JP7549100B2 - Polyimide and polyimide film - Google Patents

Polyimide and polyimide film Download PDF

Info

Publication number
JP7549100B2
JP7549100B2 JP2023143331A JP2023143331A JP7549100B2 JP 7549100 B2 JP7549100 B2 JP 7549100B2 JP 2023143331 A JP2023143331 A JP 2023143331A JP 2023143331 A JP2023143331 A JP 2023143331A JP 7549100 B2 JP7549100 B2 JP 7549100B2
Authority
JP
Japan
Prior art keywords
polyimide
film
diamine
represented
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023143331A
Other languages
Japanese (ja)
Other versions
JP2023164496A (en
Inventor
匡俊 長谷川
淳一 石井
晃久 松丸
修也 末永
實雄 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Toho University
Original Assignee
Mitsubishi Gas Chemical Co Inc
Toho University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, Toho University filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2023143331A priority Critical patent/JP7549100B2/en
Publication of JP2023164496A publication Critical patent/JP2023164496A/en
Application granted granted Critical
Publication of JP7549100B2 publication Critical patent/JP7549100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

特許法第30条第2項適用 (1)令和元年5月14日に発行された第68回高分子学会年次大会予稿集 (2)令和元年5月29日に第68回高分子学会年次大会で発表したポスター(1) Proceedings of the 68th Annual Meeting of the Society of Polymer Science, Japan, published on May 14, 2019 (2) Poster presented at the 68th Annual Meeting of the Society of Polymer Science, Japan, on May 29, 2019

本発明は、液晶ディスプレイ(LCD)、有機発光ダイオードディスプレイ(OLED)、電子ペーパー(EP)等の画像表示装置における現行のガラス基板の代替材料すなわち、透明耐熱プラスチック基板材料として好適な、高い透明性、高いガラス転移温度、低い線熱膨張係数及び十分な膜靱性を有するポリイミドと当該ポリイミドからなる耐熱性フィルム、当該ポリイミドフィルム形成用ワニスに関する。 The present invention relates to a polyimide having high transparency, a high glass transition temperature, a low coefficient of linear thermal expansion and sufficient film toughness, which is suitable as an alternative material to the current glass substrates in image display devices such as liquid crystal displays (LCDs), organic light-emitting diode displays (OLEDs) and electronic paper (EPs), i.e. as a transparent heat-resistant plastic substrate material, a heat-resistant film made of said polyimide, and a varnish for forming said polyimide film.

現在LCD等の画像表示装置には無機のガラス基板(例えば無アルカリガラス基板、以下単に「ガラス基板」という)が用いられているが、ガラス基板の代わりにプラスチック基板を適用することで、画像表示装置の軽量化、薄型化及び柔軟化を実現しようとする検討が活発になされている。 Currently, inorganic glass substrates (e.g., alkali-free glass substrates, hereafter simply referred to as "glass substrates") are used in image display devices such as LCDs, but active research is being conducted into the use of plastic substrates instead of glass substrates to make image display devices lighter, thinner, and more flexible.

ポリエーテルスルホン(以下「PES」と称する)は、透明性に加え、靱性、難燃性及び加工性に優れ、現行のスーパーエンジニアリングプラスチックの中で最も高い物理的耐熱性(すなわちガラス転移温度:Tg=225℃)を有しているが、PESでさえも、画像表示デバイス製造工程における透明電極や薄膜トランジスタ(TFT)形成等の様々な高温プロセスに対する物理的耐熱性(短期耐熱性ともいう)の観点では必ずしもが十分ではない。 Polyethersulfone (hereinafter referred to as "PES") is excellent in toughness, flame retardancy and processability in addition to transparency, and has the highest physical heat resistance (i.e., glass transition temperature: Tg = 225°C) among currently available super engineering plastics. However, even PES is not necessarily sufficient in terms of physical heat resistance (also referred to as short-term heat resistance) against various high-temperature processes such as the formation of transparent electrodes and thin film transistors (TFTs) in the manufacturing process of image display devices.

画像表示デバイス製造工程では、上記高温プロセスと室温への冷却を繰り返す複数の温度サイクルがあるが、最近プラスチック基板材料には、温度サイクルに対する優れた寸法安定性も強く求められている。寸法安定性を高める最も有効な方法の1つは、プラスチック基板材料のフィルム面方向(XY方向)の熱膨張特性、具体的にはガラス転移温度以下(ガラス領域)でのXY方向線熱膨張係数(以下「CTE」と称する)をできるだけ下げることである。CTEが低いほど、温度サイクルに追従するフィルムの可逆的熱膨張-収縮そのものを低減することができる。これにより素子層のひび割れ、層間接着不良あるいは素子の位置ずれ等の深刻な問題を回避することができる。 In the manufacturing process of image display devices, there are multiple temperature cycles in which the above-mentioned high-temperature process and cooling to room temperature are repeated, but recently, there has been a strong demand for plastic substrate materials to have excellent dimensional stability against temperature cycles. One of the most effective ways to increase dimensional stability is to reduce the thermal expansion characteristics of the plastic substrate material in the film surface direction (XY direction), specifically, the XY direction linear thermal expansion coefficient (hereinafter referred to as "CTE") below the glass transition temperature (glass region) as much as possible. The lower the CTE, the more the reversible thermal expansion-contraction of the film that follows the temperature cycle can be reduced. This makes it possible to avoid serious problems such as cracks in the element layer, poor interlayer adhesion, or element misalignment.

また、熱膨張-収縮に伴う可逆的寸法変化が大きい場合、熱膨張-収縮を繰り返す間に不可逆的な寸法変化が蓄積される恐れが高まる。これらの観点から、透明プラスチック基板のCTEをできるだけ下げることが好ましい。 In addition, if the reversible dimensional changes associated with thermal expansion and contraction are large, there is a high risk that irreversible dimensional changes will accumulate as thermal expansion and contraction are repeated. From these perspectives, it is preferable to reduce the CTE of the transparent plastic substrate as much as possible.

しかしながら、PESを含む殆どの有機高分子フィルムは、60~100ppm/Kと高いCTE値を有しており、上記寸法安定性の要求に合致する透明樹脂材材料がないのが実情である。 However, most organic polymer films, including PES, have a high CTE value of 60 to 100 ppm/K, and the reality is that there are no transparent resin materials that meet the above dimensional stability requirements.

一方、全芳香族ポリイミドは、物理的及び化学的耐熱性、電気絶縁性、機械的特性、難燃性及び製造工程の簡便さの観点から現在最も信頼性の高い耐熱絶縁樹脂材料としてエレクトロニクス分野を中心に広く用いられている。しかしながら、下式(14)で表される東レ・デュポン株式会社製「KAPTON-H」(商品名)や下式(15)で表される宇部興産株式会社製「UPILEX-S」(商品名)に代表される現行の全芳香族ポリイミドフィルムは、電子供与体(ジアミン由来の芳香族基)と電子受容体(ビスイミド構造単位)が交互に連結した連鎖に由来する電荷移動相互作用により強く着色しており(例えば非特許文献1参照)、本目的には適合しない。
On the other hand, wholly aromatic polyimides are currently widely used mainly in the electronics field as the most reliable heat-resistant insulating resin material in terms of physical and chemical heat resistance, electrical insulation, mechanical properties, flame retardancy, and ease of production process. However, current wholly aromatic polyimide films, such as "KAPTON-H" (product name) manufactured by Toray DuPont Co., Ltd. and "UPILEX-S" (product name) manufactured by Ube Industries, Ltd. and represented by the following formula (14) and (15), respectively, are strongly colored due to charge transfer interactions derived from chains in which electron donors (aromatic groups derived from diamines) and electron acceptors (bisimide structural units) are alternately linked (see, for example, Non-Patent Document 1), and are not suitable for the present purpose.

このような状況から、電荷移動相互作用を妨害する分子設計に基づいて、無色透明ポリイミドが検討されている。全芳香族ポリイミドのうち、下式(16):

で表されるポリイミドは、全芳香族ポリイミドの中でも無着色透明なフィルムを与える限られたケースである(例えば非特許文献2参照)。このポリイミドフィルムの透明性は、電子吸引基として作用し、高分子鎖間の凝集力を弱める働きを持つトリフルオロメチル基(CF3)の効果によるものであり、この効果によりこのポリイミドは優れた溶媒溶解性すなわち溶液加工性も有している。しかしながら、このポリイミドフィルムは低熱膨張特性を示さない(例えば非特許文献2参照)。
In view of this situation, colorless and transparent polyimides based on molecular design that interferes with charge transfer interactions have been studied. Among all aromatic polyimides, those represented by the following formula (16):

Among all aromatic polyimides, the polyimide represented by the formula (I) is a limited case that gives a colorless and transparent film (see, for example, Non-Patent Document 2). The transparency of this polyimide film is due to the effect of the trifluoromethyl group (CF 3 ), which acts as an electron-withdrawing group and has the function of weakening the cohesive force between polymer chains, and due to this effect, this polyimide also has excellent solvent solubility, i.e., solution processability. However, this polyimide film does not show low thermal expansion properties (see, for example, Non-Patent Document 2).

一般に、ポリイミドフィルムが低CTEを示すためには、ポリイミド主鎖がXY方向へ高度に分子配向(「面内配向」と称する)する必要があり、そのためにはポリイミド主鎖の直線性及び剛直性が不可欠であることが報告されている(例えば非特許文献3参照)。式(16)で表されるポリイミド中、トリフルオロイソプロピリデン基部位における折れ曲がった構造によりポリイミド主鎖が非直線状構造となり、主鎖の面内配向が妨害されたことが、このポリイミドフィルムが低熱膨張特性を示さない要因である。 In general, for a polyimide film to exhibit a low CTE, the polyimide main chain must be highly molecular oriented in the XY directions (referred to as "in-plane orientation"), and it has been reported that linearity and rigidity of the polyimide main chain are essential for this (see, for example, Non-Patent Document 3). In the polyimide represented by formula (16), the bent structure at the trifluoroisopropylidene group site causes the polyimide main chain to have a non-linear structure, hindering the in-plane orientation of the main chain, which is the reason why this polyimide film does not exhibit low thermal expansion properties.

ポリイミドを無色透明化する有効な方法は、モノマー成分であるテトラカルボン酸二無水物かあるいはもう1つのモノマー成分であるジアミンのいずれか一方又は両方に非芳香族すなわち脂肪族モノマーを使用することである。耐熱性の観点から、脂肪族モノマーとして線状ではなく環状のもの(「脂環式ジアミン」と称する)が通常選択される。 An effective method for making polyimides colorless and transparent is to use non-aromatic, i.e. aliphatic, monomers as either the tetracarboxylic dianhydride monomer or the diamine monomer, or both. From the viewpoint of heat resistance, cyclic, rather than linear, aliphatic monomers (called "alicyclic diamines") are usually selected.

例えば下式(17):

で表される汎用の脂環式ジアミンと下式(18):

で表される汎用の芳香族テトラカルボン酸二無水物すなわちピロメリット酸二無水物(以下「PMDA」と称する)より得られる下式(19):

で表されるポリイミドは無色透明なフィルムを与える。しかしながら、脂肪族ジアミンの塩基性が芳香族ジアミンのそれよりもはるかに高いことに起因して、脂肪族ジアミンを使用して等モル重付加反応(以下単に「重合反応」という)を行った際、重合反応の初期段階で塩が形成される(例えば非特許文献4参照)。この塩は架橋した構造をとり、無水の重合溶媒(通常、アミド系溶媒)に溶けにくいため、塩が沈殿として析出し、重合反応が全く進行しなくなる場合がある。生成した塩が重合溶媒に僅かでも溶解する場合は、一旦析出後室温で撹拌することで徐々に重合が進行する場合があり、塩が完全に溶解して均一なワニスとなるまで、非常に長時間の重合時間が必要となる。また均一化までに要する重合反応時間の再現性や、生成するポリイミド前駆体の分子量の再現性が低い。
For example, the following formula (17):

and a general-purpose alicyclic diamine represented by the following formula (18):

The following formula (19):

Polyimides represented by the formula (I) give a colorless and transparent film. However, due to the fact that the basicity of aliphatic diamines is much higher than that of aromatic diamines, when an equimolar polyaddition reaction (hereinafter simply referred to as "polymerization reaction") is carried out using aliphatic diamines, a salt is formed at the early stage of the polymerization reaction (see, for example, Non-Patent Document 4). This salt has a crosslinked structure and is difficult to dissolve in anhydrous polymerization solvents (usually amide-based solvents), so the salt may precipitate and the polymerization reaction may not proceed at all. If the salt formed is soluble in the polymerization solvent even slightly, the polymerization may proceed gradually by stirring at room temperature after the precipitation, and a very long polymerization time is required until the salt is completely dissolved and a uniform varnish is formed. In addition, the reproducibility of the polymerization reaction time required for homogenization and the reproducibility of the molecular weight of the polyimide precursor formed are low.

また、上記式(19)で表されるポリイミドのフィルムは低熱膨張特性を示さない。これは、メチレン結合部位における主鎖の折れ曲がりと、シクロヘキシル基部位においてトランス-シス異性体が混合していることにより、ポリイミド主鎖の直線性が低下し、面内配向が妨害されるためである。 In addition, the polyimide film represented by the above formula (19) does not exhibit low thermal expansion characteristics. This is because the bending of the main chain at the methylene bond site and the mixture of trans-cis isomers at the cyclohexyl group site reduce the linearity of the polyimide main chain and hinder in-plane orientation.

ポリイミドフィルムの低熱膨張化に有利な唯一の脂環式ジアミンとして下式(20):

で表されるトランス-1,4-シクロヘキサンジアミン(以下「t-CHDA」と称する)が知られているが、PMDAと通常の重合方法で反応を行おうとすると、初期段階で形成される塩が極めて強固なため、如何なる反応条件でも析出した塩が全く溶解せず、ポリイミド前駆体は得られない(例えば非特許文献4参照)。
The only alicyclic diamine that is advantageous in reducing the thermal expansion of a polyimide film is represented by the following formula (20):

However, when attempting to react it with PMDA by a normal polymerization method, the salt formed in the initial stage is extremely strong, and the precipitated salt does not dissolve at all under any reaction conditions, making it impossible to obtain a polyimide precursor (see, for example, Non-Patent Document 4).

上記t-CHDAは下式(21):

で表される芳香族テトラカルボン酸二無水物すなわち3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(以下「s-BPDA」と称する)とは反応するので、最終的に均一で高粘度のポリイミド前駆体ワニスを得ることは可能であるが、重合初期に一旦析出した塩を溶解させるのに短時間の加熱操作が必要であるため、このプロセスは大規模生産にとって不都合である。得られたポリイミド前駆体を基板上に塗布乾燥後、300℃以上に加熱して脱水閉環反応(イミド化反応)させると下式(22):

で表されるポリイミドが得られ、そのフィルムは比較的透明で低熱膨張性を示す(例えば非特許文献5参照)。しかしながら、このポリイミドフィルムは実用的な膜靱性を有していない。また、このポリイミドは溶媒に全く不溶であり、溶液加工性に乏しい。
The above t-CHDA is represented by the following formula (21):

Since the polyimide precursor reacts with an aromatic tetracarboxylic dianhydride represented by the formula (22), i.e., 3,3',4,4'-biphenyltetracarboxylic dianhydride (hereinafter referred to as "s-BPDA"), it is possible to obtain a uniform and highly viscous polyimide precursor varnish in the end. However, this process is inconvenient for large-scale production because a short heating operation is required to dissolve the salt that precipitates at the beginning of the polymerization. When the obtained polyimide precursor is applied to a substrate and dried, and then heated to 300°C or higher to cause a dehydration ring-closing reaction (imidization reaction), the following formula (22):

The resulting polyimide film is relatively transparent and exhibits low thermal expansion (see, for example, Non-Patent Document 5). However, this polyimide film does not have sufficient membrane toughness for practical use. In addition, this polyimide is completely insoluble in solvents and has poor solution processability.

