastic curve is shown in Figure 6, and the thermal and optical properties are shown in Table 2. From Figure 5, it can be identified that it is the target polyimide. From Figure 6, a steep decrease in storage elastic modulus is observed around 230°C, showing high thermoplasticity, and further, from Table 2, it can be seen that it is a colorless and transparent film.

<비교예 1><Comparative Example 1>

A. 하기 화학식 11로 표시되는 반복단위의 폴리이미드의 합성A. Synthesis of polyimide with a repeating unit represented by the following formula (11)

(폴리아미드산의 중합) TAPh(100)/TFMB(Polymerization of polyamic acid) TAPh(100)/TFMB

2,2'-비스(트리플루오로메틸)벤지딘(TFMB) 3 ㎜ol을 탈수 N-메틸-2-피롤리돈(NMP)에 용해하였다. 여기에 합성예 2에 기재된 TAPh 분말 3 ㎜ol을 천천히 첨가하고 실온에서 72시간 교반하여, 폴리이미드 전구체인 폴리아미드산을 얻었다(고형분 농도 20 중량%). 얻어진 폴리아미드산의 고유점도는 1.6 dL/g이었다.3 mmol of 2,2'-bis(trifluoromethyl)benzidine (TFMB) was dissolved in dehydrated N-methyl-2-pyrrolidone (NMP). Here, 3 mmol of the TAPh powder described in Synthesis Example 2 was slowly added and stirred at room temperature for 72 hours to obtain polyamic acid, a polyimide precursor (solid content concentration: 20% by weight). The intrinsic viscosity of the obtained polyamic acid was 1.6 dL/g.

B. 폴리이미드 필름의 제막B. Deposition of polyimide film

폴리아미드산 용액을 유리 기판 상에 유연하고, 80℃에서 3시간 열풍 건조기로 건조하였다. 그 후, 기판째 진공 중 250℃에서 1시간, 350℃에서 1시간 열 이미드화한 후, 유리 기판으로부터 폴리이미드 필름을 박리하였다. 이 폴리이미드 필름을 한번 더 진공 중 200℃에서 1시간 열처리하여 잔류 변형을 제거하였다.The polyamic acid solution was spread on a glass substrate and dried in a hot air dryer at 80°C for 3 hours. After that, the substrate was thermally imidized in a vacuum at 250°C for 1 hour and at 350°C for 1 hour, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200°C for 1 hour to remove residual strain.

얻어진 폴리이미드 필름의 열적 특성·광학적 특성을 표 2에 나타낸다. 표 2로부터 낮은 광투과율, 그리고 심한 황변과 탁함이 있는 것을 알 수 있다. 화학식 8의 반복단위의 폴리이미드 중 시클로헥실기를 페닐기로 바꿨기 때문에, 화학식 11의 반복단위의 폴리이미드 필름의 광학 특성은 현저히 악화된 것으로 생각된다. 즉, 동일한 부피가 큰 구조라도 시클로헥실기의 구조가 매우 유용한 것을 알 수 있다.The thermal properties and optical properties of the obtained polyimide film are shown in Table 2. From Table 2, it can be seen that there is low light transmittance and severe yellowing and cloudiness. Since the cyclohexyl group in the polyimide of the repeating unit of Formula 8 was replaced with a phenyl group, the optical properties of the polyimide film of the repeating unit of Formula 11 are thought to have significantly deteriorated. In other words, even if the structure has the same large volume, it can be seen that the structure of the cyclohexyl group is very useful.

<비교예 2><Comparative Example 2>

A. 화학식 12로 표시되는 반복단위의 폴리이미드의 합성A. Synthesis of polyimide of the repeating unit represented by Formula 12

(폴리아미드산의 중합) TAHQ/TFMB(Polymerization of polyamic acid) TAHQ/TFMB

2,2'-비스(트리플루오로메틸)벤지딘(TFMB) 2 ㎜ol을 탈수 N,N-디메틸아세트아미드(DMAc)에 용해하였다. 여기에 합성예 1에 기재된 TAHQ 분말 2 ㎜ol을 천천히 첨가하여 실온에서 72시간 교반하고, 적당히 DMAc를 첨가하여 폴리이미드 전구체인 폴리아미드산을 얻었다(고형분 농도 11.4 중량%). 얻어진 폴리아미드산의 고유점도는 4.45 dL/g이었다. 2 mmol of 2,2'-bis(trifluoromethyl)benzidine (TFMB) was dissolved in dehydrated N,N-dimethylacetamide (DMAc). 2 mmol of the TAHQ powder described in Synthesis Example 1 was slowly added here, stirred at room temperature for 72 hours, and DMAc was added appropriately to obtain polyamic acid, a polyimide precursor (solid content concentration: 11.4% by weight). The intrinsic viscosity of the obtained polyamic acid was 4.45 dL/g.