一方、脂環式テトラカルボン酸二無水物と芳香族ジアミンとの組み合わせでは、上記のような塩形成は起こらず、通常の方法でポリイミド前駆体ワニスを得ることができる。重合反応の際に用いるモノマーすなわち脂環式テトラカルボン酸二無水物と芳香族ジアミン共に直線的かつ平面的で剛直な構造のものを選択することで、低熱膨張性の透明ポリイミドを得ることが可能である。直線的かつ平面的で剛直な構造を有する、入手可能な脂環式テトラカルボン酸二無水物は非常に限られており、例えば下式(23):

で表される剛直構造の脂環式テトラカルボン酸二無水物すなわち1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下「CBDA」と称する)が知られているのみである。これと、例えば下式(24):

で表される剛直で直線的な構造を有する芳香族ジアミンすなわち2,2’-ビス(トリフルオロメチル)ベンジジン(以下「TFMB」と称する)との重合反応により、容易に高分子量のポリイミド前駆体が得られ、これをキャスト製膜し熱イミド化して得られる下式(25):

で表されるポリイミドのフィルムは無着色透明で低いCTEを示す(例えば非特許文献5参照)。しかしながら、このポリイミドフィルムは自立膜とはなるものの可撓性が十分でなく、ポリイミド自身の溶液加工性も有していない(例えば非特許文献6参照)。
On the other hand, in the combination of an alicyclic tetracarboxylic dianhydride and an aromatic diamine, the above-mentioned salt formation does not occur, and a polyimide precursor varnish can be obtained by a normal method. By selecting monomers used in the polymerization reaction, i.e., an alicyclic tetracarboxylic dianhydride and an aromatic diamine, that have a linear, planar, and rigid structure, it is possible to obtain a transparent polyimide with low thermal expansion. The available alicyclic tetracarboxylic dianhydrides that have a linear, planar, and rigid structure are very limited, and examples thereof include those represented by the following formula (23):

The only known alicyclic tetracarboxylic dianhydride having a rigid structure represented by the formula (24): i.e., 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter referred to as "CBDA").

A high molecular weight polyimide precursor can be easily obtained by polymerization with an aromatic diamine having a rigid and linear structure represented by the following formula (25):

A polyimide film represented by the formula (1) is colorless, transparent, and exhibits a low CTE (see, for example, Non-Patent Document 5). However, although this polyimide film can be a free-standing film, it does not have sufficient flexibility, and the polyimide itself does not have solution processability (see, for example, Non-Patent Document 6).

CBDAは紫外線照射装置を用いて無水マレイン酸の光二量化反応によって製造される(例えば非特許文献7参照)。このため、大型加熱反応釜による大規模生産方式を適用できず、低コスト化は容易ではない。 CBDA is produced by the photodimerization of maleic anhydride using an ultraviolet irradiation device (see, for example, Non-Patent Document 7). For this reason, large-scale production methods using large heating reaction vessels cannot be applied, and it is not easy to reduce costs.

これに対して、下式(26):

(式(26)中、中央のシクロヘキサン部位は舟型構造である。)
で表されるシス,シス,シス-1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下「H-PMDA」又は「(1S,2R,4S,5R)-シクロヘキサンテトラカルボン酸二無水物」と称する)は安価なPMDAを接触還元して得られ、大規模生産が可能であるため、現在入手可能な脂環式テトラカルボン酸二無水物の中で最も低コストで実用的である。
In contrast, the following formula (26):

(In formula (26), the central cyclohexane moiety is a boat structure.)
Cis,cis,cis-1,2,4,5-cyclohexanetetracarboxylic dianhydride represented by the following formula (hereinafter referred to as "H-PMDA" or "(1S,2R,4S,5R)-cyclohexanetetracarboxylic dianhydride") can be obtained by catalytic reduction of inexpensive PMDA and can be produced on a large scale, and is therefore the most cost-effective and practical of currently available alicyclic tetracarboxylic dianhydrides.

H-PMDAは屈曲性の連結基であるエーテル結合を含む芳香族ジアミンと室温で重合反応させてポリイミド前駆体を得る場合、その固有粘度から推測される重合度は必ずしも高くはならないものの、透明で優れた靱性を有するポリイミドフィルムを与えることが知られている(例えば非特許文献8参照)。例えば下式(27)及び(28):

で表されるポリイミドはその代表的なものであるが、これらのポリイミドフィルムは主鎖の非直線状構造に起因して、主鎖の面内配向が妨害されて低熱膨張特性を示さない。
When H-PMDA is polymerized at room temperature with an aromatic diamine containing an ether bond, which is a flexible linking group, to obtain a polyimide precursor, it is known that a polyimide film that is transparent and has excellent toughness is obtained, although the degree of polymerization estimated from the intrinsic viscosity is not necessarily high (see, for example, Non-Patent Document 8).

The polyimides represented by the following formula are representative examples, but these polyimide films do not exhibit low thermal expansion properties because the in-plane orientation of the main chain is hindered due to the nonlinear structure of the main chain.

一方、低熱膨張化を期待して剛直で直線性の高い構造のジアミン例えば式(24)で表されるTFMBを用いた場合、重合度の低さに加え、ポリマー鎖同士の絡み合いに不利な剛直な主鎖構造の影響で、ポリイミドフィルムは非常に脆弱になり、製膜困難になる(例えば非特許文献8参照)。 On the other hand, when a diamine with a rigid and highly linear structure, such as TFMB represented by formula (24), is used in the hope of achieving low thermal expansion, the polyimide film becomes very fragile and difficult to form due to the low degree of polymerization and the rigid main chain structure, which is unfavorable for entanglement of polymer chains (see, for example, non-patent document 8).

ジアミン成分として、低CTE化に有利な極めて剛直で直線性の高い構造を持ち、且つ極めて反応性が高いものが入手可能になれば、H-PMDAと組み合わせることで、低コストで実用的な低熱膨張性透明ポリイミドが得られる可能性があるが、そのようなジアミンは知られていない。 If a diamine component with an extremely rigid and highly linear structure that is advantageous for achieving a low CTE and is also highly reactive were available, it could be combined with H-PMDA to potentially produce a low-cost, practical, transparent polyimide with low thermal expansion; however, no such diamine is currently known.

H-PMDAとジアミンとの重合反応性を高めるために、重合反応を高温下で行うこと(「ワンポット重合」と称することがある)もしばしば有効である。この重合方法では、ポリイミド前駆体で止まることなく、イミド化反応も同時に進行して溶液中でポリイミドが生成する。もし、ワンポット重合により安定なポリイミドワニスが得られるならば、そのワニスを基板に塗布及び乾燥するだけで(すなわち、より高温の熱イミド化反応なしで)、ポリイミドフィルムを作製できるため、工程短縮の観点で大きなメリットがある。 To increase the polymerization reactivity of H-PMDA with diamines, it is often effective to carry out the polymerization reaction at high temperatures (sometimes called "one-pot polymerization"). In this polymerization method, the imidization reaction proceeds simultaneously without stopping at the polyimide precursor, producing polyimide in the solution. If a stable polyimide varnish can be obtained by one-pot polymerization, polyimide films can be produced simply by applying the varnish to a substrate and drying it (i.e., without the need for a thermal imidization reaction at higher temperatures), which offers a great advantage in terms of shortening the process.

しかしながら、低CTE化に有利な剛直で直線状のジアミンを使用してワンポット重合を行うと、生成したポリイミドが溶解性を失い、しばしばゲル化や沈殿析出等、反応溶液が不均一になり、後工程すなわちポリイミドの単離、再溶解及び製膜して良質なフィルムを作製することはもはや不可となる。そのため、本目的に適合するジアミンは、ポリイミドフィルムのCTEをできるだけ下げるために剛直で直線状の構造であるのと同時に、生成したポリイミドの重合溶媒に対する溶解性も悪化させてはならないという制約があるため、現行の技術ではこれらの問題を解決することは容易ではない。 However, if one-pot polymerization is performed using a rigid, linear diamine that is advantageous for achieving a low CTE, the resulting polyimide loses solubility, and the reaction solution often becomes inhomogeneous due to gelation, precipitation, etc., making it impossible to carry out the subsequent steps, i.e., isolating the polyimide, redissolving it, and forming it into a film to produce a high-quality film. Therefore, diamines suitable for this purpose must have a rigid, linear structure to reduce the CTE of the polyimide film as much as possible, while at the same time must not deteriorate the solubility of the resulting polyimide in the polymerization solvent, so that it is not easy to solve these problems with current technology.

Prog. Polym. Sci., 26, 259-335 (2001).Prog. Polym. Sci., 26, 259-335 (2001). Eur. Polym. J., 49, 3657-3672 (2013).Eur. Polym. J., 49, 3657-3672 (2013). Macromolecules, 29, 7897-7909 (1996).Macromolecules, 29, 7897-7909 (1996). High Perform. Polym., 19, 175-193 (2007).High Performance. Polym., 19, 175-193 (2007). High Perform. Polym., 15, 47-64 (2003).High Performance. Polym., 15, 47-64 (2003). Polymer, 74, 1-15 (2015).Polymer, 74, 1-15 (2015). J. Polym. Sci., Part A, 38, 108-116 (2000).J. Polym. Sci., Part A, 38, 108-116 (2000). J. Polym. Sci., Part A, 51, 575-592 (2013).J. Polym. Sci., Part A, 51, 575-592 (2013).

本発明は、画像表示デバイスの軽量化や脆弱性改善に寄与し得る透明耐熱性樹脂材料を提供することを目的とする。
すなわち、本発明が解決しようとする課題は、無色透明性、耐熱性(物理的耐熱性)、寸法安定性、熱安定性(化学的耐熱性)、機械的特性及び靱性に優れるフィルムの形成が可能であるポリイミド、並びに該ポリイミドを含むポリイミドワニス及びポリイミドフィルムを提供することである。
An object of the present invention is to provide a transparent, heat-resistant resin material that can contribute to reducing the weight and reducing the fragility of image display devices.
That is, the problem to be solved by the present invention is to provide a polyimide capable of forming a film having excellent colorless transparency, heat resistance (physical heat resistance), dimensional stability, thermal stability (chemical heat resistance), mechanical properties and toughness, as well as a polyimide varnish and a polyimide film containing the polyimide.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、前記式(26)で表されるH-PMDAと、脂環構造及びアミド基あるいはイミド基を含有する新規なジアミンより得られるポリイミドが、画像表示装置のプラスチック基板材料に好適に用いられるための優れた特性すなわち、優れた溶液加工性、高い透明性、非常に高いガラス転移温度、比較的低い線熱膨張係数及び十分な膜靱性を同時に有することを見出し、本発明を完成するに至った。 As a result of intensive research conducted by the inventors in order to achieve the above object, they discovered that a polyimide obtained from H-PMDA represented by the above formula (26) and a novel diamine containing an alicyclic structure and an amide group or an imide group simultaneously has excellent properties suitable for use as a plastic substrate material for image display devices, namely, excellent solution processability, high transparency, a very high glass transition temperature, a relatively low coefficient of linear thermal expansion, and sufficient film toughness, and thus completed the present invention.

すなわち、本発明は以下に示すものである。
<1> 下式(1):

又は下式(2):

で表されるジアミン。
<2> 下記一般式(3):

で表される繰り返し単位を有し、式(3)中、2価の有機基Arが下式(4)~(7)のいずれか1つで表される構造単位であるポリイミド。




<3> 上記<2>に記載のポリイミドが有機溶媒に溶解してなるワニス。
<4> 上記<2>に記載のポリイミドを含む耐熱性フィルム。
<5> ガラス転移温度が320℃以上であり、線熱膨張係数が40ppm/K以下であり、かつ波長400nmにおける光透過率が70%以上である、上記<4>に記載の耐熱性フィルム。
<6> 上記<4>又は<5>に記載の耐熱性フィルムを含む、画像表示装置用プラスチック基板。
That is, the present invention is as follows.
<1> The following formula (1):

Or the following formula (2):

Diamine represented by the formula:
<2> The following general formula (3):

In the formula (3), the divalent organic group Ar is a structural unit represented by any one of the following formulas (4) to (7):




<3> A varnish obtained by dissolving the polyimide according to <2> above in an organic solvent.
<4> A heat-resistant film comprising the polyimide according to <2> above.
<5> The heat-resistant film according to the above <4>, having a glass transition temperature of 320° C. or higher, a linear thermal expansion coefficient of 40 ppm/K or lower, and a light transmittance at a wavelength of 400 nm of 70% or higher.
<6> A plastic substrate for an image display device, comprising the heat-resistant film according to <4> or <5> above.

本発明によれば、無色透明性、耐熱性(物理的耐熱性)、寸法安定性、熱安定性(化学的耐熱性)、機械的特性及び靱性に優れるフィルムを形成することができる。
本発明のジアミンは、テトラカルボン酸二無水物と従来にない極めて高い重合反応性を有し、且つ嵩高い置換基を有するため、H-PMDAと反応させた場合においても、反応溶液のゲル化や沈殿析出を抑制しながら十分高い分子量のポリイミドを得ることができる。また、本発明のポリイミドは既存の製膜工程に適合するため、容易に高品質なポリイミドを作製することができ、更に得られたポリイミドフィルムは、優れた特性すなわち高い透明性、高いガラス転移温度、低熱膨張係数及び十分な可撓性を有しているため、現行の画像表示装置に使用されているガラス基板の代わりに、本発明のポリイミドをプラスチック基板材料として適用することが可能となり、ディスプレイデバイスの軽量化及び柔軟化を実現するための有用な材料を提供することができる。
According to the present invention, it is possible to form a film that is excellent in colorless transparency, heat resistance (physical heat resistance), dimensional stability, thermal stability (chemical heat resistance), mechanical properties and toughness.
The diamine of the present invention has an unprecedentedly high polymerization reactivity with tetracarboxylic dianhydride and has a bulky substituent, so that even when reacted with H-PMDA, a polyimide having a sufficiently high molecular weight can be obtained while suppressing gelation and precipitation of the reaction solution. In addition, since the polyimide of the present invention is compatible with existing film-forming processes, high-quality polyimide can be easily produced, and further, since the obtained polyimide film has excellent properties, i.e., high transparency, high glass transition temperature, low thermal expansion coefficient, and sufficient flexibility, the polyimide of the present invention can be used as a plastic substrate material instead of the glass substrate used in current image display devices, and a useful material for realizing lighter and more flexible display devices can be provided.

<ジアミン>
本発明のジアミンは、下式(1):

又は下式(2):

で表されるジアミンである。以下、式(1)で表されるジアミンを「AMB-mTOL」と称する場合があり、式(2)で表されるジアミンを「AB-MP-HPMDI」と称する場合がある。
以下に本発明のジアミンの製造方法の一例としてアミド化反応について説明するが、本発明はこれに限定されない。
<Diamine>
The diamine of the present invention is represented by the following formula (1):

Or the following formula (2):

Hereinafter, the diamine represented by formula (1) may be referred to as "AMB-mTOL," and the diamine represented by formula (2) may be referred to as "AB-MP-HPMDI."
An amidation reaction will be described below as an example of the method for producing a diamine of the present invention, but the present invention is not limited thereto.

(式(1)で表されるジアミン「AMB-mTOL」の製造)
m-トリジンを溶媒に溶解し、セプタムキャップで密栓し、A液とする。次に3-メチル-4-ニトロベンゾイルクロリド(以下「3M4NBC」と称する)を同一溶媒に溶解し、これに適当量の塩基(脱酸剤)を添加し同様に密封してB液とする。A液を氷浴中で冷却し、撹拌子で撹拌しながら、A液にB液をシリンジにてゆっくり滴下し、数時間反応させ、続いて室温で12時間撹拌する。反応後、析出した沈殿物を濾別し、少量の反応溶媒で洗浄、続いて水で洗浄して副生成物である水溶性の塩酸塩を除去し、50~120℃の温度範囲で5~12時間真空乾燥してジニトロ体を得る。これを適当な溶媒から再結晶して精製してから、次の水素還元工程に用いることもできるが、上記洗浄及び乾燥工程のみで十分高純度のジニトロ体が得られるため、精製工程を省略してもよい。
得られたジニトロ体の末端ニトロ基の還元反応は、一例として以下のようにして行うことができる。まずジニトロ体を溶媒に溶解し、これに適当量のパラジウム/カーボン(Pd/C)触媒を添加する。この反応溶液を使用した溶媒の沸点以下の温度すなわち、水素雰囲気中、室温~150℃の範囲で一定温度に加熱しながら2~24時間反応させる。反応の終点は薄層クロマトグラフィーにより、上記ジニトロ体の完全な消失と新たなスポットが1つのみ出現することをもって確認することができる。反応終了後、触媒残渣を濾過して除去する。濾液は適宜エバポレータで濃縮してもよい。濃縮により沈殿が析出する場合は濾別して、少量の反応溶媒続いて水及びメタノールでよく洗浄し、最後に生成物の融点以下の温度すなわち50~120℃の温度範囲で5~12時間真空乾燥することで、式(1)で表されるジアミンを得ることができる。これをそのまま次の重合工程に用いてもよいが、適当な溶媒から再結晶して更に精製してもよい。
(Production of diamine "AMB-mTOL" represented by formula (1))
m-Tolidine is dissolved in a solvent, and the container is sealed with a septum cap to obtain liquid A. Next, 3-methyl-4-nitrobenzoyl chloride (hereinafter referred to as "3M4NBC") is dissolved in the same solvent, and an appropriate amount of base (deoxidizer) is added to the solution, and the solution is sealed in the same manner to obtain liquid B. Liquid A is cooled in an ice bath, and while stirring with a stirrer, liquid B is slowly dropped into liquid A using a syringe, and the solution is reacted for several hours, and then stirred at room temperature for 12 hours. After the reaction, the precipitate is filtered off, washed with a small amount of reaction solvent, and then washed with water to remove the water-soluble hydrochloride by-product, and vacuum dried at a temperature range of 50 to 120°C for 5 to 12 hours to obtain a dinitro product. This can be purified by recrystallization from an appropriate solvent and then used in the next hydrogen reduction step, but since a dinitro product of sufficiently high purity can be obtained only by the above washing and drying steps, the purification step may be omitted.
The reduction reaction of the terminal nitro group of the obtained dinitro compound can be carried out as follows, for example. First, the dinitro compound is dissolved in a solvent, and an appropriate amount of palladium/carbon (Pd/C) catalyst is added thereto. The reaction solution is reacted for 2 to 24 hours while being heated at a constant temperature in the range of room temperature to 150°C at a temperature below the boiling point of the solvent used, i.e., in a hydrogen atmosphere, at a temperature below the boiling point of the solvent used. The end point of the reaction can be confirmed by thin layer chromatography when the dinitro compound completely disappears and only one new spot appears. After the reaction is completed, the catalyst residue is removed by filtration. The filtrate may be appropriately concentrated with an evaporator. If a precipitate is deposited by concentration, it is filtered off, washed thoroughly with a small amount of the reaction solvent, followed by water and methanol, and finally vacuum dried for 5 to 12 hours at a temperature below the melting point of the product, i.e., in the temperature range of 50 to 120°C, to obtain the diamine represented by formula (1). This may be used as it is in the next polymerization step, or may be further purified by recrystallization from an appropriate solvent.

(式(2)で表されるジアミン「AB-MP-HPMDI」の製造)
上記のAMB-mTOLの製造において、3M4NBCの代わりに、メチル置換基を含まない4-ニトロベンゾイルクロリド(以下「4-NBC」と称する)を使用し、これと下式(8)で表されるジアミンとを上記と同様な方法でアミド化反応させることでジニトロ体が得られ、続いて上記と同様な方法で接触還元を行ってニトロ基を還元することで、式(2)で表されるジアミンを得ることができる。
(Production of diamine "AB-MP-HPMDI" represented by formula (2))
In the production of the above AMB-mTOL, 4-nitrobenzoyl chloride (hereinafter referred to as "4-NBC") not containing a methyl substituent is used instead of 3M4NBC, and a diamine represented by the following formula (8) is subjected to an amidation reaction in the same manner as above to obtain a dinitro form, which is then subjected to catalytic reduction in the same manner as above to reduce the nitro group, thereby obtaining a diamine represented by formula (2).

上記式(8)で表されるジアミンは、一例として以下のようにして合成することができる。2-メトキシ-4-ニトロアニリン(以下「2MeO-4NA」と称する、Xmmol)をN,N-ジメチルアセトアミド(DMAc)に溶解する。この溶液にH-PMDA粉末(0.5Xmmol)を添加し、窒素雰囲気中、150~180℃で1~12時間還流する。反応後、反応溶液をエバポレータで濃縮するか、又はDMAcに混和する沈殿剤(貧溶媒)を添加して沈殿を析出させて沈殿物を濾別及び洗浄し、50~120℃の温度範囲で5~12時間真空乾燥してジニトロ体を得る。ジニトロ体は再結晶により精製してから次の水素還元工程に用いることもできるが、上記洗浄及び乾燥工程のみで十分高純度のジニトロ体が得られるため、精製工程を省略してもよい。ジニトロ体のニトロ基の還元は上記と同様な方法によって行うことができる。 The diamine represented by the above formula (8) can be synthesized, for example, as follows. 2-Methoxy-4-nitroaniline (hereinafter referred to as "2MeO-4NA", X mmol) is dissolved in N,N-dimethylacetamide (DMAc). H-PMDA powder (0.5X mmol) is added to this solution, and the solution is refluxed in a nitrogen atmosphere at 150 to 180°C for 1 to 12 hours. After the reaction, the reaction solution is concentrated with an evaporator, or a precipitant (poor solvent) that is miscible with DMAc is added to precipitate, and the precipitate is filtered and washed, and vacuum dried at a temperature range of 50 to 120°C for 5 to 12 hours to obtain a dinitro product. The dinitro product can be purified by recrystallization before being used in the next hydrogen reduction step, but since a dinitro product of sufficiently high purity can be obtained only by the above washing and drying steps, the purification step may be omitted. The reduction of the nitro group of the dinitro product can be performed by the same method as above.

上記アミド化反応の際、酸クロリド(3M4NBC又は4-NBC)の仕込み量(mol)は、ジアミン(m-トリジン又は式(8)で表される化合物)の物質量(mol)の2倍(当量)でもよいが、収率を上げるために場合によっては2~5倍にしてもよい。 In the above amidation reaction, the amount (mol) of the acid chloride (3M4NBC or 4-NBC) may be twice (equivalent) the amount (mol) of the diamine (m-tolidine or the compound represented by formula (8)), but in some cases it may be 2 to 5 times as much to increase the yield.

また、アミド化反応の際に使用可能な溶媒としては反応原料が溶解すればよく、特に限定されないが、テトラヒドロフラン(THF)、1,4-ジオキサン、ジグライム、トリグライム等のエーテル系溶媒、γ-ブチロラクトン、酢酸エチル等のエステル系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホルアミド等のアミド系溶媒、アセトン、シクロペンタノン、シクロヘキサノン等のケトン系溶媒、ジメチルスルホオキシド、スルホラン等のスルホン系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等の塩素系溶媒、トルエン、キシレン等が挙げられる。またこれらの溶媒を単独でも、2種類以上混合して用いてもよい。反応原料の溶解性や除去のしやすさの観点から、THF、DMF及びDMAcから選ばれる少なくとも1種が好適に用いられる。 In addition, the solvent that can be used in the amidation reaction is not particularly limited as long as it dissolves the reaction raw materials, and examples thereof include ether solvents such as tetrahydrofuran (THF), 1,4-dioxane, diglyme, and triglyme, ester solvents such as γ-butyrolactone and ethyl acetate, amide solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and hexamethylphosphoramide, ketone solvents such as acetone, cyclopentanone, and cyclohexanone, sulfone solvents such as dimethylsulfoxide and sulfolane, chlorine solvents such as dichloromethane, chloroform, and 1,2-dichloroethane, toluene, and xylene. These solvents may be used alone or in combination of two or more. From the viewpoint of the solubility of the reaction raw materials and the ease of removal, at least one selected from THF, DMF, and DMAc is preferably used.

アミド化反応の反応温度は、好ましくは-10~50℃、より好ましくは0~30℃である。反応温度が50℃以下であれば、副反応が起こりにくく、収率が低下するおそれがない。 The reaction temperature for the amidation reaction is preferably -10 to 50°C, more preferably 0 to 30°C. If the reaction temperature is 50°C or less, side reactions are unlikely to occur and there is no risk of a decrease in yield.

アミド化反応は、副反応の制御、沈殿の濾過工程を考慮して、溶質濃度が好ましくは5~50質量%、より好ましくは10~40質量%の範囲で行われる。 The amidation reaction is carried out at a solute concentration of preferably 5 to 50% by mass, more preferably 10 to 40% by mass, taking into consideration the control of side reactions and the filtration process of the precipitate.

アミド化反応に用いる脱酸剤としては特に限定されず、ピリジン、トリエチルアミン、N,N-ジメチルアニリン等の有機3級アミン類、炭酸カリウム、水酸化ナトリウム等の無機塩基を用いることができる。塩酸塩の除去のしやすさの観点からは、ピリジンが好適に用いられる。 The deacidification agent used in the amidation reaction is not particularly limited, and organic tertiary amines such as pyridine, triethylamine, and N,N-dimethylaniline, and inorganic bases such as potassium carbonate and sodium hydroxide can be used. From the viewpoint of ease of removing the hydrochloride, pyridine is preferably used.

アミド化反応により生成した沈殿物は、ジニトロ体だけでなく、脱酸剤としてピリジンを使用した場合、水溶性のピリジン塩酸塩を含んでいる。ジニトロ体は水に不溶であるので、沈殿物を水でよく洗浄するだけで、塩酸塩を除去することができる。塩酸塩除去の完結は、洗液として1%硝酸銀水溶液を用いて、塩化銀の白色沈殿の生成の有無から容易に確認することができる。 The precipitate produced by the amidation reaction contains not only the dinitro form, but also water-soluble pyridine hydrochloride when pyridine is used as a deoxidizer. Since the dinitro form is insoluble in water, the hydrochloride can be removed by simply washing the precipitate thoroughly with water. Completion of hydrochloride removal can be easily confirmed by the presence or absence of a white precipitate of silver chloride using a 1% aqueous solution of silver nitrate as a washing solution.

アミド化反応は公知の方法を適用でき、上述した塩基(酸受容剤)存在下、ジカルボン酸ジクロリドとアミンとの反応以外の方法を適用することができる。例えば、トランス-1,4-シクロヘキサンジカルボン酸(以下「t-CHDCA」と称する)と2MeO-4NAより、N,N’-ジシクロヘキシルカルボジイミド(以下「DCC」と称する)、亜リン酸トリフェニル/ピリジン、ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホネート/トリエチルアミン、1-ヒドロキシベンゾトリアゾール/DCC、1-ヒドロキシ-7-アザベンゾトリアゾール、N-ヒドロキシスクシンイミド/DCC等の縮合剤を用いて行うこともできる。 Amidation reaction can be carried out by a known method, other than the reaction of a dicarboxylic acid dichloride with an amine in the presence of a base (acid acceptor) as described above. For example, the amidation reaction can be carried out from trans-1,4-cyclohexanedicarboxylic acid (hereinafter referred to as "t-CHDCA") and 2MeO-4NA using a condensation agent such as N,N'-dicyclohexylcarbodiimide (hereinafter referred to as "DCC"), triphenyl phosphite/pyridine, diphenyl(2,3-dihydro-2-thioxo-3-benzoxazolyl)phosphonate/triethylamine, 1-hydroxybenzotriazole/DCC, 1-hydroxy-7-azabenzotriazole, or N-hydroxysuccinimide/DCC.

上記ニトロ基のアミノ基への還元反応の方法は特に限定されず、公知の方法を適用できる。水素とPd/Cを用いる前述の方法の他にも、塩酸酸性中、スズ、亜鉛、鉄等の金属粉末を用いる接触還元法や塩化スズ二水和物のエタノール溶液を用いる方法も適用可能である。水素雰囲気中、Pd/Cを触媒として行う上記接触還元反応の際に使用可能な溶媒としてはジニトロ体が溶解すればよく、特に限定されないが、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホルアミド等のアミド系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジグライム、トリグライム等のエーテル系溶媒、γ-ブチロラクトン、酢酸エチル等のエステル系溶媒、トルエン、キシレン等が挙げられる。またこれらの溶媒を単独でも、2種類以上混合して用いてもよい。反応原料の溶解性や除去のしやすさの観点からがDMF及びDMAc好適に用いられる。また、溶媒は生成物であるジアミンに対しても高い溶解性を持つことが好ましい。もし溶解性が著しく悪い場合、モノアミン体の段階で一部析出し、還元反応の完全な進行が妨げられる恐れがある。 The method of the reduction reaction of the nitro group to the amino group is not particularly limited, and known methods can be applied. In addition to the above-mentioned method using hydrogen and Pd/C, a contact reduction method using metal powder such as tin, zinc, iron, etc. in hydrochloric acid acidic water or a method using an ethanol solution of tin chloride dihydrate can also be applied. The solvent that can be used in the above contact reduction reaction using Pd/C as a catalyst in a hydrogen atmosphere is not particularly limited as long as it dissolves the dinitro body, and examples of the solvent include amide solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and hexamethylphosphoramide, alcohol solvents such as methanol, ethanol, and propanol, ether solvents such as tetrahydrofuran, 1,4-dioxane, diglyme, and triglyme, ester solvents such as γ-butyrolactone and ethyl acetate, toluene, and xylene. These solvents may be used alone or in a mixture of two or more types. DMF and DMAc are preferably used from the viewpoint of the solubility of the reaction raw materials and ease of removal. It is also preferable that the solvent has high solubility for the diamine product. If the solubility is extremely poor, some of the diamine may precipitate at the monoamine stage, preventing the reduction reaction from proceeding completely.

<ポリイミド>
本発明のポリイミドは、下記一般式(3):

で表される繰り返し単位を有し、式(3)中、2価の有機基Arが下式(4)~(7)のいずれか1つで表される構造単位であるポリイミドである。すなわち、本発明のポリイミドは、H-PMDAに由来する構造単位を有し、かつ、下式(4)~(7)のいずれか1つで表される構造単位を有する。



<Polyimide>
The polyimide of the present invention is represented by the following general formula (3):

In the formula (3), the divalent organic group Ar is a structural unit represented by any one of the following formulas (4) to (7). That is, the polyimide of the present invention has a structural unit derived from H-PMDA, and also has a structural unit represented by any one of the following formulas (4) to (7).



本発明のポリイミドは、テトラカルボン酸二無水物とジアミンとの重合反応により得られる。 The polyimide of the present invention is obtained by a polymerization reaction between a tetracarboxylic dianhydride and a diamine.

(テトラカルボン酸二無水物)
テトラカルボン酸二無水物としては、H-PMDAが用いられる。
上記重合反応の際、ジアミンとの重合反応性及びポリイミドの要求特性を損なわない範囲で、H-PMDAと共に、H-PMDA以外の脂環式テトラカルボン酸二無水物を共重合成分として使用することができる。
その際に使用可能な脂環式テトラカルボン酸二無水物としては、特に限定されないが、例えば(1S,2S,4R,5R)-シクロヘキサンテトラカルボン酸二無水物(以下「H’-PMDA」と称する)、(1R,2S,4S,5R)-シクロヘキサンテトラカルボン酸二無水物(以下、「H”-PMDA」と称する)、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(以下「BTA」と称する)、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]ヘプタンテトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、3c-カルボキシメチルシクロペンタン-1r,2c,4c-トリカルボン酸1,4:2,3-二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等が挙げられる。これらは単独で用いてもよく、2種類以上を併用してもよい。
共重合成分としてこれらの脂環式テトラカルボン酸二無水物を使用する場合、その使用量は、H-PMDAを含めた脂環式テトラカルボン酸二無水物総量のうち、好ましくは1~70mol%、より好ましくは10~50mol%の範囲である。
(Tetracarboxylic acid dianhydride)
As the tetracarboxylic dianhydride, H-PMDA is used.
During the above polymerization reaction, an alicyclic tetracarboxylic dianhydride other than H-PMDA can be used as a copolymerization component together with H-PMDA, within the scope that does not impair the polymerization reactivity with diamine and the required properties of the polyimide.
The alicyclic tetracarboxylic dianhydride that can be used in this case is not particularly limited, and examples thereof include (1S,2S,4R,5R)-cyclohexanetetracarboxylic dianhydride (hereinafter referred to as "H'-PMDA"), (1R,2S,4S,5R)-cyclohexanetetracarboxylic dianhydride (hereinafter referred to as "H"-PMDA"), bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (hereinafter referred to as "BTA"), bicyclo[2.2.2]octane-2,3,5,6-tetracarboxylic dianhydride, bicyclo[2.2.2]heptanetetracarboxylic dianhydride, 5-(dioxotetrahydro Examples of such an anhydride include furyl-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, 4-(2,5-dioxotetrahydrofuran-3-yl)-tetralin-1,2-dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3',4,4'-tetracarboxylic dianhydride, 3c-carboxymethylcyclopentane-1r,2c,4c-tricarboxylic acid 1,4:2,3-dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, and 1,2,3,4-cyclopentane tetracarboxylic dianhydride. These may be used alone or in combination of two or more.
When these alicyclic tetracarboxylic dianhydrides are used as copolymerization components, the amount used is preferably in the range of 1 to 70 mol %, more preferably 10 to 50 mol %, of the total amount of alicyclic tetracarboxylic dianhydrides including H-PMDA.

また、ジアミンとの重合反応性及びポリイミドの要求特性を損なわない範囲で、H-PMDAと共に、芳香族テトラカルボン酸二無水物を共重合成分として使用することができる。
その際に使用可能な芳香族テトラカルボン酸二無水物としては、特に限定されないが、例えばピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタリックアンハイドライド、3,4’-オキシジフタリックアンハイドライド、3,3’-オキシジフタリックアンハイドライド、ハイドロキノン-ジフタリックアンハイドライド、4,4’-ビフェノール-ジフタリックアンハイドライド、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物等が挙げられる。これらは単独で用いてもよく、2種類以上を併用してもよい。
共重合成分としてこれらの芳香族テトラカルボン酸二無水物を使用する場合、その使用量は、H-PMDAも含めたテトラカルボン酸二無水物総量のうち、好ましくは1~30mol%、より好ましくは1~20mol%の範囲である。
Additionally, aromatic tetracarboxylic dianhydrides can be used as copolymerization components together with H-PMDA within the limits that do not impair the polymerization reactivity with diamines and the required properties of polyimide.
The aromatic tetracarboxylic dianhydride that can be used in this case is not particularly limited, but examples thereof include pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 3,3'-oxydiphthalic anhydride, hydroquinone-diphthalic anhydride, 4,4'-biphenol-diphthalic anhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, etc. These may be used alone or in combination of two or more.
When these aromatic tetracarboxylic dianhydrides are used as copolymerization components, the amount used is preferably in the range of 1 to 30 mol %, more preferably 1 to 20 mol %, of the total amount of tetracarboxylic dianhydrides including H-PMDA.

(ジアミン)
ジアミンとしては、上記式(4)~(7)のいずれか1つで表される構造単位を与える化合物が用いられる。
上記式(4)で表される構造単位を与える化合物は、AMB-mTOL(上記式(1)で表されるジアミン)である。
上記式(5)で表される構造単位を与える化合物は、AB-MP-HPMDI(上記式(2)で表されるジアミン)である。
上記式(6)で表される構造単位を与える化合物は、下式(9):

で表されるジアミン(以下「AB-mTOL」と称する)である。AB-mTOLの製造方法は特に限定されないが、例えば後述の合成例1の方法で得ることができる。
上記式(7)で表される構造単位を与える化合物は、下式(10):

で表されるジアミン(以下「AB-44ODA」と称する)である。AB-44ODAの製造方法は特に限定されないが、例えば後述の合成例2の方法で得ることができる。
(Diamine)
As the diamine, a compound that gives a structural unit represented by any one of the above formulas (4) to (7) is used.
The compound that provides the structural unit represented by the above formula (4) is AMB-mTOL (the diamine represented by the above formula (1)).
The compound that provides the structural unit represented by the above formula (5) is AB-MP-HPMDI (the diamine represented by the above formula (2)).
The compound which provides the structural unit represented by the above formula (6) is represented by the following formula (9):

The method for producing AB-mTOL is not particularly limited, but it can be obtained, for example, by the method of Synthesis Example 1 described later.
The compound which provides the structural unit represented by the above formula (7) is represented by the following formula (10):

The method for producing AB-44ODA is not particularly limited, but it can be obtained, for example, by the method of Synthesis Example 2 described below.

テトラカルボン酸二無水物との重合反応性及びポリイミドの要求特性を損なわない範囲で、上記式(4)~(7)のいずれか1つで表される構造単位を与える化合物と共に、脂肪族ジアミンを共重合成分として使用することができる。
その際に使用可能な脂肪族ジアミンとしては、特に限定されないが、例えば4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(3-メチルシクロヘキシルアミン)、4,4’-メチレンビス(3-エチルシクロヘキシルアミン)、4,4’-メチレンビス(3,5-ジメチルシクロヘキシルアミン)、4,4’-メチレンビス(3,5-ジエチルシクロヘキシルアミン)、イソホロンジアミン、トランス-1,4-シクロヘキサンジアミン、シス-1,4-シクロヘキサンジアミン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、2,6-ビス(アミノメチル)ビシクロ[2.2.1]ヘプタン、3,8-ビス(アミノメチル)トリシクロ[5.2.1.0]デカン、1,3-ジアミノアダマンタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン)等が挙げられる。これらは単独で用いてもよく、2種類以上を併用してもよい。
共重合成分としてこれらの脂肪族ジアミンを使用する場合、その使用量は、上記式(4)~(7)のいずれか1つで表される構造単位を与える化合物を含めたジアミン総量のうち、好ましくは1~50mol%、より好ましくは5~30mol%の範囲である。
An aliphatic diamine can be used as a copolymerization component together with a compound that provides a structural unit represented by any one of the above formulas (4) to (7), within a range that does not impair the polymerization reactivity with a tetracarboxylic dianhydride and the required properties of a polyimide.
The aliphatic diamine that can be used in this case is not particularly limited, and examples thereof include 4,4'-methylenebis(cyclohexylamine), 4,4'-methylenebis(3-methylcyclohexylamine), 4,4'-methylenebis(3-ethylcyclohexylamine), 4,4'-methylenebis(3,5-dimethylcyclohexylamine), 4,4'-methylenebis(3,5-diethylcyclohexylamine), isophoronediamine, trans-1,4-cyclohexanediamine, cis-1,4-cyclohexanediamine, 1,4-cyclohexanebis(methylamine), and 2,5-bis(aminomethyl). Examples of such compounds include bicyclo[2.2.1]heptane, 2,6-bis(aminomethyl)bicyclo[2.2.1]heptane, 3,8-bis(aminomethyl)tricyclo[5.2.1.0]decane, 1,3-diaminoadamantane, 2,2-bis(4-aminocyclohexyl)propane, 2,2-bis(4-aminocyclohexyl)hexafluoropropane, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8-octamethylenediamine, and 1,9-nonamethylenediamine. These compounds may be used alone or in combination of two or more.
When these aliphatic diamines are used as copolymerization components, the amount used is preferably in the range of 1 to 50 mol %, more preferably 5 to 30 mol %, of the total amount of diamines including the compound that provides the structural unit represented by any one of the above formulas (4) to (7).

また、テトラカルボン酸二無水物との重合反応性及びポリイミドの要求特性を損なわない範囲で、上記式(4)~(7)のいずれか1つで表される構造単位を与える化合物と共に、上記式(4)~(7)のいずれか1つで表される構造単位を与える化合物以外の芳香族ジアミンを共重合成分として使用することができる。
その際に使用可能な芳香族ジアミンとしては、特に限定されないが、例えばp-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノデュレン、4,4’-メチレンジアニリン、4,4’-メチレンビス(3-メチルアニリン)、4,4’-メチレンビス(3-エチルアニリン)、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(3,5-ジメチルアニリン)、4,4’-メチレンビス(3,5-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、ベンジジン、3,3’-ジヒドロキシベンジジン、3,3’-ジメトキシベンジジン、o-トリジン、m-トリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、p-ターフェニレンジアミン、2,2’-ビス(トリフルオロメチル)ベンジジン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、4,4’-メチレンジアニリン、4,4’-メチレンビス(3-メチルアニリン)、4,4’-メチレンビス(3-エチルアニリン)、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(3,5-ジメチルアニリン)、4,4’-メチレンビス(3,5-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)等を例示できる。これらは単独で用いてもよく、2種類以上を併用してもよい。
共重合成分としてこれらの芳香族ジアミンを使用する場合、その使用量は、ジアミン総量のうち、好ましくは1~50mol%、より好ましくは5~30mol%の範囲である。
In addition, aromatic diamines other than the compounds giving the structural units represented by any one of the above formulas (4) to (7) can be used as copolymerization components together with the compounds giving the structural units represented by any one of the above formulas (4) to (7), within the scope of not impairing the polymerization reactivity with tetracarboxylic dianhydrides and the required properties of the polyimide.
The aromatic diamine that can be used in this case is not particularly limited, but examples thereof include p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-methylenedianiline, 4,4'-methylenebis(3-methylaniline), 4,4'-methylenebis(3-ethylaniline), 4,4'-methylenebis(2-methylaniline), 4,4'-methylenebis(2-ethylaniline), 4,4'-methylenebis(3,5-dimethylaniline), 4,4'-methylenebis(3,5-diethylaniline), 4,4'-methylenebis(2,6-dimethylaniline), 4,4'-methylenebis(2,6-diethylaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, and the like. nyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, benzidine, 3,3'-dihydroxybenzidine, 3,3'-dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis(4-(3-aminophenoxy)phenyl)sulfone, bis(4-(4-aminophenoxy)phenyl)sulfone, 2,2-bis(4-(4-aminophenoxy)phenyl)sulfone, 2,2'-bis(4-aminophenoxy)phenyl)propane, p-terphenylenediamine, 2,2'-bis(trifluoromethyl)benzidine, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis(4-(3-aminophenoxy)phenyl)sulfone, bis(4-(4-amino 2,2-bis(4-(4-aminophenoxy)phenyl)sulfone, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4'-methylenedianiline, 4,4'-methylenebis(3-methyl Examples of the aniline include 4,4'-methylenebis(3-ethylaniline), 4,4'-methylenebis(2-methylaniline), 4,4'-methylenebis(2-ethylaniline), 4,4'-methylenebis(3,5-dimethylaniline), 4,4'-methylenebis(3,5-diethylaniline), 4,4'-methylenebis(2,6-dimethylaniline), 4,4'-methylenebis(2,6-diethylaniline), etc. These may be used alone or in combination of two or more.
When these aromatic diamines are used as copolymerization components, the amount used is preferably in the range of 1 to 50 mol %, more preferably 5 to 30 mol %, of the total amount of diamines.

テトラカルボン酸二無水物とジアミンとを反応させる方法には特に制限はなく、公知の方法を用いることができる。
例えば、窒素導入管、撹拌装置、ディーン・スタークトラップ及びコンデンサーを備えた反応容器中、ジアミン、共沸剤及びイミド化触媒を室温で重合溶媒に溶かしておき、撹拌しながらテトラカルボン酸二無水物粉末を添加し、150~250℃で0.5~12時間還流することでポリイミドワニスが得られる。ワニスの着色を抑制するという観点から、重合反応は窒素等の不活性ガス雰囲気中で行うことが好ましいが、不活性ガスの導入を省略することもできる。
The method for reacting the tetracarboxylic dianhydride with the diamine is not particularly limited, and any known method can be used.
For example, a polyimide varnish can be obtained by dissolving a diamine, an azeotropic agent and an imidization catalyst in a polymerization solvent at room temperature in a reaction vessel equipped with a nitrogen inlet tube, a stirrer, a Dean-Stark trap and a condenser, adding a tetracarboxylic dianhydride powder with stirring, and refluxing for 0.5 to 12 hours at 150 to 250° C. From the viewpoint of suppressing coloration of the varnish, it is preferable to carry out the polymerization reaction in an atmosphere of an inert gas such as nitrogen, but the introduction of the inert gas can be omitted.

上記重合反応の際、ジアミンとテトラカルボン酸二無水物の仕込比(モル比)は、ジアミンの総量1に対して、0.8~1.1とすることができるが、好ましくは0.9~1.1であり、より好ましくは0.95~1.05である。分子量ができるだけ高いものを得るという観点から、モノマーは実質的に等モルで仕込まれる。 In the above polymerization reaction, the molar ratio of diamine to tetracarboxylic dianhydride can be 0.8 to 1.1 per 1 of the total amount of diamine, but is preferably 0.9 to 1.1, and more preferably 0.95 to 1.05. From the viewpoint of obtaining a product with as high a molecular weight as possible, the monomers are charged in substantially equimolar amounts.

上記重合反応の際の初期モノマー(溶質)濃度は、好ましくは5~60質量%、より好ましくは10~50質量%である。この範囲のモノマー濃度で重合を開始すれば、ポリイミドの分子量を十分に挙げることができ、かつ、モノマー及び生成するポリイミドの溶解性を十分確保することができ、ゲル化や沈殿析出等の反応溶液の不均一化を抑制することができる。なお、ポリイミドの分子量が増加しすぎて反応溶液が撹拌しにくくなった場合は、適宜適量の同一溶媒で希釈することもできる。 The initial monomer (solute) concentration during the polymerization reaction is preferably 5 to 60% by mass, and more preferably 10 to 50% by mass. By initiating polymerization with a monomer concentration in this range, the molecular weight of the polyimide can be sufficiently increased, and the solubility of the monomer and the resulting polyimide can be sufficiently ensured, making it possible to suppress non-uniformity of the reaction solution, such as gelation or precipitation. If the molecular weight of the polyimide increases too much and the reaction solution becomes difficult to stir, the reaction solution can be diluted with an appropriate amount of the same solvent.

ポリイミドを重合する際に使用される溶媒は、原料モノマーと生成するポリイミドが十分に溶解し、かつ、イミド化反応完結の観点から沸点が150℃以上のものであれば、特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホルアミド等のアミド系溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン等の環状エステル溶媒、ジメチルスルホキシド、スルホラン等のスルホン系溶媒、ジグライム、トリグライム等のエーテル系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン等のケトン系溶媒が使用可能である。これらの溶媒を単独でも、2種類以上混合して用いてもよい。反応原料の溶解性や沸点の観点から、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン及びγ-ブチロラクトンが好適に用いられる。
使用する溶媒は場合によっては低吸湿性であることが好ましい。低吸湿性溶媒用いることで、塗工の際、吸湿によりポリイミドが部分的に析出して塗膜が白化するリスクが低減することに加え、塗工時の湿度管理が不要になるなど低コスト化にも有利である。この観点から使用する溶媒としてγ-ブチロラクトン、シクロペンタノン、シクロヘキサノン、ジグライム、トリグライム等が好適である。
The solvent used in polymerizing polyimide is not particularly limited as long as it sufficiently dissolves the raw material monomer and the resulting polyimide and has a boiling point of 150° C. or higher from the viewpoint of completing the imidization reaction. For example, amide-based solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, and hexamethylphosphoramide, cyclic ester solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, and γ-caprolactone, sulfone-based solvents such as dimethylsulfoxide and sulfolane, ether-based solvents such as diglyme and triglyme, phenol-based solvents such as m-cresol, p-cresol, 3-chlorophenol, and 4-chlorophenol, and ketone-based solvents such as cyclopentanone and cyclohexanone can be used. These solvents may be used alone or in combination of two or more. From the viewpoint of the solubility of the reaction raw materials and the boiling point, N,N-dimethylacetamide, N-methyl-2-pyrrolidone and γ-butyrolactone are preferably used.
In some cases, it is preferable that the solvent used has low hygroscopicity. By using a low hygroscopic solvent, the risk of the coating film whitening due to partial precipitation of polyimide caused by moisture absorption during coating is reduced, and it is also advantageous in terms of cost reduction, since humidity control during coating is no longer necessary. From this viewpoint, γ-butyrolactone, cyclopentanone, cyclohexanone, diglyme, triglyme, etc. are suitable as the solvent to be used.

イミド化反応時に生ずる水を除去するために用いられる共沸剤としては、トルエン、キシレン、ベンゼン、クメン、シクロヘキサン、酢酸エチル、ピリジン等が挙げられる。沸点や除去のしやすさの観点からトルエンやキシレンが好適に用いられる。 Entrainers used to remove water produced during the imidization reaction include toluene, xylene, benzene, cumene, cyclohexane, ethyl acetate, pyridine, etc. From the standpoint of boiling point and ease of removal, toluene and xylene are preferably used.

上記重合反応の際、適宜イミド化触媒を使用することができる。使用可能なものとして例えば、1-エチルピペリジン、ピリジン、ビピリジン、ピコリン、ピリミジン、ピラジン、ピリダジン、トリアジン、キノリン、キノキサリン、アクリジン、フェナジン、ベンズイミダゾール、ベンゾオキサゾール及びこれらの異性体、誘導体等の有機塩基の他、安息香酸及びその類似体等の有機酸が挙げられる。これらの塩基性触媒及び酸性触媒はそれぞれ単独に使用してもよく、併用することもできる。これらの触媒の添加量は特に制限はないが、理論脱水量1に対して、好ましくはモル比0.1~10倍量の範囲である。ただし、上記イミド化触媒はポリイミドワニスを着色し、結果としてポリイミドフィルムの透明性を悪化させる場合があるため、着色に注意しながら使用することが好ましい。 In the above polymerization reaction, an imidization catalyst can be used as appropriate. Examples of usable catalysts include organic bases such as 1-ethylpiperidine, pyridine, bipyridine, picoline, pyrimidine, pyrazine, pyridazine, triazine, quinoline, quinoxaline, acridine, phenazine, benzimidazole, benzoxazole, and their isomers and derivatives, as well as organic acids such as benzoic acid and its analogs. These basic catalysts and acidic catalysts may be used alone or in combination. There are no particular restrictions on the amount of these catalysts added, but the amount is preferably in the range of 0.1 to 10 times the molar amount per theoretical dehydration amount of 1. However, the above imidization catalysts may color the polyimide varnish, which may result in a deterioration in the transparency of the polyimide film, so it is preferable to use them with care to avoid coloration.

重合反応により得られたポリイミドのイミド化反応の完結は、ポリイミドを粉末として単離したものを重水素化溶媒に溶解して1H-NMRスペクトルを測定し、ポリイミド前駆体由来のNHCOプロトンやCOOHプロトンの完全な消失より確認することができる。また、4~5μm厚のポリイミド薄膜を作製するか、ポリイミド粉末を用いてKBr法によりFT-IRスペクトルを測定して、例えばポリイミド前駆体由来のアミドC=O伸縮振動バンドの完全な消失とイミド特性吸収バンドの出現からもイミド化の完結を確認できる。 Completion of the imidization reaction of the polyimide obtained by the polymerization reaction can be confirmed by measuring the 1H -NMR spectrum of the polyimide obtained by dissolving the polyimide powder isolated in a deuterated solvent and observing the complete disappearance of NHCO protons and COOH protons derived from the polyimide precursor. Completion of the imidization can also be confirmed by preparing a 4-5 μm-thick polyimide thin film or measuring the FT-IR spectrum of the polyimide powder by the KBr method, observing the complete disappearance of the amide C═O stretching vibration band derived from the polyimide precursor and the appearance of an imide characteristic absorption band.

(ポリイミドの物性)
本発明のポリイミドの固有粘度は、0.2~5dL/gの範囲であることが好ましく、0.5~2dL/gの範囲であることがより好ましい。固有粘度が0.2dL/g以上であれば、ポリイミドの分子量が十分高いためにポリマー鎖同士の絡み合いが十分であり、製膜時にひび割れ等が発生するのを抑制することができる。一方、固有粘度が5dL/g以下であれば、ワニスの粘度が適切であり、脱泡に長時間を要することなく、塗工時のハンドリングも良好である。
(Physical properties of polyimide)
The intrinsic viscosity of the polyimide of the present invention is preferably in the range of 0.2 to 5 dL/g, more preferably in the range of 0.5 to 2 dL/g. If the intrinsic viscosity is 0.2 dL/g or more, the molecular weight of the polyimide is sufficiently high, so that the polymer chains are sufficiently entangled with each other, and the occurrence of cracks and the like during film formation can be suppressed. On the other hand, if the intrinsic viscosity is 5 dL/g or less, the viscosity of the varnish is appropriate, so that degassing does not require a long time, and handling during coating is also good.

本発明のポリイミドを用いることで、無色透明性、耐熱性(物理的耐熱性)、寸法安定性、熱安定性(化学的耐熱性)、機械的特性及び靱性に優れるフィルムを形成することができ、当該フィルムの有する好適な物性値は以下の通りである。 By using the polyimide of the present invention, a film that is excellent in colorless transparency, heat resistance (physical heat resistance), dimensional stability, thermal stability (chemical heat resistance), mechanical properties and toughness can be formed, and the preferable physical properties of the film are as follows:

波長400nmにおける光透過率(T400)は、厚さ約20μmのフィルムとした際に、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上である。この範囲であると、透明性に優れる。
全光線透過率(Ttot)は、厚さ約20μmのフィルムとした際に、好ましくは85%以上、より好ましくは86%以上、更に好ましくは87%以上である。この範囲であると、透明性に優れる。
黄色度(YI)は、厚さ約20μmのフィルムとした際に、好ましくは5.0以下、より好ましくは4.0以下、更に好ましくは3.0以下である。この範囲であると、無色透明性に優れる。
ヘイズは、厚さ約20μmのフィルムとした際に、好ましくは2.0以下、より好ましくは1.8以下、更に好ましくは1.5以下である。この範囲であると、透明性に優れる。
The light transmittance (T 400 ) at a wavelength of 400 nm is preferably 70% or more, more preferably 75% or more, and even more preferably 80% or more, when made into a film having a thickness of about 20 μm. When in this range, the transparency is excellent.
The total light transmittance (T tot ) of the film having a thickness of about 20 μm is preferably 85% or more, more preferably 86% or more, and even more preferably 87% or more. When in this range, the transparency is excellent.
The yellowness index (YI) of the film having a thickness of about 20 μm is preferably 5.0 or less, more preferably 4.0 or less, and even more preferably 3.0 or less. When the YI is in this range, the film has excellent colorless transparency.
The haze, when made into a film having a thickness of about 20 μm, is preferably 2.0 or less, more preferably 1.8 or less, and even more preferably 1.5 or less. When in this range, the transparency is excellent.

ガラス転移温度(Tg)は、好ましくは320℃以上、より好ましくは340℃以上、更に好ましくは360℃以上である。この範囲であると、ポリイミド基板を利用して液晶ディスプレイやOLEDディスプレイ等の画像表示装置を製造するに際して適した耐熱性(物理的耐熱性)を有する。 The glass transition temperature (Tg) is preferably 320°C or higher, more preferably 340°C or higher, and even more preferably 360°C or higher. Within this range, the polyimide substrate has suitable heat resistance (physical heat resistance) for use in manufacturing image display devices such as liquid crystal displays and OLED displays.

線熱膨張係数(CTE)は、厚さ約20μmのフィルムとした際に、好ましくは40ppm/K以下、より好ましくは35ppm/K以下、更に好ましくは30ppm/K以下である。この範囲であると、寸法安定性に優れる。 The coefficient of linear thermal expansion (CTE) is preferably 40 ppm/K or less, more preferably 35 ppm/K or less, and even more preferably 30 ppm/K or less, when made into a film having a thickness of about 20 μm. When in this range, the dimensional stability is excellent.

5%質量減少温度(Td 5)は、窒素中、昇温速度10℃/分での昇温過程において、ポリイミドフィルム(20μm厚)の質量が初期質量の5%減少した時の温度が、好ましくは400℃以上、より好ましくは420℃以上、更に好ましくは440℃以上である。また、空気中、昇温速度10℃/分での昇温過程において、ポリイミドフィルム(20μm厚)の質量が初期質量の5%減少した時の温度が、好ましくは400℃以上、より好ましくは410℃以上、更に好ましくは420℃以上である。この範囲であると、熱安定性(化学的耐熱性)に優れる。 The 5% mass reduction temperature (T d 5 ) is the temperature at which the mass of a polyimide film (20 μm thick) is reduced by 5% of its initial mass during a heating process in nitrogen at a heating rate of 10° C./min, and is preferably 400° C. or higher, more preferably 420° C. or higher, and even more preferably 440° C. or higher. Also, the temperature at which the mass of a polyimide film (20 μm thick) is reduced by 5% of its initial mass during a heating process in air at a heating rate of 10° C./min is preferably 400° C. or higher, more preferably 410° C. or higher, and even more preferably 420° C. or higher. Within this range, the thermal stability (chemical heat resistance) is excellent.

引張弾性率(E)は、好ましくは2.7GPa以上、より好ましくは3.0GPa以上、更に好ましくは3.2GPa以上である。
破断強度(σb)は、好ましくは0.08GPa以上、より好ましくは0.10GPa以上、更に好ましくは0.12GPa以上である。
破断伸び(εb)は、平均値(av)が、好ましくは5%以上、より好ましくは7%以上、更に好ましくは10%以上であり、最大値(max)が、好ましくは10%以上、より好ましくは12%以上、更に好ましくは15%以上である。
これらの範囲であると、フィルムの機械的特性に優れ、特に靱性に優れる。
The tensile modulus (E) is preferably 2.7 GPa or more, more preferably 3.0 GPa or more, and even more preferably 3.2 GPa or more.
The breaking strength (σ b ) is preferably 0.08 GPa or more, more preferably 0.10 GPa or more, and even more preferably 0.12 GPa or more.
The breaking elongation (ε b ) has an average value (av) of preferably 5% or more, more preferably 7% or more, and even more preferably 10% or more, and a maximum value (max) of preferably 10% or more, more preferably 12% or more, and even more preferably 15% or more.
Within these ranges, the film has excellent mechanical properties, particularly excellent toughness.

鉛筆硬度は、好ましくは4H以上、より好ましくは5H以上である。この範囲であると、硬度に優れる。 The pencil hardness is preferably 4H or more, and more preferably 5H or more. This range provides excellent hardness.

なお、本発明における上述の物性値は、具体的には実施例に記載の方法で測定することができる。 The above-mentioned physical properties in the present invention can be measured specifically by the method described in the Examples.

<ポリイミドワニス>
本発明のポリイミドは、溶媒溶解性が十分に高いため、室温で安定な高固形分濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミドが有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド及び有機溶媒を含み、当該ポリイミドは当該有機溶媒に溶解している。有機溶媒はポリイミドが溶解するものであればよく、特に限定されないが、ポリイミドの製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
本発明のポリイミドワニスは、重合法により得られるポリイミドが反応溶剤に溶解したポリイミド溶液そのものであってもよいし、又は当該ポリイミド溶液に対して更に希釈溶剤を追加したものであってもよい。
<Polyimide varnish>
The polyimide of the present invention has sufficiently high solvent solubility, so that it can be made into a varnish with a high solid content concentration that is stable at room temperature. The polyimide varnish of the present invention is obtained by dissolving the polyimide of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide of the present invention and an organic solvent, and the polyimide is dissolved in the organic solvent. The organic solvent may be any one that dissolves the polyimide, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in a mixture of two or more kinds as the reaction solvent used in the production of the polyimide.
The polyimide varnish of the present invention may be a polyimide solution itself in which a polyimide obtained by a polymerization method is dissolved in a reaction solvent, or may be a polyimide solution to which a dilution solvent is further added.

ポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
上記のように一段階で得られたポリイミドワニスをそのまま用いるか又はこれを同一溶媒で適宜希釈してから大量の貧溶媒中にゆっくりと滴下して析出させ、濾過、洗浄及び乾燥して、ポリイミド粉末として単離することができる。その際に使用可能な貧溶媒としては、重合溶媒とよく混和し、ポリイミドを溶解しない溶媒であれば特に制限はないが、例えば、水、メタノール、エタノール、プロパノール等が用いられる。これらを2種類以上混合して使用してもよい。得られたポリイミド粉末を5~40質量%の固形分濃度で溶媒に再溶解してポリイミドワニスとしてもよい。この際に使用可能な溶媒として、ポリイミドの重合反応の際に使用可能な前述の溶媒と同一なものが用いられる。ポリイミド粉末を溶媒に再溶解する際に、ワニスが著しく着色しない範囲であれば40~200℃で1分~24時間加熱しても差し支えない。
The method for producing the polyimide varnish is not particularly limited, and any known method can be applied.
The polyimide varnish obtained in one step as described above can be used as it is, or it can be appropriately diluted with the same solvent and slowly dropped into a large amount of poor solvent to precipitate, and then filtered, washed, and dried to isolate it as a polyimide powder. The poor solvent that can be used in this case is not particularly limited as long as it is a solvent that is well miscible with the polymerization solvent and does not dissolve polyimide, and examples of such poor solvents include water, methanol, ethanol, and propanol. Two or more of these may be mixed and used. The obtained polyimide powder may be redissolved in a solvent at a solid content concentration of 5 to 40 mass % to obtain a polyimide varnish. The solvent that can be used in this case is the same as the above-mentioned solvent that can be used in the polymerization reaction of polyimide. When redissolving the polyimide powder in a solvent, it may be heated at 40 to 200 ° C for 1 minute to 24 hours as long as the varnish is not significantly colored.

ポリイミドフィルムの要求特性を損なわない範囲で、上記のようにして得られたポリイミドワニスに、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等の各種添加剤を添加してもよい。 Various additives such as inorganic fillers, adhesion promoters, release agents, flame retardants, UV stabilizers, surfactants, leveling agents, defoamers, fluorescent brighteners, crosslinking agents, polymerization initiators, and photosensitizers may be added to the polyimide varnish obtained as described above, so long as they do not impair the required properties of the polyimide film.

<耐熱性フィルム>
本発明の耐熱性フィルムは、本発明のポリイミドを含む。したがって、本発明のポリイミドフィルムは、無色透明性、耐熱性(物理的耐熱性)、寸法安定性、熱安定性(化学的耐熱性)、機械的特性及び靱性に優れる。本発明のフィルムが有する好適な物性値は上述の通りである。
本発明のポリイミドフィルムの製造方法には特に制限はなく、公知の方法を用いることができる。例えば、本発明の耐熱性フィルムは、上記の方法で得られたポリイミドワニスを基板上に塗布及び乾燥することで得ることができる。また必要に応じて更に高温で熱処理してもよい。
具体的には、ポリイミドのワニスをガラス、銅、アルミニウム、ステンレス、シリコン等の基板上に塗布し、好ましくは40~220℃、より好ましくは60~200℃で、好ましくは10分~4時間、より好ましくは0.5~2時間乾燥する。続いて更に昇温し、好ましくは200~350℃、より好ましくは250~330℃で、好ましくは10分~2時間、より好ましくは0.5~1時間熱処理することでポリイミドフィルムが得られる。ポリイミドフィルムの着色を抑制するという観点からは、熱処理温度は350℃以下で行うことが好ましく、更に真空中又は窒素等の不活性ガス中で熱処理を行うことが好ましい。また、ポリイミドフィルム表面の平滑性及び低熱膨張特性の観点からは、上記乾燥及び熱処理工程は緩やかな昇温となるようにできるだけ多段階で行うことが好ましく、更に200℃を超える乾燥及び熱処理工程は真空中又は窒素等の不活性ガス中で行うことが好ましい。
<Heat-resistant film>
The heat-resistant film of the present invention contains the polyimide of the present invention. Therefore, the polyimide film of the present invention is excellent in colorless transparency, heat resistance (physical heat resistance), dimensional stability, thermal stability (chemical heat resistance), mechanical properties and toughness. The preferable physical properties of the film of the present invention are as described above.
The method for producing the polyimide film of the present invention is not particularly limited, and a known method can be used. For example, the heat-resistant film of the present invention can be obtained by applying the polyimide varnish obtained by the above method onto a substrate and drying it. If necessary, the film can be further heat-treated at a high temperature.
Specifically, a polyimide varnish is applied onto a substrate such as glass, copper, aluminum, stainless steel, or silicon, and dried at preferably 40 to 220° C., more preferably 60 to 200° C., for preferably 10 minutes to 4 hours, more preferably 0.5 to 2 hours. The temperature is then further increased, and the polyimide film is obtained by heat-treating the substrate at preferably 200 to 350° C., more preferably 250 to 330° C., for preferably 10 minutes to 2 hours, more preferably 0.5 to 1 hour. From the viewpoint of suppressing coloration of the polyimide film, the heat treatment temperature is preferably 350° C. or less, and further, the heat treatment is preferably performed in a vacuum or in an inert gas such as nitrogen. In addition, from the viewpoint of smoothness and low thermal expansion properties of the polyimide film surface, the drying and heat treatment steps are preferably performed in as many stages as possible so that the temperature is raised gradually, and further, the drying and heat treatment steps exceeding 200° C. are preferably performed in a vacuum or in an inert gas such as nitrogen.

本発明のポリイミドフィルムは、カラーフィルタ、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 The polyimide film of the present invention is suitable for use as a film for various components such as color filters, flexible displays, semiconductor parts, and optical components. The polyimide film of the present invention is particularly suitable for use as a substrate for image display devices such as liquid crystal displays and OLED displays.

本発明のポリイミドフィルムの厚さは、特に限定されず、使用目的に応じて適宜調節することができる。LCD、OLED、EP等の画像表示装置におけるガラス基板代替プラスチック基板材料として用いる場合、フィルム厚は20~100μmが好適な範囲であり、フレキシブル回路基板として用いる場合であれば、30~200μmが好適な範囲である。 The thickness of the polyimide film of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose of use. When used as a plastic substrate material to replace glass substrates in image display devices such as LCD, OLED, and EP, the film thickness is preferably in the range of 20 to 100 μm, and when used as a flexible circuit board, the film thickness is preferably in the range of 30 to 200 μm.

[物性の評価]
以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。なお、以下の例における物性値は、次の方法により測定した。
[Evaluation of physical properties]
The present invention will be described in detail below with reference to examples, but is not limited to these examples. The physical properties in the following examples were measured by the following methods.

<赤外線吸収(FT-IR)スペクトル>
ジアミンの赤外線吸収スペクトルは、フーリエ変換赤外分光光度計「FT/IR-4100」(日本分光株式会社製)を用い、KBrプレート法で測定した。
<Infrared absorption (FT-IR) spectrum>
The infrared absorption spectrum of the diamine was measured by the KBr plate method using a Fourier transform infrared spectrophotometer "FT/IR-4100" (manufactured by JASCO Corporation).

1H-NMRスペクトル>
ジアミンの1H-NMRスペクトルは、重水素化ジメチルスルホキシド(DMSO-d6)を溶媒として、NMR分光光度計「ECP400」(日本電子株式会社製)を用いて測定した。
< 1H -NMR spectrum>
The 1 H-NMR spectrum of the diamine was measured using deuterated dimethyl sulfoxide (DMSO-d 6 ) as a solvent and an NMR spectrophotometer "ECP400" (manufactured by JEOL Ltd.).

<示差走査熱量分析(融点及び融解曲線)>
ジアミンの融点及び融解曲線は、示差走査熱量分析装置「DSC3100」(ネッチ・ジャパン株式会社製)を用い、窒素雰囲気中、昇温速度5℃/分で測定した。
<Differential scanning calorimetry (melting point and melting curve)>
The melting point and melting curve of the diamine were measured using a differential scanning calorimeter "DSC3100" (manufactured by Netzsch Japan Co., Ltd.) in a nitrogen atmosphere at a temperature rise rate of 5°C/min.

<固有粘度(ηinh)>
ポリイミドの還元粘度は、固形分濃度0.5質量%、30℃においてオストワルド粘度計を用いて測定した。この値は固有粘度と見なすことができ、この値が高い程分子量が高いことを表す。
<Intrinsic viscosity (η inh )>
The reduced viscosity of the polyimide was measured using an Ostwald viscometer at a solids concentration of 0.5% by mass and at 30° C. This value can be regarded as the intrinsic viscosity, and a higher value indicates a higher molecular weight.

<透明性:光透過率、カットオフ波長、黄色度、ヘイズ>
ポリイミドフィルムの透明性は以下の光学特性から評価した。紫外-可視分光光度計「V-530」(日本分光株式会社製)を用いて波長200~800nmの範囲でポリイミドフィルム(約20μm厚)の光透過率曲線を測定し、波長400nmにおける光透過率(T400)及び光透過率が事実上ゼロとなる波長(カットオフ波長、λcut)を求めた。またこのスペクトルを基に、色彩計算プログラム(日本分光株式会社製)を用い、ASTM E313規格に基づいて黄色度(YI)を求めた。更に、ヘイズメーター「NDH4000」(日本電色工業株式会社製)を用い、JIS K7361-1及びJIS K7136規格に基づき、全光線透過率(Ttot)及び濁度(ヘイズ)を求めた。
<Transparency: Light transmittance, cutoff wavelength, yellowness, haze>
The transparency of the polyimide film was evaluated from the following optical properties. The light transmittance curve of the polyimide film (about 20 μm thick) was measured in the wavelength range of 200 to 800 nm using an ultraviolet-visible spectrophotometer "V-530" (manufactured by JASCO Corporation), and the light transmittance at a wavelength of 400 nm (T 400 ) and the wavelength at which the light transmittance is practically zero (cutoff wavelength, λ cut ) were obtained. Based on this spectrum, the yellowness index (YI) was obtained based on the ASTM E313 standard using a color calculation program (manufactured by JASCO Corporation). Furthermore, the total light transmittance (T tot ) and turbidity (haze) were obtained based on the JIS K7361-1 and JIS K7136 standards using a haze meter "NDH4000" (manufactured by Nippon Denshoku Industries Co., Ltd.).

<ガラス転移温度(Tg)>
ポリイミドフィルム(約20μm厚)のガラス転移温度(Tg)は、熱機械分析装置「TMA4000」(ネッチ・ジャパン株式会社製)を用い、周波数0.1Hz、昇温速度5℃/分における損失エネルギー曲線のピーク温度からを求めた。Tgが高いほど、物理的耐熱性が高いことを表す。
<Glass transition temperature ( Tg )>
The glass transition temperature ( Tg ) of the polyimide film (approximately 20 μm thick) was determined from the peak temperature of the loss energy curve at a frequency of 0.1 Hz and a heating rate of 5° C./min using a thermomechanical analyzer "TMA4000" (manufactured by Netzsch Japan Co., Ltd.) The higher the Tg , the higher the physical heat resistance.

<線熱膨張係数(CTE)>
ポリイミドフィルム(約20μm厚)のCTEは、熱機械分析装置「TMA4000」(ネッチ・ジャパン株式会社製)を用い、荷重0.5g/膜厚1μm当たり、昇温速度5℃/分における試験片の伸びより、100~200℃の範囲での平均値として求めた。CTE値が0に近いほど寸法安定性に優れていることを表す。
<Coefficient of Linear Thermal Expansion (CTE)>
The CTE of the polyimide film (approximately 20 μm thick) was determined as the average value in the range of 100 to 200° C. from the elongation of the test piece at a temperature rise rate of 5° C./min per load of 0.5 g/film thickness of 1 μm using a thermomechanical analyzer "TMA4000" (manufactured by Netzsch Japan Co., Ltd.). The closer the CTE value is to 0, the better the dimensional stability.

<引張弾性率、破断伸び、破断強度>
ポリイミドフィルム(約20μm厚)の機械的特性は、引張試験機「テンシロンUTM-2」(株式会社エー・アンド・デイ製)を用いて評価した。試験片(30mm長×3mm幅×約20μm厚)を作製し、引張試験(延伸速度:8mm/分)を実施して、応力-歪曲線の初期の初期勾配から引張弾性率(E)、破断点応力から破断強度(σb)、判断時の伸び率から破断伸び(εb)を求めた。破断伸びが高いほどフィルムの靭性が高いことを表す。
<Tensile modulus, elongation at break, and strength at break>
The mechanical properties of the polyimide film (approximately 20 μm thick) were evaluated using a tensile tester "Tensilon UTM-2" (manufactured by A&D Co., Ltd.). Test pieces (30 mm long x 3 mm wide x approximately 20 μm thick) were prepared and subjected to a tensile test (stretching speed: 8 mm/min) to determine the tensile modulus (E) from the initial gradient of the stress-strain curve, the breaking strength (σ b ) from the stress at break, and the breaking elongation (ε b ) from the elongation at the time of judgment. A higher breaking elongation indicates a higher toughness of the film.

<5%質量減少温度(Td 5)>
ポリイミドフィルム(約20μm厚)の5%質量減少温度(Td 5)は、熱重量分析装置「TG-DTA2000」(ネッチ・ジャパン株式会社製)を用いて、窒素中及び空気中、昇温速度10℃/分での昇温過程において、ポリイミドフィルム(20μm厚)の質量が、初期質量の5%減少した時の温度から求めた。Td 5値が高いほど化学的耐熱性(熱安定性)が高いことを表す。
<5% mass reduction temperature (T d 5 )>
The 5% mass loss temperature (T d 5 ) of a polyimide film (approximately 20 μm thick) was measured in nitrogen and air at a heating rate of 100° C. using a thermogravimetric analyzer "TG-DTA2000" (manufactured by Netsch Japan Co., Ltd.). The mass of a polyimide film (20 μm thick) was determined from the temperature at which it decreased by 5% of its initial mass during a temperature increase at 10° C./min. The higher the T d 5 value, the better the chemical heat resistance (thermal stability). ) is high.

<鉛筆硬度>
ポリイミドフィルムの表面硬度は、鉛筆硬度試験器「BEVS 1301/750」(BEVS社製、鉛筆先端負荷荷重:750g)を用い、ASTM D3363規格に準じて、ガラス基板上に形成したポリイミドフィルムに対して鉛筆引っかき試験(三菱鉛筆Uni、鉛筆硬度範囲:6B~6H)を行い、フィルム表面の傷跡の有無から評価した。
<Pencil hardness>
The surface hardness of the polyimide film was evaluated based on the presence or absence of scratches on the film surface by performing a pencil scratch test (Mitsubishi Pencil Uni, pencil hardness range: 6B to 6H) on the polyimide film formed on a glass substrate using a pencil hardness tester "BEVS 1301/750" (manufactured by BEVS, pencil tip load: 750 g) in accordance with the ASTM D3363 standard.

[ジアミンの合成]
以下に本発明のジアミンの製造方法を具体的に示すが、これら実施例に限定されるものではない。
[Synthesis of diamine]
The process for producing the diamine of the present invention will be specifically described below, but the present invention is not limited to these examples.

実施例1
<AMB-mTOLの合成>
上記式(1)で表される本発明のジアミン(AMB-mTOL)は以下のようにして合成した。
まず、反応容器中、m-トリジン(25mmol)をよく脱水したDMAc(20mL)に溶解し、これに脱酸剤としてピリジン6.0mLを加え、セプタムキャップで密封してA液とした。次に別の容器中、3-メチル-4-ニトロベンゾイルクロリド(3M4NBC、60mmol)を脱水DMAc(10mL)に溶解し、同様に密封してB液とした。B液を氷浴で冷やして撹拌しながら、これにA液をシリンジで徐々に滴下し、数時間撹拌した後、更に室温で24時間撹拌を続けた。析出した黄色沈殿物を濾別し、トルエンで洗浄して過剰な3M4NBCを除去し、次いで水で十分に洗浄して副生成物のピリジン塩酸塩を除去し、120℃で12時間真空乾燥し、収率85%で黄色粉末を得た。この生成物の分析結果を以下に示す。
融点(DSC):251℃。
FT-IRスペクトル(KBrプレート法、cm-1):3274(アミド基、N-H伸縮振動)、3103/3033(芳香族C-H伸縮振動)、2984/2929/2857(脂肪族C-H伸縮振動)、1651/1588(アミド基、C=O伸縮振動)、1523/1343(ニトロ基、N-O伸縮振動)。
1H-NMRスペクトル(400MHz,DMSO-d6,δ,ppm):10.48〔s、2H(実測積分強度:2.00)NHCO〕、8.13〔d、2H(1.98H)、J=8.4Hz、末端ニトロベンゼン(NB)の6,6’-プロトン)、8.06〔sd、2H(2.00H)、J=1.4Hz、NBの3,3’-プロトン〕、7.99〔dd、2H(1.95H)、J=8.4、1.6Hz、NBの5,5’-プロトン〕、7.73〔sd、2H(2.05H)、J=1.8Hz、中央ビフェニル(BP)の3,3’-プロトン〕、7.68〔dd、2H(2.02H)、J=8.3、2.0Hz、BPの5,5’-プロトン〕、7.09〔d、2H(2.06H)、J=8.2Hz、BPの6,6’-プロトン〕、2.61〔s、6H(5.97H)、NBの2,2’-CH3〕。2.05〔s、6H(6.01H)、BPの2,2’-CH3〕。
Example 1
<Synthesis of AMB-mTOL>
The diamine (AMB-mTOL) of the present invention represented by the above formula (1) was synthesized as follows.
First, in a reaction vessel, m-tolidine (25 mmol) was dissolved in well-dehydrated DMAc (20 mL), to which 6.0 mL of pyridine was added as an acid scavenger, and the vessel was sealed with a septum cap to obtain liquid A. Next, in a separate vessel, 3-methyl-4-nitrobenzoyl chloride (3M4NBC, 60 mmol) was dissolved in dehydrated DMAc (10 mL), and the vessel was sealed in the same manner to obtain liquid B. Liquid B was cooled in an ice bath and stirred, while liquid A was gradually added dropwise thereto using a syringe, and the mixture was stirred for several hours, and then further stirred at room temperature for 24 hours. The precipitated yellow precipitate was filtered off, washed with toluene to remove excess 3M4NBC, and then thoroughly washed with water to remove the by-product pyridine hydrochloride, and vacuum dried at 120° C. for 12 hours to obtain a yellow powder with a yield of 85%. The analytical results of this product are shown below.
Melting point (DSC): 251°C.
FT-IR spectrum (KBr plate method, cm -1 ): 3274 (amide group, N--H stretching vibration), 3103/3033 (aromatic C--H stretching vibration), 2984/2929/2857 (aliphatic C--H stretching vibration), 1651/1588 (amide group, C=O stretching vibration), 1523/1343 (nitro group, N--O stretching vibration).
1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 10.48 [s, 2H (measured integral intensity: 2.00) NHCO], 8.13 [d, 2H (1.98H), J = 8.4 Hz, 6,6'-protons of terminal nitrobenzene (NB), 8.06 [sd, 2H (2.00H), J = 1.4 Hz, 3,3'-protons of NB], 7.99 [dd, 2H (1.95H), J = 8.4, 1.6 Hz, 5,5'- protons], 7.73 [sd, 2H (2.05H), J = 1.8 Hz, 3,3'-protons of the central biphenyl (BP)], 7.68 [dd, 2H (2.02H), J = 8.3, 2.0 Hz, 5,5'-protons of BP], 7.09 [d, 2H (2.06H), J = 8.2 Hz, 6,6'-protons of BP], 2.61 [s, 6H (5.97H), 2,2'-CH 3 of NB]. 2.05 [s, 6H (6.01H), 2,2'-CH 3 of BP].

上記の分析結果より、この生成物は目的とする下式(11):

で表されるジニトロ体であることが同定された。
From the above analytical results, this product was found to be the target compound of the following formula (11):

It was identified as a dinitro form represented by the formula:

上記のジニトロ体の還元は次のようにして行った。まずこのジニトロ体(11.283gをDMAc(30mL)に溶解し、触媒としてPd/C(1.204g)を加え、水素雰囲気中80℃で6時間還流した。還元反応の完了は薄層クロマトグラフィーにて確認した。反応溶液を室温まで冷却した後、Pd/Cの残渣を濾過して分離除去した。濾液を大量の飽和食塩水中に滴下して沈殿を析出させ、沈殿を濾別して水及び少量のメタノールで洗浄し、120℃で12時間真空乾燥し、収率87%で白色粉末を得た。この生成物の分析結果を以下に示す。
融点(DSC):210℃。
FT-IRスペクトル(KBrプレート法、cm-1):3442(アミノ基、N-H伸縮振動)、3350/3291(アミノ基+アミド基、N-H伸縮振動)、3026(芳香族C-H伸縮振動)、2917/2859(脂肪族C-H伸縮振動)、1625/1578(アミド基、C=O伸縮振動)、1500(1,4-フェニレン基)。
1H-NMRスペクトル(400MHz,DMSO-d6,δ,ppm):9.76〔s、2H(2.00H)、NHCO〕、7.70-7.62〔m、8H(8.07H)、末端アニリン(AN)の3,3’,5,5’-プロトン+中央BPの3,3’,5,5’-プロトン〕、7.01〔d、2H(1.99H)、J=8.3Hz、BPの6,6’-プロトン〕、6.66〔d、2H(1.98H)、J=8.3Hz、ANの6,6’-プロトン〕、5.53〔s、4H(3.99H)、NH2〕、2.13〔s、6H(6.07H)、BPの2,2’-CH3〕。2.02〔s、6H(5.89H)、ANの2,2’-CH3〕。
元素分析(分子量478.59):推定値(%)C;75.29、H;6.32、N;11.71、分析値C;74.67、H;6.46、N;11.55。
The dinitro compound was reduced as follows. First, this dinitro compound (11.283 g) was dissolved in DMAc (30 mL), Pd/C (1.204 g) was added as a catalyst, and the mixture was refluxed at 80° C. for 6 hours in a hydrogen atmosphere. Completion of the reduction reaction was confirmed by thin layer chromatography. After the reaction solution was cooled to room temperature, the Pd/C residue was separated and removed by filtration. The filtrate was dropped into a large amount of saturated saline to cause a precipitate to separate out. The precipitate was filtered off, washed with water and a small amount of methanol, and vacuum dried at 120° C. for 12 hours, obtaining a white powder with a yield of 87%. The analytical results of this product are shown below.
Melting point (DSC): 210°C.
FT-IR spectrum (KBr plate method, cm -1 ): 3442 (amino group, N--H stretching vibration), 3350/3291 (amino group + amide group, N--H stretching vibration), 3026 (aromatic C--H stretching vibration), 2917/2859 (aliphatic C--H stretching vibration), 1625/1578 (amide group, C=O stretching vibration), 1500 (1,4-phenylene group).
1H -NMR spectrum (400 MHz, DMSO- d6 , δ, ppm): 9.76 [s, 2H (2.00H), NHCO], 7.70-7.62 [m, 8H (8.07H), 3,3',5,5'-protons of terminal aniline (AN) + 3,3',5,5'-protons of central BP], 7.01 [d, 2H (1.99H), J = 8.3 Hz, 6,6'-protons of BP], 6.66 [d, 2H (1.98H), J = 8.3 Hz, 6,6'-protons of AN], 5.53 [s, 4H (3.99H), NH2 ], 2.13 [s, 6H (6.07H), 2,2'- CH3 of BP]. 2.02 [s, 6H (5.89H), 2,2'-CH 3 of AN].
Elemental analysis (molecular weight 478.59): Estimated (%) C: 75.29, H: 6.32, N: 11.71, Found C: 74.67, H: 6.46, N: 11.55.

上記の分析結果より、この生成物は目的とする上記式(1)で表される本発明のジアミン(AMB-mTOL)であることが同定された。 From the above analytical results, the product was identified as the desired diamine (AMB-mTOL) of the present invention represented by the above formula (1).

実施例2
<AB-MP-HPMDIの合成>
上記式(2)で表される本発明のジアミン(AB-MP-HPMDI)は以下のようにして合成した。
まず出発原料として、下式(12):

で表されるジニトロ体を次のようにして合成した。三口フラスコ中、2-メトキシ-4-ニトロアニリン(2MeO-4NA)11.271g(67mmol)をDMAc(30mL)に溶解し、この溶液にH-PMDA粉末6.763g(30mmol)を加え、窒素雰囲気中、180℃で5時間還流した。反応後、室温まで冷却し、反応溶液をエバポレータで濃縮した後、エタノール(200mL)を加えて沈殿を析出させた。沈殿を濾別し、エタノールで洗浄後、120℃で12時間真空乾燥し、収率53%で薄黄色粉末を得た。
FT-IRスペクトル(KBrプレート法、cm-1):3088/3006(芳香族C-H伸縮振動)、2953/2879(脂肪族C-H伸縮振動)、1777/1718(イミド基、C=O伸縮振動)、1527/1350(ニトロ基、N-O伸縮振動)、1390(イミド基、N-Ar伸縮振動)、1255/1194(エーテル基、C-O伸縮振動)。
Example 2
<Synthesis of AB-MP-HPMDI>
The diamine (AB-MP-HPMDI) of the present invention represented by the above formula (2) was synthesized as follows.
First, as a starting material,

The dinitro compound represented by the formula was synthesized as follows. In a three-neck flask, 11.271 g (67 mmol) of 2-methoxy-4-nitroaniline (2MeO-4NA) was dissolved in DMAc (30 mL), and 6.763 g (30 mmol) of H-PMDA powder was added to this solution, followed by refluxing at 180° C. for 5 hours in a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, and the reaction solution was concentrated using an evaporator, and then ethanol (200 mL) was added to cause a precipitate to form. The precipitate was filtered off, washed with ethanol, and then vacuum-dried at 120° C. for 12 hours, yielding a pale yellow powder in a 53% yield.
FT-IR spectrum (KBr plate method, cm -1 ): 3088/3006 (aromatic C-H stretching vibration), 2953/2879 (aliphatic C-H stretching vibration), 1777/1718 (imido group, C=O stretching vibration), 1527/1350 (nitro group, N-O stretching vibration), 1390 (imido group, N-Ar stretching vibration), 1255/1194 (ether group, C-O stretching vibration).

上記のジニトロ体の還元は実施例1に記載した方法と同様にしてDMAc中、Pd/Cの存在下、水素雰囲気中80℃で3.5時間還流して行った。還元反応の完了は薄層クロマトグラフィーにて確認した。収率92%で白色粉末が得られた。
FT-IRスペクトル(KBrプレート法、cm-1):3463/3370/3234(アミノ基、N-H伸縮振動)、2943/2874(脂肪族C-H伸縮振動)、1774/1709(イミド基、C=O伸縮振動)、1398(イミド基、N-Ar伸縮振動)、1254/1193(エーテル基、C-O伸縮振動)。
The dinitro compound was reduced in the same manner as described in Example 1, by refluxing in DMAc in the presence of Pd/C in a hydrogen atmosphere at 80° C. for 3.5 hours. Completion of the reduction reaction was confirmed by thin layer chromatography. A white powder was obtained in a yield of 92%.
FT-IR spectrum (KBr plate method, cm -1 ): 3463/3370/3234 (amino group, N--H stretching vibration), 2943/2874 (aliphatic C--H stretching vibration), 1774/1709 (imido group, C=O stretching vibration), 1398 (imido group, N--Ar stretching vibration), 1254/1193 (ether group, C--O stretching vibration).

上記のようにして得られた下式(8):

で表されるジアミンと4-NBCより、実施例1に記載した方法と同様にして、DMF中でアミド化反応を行い、収率69%で下式(13):

で表される薄黄色粉末の生成物を得た。
FT-IRスペクトル(KBrプレート法、cm-1):3344(アミド基、N-H伸縮振動)、3111/3078(芳香族C-H伸縮振動)、2942/2867(脂肪族C-H伸縮振動)、1775/1718(イミド基、C=O伸縮振動)、1685(アミド基、C=O伸縮振動)、1516/1347(ニトロ基、N-O伸縮振動)、1389(イミド基、N-Ar伸縮振動)、1200(エーテル基、C-O伸縮振動)。
The following formula (8) obtained as above:

and 4-NBC were subjected to an amidation reaction in DMF in the same manner as described in Example 1 to obtain a compound represented by the following formula (13):

A pale yellow powder product represented by the formula:
FT-IR spectrum (KBr plate method, cm -1 ): 3344 (amide group, N-H stretching vibration), 3111/3078 (aromatic C-H stretching vibration), 2942/2867 (aliphatic C-H stretching vibration), 1775/1718 (imide group, C=O stretching vibration), 1685 (amide group, C=O stretching vibration), 1516/1347 (nitro group, N-O stretching vibration), 1389 (imide group, N-Ar stretching vibration), 1200 (ether group, C-O stretching vibration).

上記のジニトロ体の還元は、実施例1に記載した方法と同様にして、DMAc中、Pd/C存在下、水素雰囲気中80℃で3.5時間還流して行った。還元反応の完了は薄層クロマトグラフィーにて確認した。収率76%で白色粉末が得られた。この生成物の分析結果を以下に示す。
FT-IRスペクトル(KBrプレート法、cm-1):3451(アミノ基、N-H伸縮振動)、3358/3227(アミノ基+アミド基、N-H伸縮振動)、3137/3033(芳香族C-H伸縮振動)、2938/2875(脂肪族C-H伸縮振動)、1775/1711(イミド基、C=O伸縮振動)、1656(アミド基、C=O伸縮振動)、1390(イミド基、N-Ar伸縮振動)、1254/1202(エーテル基、C-O伸縮振動)。
1H-NMRスペクトル(400MHz,DMSO-d6,δ,ppm):9.91〔s、2H(2.00H)、NHCO〕、7.75-7.64〔m、6H(6.03H)、末端ANの3,3’,5,5’-プロトン+N-(2-メトキシフェニル基の6,6’-プロトン〕、7.48-7.40〔m、2H(1.98H)、N-(2-メトキシフェニル基の3,3’-プロトン〕、7.24-7.01〔m、2H(1.99H)、N-(2-メトキシフェニル基の5,5’-プロトン〕、6.62〔d、4H(4.01H)、J=10.8Hz、末端ANの2,2’,6,6’-プロトン〕、5.80〔s、4H(3.95H)、NH2〕、3.74〔s、6H(5.84H)、CH3〕、3.40-1.80〔m、8H、中央シクロヘキシル基〕。
The reduction of the dinitro compound was carried out in the same manner as described in Example 1, by refluxing in DMAc in the presence of Pd/C in a hydrogen atmosphere at 80° C. for 3.5 hours. Completion of the reduction reaction was confirmed by thin layer chromatography. A white powder was obtained in a yield of 76%. The analytical results of this product are shown below.
FT-IR spectrum (KBr plate method, cm -1 ): 3451 (amino group, N-H stretching vibration), 3358/3227 (amino group + amide group, N-H stretching vibration), 3137/3033 (aromatic C-H stretching vibration), 2938/2875 (aliphatic C-H stretching vibration), 1775/1711 (imide group, C=O stretching vibration), 1656 (amide group, C=O stretching vibration), 1390 (imide group, N-Ar stretching vibration), 1254/1202 (ether group, C-O stretching vibration).
1 H-NMR spectrum (400 MHz, DMSO-d 6 , δ, ppm): 9.91 [s, 2H (2.00H), NHCO], 7.75-7.64 [m, 6H (6.03H), 3,3',5,5'-protons of terminal AN + N-(6,6'-protons of 2-methoxyphenyl group)], 7.48-7.40 [m, 2H (1.98H), N-(3,3'-protons of 2-methoxyphenyl group)], 7.24-7.01 [m, 2H (1.99H), N-(5,5'-protons of 2-methoxyphenyl group)], 6.62 [d, 4H (4.01H), J=10.8 Hz, 2,2',6,6'-protons of terminal AN], 5.80 [s, 4H (3.95H), NH 2 )], 3.74 [s, 6H (5.84H), CH 3 ], 3.40-1.80 [m, 8H, central cyclohexyl group].

上記の分析結果より、この生成物は目的とする式(2)で表される本発明のジアミン(AB-MP-HPMDI)であることが同定された。 From the above analytical results, the product was identified as the desired diamine (AB-MP-HPMDI) of the present invention represented by formula (2).

合成例1
<AB-mTOLの合成>
上記式(9)で表されるジアミン(AB-mTOL)は、実施例1に記載した方法と同様にして、m-トリジンと4-NBCとのアミド化反応、次いでニトロ基の還元反応を行って合成した。この生成物の分析結果を以下に示す。
融点(DSC):295℃。
FT-IRスペクトル(KBrプレート法、cm-1):3458(アミノ基、N-H伸縮振動)、3376/3305(アミノ基+アミド基、N-H伸縮振動)、3037(芳香族C-H伸縮振動)、2917(脂肪族C-H伸縮振動)、1650/1530(アミド基、C=O伸縮振動)、1508(1,4-フェニレン基)。
1H-NMRスペクトル(400MHz,DMSO-d6,δ,ppm):9.75〔s、2H(2.00H)、NHCO〕、7.74〔d、4H(4.03H)、J=8.6Hz、末端ANの3,3’,5,5’-プロトン〕、7.69〔sd、2H(1.93H)、J=1.9Hz、中央BPの3,3’-プロトン〕、7.61〔dd、2H(1.99H)、J=8.3、2.0Hz、中央BPの5,5’-プロトン〕、7.00〔d、2H(1.96H)、J=8.2Hz、BPの6,6’-プロトン〕、6.61〔d、4H(4.02H)、J=8.6Hz、末端ANの2,2’,6,6’-プロトン〕、5.75〔s、4H(4.10H)、NH2〕、2.01〔s、6H(6.03H)、CH3〕。
元素分析(分子量450.54):推定値(%)C;74.65、H;5.82、N;12.44、分析値C;74.44、H;5.99、N;12.38。
Synthesis Example 1
<Synthesis of AB-mTOL>
The diamine (AB-mTOL) represented by the above formula (9) was synthesized by carrying out an amidation reaction between m-tolidine and 4-NBC, followed by a reduction reaction of the nitro group, in the same manner as described in Example 1. The analytical results of this product are shown below.
Melting point (DSC): 295°C.
FT-IR spectrum (KBr plate method, cm -1 ): 3458 (amino group, N--H stretching vibration), 3376/3305 (amino group + amide group, N--H stretching vibration), 3037 (aromatic C--H stretching vibration), 2917 (aliphatic C--H stretching vibration), 1650/1530 (amide group, C=O stretching vibration), 1508 (1,4-phenylene group).
1 H-NMR spectrum (400 MHz, DMSO- d , δ, ppm): 9.75 [s, 2H (2.00H), NHCO], 7.74 [d, 4H (4.03H), J = 8.6 Hz, 3,3',5,5'-protons of terminal AN], 7.69 [sd, 2H (1.93H), J = 1.9 Hz, 3,3'-protons of central BP], 7.61 [dd, 2H (1.99H), J = 8.3, 2.0 Hz, 5,5'-protons of central BP], 7.00 [d, 2H (1.96H), J = 8.2 Hz, 6,6'-protons of BP], 6.61 [d, 4H (4.02H), J = 8.6 Hz, 2,2',6,6'-protons of terminal AN], 5.75 [s, 4H (4.10H), NH 2 ], 2.01 [s, 6H (6.03H), CH 3 ].
Elemental analysis (molecular weight 450.54): Estimated (%) C: 74.65, H: 5.82, N: 12.44, Found C: 74.44, H: 5.99, N: 12.38.

上記の分析結果より、この生成物は目的とする式(9)で表されるジアミン(AB-mTOL)であることが同定された。 From the above analytical results, the product was identified as the desired diamine (AB-mTOL) represented by formula (9).

合成例2
<AB-44ODAの合成>
上記式(10)で表されるジアミン(AB-44ODA)は、実施例1に記載した方法と同様にして、4,4’-オキシジアニリンと4-NBCとのアミド化反応、次いでニトロ基の還元反応を行って合成した。この生成物の分析結果を以下に示す。
融点(DSC):282℃。
FT-IRスペクトル(KBrプレート法、cm-1):3409(アミノ基、N-H伸縮振動)、3375/3322/3221(アミノ基+アミド基、N-H伸縮振動)、3036(芳香族C-H伸縮振動)、1658/1572(アミド基、C=O伸縮振動)、1509(1,4-フェニレン基)、1257(エーテル基、C-O伸縮振動)。
1H-NMRスペクトル(400MHz,DMSO-d6,δ,ppm):9.78〔s、2H(2.00H)、NHCO〕、7.76-7.71〔m、8H(8.04H)、末端ANの3,3’,5,5’-プロトン+中央ビフェニルエーテル(BE)基の3,3’,5,5’-プロトン〕、6.97〔d、4H(3.92H)、J=9.1Hz、中央BEの2,2’,6,6’-プロトン〕、6.61〔d、4H(4.08H)、J=8.6Hz、末端ANの2,2’,6,6’-プロトン〕、5.75〔s、4H(4.02H)、NH2〕。
元素分析(分子量438.49):推定値(%)C;71.22、H;5.06、N;12.78、分析値C;71.21、H;5.16、N;12.64。
Synthesis Example 2
<Synthesis of AB-44ODA>
The diamine (AB-44ODA) represented by the above formula (10) was synthesized by carrying out an amidation reaction between 4,4'-oxydianiline and 4-NBC, followed by a reduction reaction of the nitro group, in the same manner as described in Example 1. The analytical results of this product are shown below.
Melting point (DSC): 282°C.
FT-IR spectrum (KBr plate method, cm -1 ): 3409 (amino group, N--H stretching vibration), 3375/3322/3221 (amino group + amide group, N--H stretching vibration), 3036 (aromatic C--H stretching vibration), 1658/1572 (amide group, C=O stretching vibration), 1509 (1,4-phenylene group), 1257 (ether group, C--O stretching vibration).
1H -NMR spectrum (400 MHz, DMSO- d6 , δ, ppm): 9.78 [s, 2H (2.00H), NHCO], 7.76-7.71 [m, 8H (8.04H), 3,3',5,5'-protons of terminal AN + 3,3',5,5'-protons of central biphenyl ether (BE) group], 6.97 [d, 4H (3.92H), J = 9.1 Hz, 2,2',6,6'-protons of central BE], 6.61 [d, 4H (4.08H), J = 8.6 Hz, 2,2',6,6'-protons of terminal AN], 5.75 [s, 4H (4.02H), NH2 ].
Elemental analysis (molecular weight 438.49): Estimated (%) C: 71.22, H: 5.06, N: 12.78, Found C: 71.21, H: 5.16, N: 12.64.

上記の分析結果より、この生成物は目的とする式(10)で表されるジアミン(AB-44ODA)であることが同定された。 From the above analytical results, the product was identified as the desired diamine (AB-44ODA) represented by formula (10).

<重合、製膜及びポリイミドフィルムの特性評価>
実施例3
実施例1で得た前記式(1)で表される本発明のジアミン(5mmol)をセパラブルフラスコに入れ、モレキュラーシーブス4Aで十分に脱水したγ-ブチロラクトン(GBL)を加えて溶解した。この際、溶媒は全溶質濃度が40質量%になるように計算して加えた。このジアミン溶液に触媒として1-エチルピペリジン(1-EPD、10mmol)及び安息香酸(10mmol)を加え、次いでH-PMDA(三菱ガス化学株式会社製)粉末(5mmol)を添加し、撹拌しながら200℃まで昇温し、窒素雰囲気中4時間攪拌して均一で粘稠なポリイミドワニス(溶液)を得た。このポリイミドワニスを同一の溶媒で適度に希釈後、大量の貧溶媒(メタノール)にゆっくり滴下して白色、繊維状のポリイミドを析出させ、濾別及び洗浄後、120℃で12時間真空乾燥を行ってポリイミド粉末を得た。これを純粋なGBLに再溶解して固形分濃度10質量%の均一なポリイミドワニスとした。GBL中、30℃、0.5質量%の濃度でオストワルド粘度計にて測定したポリイミドの還元粘度は3.82dL/gであった。
このポリイミドワニスをガラス基板に塗布し、熱風乾燥器中80℃で2時間乾燥後、真空中150℃で30分、200℃で30分、250℃で1時間段階的に加熱した。残留応力を除去するためにこのフィルムを基板から剥がして更に真空中3250℃で1時間熱処理を行い、膜厚約20μmの透明で柔軟なポリイミドフィルムを得た。
<Polymerization, film formation, and evaluation of polyimide film properties>
Example 3
The diamine of the present invention represented by the formula (1) obtained in Example 1 (5 mmol) was placed in a separable flask, and γ-butyrolactone (GBL) sufficiently dehydrated with molecular sieves 4A was added and dissolved. At this time, the solvent was added in a calculated manner so that the total solute concentration would be 40 mass%. 1-Ethylpiperidine (1-EPD, 10 mmol) and benzoic acid (10 mmol) were added as catalysts to this diamine solution, and then H-PMDA (manufactured by Mitsubishi Gas Chemical Co., Ltd.) powder (5 mmol) was added, and the mixture was heated to 200°C while stirring, and stirred in a nitrogen atmosphere for 4 hours to obtain a uniform and viscous polyimide varnish (solution). This polyimide varnish was appropriately diluted with the same solvent, and then slowly dropped into a large amount of poor solvent (methanol) to precipitate a white, fibrous polyimide, which was filtered and washed, and then vacuum dried at 120°C for 12 hours to obtain a polyimide powder. This was redissolved in pure GBL to obtain a homogeneous polyimide varnish having a solid content of 10% by mass. The reduced viscosity of the polyimide measured in GBL at a concentration of 0.5% by mass at 30° C. using an Ostwald viscometer was 3.82 dL/g.
This polyimide varnish was applied to a glass substrate and dried in a hot air dryer at 80° C. for 2 hours, and then heated stepwise in a vacuum at 150° C. for 30 minutes, 200° C. for 30 minutes, and 250° C. for 1 hour. To remove residual stress, the film was peeled off from the substrate and further heat-treated in a vacuum at 3250° C. for 1 hour, yielding a transparent and flexible polyimide film with a thickness of approximately 20 μm.

表1に膜物性を示す。動的粘弾性測定より、このポリイミドフィルムは367℃の非常に高いTgを有していた。また線熱膨張係数は24.3ppm/Kであり、低熱膨張特性も示した。これは実施例1に記載の本発明のジアミンを使用したためである。また5%質量減少温度(Td 5)は窒素中で448℃、空気中で428℃であり、熱安定性も良好であった。また、波長400nmにおける光透過率は80.3%、黄色度2.8、ヘイズ1.79%であり、高い透明性を有していた。更に機械的特性を評価したところ、引張弾性率が5.46GPaと高弾性率を示し、破断伸びは最大で13%であり可撓性を有していた。また、高い鉛筆硬度を有していた。その他の特性も併せて表1に示す。 The film properties are shown in Table 1. From the dynamic viscoelasticity measurement, this polyimide film had a very high Tg of 367°C. In addition, the linear thermal expansion coefficient was 24.3 ppm/K, and it also showed low thermal expansion properties. This is because the diamine of the present invention described in Example 1 was used. In addition, the 5 % mass loss temperature ( Td5 ) was 448°C in nitrogen and 428°C in air, and the thermal stability was also good. In addition, the light transmittance at a wavelength of 400 nm was 80.3%, the yellowness index was 2.8, and the haze was 1.79%, and it had high transparency. Furthermore, when the mechanical properties were evaluated, it showed a high tensile modulus of elasticity of 5.46 GPa, and the breaking elongation was a maximum of 13%, and it had flexibility. In addition, it had high pencil hardness. Other properties are also shown in Table 1.

実施例4
上記式(1)で表されるジアミンの代わりに、実施例2で得た前記式(2)で表される本発明のジアミンを使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合し、製膜を行って物性評価した。表1に膜物性を示す。このポリイミドフィルムは比較的低いCTEを示し、高い透明性と耐熱性も保持していた。これは実施例2に記載の本発明のジアミンを使用したためである。
Example 4
Instead of the diamine represented by the above formula (1), the diamine of the present invention represented by the above formula (2) obtained in Example 2 was used, and polymerization was carried out in the same manner as in Example 3, except that 1-EPD was used alone as the catalyst, and a film was formed and its physical properties were evaluated. The film physical properties are shown in Table 1. This polyimide film exhibited a relatively low CTE and also maintained high transparency and heat resistance. This is because the diamine of the present invention described in Example 2 was used.

実施例5
上記式(1)で表されるジアミンの代わりに、合成例1で得た前記式(9)で表されるジアミン(AB-mTOL)を使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合し、製膜を行って物性評価した。表1に膜物性を示す。このポリイミドフィルムは比較的低いCTEを示し、高い透明性と耐熱性も保持していた。これは、H-PMDAとAB-mTOLを組み合わせることで、初めて発現した効果である。
Example 5
Instead of the diamine represented by the above formula (1), the diamine represented by the above formula (9) (AB-mTOL) obtained in Synthesis Example 1 was used, and polymerization was carried out in the same manner as in Example 3, except that 1-EPD was used alone as the catalyst, and a film was formed and its physical properties were evaluated. The film properties are shown in Table 1. This polyimide film exhibited a relatively low CTE and also maintained high transparency and heat resistance. This effect was first achieved by combining H-PMDA and AB-mTOL.

実施例6
上記式(1)で表されるジアミンの代わりに、合成例2で得た前記式(10)で表されるジアミン(AB-44ODA)を使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合し、製膜を行って物性評価した。表1に膜物性を示す。このポリイミドフィルムは比較的低いCTEを示し、高い透明性と耐熱性も保持していた。これは、H-PMDAとAB-44ODAを組み合わせて初めて発現した効果である。
Example 6
Instead of the diamine represented by the above formula (1), the diamine represented by the above formula (10) (AB-44ODA) obtained in Synthesis Example 2 was used, and polymerization was carried out in the same manner as in Example 3, except that 1-EPD was used alone as the catalyst, and a film was formed and its physical properties were evaluated. The film properties are shown in Table 1. This polyimide film exhibited a relatively low CTE, and also maintained high transparency and heat resistance. This effect was only achieved by combining H-PMDA and AB-44ODA.

比較例1
上記式(1)で表されるジアミンの代わりに、4,4’-オキシジアニリン(4,4’-ODA)を使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合し、製膜を行って物性評価した。表1に膜物性を示す。このポリイミドフィルムのCTEは46.6ppm/Kであり、低熱膨張特性を示さなかった。これはジアミンの分子構造中に、精密に分子設計された構造単位を含んでいないためである。
Comparative Example 1
Polymerization was carried out in the same manner as in Example 3, except that 4,4'-oxydianiline (4,4'-ODA) was used instead of the diamine represented by the above formula (1), and 1-EPD was used alone as the catalyst, and a film was formed and its physical properties were evaluated. The film properties are shown in Table 1. The CTE of this polyimide film was 46.6 ppm/K, and it did not exhibit low thermal expansion properties. This is because the molecular structure of the diamine does not contain a precisely molecular-designed structural unit.

比較例2
上記式(1)で表されるジアミンの代わりに、m-トリジンを使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合し、製膜を行って物性評価した。表1に膜物性を示す。このポリイミドフィルムの非常に高いTgを有していたが、CTEは57.5ppm/Kであり、低熱膨張特性を示さなかった。これはm-トリジンの分子構造中に、精密に分子設計された構造単位を含んでいないためである。
Comparative Example 2
Polymerization was carried out in the same manner as in Example 3, except that m-tolidine was used instead of the diamine represented by the above formula (1), and 1-EPD was used alone as the catalyst, and a film was formed and its physical properties were evaluated. The film properties are shown in Table 1. This polyimide film had a very high Tg, but the CTE was 57.5 ppm/K, and it did not exhibit low thermal expansion properties. This is because the molecular structure of m-tolidine does not contain a precisely molecular-designed structural unit.

比較例3
上記式(1)で表されるジアミンの代わりに、4,4’-ジアミノベンズアニリド(DABA)を使用し、触媒として1-EPDを単独で用いた以外は実施例3に記載した方法と同様にして重合を行った。しかしながら重合反応中に析出物が生じ、均一なワニスが得られなかった。これは、DABAの分子構造中に、精密に分子設計された構造単位を含んでおらず、生成したポリイミドの溶解性が不十分であるためである。
Comparative Example 3
Polymerization was carried out in the same manner as in Example 3, except that 4,4'-diaminobenzanilide (DABA) was used instead of the diamine represented by the above formula (1), and 1-EPD was used alone as the catalyst. However, precipitates were formed during the polymerization reaction, and a uniform varnish was not obtained. This is because the molecular structure of DABA does not contain a precisely molecular-designed structural unit, and the solubility of the produced polyimide is insufficient.

Claims (5)

下記一般式(3):

で表される繰り返し単位を有し、式(3)中、2価の有機基Arが下式(7)で表される構造単位であるポリイミド。
The following general formula (3):

In the formula (3), the divalent organic group Ar is a structural unit represented by the following formula (7):
請求項1に記載のポリイミドが有機溶媒に溶解してなるワニス。 A varnish obtained by dissolving the polyimide according to claim 1 in an organic solvent. 請求項1に記載のポリイミドを含む耐熱性フィルム。 A heat-resistant film comprising the polyimide according to claim 1. ガラス転移温度が320℃以上であり、線熱膨張係数が40ppm/K以下であり、かつ波長400nmにおける光透過率が70%以上である、請求項3に記載の耐熱性フィルム。 The heat-resistant film according to claim 3, which has a glass transition temperature of 320°C or higher, a linear thermal expansion coefficient of 40 ppm/K or lower, and a light transmittance of 70% or higher at a wavelength of 400 nm. 請求項3又は4に記載の耐熱性フィルムを含む、画像表示装置用プラスチック基板。 A plastic substrate for an image display device, comprising the heat-resistant film according to claim 3 or 4.
JP2023143331A 2019-08-06 2023-09-05 Polyimide and polyimide film Active JP7549100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023143331A JP7549100B2 (en) 2019-08-06 2023-09-05 Polyimide and polyimide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019144772A JP7346146B2 (en) 2019-08-06 2019-08-06 Polyimide and polyimide film
JP2023143331A JP7549100B2 (en) 2019-08-06 2023-09-05 Polyimide and polyimide film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019144772A Division JP7346146B2 (en) 2019-08-06 2019-08-06 Polyimide and polyimide film

Publications (2)

Publication Number Publication Date
JP2023164496A JP2023164496A (en) 2023-11-10
JP7549100B2 true JP7549100B2 (en) 2024-09-10

Family

ID=74662753

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019144772A Active JP7346146B2 (en) 2019-08-06 2019-08-06 Polyimide and polyimide film
JP2023143329A Pending JP2023168343A (en) 2019-08-06 2023-09-05 Polyimide and polyimide film
JP2023143330A Active JP7549099B2 (en) 2019-08-06 2023-09-05 Polyimide and polyimide film
JP2023143331A Active JP7549100B2 (en) 2019-08-06 2023-09-05 Polyimide and polyimide film

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2019144772A Active JP7346146B2 (en) 2019-08-06 2019-08-06 Polyimide and polyimide film
JP2023143329A Pending JP2023168343A (en) 2019-08-06 2023-09-05 Polyimide and polyimide film
JP2023143330A Active JP7549099B2 (en) 2019-08-06 2023-09-05 Polyimide and polyimide film

Country Status (1)

Country Link
JP (4) JP7346146B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4321516A1 (en) * 2021-04-09 2024-02-14 Mitsubishi Gas Chemical Company, Inc. Bisimide phenol compound
WO2022215406A1 (en) * 2021-04-09 2022-10-13 三菱瓦斯化学株式会社 Bisimide phenol compound
JP2023034768A (en) * 2021-08-31 2023-03-13 Eneos株式会社 reaction accelerator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124664A1 (en) 2011-03-11 2012-09-20 宇部興産株式会社 Polyimide precursor and polyimide
JP2017203061A (en) 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 Polyimide and polyimide film
JP2018193343A (en) 2017-05-19 2018-12-06 株式会社カネカ Diamine and polyimide, and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6915251B2 (en) 2016-09-30 2021-08-04 コニカミノルタ株式会社 Polyimide resin composition, method for producing polyimide resin composition, transparent substrate and display film
WO2018097143A1 (en) 2016-11-24 2018-05-31 日産化学工業株式会社 Composition for forming flexible device substrate
CN108659533B (en) 2018-06-12 2020-07-03 中国科学院化学研究所 High-heat-resistance ultralow-expansion polyimide film and preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124664A1 (en) 2011-03-11 2012-09-20 宇部興産株式会社 Polyimide precursor and polyimide
JP2017203061A (en) 2016-05-09 2017-11-16 三菱瓦斯化学株式会社 Polyimide and polyimide film
JP2018193343A (en) 2017-05-19 2018-12-06 株式会社カネカ Diamine and polyimide, and use thereof

Also Published As

Publication number Publication date
JP2023164495A (en) 2023-11-10
JP2021024827A (en) 2021-02-22
JP2023168343A (en) 2023-11-24
JP2023164496A (en) 2023-11-10
JP7346146B2 (en) 2023-09-19
JP7549099B2 (en) 2024-09-10

Similar Documents

Publication Publication Date Title
JP7549100B2 (en) Polyimide and polyimide film
Hasegawa et al. Solution-processable transparent polyimides with low coefficients of thermal expansion and self-orientation behavior induced by solution casting
CN104640907B (en) Polyimides and its formed body
US9023974B2 (en) Ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
JP6693676B2 (en) Polyimide and polyimide film
US20140148548A1 (en) Fluorine-Containing Polymerizable Monomer And Polymer Compound Using Same
JP2012072121A (en) Amide group-bearing alicyclic tetracarboxylic dianhydride, and resin obtained by using the same
US9657140B2 (en) Polyimide and film using same
JP6353931B2 (en) Polyimide and film using the same
JP5666076B2 (en) Bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic dianhydride, its production method, said bicyclo [2.2.2] octane-2,3,5,6-tetracarboxylic Polyimide obtained from acid dianhydride and use thereof
WO2016148150A1 (en) Novel tetracarboxylic dianhydride, and polyimide and polyimide copolymer obtained from said acid dianhydride
JP7250459B2 (en) Polyimide, varnish and polyimide film
JP6768234B2 (en) Polyimide and polyimide film
KR20180009651A (en) Polyamic acid, Polyimide Resin, Polyimide Film and Display Device Comprising Thereof
JP2015093915A (en) Polyimide and heat resistant film
CN108137804B (en) Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article comprising the polyimide
JP2016196630A (en) Novel polyimide copolymer
JP2011148901A (en) Phosphorus-containing diamine and phosphorus-containing polyimide obtained therefrom
TWI774848B (en) Polyimide resin, polyimide varnish and polyimide film
JP6765093B2 (en) Polyimide
JP2024130514A (en) Polyimide, varnish, polyimide film, heat-resistant insulating film for flexible printed wiring boards, transparent plastic substrates for display devices, substrates for touch sensors, films for cover windows
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
JPH11322925A (en) Soluble polyimide and its production
JP2024082217A (en) Tetracarboxylic dianhydride, polyesterimide, and polyesterimide film
TW202330710A (en) Resin composition, molded body and film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240829

R150 Certificate of patent or registration of utility model

Ref document number: 7549100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150