(화학 이미드화 반응)(Chemical imidization reaction)

얻어진 폴리아미드산 용액을 탈수 DMAc로 고형분 농도 약 10.0 중량%로 희석 후, 이것을 교반하면서 1.9 mL(20 ㎜ol)의 무수 초산과 0.8 mL(10 ㎜ol)의 피리딘의 혼합 용액을 실온에서 천천히 적하하고, 적하 종료 후 추가로 3시간에 걸쳐 용액의 유동성이 소실되어 겔화되었다. 화학식 8과 화학식 12의 반복단위의 폴리이미드의 비교로부터, 부피가 큰 시클로헥실기가 용매에 대한 용해성을 매우 높이고 있는 것을 알 수 있다. After diluting the obtained polyamic acid solution with dehydrated DMAc to a solid content concentration of about 10.0% by weight, a mixed solution of 1.9 mL (20 mmol) acetic anhydride and 0.8 mL (10 mmol) pyridine was slowly added dropwise while stirring. After the dropwise addition was completed, the fluidity of the solution was lost and gelled over an additional 3 hours. From a comparison of the polyimides of the repeating units of Formula 8 and Formula 12, it can be seen that the bulky cyclohexyl group greatly increases the solubility in solvents.

B. 폴리이미드 필름의 제막B. Deposition of polyimide film

상기 폴리아미드산 용액을 유리 기판 상에 유연하고, 60℃에서 2시간 열풍 건조기로 건조하였다. 그 후, 기판째 진공 중 200℃에서 0.5시간, 250℃에서 2시간 열 이미드화한 후, 유리 기판으로부터 폴리이미드 필름을 박리하였다. 이 폴리이미드 필름을 한번 더 진공 중 300℃에서 1시간 열처리하여 잔류 변형을 제거하였다.The polyamic acid solution was spread on a glass substrate and dried in a hot air dryer at 60°C for 2 hours. After that, the substrate was thermally imidized in a vacuum at 200°C for 0.5 hours and at 250°C for 2 hours, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat-treated at 300°C in vacuum for 1 hour to remove residual strain.

얻어진 폴리이미드 필름의 동적 점탄성 곡선을 도 7, 열정 특성·광학적 특성을 표 2에 나타낸다. 도 7로부터 저장 탄성률의 저하가 시작되는 온도가 375℃로 높기 때문에, 화학식 8의 반복단위의 폴리이미드보다도 열가공성이 떨어지는 것을 알 수 있다. 또한 황색도와 헤이즈도 높아 광학 특성도 떨어진다.The dynamic viscoelasticity curve of the obtained polyimide film is shown in Figure 7, and the thermal properties and optical properties are shown in Table 2. From Figure 7, it can be seen that since the temperature at which the storage modulus decreases begins is as high as 375°C, the heat processability is inferior to that of the polyimide of the repeating unit of Chemical Formula 8. Additionally, the optical properties are poor due to high yellowness and haze.

즉, 화학식 2의 시클로헥실기는 매우 중요한 작용을 하고 있는 것을 알 수 있다. In other words, it can be seen that the cyclohexyl group of Formula 2 has a very important function.

Claims (5)

하기 화학식 1:
[화학식 1]

로 표시되는 테트라카르복실산 이무수물.
Formula 1 below:
[Formula 1]

Tetracarboxylic dianhydride, represented by .
삭제delete 삭제delete 삭제delete 삭제delete
KR1020187011187A 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide KR102591070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237015346A KR102619074B1 (en) 2015-09-30 2016-09-27 Polyimide derived from tetracarboxylic dianhydride, and molded article produced from said polyimide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015192377 2015-09-30
JPJP-P-2015-192377 2015-09-30
PCT/JP2016/078448 WO2017057360A1 (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237015346A Division KR102619074B1 (en) 2015-09-30 2016-09-27 Polyimide derived from tetracarboxylic dianhydride, and molded article produced from said polyimide

Publications (2)

Publication Number Publication Date
KR20180061248A KR20180061248A (en) 2018-06-07
KR102591070B1 true KR102591070B1 (en) 2023-10-17

Family

ID=58423803

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237015346A KR102619074B1 (en) 2015-09-30 2016-09-27 Polyimide derived from tetracarboxylic dianhydride, and molded article produced from said polyimide
KR1020187011187A KR102591070B1 (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237015346A KR102619074B1 (en) 2015-09-30 2016-09-27 Polyimide derived from tetracarboxylic dianhydride, and molded article produced from said polyimide

Country Status (5)

Country Link
JP (1) JP6715496B2 (en)
KR (2) KR102619074B1 (en)
CN (1) CN108137804B (en)
TW (1) TWI708769B (en)
WO (1) WO2017057360A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229331A (en) * 2019-04-28 2019-09-13 南京岳子化工有限公司 A kind of thermoplastic polyimide resin powder and preparation method thereof
JP2021063212A (en) * 2019-10-15 2021-04-22 住友化学株式会社 Optical film
CN112194792B (en) * 2020-06-16 2022-03-29 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182757A (en) 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
WO2010093021A1 (en) 2009-02-12 2010-08-19 本州化学工業株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
JP2013082876A (en) 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603460B2 (en) * 1996-03-25 2004-12-22 Jsr株式会社 Liquid crystal alignment agent and liquid crystal display device
CN101195711B (en) * 2006-12-06 2012-07-04 大立高分子工业股份有限公司 Polyamic acid component and alignment film produced by the same
JP5491735B2 (en) * 2007-01-26 2014-05-14 本州化学工業株式会社 Novel ester group-containing tetracarboxylic dianhydrides, novel polyesterimide precursors and polyesterimides derived therefrom
CN104151823B (en) * 2014-09-02 2019-02-26 长春聚明光电材料有限公司 Kapton and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182757A (en) 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
WO2010093021A1 (en) 2009-02-12 2010-08-19 本州化学工業株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
JP2013082876A (en) 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution

Also Published As

Publication number Publication date
JPWO2017057360A1 (en) 2018-08-30
JP6715496B2 (en) 2020-07-01
KR20180061248A (en) 2018-06-07
TWI708769B (en) 2020-11-01
CN108137804A (en) 2018-06-08
KR20230066490A (en) 2023-05-15
TW201730172A (en) 2017-09-01
WO2017057360A1 (en) 2017-04-06
CN108137804B (en) 2021-01-19
KR102619074B1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
KR102062939B1 (en) Polyimide and molded body thereof
JP5581463B2 (en) Diamine, polyimide, and polyimide film and use thereof
KR102345844B1 (en) Method for producing resin thin film, and composition for forming resin thin film
JP5182886B2 (en) NOVEL DIAMINE, POLYIMIDE PRECURSOR, POLYIMIDE, COATING OPTICAL COMPENSATION FILM COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP6236349B2 (en) Polyimide and its use
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
US9657140B2 (en) Polyimide and film using same
JP2008297360A (en) Solvent-soluble polyimide resin
JP6693676B2 (en) Polyimide and polyimide film
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
WO2008153287A1 (en) Low temperature processable substituted alicyclic polyimide photo-alignment layers and method for preparing liquid crystal cells
JP7549100B2 (en) Polyimide and polyimide film
US20170335062A1 (en) Polyamic acid, polyimide resin and polyimide film
KR102591070B1 (en) Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide
JP6768234B2 (en) Polyimide and polyimide film
JP5325491B2 (en) Novel coating type optical compensation film and method for producing the same
JP2006336009A (en) New polyimide copolymer and molded article of polyimide obtained by molding the same
JP2016196630A (en) Novel polyimide copolymer
JP2018193343A (en) Diamine and polyimide, and use thereof
JP6078995B2 (en) Polyimide precursor, polyimide precursor solution composition, polyimide, polyimide solution composition, polyimide film, substrate, and molded product
JP5015070B2 (en) Novel coating type optical compensation film and method for producing the same
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant