WO2017057360A1 - Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide - Google Patents

Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide Download PDF

Info

Publication number
WO2017057360A1
WO2017057360A1 PCT/JP2016/078448 JP2016078448W WO2017057360A1 WO 2017057360 A1 WO2017057360 A1 WO 2017057360A1 JP 2016078448 W JP2016078448 W JP 2016078448W WO 2017057360 A1 WO2017057360 A1 WO 2017057360A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
tetracarboxylic dianhydride
solution
solvent
formula
Prior art date
Application number
PCT/JP2016/078448
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 石井
長谷川 匡俊
Original Assignee
本州化学工業株式会社
学校法人東邦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社, 学校法人東邦大学 filed Critical 本州化学工業株式会社
Priority to KR1020187011187A priority Critical patent/KR102591070B1/en
Priority to JP2017543430A priority patent/JP6715496B2/en
Priority to CN201680056630.8A priority patent/CN108137804B/en
Priority to KR1020237015346A priority patent/KR102619074B1/en
Publication of WO2017057360A1 publication Critical patent/WO2017057360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/87Benzo [c] furans; Hydrogenated benzo [c] furans
    • C07D307/89Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents

Definitions

  • the present invention is a polyimide derived from a novel tetracarboxylic dianhydride, which is excellent in processability, has a low linear thermal expansion coefficient, and has a high light transmittance (transparency), and the polyimide. It relates to a molded body. Since the polyimide exhibits thermoplasticity in addition to excellent solution processability, it can be melt-molded as well as formed by a solution casting method. Furthermore, the molded body made of the polyimide exhibits a low linear thermal expansion coefficient and excellent transparency as compared with conventional solvent-soluble polyimides and thermoplastic polyimides.
  • LCD liquid crystal displays
  • EL organic electroluminescence
  • LED light emitting diode
  • solar cells solar cells, etc. that require dimensional stability and transparency to heat. It is useful as a substrate, transparent protective film material, and adhesive material.
  • ITO Indium Tin Oxide
  • TFT Thin-Film Transistor
  • aromatic polyimide is known as a resin having excellent thermal dimensional stability. Molded bodies made of aromatic polyimide with a rigid and straight chemical structure, such as polyimide films, require high dimensional stability (low linear thermal expansion coefficient) such as base films for flexible printed wiring boards and semiconductor interlayer insulating films. Widely used in the field.
  • an aromatic polyimide having a low linear thermal expansion coefficient is strongly colored due to intramolecular conjugation and intramolecular / intermolecular charge transfer interaction, so that it is difficult to apply to the above optical use. Furthermore, since the intermolecular force of the polyimide is very strong, it is often poor in workability without exhibiting solubility in a solvent and thermoplasticity.
  • Non-patent Document 1 a method of introducing a fluorine atom into a polyimide structure (Non-patent Document 1), or by using an alicyclic compound in one or both of a diamine component and a tetracarboxylic dianhydride component constituting a polyimide, Methods for suppressing conjugation and charge transfer interaction and increasing transparency have been proposed (Non-Patent Documents 2 and 3).
  • Patent Document 1 a method of introducing a fluorine atom into a polyimide structure
  • Non-Patent Document 2 and 3 Methods for suppressing conjugation and charge transfer interaction and increasing transparency.
  • this polyimide has a low linear thermal expansion coefficient equivalent to that of inorganic materials in addition to transparency and heat resistance, it has insufficient solubility in various types of organic solvents, and there is room for improvement in this respect. . Furthermore, there is no known polyimide having excellent processability that also has thermoplasticity.
  • the present invention is a polyimide derived from a novel tetracarboxylic dianhydride, which has excellent solubility in various types of organic solvents, and also has thermoplasticity, so it has excellent processability and low linear thermal expansion. It aims at providing the molded object which consists of a polyimide which has a coefficient and high light transmittance (transparency), and this polyimide.
  • the present invention is as follows. 1. Tetracarboxylic dianhydride represented by the following formula (1). 2. A polyimide having a repeating unit represented by the following formula (2). 3. 3. The polyimide according to 2, wherein the content of the repeating unit represented by the formula (2) is 55 mol% or more with respect to all the repeating units in the polyimide. A polyimide solution comprising the polyimide according to 4.2 or 3 and an organic solvent, wherein the polyimide concentration is 5% by weight or more. The polyimide molded body according to 5.2 or 3.
  • characteristics that could not be obtained by the prior art that is, excellent solubility in various types of organic solvents, and also excellent thermoplasticity, excellent workability, low linear thermal expansion coefficient, and
  • a polyimide having all high light transmittance (transparency) and a molded body made of the polyimide use a tetracarboxylic dianhydride characterized in that a bulky cyclohexyl group is substituted on the central phenylene group. Can be obtained.
  • the tetracarboxylic dianhydride of the present invention has a structure represented by the following formula (1).
  • the chemical structural characteristics of the tetracarboxylic dianhydride represented by the formula (1) according to the present invention (hereinafter sometimes abbreviated as TACHQ) are as follows. Two phthalic anhydride structures are combined, and the central phenylene group is substituted with a bulky cyclohexyl group.
  • the method for synthesizing TACHQ represented by the formula (1) of the present invention is not particularly limited.
  • a diol represented by the following formula (3) that is, cyclohexylhydroquinone or a diacetate thereof, and the following formula (4) It is synthesize
  • trimellitic acid derivatives include trimellitic anhydride and trimellitic anhydride halide.
  • the polyimide of this invention has a repeating unit represented by following formula (2).
  • the first feature of the polyimide having a repeating unit represented by the formula (2) according to the present invention is that two ester bonds exist in the para position of the central phenylene group of the tetracarboxylic dianhydride moiety, Since it has a biphenylene structure bonded at the para position, the polyimide main chain structure forms a linear and rigid structure. Due to this characteristic, it is considered that the polyimide chain is highly oriented along the film plane direction (in-plane orientation) and exhibits excellent thermal dimensional stability (low linear thermal expansion coefficient).
  • a low thermal expansion polyimide having such a linear and rigid structure has a strong cohesive force between polyimide chains, and thus is usually insoluble in an organic solvent, does not melt, and has poor workability. Therefore, in general, a method of bending a polyimide main chain structure by introducing a siloxane bond, an ether bond or a meta bond into the polyimide main chain, a method of reducing the imide group concentration in the polyimide repeating unit, and a bulky polyimide side chain. A method is adopted in which a substituent is introduced to weaken the cohesive force between polyimide chains and increase the workability. However, these methods inhibit the in-plane orientation in the polyimide molded body, particularly the film, and consequently increase the linear thermal expansion coefficient.
  • the polyimide having the repeating unit represented by the formula (2) that realizes this extraordinar balance is excellent in solubility in various types of organic solvents, and also has excellent workability because it also has thermoplasticity, and A low coefficient of linear thermal expansion, which was originally difficult to achieve, is exhibited. Further, charge transfer interaction of polyimide is suppressed, and high transparency can be realized.
  • the polyimide which has a repeating unit represented by Formula (2) concerning this invention can synthesize
  • the method for producing the polyimide is not particularly limited.
  • TFMB 2,2′-bis (trifluoromethyl) benzidine represented by the following formula (5)
  • an aromatic or aliphatic tetracarboxylic dianhydride other than TACHQ represented by formula (1) is used as a copolymerization component as long as the polymerization reactivity and the required properties of polyimide are not significantly impaired. can do.
  • the aromatic tetracarboxylic dianhydride that can be used in this case is not particularly limited.
  • pyromellitic dianhydride 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, hydroquinone -Bis (trimellitate anhydride), methylhydroquinone-bis (trimellitate anhydride), 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic acid Dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Biphenylsulfonetetracarboxylic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 2,2'-bis (3,4-dicarboxypheny E) Propanoi
  • the aliphatic tetracarboxylic dianhydride is not particularly limited.
  • the alicyclic one bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic Acid dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) tetralin-1,2 -Dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ', 4,4'-tetracarboxylic dianhydride, 1,2,3,4 Examples thereof include cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, etc.
  • the ratio of TACHQ to all tetracarboxylic dianhydrides is preferably 55 mol. % Or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • an aromatic or aliphatic diamine other than TFMB represented by the formula (5) is used as a copolymerization component in a range that does not significantly impair the polymerization reactivity and the required characteristics of polyimide. be able to.
  • the aromatic diamine that can be used in this case is not particularly limited.
  • the aliphatic diamine is a chain aliphatic to alicyclic diamine, and the alicyclic diamine is not particularly limited.
  • the solvent used is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc., but is formed with the raw material monomer.
  • an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc.
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, ester solvents such as butyl acetate, ethyl acetate and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycols such as diethylene glycol dimethyl ether, triethylene glycol and triethylene glycol dimethyl ether Solvent, phenol solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as ethyl ketone, diis
  • TACHQ represented by the formula (1) and TFMB represented by the formula (5) are polyaddition-reacted to obtain a polyamic acid, and then imidized to obtain a very useful industrially useful product of the present invention.
  • a polyimide can be obtained.
  • the polyimide of the present invention is soluble in various kinds of organic solvents when used as a polyimide resin due to the linearity and rigidity of the polymer main chain and the chemical structural features of having bulky substituents in the side chain. In addition, it has excellent processability because it has both thermoplasticity and thermoplasticity.
  • a molded product of the polyimide, particularly a film can be a material having both a low linear thermal expansion coefficient and high transparency.
  • the polymerization reactivity of tetracarboxylic dianhydride and diamine greatly affects the toughness of the finally obtained polyimide molded body. If the polymerization reactivity is not sufficiently high, a high polymer cannot be obtained, and as a result, the entanglement between polymer chains becomes low and the polyimide molded body may become brittle.
  • the TACHQ of the formula (1) and the TFMB of the formula (5) used in the present invention show sufficiently high polymerization reactivity, so there is no such concern.
  • the method for producing the polyimide of the present invention is not particularly limited, and known methods can be appropriately applied. Specifically, for example, it can be synthesized by the following method. First, TFMB of formula (5) is dissolved in a polymerization solvent, and TACHQ powder of formula (1), which is substantially equimolar to TFMB of formula (5), is gradually added to this solution, and a mechanical stirrer or the like is used. Stir at a temperature in the range of -100 ° C, preferably 20-60 ° C for 0.5-150 hours, preferably 1-48 hours. In this case, the monomer concentration is usually in the range of 5 to 50% by weight, preferably in the range of 10 to 40% by weight.
  • a polyamic acid having a uniform and high degree of polymerization By carrying out polymerization in such a monomer concentration range, a polyamic acid having a uniform and high degree of polymerization can be obtained.
  • the polymerization degree of the polyamic acid increases too much and the polymerization solution becomes difficult to stir, it can be appropriately diluted with the same solvent.
  • the degree of polymerization of the polyamic acid is as high as possible.
  • the degree of polymerization of the polyamic acid may not be sufficiently high, and when the polymerization is performed at a concentration higher than the above monomer concentration range, the monomer and the polymer to be generated are not sufficiently dissolved. There is a case.
  • an aliphatic diamine is used, salt formation often occurs at the initial stage of polymerization and the polymerization is hindered.
  • the monomer concentration during polymerization is preferably set as described above. It is preferable to manage the concentration range within a range.
  • the polyimide of the present invention can be imidized by a known method.
  • a chemical imidation method in which polyamic acid is imidized with a dehydrating cyclization reagent, polyamic acid is polymerized in a high-boiling solvent, and then heated to 150 ° C. or higher in the presence of an azeotropic agent such as xylene as a by-product.
  • Solution heat imidation method that removes water from the system to obtain polyimide with a high degree of polymerization in solution, or polyamic acid obtained by casting and drying a polyamic acid solution on a support such as a glass substrate
  • a thermal imidation method in which the film-like molded body is imidized by heating at 250 ° C. or higher, preferably 300 ° C. or higher in a heating furnace or the like.
  • a chemical imidation method capable of imidization under mild conditions is preferable.
  • the chemical imidization method will be described in detail.
  • the polyamic acid solution obtained by the method described above is diluted with the same solvent used in the polymerization. While stirring a polyamic acid solution diluted to an appropriate solution viscosity that is easy to stir with a mechanical stirrer, etc., a dehydrating ring-closing agent (chemical imidizing agent) consisting of an organic acid anhydride and a tertiary amine as a basic catalyst. Is dripped and stirred at 0 to 100 ° C., preferably 10 to 50 ° C. for 1 to 72 hours to complete imidation chemically.
  • Acetic anhydride is preferably used because of easy handling and purification of the reagent.
  • the basic catalyst pyridine, triethylamine, quinoline and the like can be used, but pyridine is preferably used because of easy handling and separation of the reagent, but is not limited thereto.
  • the amount of the organic acid anhydride in the chemical imidizing agent is in the range of 1 to 10 times mol, more preferably 1 to 5 times mol of the theoretical dehydration amount of the polyamic acid.
  • the amount of the basic catalyst is in the range of 0.1 to 2 moles, more preferably in the range of 0.1 to 1 moles, relative to the amount of the organic acid anhydride.
  • impurities chemical imidization agents and by-products such as carboxylic acids (hereinafter referred to as impurities) are mixed in the reaction solution after chemical imidation, so it is necessary to remove these and purify the polyimide.
  • a known method can be used for purification. For example, as the simplest method, after dripping in a large amount of poor solvent while stirring the imidized reaction solution to precipitate polyimide, the polyimide powder is recovered and repeatedly washed until impurities are removed, A method of obtaining polyimide powder by drying under reduced pressure can be applied.
  • the poor solvent that can be used is not particularly limited as long as it is a solvent that allows polyimide to be precipitated and impurities can be efficiently removed and is easily dried.
  • the concentration of the polyimide solution when it is dropped into a poor solvent and deposited is 20% by weight or less, more preferably 10% by weight or less.
  • the amount of the poor solvent used at this time is preferably equal to or greater than that of the polyimide solution, and is preferably 5 to 100 times.
  • the obtained polyimide powder is recovered, and the residual solvent is removed by vacuum drying or hot air drying.
  • the drying temperature and time are not particularly limited as long as the polyimide does not change in quality and the residual solvent evaporates, and it is preferable to dry in a temperature range of 30 to 200 ° C. for 48 hours or less.
  • the polyimide of the present invention preferably has a polyimide intrinsic viscosity in the range of 0.1 to 10.0 dL / g, more preferably 0.3 to 5. The range is 0 dL / g.
  • the solvent can be selected according to the intended use and processing conditions. For example, in the case of continuous coating over a long period of time, the solvent in the polyimide solution may absorb moisture in the air and the polyimide may be deposited, so low moisture absorption such as triethylene glycol dimethyl ether, ⁇ -butyrolactone or cyclopentanone. It is preferable to use an organic solvent. Therefore, various solvents and mixed solvents exhibiting low hygroscopicity can be selected for the polyimide of the present invention.
  • the low hygroscopic solvent used is not particularly limited.
  • amide solvents such as hygroscopic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone can be mixed with the above low hygroscopic solvent to precipitate polyimide due to moisture absorption. Can also be suppressed.
  • the solid concentration when the polyimide of the present invention is dissolved in a solvent to form a solution depends on the molecular weight of the polyimide, the production method and the thickness of the film to be produced, but is preferably 5% by weight or more. If the solid content concentration is too low, it is difficult to form a film having a sufficient film thickness.
  • a method for dissolving the polyimide of the present invention in a solvent for example, the polyimide powder of the present invention is added while stirring the solvent, and 1 in the air or in an inert gas at a temperature range from room temperature to the boiling point of the solvent. It can be dissolved over ⁇ 48 hours to make a polyimide solution.
  • the polyimide of the present invention may contain additives such as mold release agents, fillers, dyes, pigments, silane coupling agents, crosslinking agents, end-capping agents, antioxidants, antifoaming agents, and leveling agents as necessary. Can be added.
  • the obtained polyimide solution can be formed into a film by a known method to form a polyimide molded body or film.
  • a polyimide solution is cast on a support such as a glass substrate using a doctor blade or the like, and usually in the range of 40 to 300 ° C. using a hot air dryer, an infrared drying furnace, a vacuum dryer, an inert oven, or the like.
  • the polyimide film can be formed by drying in the range of 50 to 250 ° C.
  • ⁇ Intrinsic viscosity> The reduced viscosity of a 0.5% by weight polyamic acid solution or polyimide solution was measured at 30 ° C. using an Ostwald viscometer. This value was regarded as the intrinsic viscosity.
  • chloroform CF
  • acetone tetrahydrofuran
  • DOX 1,4-dioxane
  • ethyl acetate cyclopentanone (CPN), cyclohexanone (CHN), N, N-dimethylformamide (DMF), N , N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, dimethyl sulfoxide (DMSO), ⁇ -butyrolactone (GBL), triethylene glycol dimethyl ether (Tri-GL)
  • CF chloroform
  • acetone tetrahydrofuran
  • DOX 1,4-dioxane
  • ethyl acetate cyclopentanone
  • CHN cyclohexanone
  • DMF N-dimethylformamide
  • DMAc N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • m-cresol dimethyl
  • thermoplasticity The glass transition temperature of the polyimide film was determined from the loss peak at a frequency of 0.1 Hz, an amplitude of 0.1%, and a heating rate of 5 ° C./min using a TA Instruments dynamic viscoelasticity measuring device (Q800). Further, the thermoplasticity was evaluated from the steepness of the decrease in the storage elastic modulus curve immediately after the glass transition temperature.
  • CTE The linear thermal expansion coefficient of the polyimide film was once increased to 150 ° C.
  • Example size width 5 mm, length 15 mm
  • the temperature was raised (first temperature increase), then cooled to 20 ° C., further heated at 5 ° C./min (second temperature increase), and calculated from the TMA curve at the second temperature increase.
  • the linear thermal expansion coefficient was determined as an average value between 100 and 200 ° C.
  • T400 ⁇ Transmissivity of polyimide membrane: T400 > Using a UV-Vis near-infrared spectrophotometer (V-650) manufactured by JASCO Corporation, the light transmittance at 200-700 nm of a polyimide film (20 ⁇ m thick) is measured, and the light transmittance at a wavelength of 400 nm is determined to be transparent. Used as an indicator. Further, the wavelength (cutoff wavelength) at which the transmittance was 0.5% or less was also determined.
  • V-650 near-infrared spectrophotometer
  • TAHQ Tetracarboxylic dianhydride represented by the following formula (6) was synthesized as follows. 12.6751 g (60.1940 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A. Further, in another flask, 2.2209 g (20.1700 mmol) of hydroquinone (HQ) was added to 8.2 mL of dehydrated THF and 9.7 mL (120 mmol) of pyridine, followed by septum sealing to prepare Solution B.
  • THF dehydrated tetrahydrofuran
  • solution B was gradually added dropwise to solution A with a syringe over about 5 minutes, and then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and ion exchange water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed product was collected and dried in vacuum at 100 ° C. for 12 hours. The obtained product was a white powder, and the yield was 8.0287 g and the yield was 87.6%. B.
  • Identification product TAHQ from a Fourier transform infrared spectrophotometer FT / IR4100 (manufactured by JASCO Corporation), aromatic C-H stretching vibration absorption band at 3082cm -1, acid anhydrides 1847Cm -1 and 1781cm -1 The group C ⁇ O stretching vibration absorption band was confirmed, and the ester group C ⁇ O stretching vibration absorption band was confirmed at 1742 cm ⁇ 1 .
  • TAPh tetracarboxylic dianhydride
  • TAPh tetracarboxylic dianhydride
  • Trimellitic chloride 15.1116 g (71.8 mmol) was placed in an eggplant flask, dissolved in 16.5 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A.
  • TACHQ represented by formula (1) was synthesized as follows. Into an eggplant flask, 12.7003 g (60.3137 mmol) of trimellitic anhydride chloride was placed, dissolved in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A.
  • THF dehydrated tetrahydrofuran
  • the washed crude product was collected and vacuum-dried at 100 ° C. for 12 hours.
  • the obtained crude product was a white powder, and the yield was 6.54 g and the yield was 87.6%.
  • (Purification) After 2.5526 g of the obtained crude product was dissolved in a mixed solvent of acetic anhydride and toluene (volume ratio 1:10) at 90 ° C., it was allowed to cool naturally and allowed to stand for 72 hours. The precipitated white powder was separated by filtration and vacuum dried at 160 ° C. for 12 hours. The yield of the obtained white powder was 1.3602 g, and the recrystallization yield was 53.3%.
  • TACHQ The product purified by recrystallization was obtained from a Fourier transform infrared spectrophotometer FT / IR4100 (manufactured by JASCO Corporation) at 2928 cm ⁇ 1 with an aliphatic C—H stretching vibration absorption band, 1861 cm ⁇ 1 and 1778 cm ⁇ . An acid anhydride group C ⁇ O stretching vibration absorption band was confirmed in 1 and an ester group C ⁇ O stretching vibration absorption band was confirmed in 1745 cm ⁇ 1 .
  • the resulting polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 2.8 mL (30 mmol) of acetic anhydride and 1.2 mL (15 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition. The obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide. The resulting white precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours.
  • FIG. 1 shows an infrared absorption spectrum of the obtained polyimide film
  • Table 2 shows a dynamic viscoelastic curve, and Table 2 shows thermal characteristics and optical characteristics. From FIG. 1, it can identify that it is the target polyimide. As can be seen from FIG. 2, a sharp decrease in storage modulus is observed around 225 ° C., indicating high thermoplasticity. From Table 2, it can be seen that the linear thermal expansion coefficient (CTE) is as low as 11.9 ppm / K and is a colorless and transparent film. These excellent characteristics are the effects of the structure of formula (2).
  • CTE linear thermal expansion coefficient
  • Example 3> A Synthesis of polyimide having a repeating unit represented by the following formula (9) (polymerization of polyamic acid) TACHQ (80) 6FDA (20) / TFMB 3 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). To this, 2.4 mmol of TACHQ powder described in Example 1 and 0.6 mmol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) powder were slowly added and stirred at room temperature for 72 hours.
  • 6FDA 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride
  • a polyamic acid as a polyimide precursor was obtained (solid content concentration 22.7% by weight).
  • the obtained polyamic acid had an intrinsic viscosity of 0.91 dL / g.
  • the resulting polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 2.8 mL (30 mmol) of acetic anhydride and 1.2 mL (15 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition.
  • the obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide.
  • the resulting white precipitate was thoroughly washed with methanol and vacuum dried at 100 ° C. for 12 hours.
  • the obtained polyimide had an intrinsic viscosity of 1.75 dL / g and was a high molecular weight product.
  • Table 1 shows the solubility of the polyimide powder in the solvent. It can be seen from Table 1 that the solvent solubility is superior.
  • Table 2 shows the thermal characteristics and optical characteristics. From FIG. 3, it can identify that it is the target polyimide. As can be seen from FIG. 4, a steep decrease in storage elastic modulus is observed around 225 ° C., indicating high thermoplasticity. From Table 2, it can be seen that the linear thermal expansion coefficient (CTE) is as low as 24.7 ppm / K and is a colorless and transparent film. These excellent characteristics are the effects of the structure of formula (2).
  • CTE linear thermal expansion coefficient
  • Example 4> A Synthesis of polyimide having a repeating unit represented by the following formula (10) (polymerization of polyamic acid) TACHQ (50) 6FDA (50) / TFMB 2 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). To this, 1.0 mmol of TACHQ powder described in Example 1 and 1.0 mmol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) powder were slowly added and stirred at room temperature for 72 hours. In addition, polyamic acid as a polyimide precursor was obtained (solid content concentration 30% by weight).
  • the resulting polyamic acid had an intrinsic viscosity of 0.56 dL / g.
  • the obtained polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 1.9 mL (20 mmol) of acetic anhydride and 0.8 mL (10 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition. The obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide. The resulting white precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours.
  • Table 2 shows thermal characteristics and optical characteristics. From FIG. 5, it can identify that it is the target polyimide. From FIG. 6, it can be seen that a steep decrease in storage elastic modulus is observed at around 230 ° C. and shows high thermoplasticity, and further, from Table 2, it is clear that the film is colorless and transparent.
  • the temperature at which the storage elastic modulus begins to decrease is as high as 375 ° C., so that it is inferior in thermal workability to the repeating unit polyimide of formula (8). Moreover, yellowness and haze are also high and optical characteristics are also inferior. That is, it can be seen that the cyclohexyl group of the formula (2) plays an extremely important role.

Abstract

The present invention addresses the problem of providing: a polyimide which is derived from a novel tetracarboxylic dianhydride, has both excellent solubility in various types of organic solvents and thermoplasticity and therefore has excellent processability, and also has both a low linear thermal expansion coefficient and high light permeability (transparency); and a molded article produced from the polyimide. The problem can be solved by a polyimide derived from a tetracarboxylic dianhydride represented by formula (1).

Description

新規なテトラカルボン酸二無水物、及び該テトラカルボン酸二無水物から誘導されるポリイミド、及び該ポリイミドからなる成形体Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article comprising the polyimide
 本発明は、新規なテトラカルボン酸二無水物から誘導されるポリイミドであり、加工性に優れ、低い線熱膨張係数、及び高い光透過性(透明性)を兼ね備えたポリイミド、及び該ポリイミドからなる成形体に関する。該ポリイミドは、優れた溶液加工性に加えて熱可塑性も示すため、溶液キャスト法による製膜だけでなく溶融成型が可能である。更に該ポリイミドからなる成形体は、従来の溶媒可溶性ポリイミドや熱可塑性ポリイミドに比べて低い線熱膨張係数を示すとともに透明性にも優れる。このような特徴から、熱に対する寸法安定性と透明性を必要とする液晶ディスプレイ(LCD)、有機エレクトロルミネッセンス(EL)ディスプレイ、電子ペーパー、発光ダイオード(LED)デバイス、太陽電池などに使用される透明基板、透明保護膜材料、接着材料として有用である。 The present invention is a polyimide derived from a novel tetracarboxylic dianhydride, which is excellent in processability, has a low linear thermal expansion coefficient, and has a high light transmittance (transparency), and the polyimide. It relates to a molded body. Since the polyimide exhibits thermoplasticity in addition to excellent solution processability, it can be melt-molded as well as formed by a solution casting method. Furthermore, the molded body made of the polyimide exhibits a low linear thermal expansion coefficient and excellent transparency as compared with conventional solvent-soluble polyimides and thermoplastic polyimides. Because of these characteristics, transparency used in liquid crystal displays (LCD), organic electroluminescence (EL) displays, electronic paper, light emitting diode (LED) devices, solar cells, etc. that require dimensional stability and transparency to heat. It is useful as a substrate, transparent protective film material, and adhesive material.
 成形加工可能な従来の透明樹脂として、ポリエチレンテレフタレ-ト、ポリカーボネート、ポリエーテルスルホンなどが知られているが、これらの樹脂は溶液加工性や溶融成形性に優れるものの、熱に対する寸法変化(線熱膨張係数)が大きい。成形体としての線熱膨張係数が大きい場合、LCD、有機ELディスプレイ、電子ペーパー、LEDなどの表示デバイスや照明デバイスに用いられている低熱膨張性無機材料と積層すると様々な不具合が生じる可能性があり、好ましくない。例えば、上記の透明樹脂成形体と透明電極(ITO;Indium Tin Oxide)、銅、銀、アルミなどの配線、または薄膜トランジスタ(TFT;Thin-Film Transistor)など素子を形成する際の熱工程によって、低熱膨張性無機材料と従来の高熱膨張性樹脂の間で線熱膨張係数の不整合が発生し、その界面で歪が生じて層間剥離や基板の歪み、そして素子の破壊につながる恐れがある。 As conventional transparent resins that can be molded, polyethylene terephthalate, polycarbonate, polyethersulfone, and the like are known. Although these resins are excellent in solution processability and melt moldability, dimensional changes due to heat (linear) Thermal expansion coefficient) is large. When the linear thermal expansion coefficient as a molded product is large, various problems may occur when laminated with low thermal expansion inorganic materials used in display devices and lighting devices such as LCDs, organic EL displays, electronic paper, and LEDs. Yes, not preferred. For example, the above-mentioned transparent resin molded body and a transparent electrode (ITO; Indium Tin Oxide), wiring such as copper, silver, and aluminum, or a thermal process at the time of forming an element such as a thin film transistor (TFT; Thin-Film Transistor), reduces the heat. There is a possibility that mismatch in the linear thermal expansion coefficient occurs between the expandable inorganic material and the conventional high thermal expansion resin, and distortion occurs at the interface, leading to delamination, substrate distortion, and element destruction.
 一方、優れた熱寸法安定性を有する樹脂として芳香族ポリイミドが知られている。化学構造が剛直で直線的な芳香族ポリイミドから成る成形体、例えばポリイミドフィルムは、フレキシブルプリント配線基板のベースフィルムや半導体の層間絶縁膜など高い寸法安定性(低線熱膨張係数)が要求される分野で広く使われている。しかしながら、低線熱膨張係数を有する芳香族ポリイミドは、分子内共役および、分子内・分子間電荷移動相互作用により強く着色するため、上記光学用途に適用することは困難である。更に、ポリイミドは分子間力が非常に強いため、しばしば溶媒に対する溶解性、および熱可塑性を示さず加工性に乏しい。
 一方、これらの欠点を克服したポリイミドが提案されている。例えば、ポリイミド構造中にフッ素原子を導入する方法(非特許文献1)や、ポリイミドを構成するジアミン成分とテトラカルボン酸二無水物成分の一方、または両方に脂環式化合物を用いることにより分子内共役及び電荷移動相互作用を抑制し、透明性を高める方法が提案されている(非特許文献2、3)。これらの先行技術によって透明性と溶液加工性を両立したポリイミドが開発されたが、加工性に加えて低熱膨張性を併せ持つポリイミドの報告例は限られている。
 その数少ない報告例として、エステル基を有する特定のポリイミドが提案されている(特許文献1)。このポリイミドは、透明性、耐熱性に加えて、無機材料と同等の低線熱膨張係数を有するものの、様々な種類の有機溶媒に対する溶解性が十分ではなく、この点で改善の余地があった。
 更に、熱可塑性をも併せ持つ優れた加工性を有するポリイミドは知られていない。
On the other hand, aromatic polyimide is known as a resin having excellent thermal dimensional stability. Molded bodies made of aromatic polyimide with a rigid and straight chemical structure, such as polyimide films, require high dimensional stability (low linear thermal expansion coefficient) such as base films for flexible printed wiring boards and semiconductor interlayer insulating films. Widely used in the field. However, an aromatic polyimide having a low linear thermal expansion coefficient is strongly colored due to intramolecular conjugation and intramolecular / intermolecular charge transfer interaction, so that it is difficult to apply to the above optical use. Furthermore, since the intermolecular force of the polyimide is very strong, it is often poor in workability without exhibiting solubility in a solvent and thermoplasticity.
On the other hand, a polyimide that overcomes these disadvantages has been proposed. For example, a method of introducing a fluorine atom into a polyimide structure (Non-patent Document 1), or by using an alicyclic compound in one or both of a diamine component and a tetracarboxylic dianhydride component constituting a polyimide, Methods for suppressing conjugation and charge transfer interaction and increasing transparency have been proposed (Non-Patent Documents 2 and 3). Although polyimides having both transparency and solution processability have been developed by these prior arts, there are limited reports of polyimides that have low thermal expansion in addition to processability.
As a few reported examples, a specific polyimide having an ester group has been proposed (Patent Document 1). Although this polyimide has a low linear thermal expansion coefficient equivalent to that of inorganic materials in addition to transparency and heat resistance, it has insufficient solubility in various types of organic solvents, and there is room for improvement in this respect. .
Furthermore, there is no known polyimide having excellent processability that also has thermoplasticity.
特開2013-082876号公報JP2013-082876A
 本発明は、新規なテトラカルボン酸二無水物から誘導されるポリイミドであり、様々な種類の有機溶媒に対する溶解性に優れ、かつ、熱可塑性をも併せ持つために加工性に優れ、低い線熱膨張係数、及び高い光透過性(透明性)を兼ね備えたポリイミド、及び該ポリイミドからなる成形体を提供することを目的とする。 The present invention is a polyimide derived from a novel tetracarboxylic dianhydride, which has excellent solubility in various types of organic solvents, and also has thermoplasticity, so it has excellent processability and low linear thermal expansion. It aims at providing the molded object which consists of a polyimide which has a coefficient and high light transmittance (transparency), and this polyimide.
 前記の技術背景を鑑み、本発明者らは鋭意研究を積み重ねた結果、下記式(1)で表されるテトラカルボン酸二無水物から加工性の優れたポリイミドが得られ、当該分野において極めて有用な材料となることを見出し、本発明を完成するにいたった。 In view of the above technical background, the present inventors have conducted extensive research, and as a result, a polyimide having excellent processability can be obtained from the tetracarboxylic dianhydride represented by the following formula (1), which is extremely useful in this field. As a result, the present invention was completed.
 本発明は以下の通りである。
1.下記式(1)で表されるテトラカルボン酸二無水物。 
Figure JPOXMLDOC01-appb-C000003
2.下記式(2)で表される繰り返し単位を有するポリイミド。
Figure JPOXMLDOC01-appb-C000004
3.式(2)で表される繰り返し単位の含有率が、ポリイミド中の全ての繰り返し単位に対し55mol%以上であることを特徴とする2に記載のポリイミド。
4.2または3に記載のポリイミドと有機溶媒とを含有するポリイミド溶液であって、固形分濃度が5重量%以上であることを特徴とするポリイミド溶液。
5.2または3に記載のポリイミド成形体。
The present invention is as follows.
1. Tetracarboxylic dianhydride represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
2. A polyimide having a repeating unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
3. 3. The polyimide according to 2, wherein the content of the repeating unit represented by the formula (2) is 55 mol% or more with respect to all the repeating units in the polyimide.
A polyimide solution comprising the polyimide according to 4.2 or 3 and an organic solvent, wherein the polyimide concentration is 5% by weight or more.
The polyimide molded body according to 5.2 or 3.
 本発明によれば、従来技術では得られなかった特性、即ち、様々な種類の有機溶媒に対する溶解性に優れ、かつ、熱可塑性をも併せ持つために加工性に優れ、低い線熱膨張係数、及び高い光透過性(透明性)を全て兼ね備えたポリイミド、及び該ポリイミドからなる成形体は、中央フェニレン基に嵩高いシクロヘキシル基が置換されていることを特徴とするテトラカルボン酸二無水物を使用することにより得られる。 According to the present invention, characteristics that could not be obtained by the prior art, that is, excellent solubility in various types of organic solvents, and also excellent thermoplasticity, excellent workability, low linear thermal expansion coefficient, and A polyimide having all high light transmittance (transparency) and a molded body made of the polyimide use a tetracarboxylic dianhydride characterized in that a bulky cyclohexyl group is substituted on the central phenylene group. Can be obtained.
実施例2のポリイミドフィルムの赤外吸収スペクトルInfrared absorption spectrum of the polyimide film of Example 2 実施例2のポリイミドフィルムの動的粘弾性曲線Dynamic viscoelastic curve of the polyimide film of Example 2 実施例3のポリイミドフィルムの赤外吸収スペクトルInfrared absorption spectrum of the polyimide film of Example 3 実施例3のポリイミドフィルムの動的粘弾性曲線Dynamic viscoelastic curve of the polyimide film of Example 3 実施例4のポリイミドフィルムの赤外吸収スペクトルInfrared absorption spectrum of the polyimide film of Example 4 実施例4のポリイミドフィルムの動的粘弾性曲線Dynamic viscoelastic curve of the polyimide film of Example 4 比較例2のポリイミドフィルムの動的粘弾性曲線Dynamic viscoelastic curve of the polyimide film of Comparative Example 2
 本発明のテトラカルボン酸二無水物は、下記式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000005
 本発明にかかる式(1)で表されるテトラカルボン酸二無水物(以後、TACHQと略称する場合がある)の化学構造的な特徴は、エステル結合を介して、中央フェニレン基のパラ位に2つの無水フタル酸構造が結合され、更に中央フェニレン基に嵩高いシクロヘキシル基が置換されている点である。
The tetracarboxylic dianhydride of the present invention has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
The chemical structural characteristics of the tetracarboxylic dianhydride represented by the formula (1) according to the present invention (hereinafter sometimes abbreviated as TACHQ) are as follows. Two phthalic anhydride structures are combined, and the central phenylene group is substituted with a bulky cyclohexyl group.
 本発明の式(1)で表されるTACHQの合成方法は、特に限定されないが、例えば、下記式(3)で表されるジオール、即ち、シクロヘキシルヒドロキノンまたはそのジアセテート体と下記式(4)で表されるトリメリット酸またはその誘導体から公知のエステル化反応によって合成される。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 トリメリット酸誘導体としては、無水トリメリット酸、無水トリメリット酸ハライド等が挙げられる。
The method for synthesizing TACHQ represented by the formula (1) of the present invention is not particularly limited. For example, a diol represented by the following formula (3), that is, cyclohexylhydroquinone or a diacetate thereof, and the following formula (4) It is synthesize | combined by well-known esterification reaction from trimellitic acid represented by these, or its derivative (s).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Examples of trimellitic acid derivatives include trimellitic anhydride and trimellitic anhydride halide.
 本発明のポリイミドは、下記式(2)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000008
 本発明にかかる式(2)で表される繰り返し単位を有するポリイミドの第一の特徴は、テトラカルボン酸二無水物部位の中央フェニレン基のパラ位に2つのエステル結合が存在し、ジアミン部位ではパラ位で結合したビフェニレン構造を有しているため、ポリイミド主鎖構造が直線的で剛直な構造を形成している点である。この特徴により、ポリイミド鎖が高度にフィルム平面方向に沿って配向(面内配向)し、優れた熱寸法安定性(低線熱膨張係数)を示すと考えられる。しかしながら、この様な直線的で剛直な構造を有する低熱膨張性ポリイミドは、ポリイミド鎖間の凝集力が強いため、通常有機溶媒に不溶であり、溶融もせず、加工性に乏しい。そこで一般に、ポリイミド主鎖中にシロキサン結合、エーテル結合、メタ結合を導入し、ポリイミド主鎖構造を屈曲させる方法や、ポリイミド繰り返し単位中のイミド基濃度を低減させる方法、そしてポリイミド側鎖に嵩高い置換基を導入してポリイミド鎖間の凝集力を弱め加工性を高める方法が採用される。しかしながら、これらの方法は、ポリイミド成形体特にフィルムにおける面内配向を阻害し、結果として線熱膨張係数を増大させる。つまり、加工性と低熱膨張性を両立することは、非常に困難である。
 そこで、本発明にかかる式(2)で表される繰り返し単位を有するポリイミドの次に記載する第二の特徴によって、この問題を解決することが可能になる。つまり、テトラカルボン酸二無水物部位の中央フェニレン基に嵩高いシクロヘキシル基が置換され、且つジアミン部位の側鎖に電子求引性で嵩高いトリフルオロメチル基を置換することで、ポリイミド鎖間の面内配向を阻害せずに凝集力のみを弱めることができる。この絶妙なバランスを実現した式(2)で表される繰り返し単位を有するポリイミドは、様々な種類の有機溶媒に対する溶解性に優れ、かつ、熱可塑性をも併せ持つために加工性に優れ、そして、本来両立困難であった低い線熱膨張係数を示し、更にはポリイミドの電荷移動相互作用も抑制されて高い透明性をも実現することができる。
The polyimide of this invention has a repeating unit represented by following formula (2).
Figure JPOXMLDOC01-appb-C000008
The first feature of the polyimide having a repeating unit represented by the formula (2) according to the present invention is that two ester bonds exist in the para position of the central phenylene group of the tetracarboxylic dianhydride moiety, Since it has a biphenylene structure bonded at the para position, the polyimide main chain structure forms a linear and rigid structure. Due to this characteristic, it is considered that the polyimide chain is highly oriented along the film plane direction (in-plane orientation) and exhibits excellent thermal dimensional stability (low linear thermal expansion coefficient). However, a low thermal expansion polyimide having such a linear and rigid structure has a strong cohesive force between polyimide chains, and thus is usually insoluble in an organic solvent, does not melt, and has poor workability. Therefore, in general, a method of bending a polyimide main chain structure by introducing a siloxane bond, an ether bond or a meta bond into the polyimide main chain, a method of reducing the imide group concentration in the polyimide repeating unit, and a bulky polyimide side chain. A method is adopted in which a substituent is introduced to weaken the cohesive force between polyimide chains and increase the workability. However, these methods inhibit the in-plane orientation in the polyimide molded body, particularly the film, and consequently increase the linear thermal expansion coefficient. That is, it is very difficult to achieve both workability and low thermal expansion.
Therefore, this problem can be solved by the second feature described next to the polyimide having the repeating unit represented by the formula (2) according to the present invention. That is, a bulky cyclohexyl group is substituted for the central phenylene group of the tetracarboxylic dianhydride moiety, and a side chain of the diamine moiety is substituted with a bulky trifluoromethyl group for electron withdrawing, so that between polyimide chains Only the cohesive force can be weakened without inhibiting the in-plane orientation. The polyimide having the repeating unit represented by the formula (2) that realizes this exquisite balance is excellent in solubility in various types of organic solvents, and also has excellent workability because it also has thermoplasticity, and A low coefficient of linear thermal expansion, which was originally difficult to achieve, is exhibited. Further, charge transfer interaction of polyimide is suppressed, and high transparency can be realized.
 本発明にかかる式(2)で表される繰り返し単位を有するポリイミドは、式(1)で表されるTACHQを原料とすることで、上記のような優れた特性を有するポリイミドを合成することができる。そのポリイミドの製造方法については特に限定されないが、例えば、式(1)で表されるTACHQと、ジアミンとして下記式(5)で表される2,2’-ビス(トリフルオロメチル)ベンジジン(以後、TFMBと略称する場合がある)と反応させて、式(2)で表される繰り返し単位を有するポリイミドの前駆体(ポリアミド酸)を得る工程およびポリアミド酸をイミド化する工程を経て製造することができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
The polyimide which has a repeating unit represented by Formula (2) concerning this invention can synthesize | combine the polyimide which has the above outstanding characteristics by using TACHQ represented by Formula (1) as a raw material. it can. The method for producing the polyimide is not particularly limited. For example, TACHQ represented by the formula (1) and 2,2′-bis (trifluoromethyl) benzidine represented by the following formula (5) (hereinafter referred to as diamine) And may be abbreviated as TFMB) to obtain a polyimide precursor (polyamic acid) having a repeating unit represented by the formula (2) and imidizing the polyamic acid. Can do.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 ポリアミド酸を重合する際、重合反応性およびポリイミドの要求特性を著しく損なわない範囲で、式(1)で表されるTACHQ以外の芳香族または脂肪族テトラカルボン酸二無水物を共重合成分として併用することができる。
 その際に使用可能な芳香族テトラカルボン酸二無水物としては、特に限定されないが、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ハイドロキノン-ビス(トリメリテートアンハイドライド)、メチルハイドロキノン-ビス(トリメリテートアンハイドライド)、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン酸二無水物等が挙げられる。
 脂肪族テトラカルボン酸二無水物としては、特に限定されないが、例えば、脂環式のものとしては、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(ジオキソテトラヒドロフリル-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)テトラリン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、ビシクロ-3,3’,4,4’-テトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物等が挙げられる。また、これらを2種類以上併用することもできる。
 ポリイミドの溶解性、耐熱性、透明性を更に高める観点から、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(以後、6FDAと略称する場合がある)、ポリイミド成形体の更なる低熱膨張性発現という観点から、剛直で直線的な構造を有するテトラカルボン酸二無水物、即ちピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が、共重合成分として好適である。
 式(1)で表されるTACHQ以外の芳香族または脂肪族テトラカルボン酸二無水物を共重合成分として併用する場合には、全てのテトラカルボン酸二無水物に対するTACHQの割合は、好ましくは55mol%以上、より好ましくは70mol%以上、更に好ましくは80mol%以上、特に好ましくは90mol%以上であるとよい。
When polymerizing polyamic acid, an aromatic or aliphatic tetracarboxylic dianhydride other than TACHQ represented by formula (1) is used as a copolymerization component as long as the polymerization reactivity and the required properties of polyimide are not significantly impaired. can do.
The aromatic tetracarboxylic dianhydride that can be used in this case is not particularly limited. For example, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, hydroquinone -Bis (trimellitate anhydride), methylhydroquinone-bis (trimellitate anhydride), 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic acid Dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Biphenylsulfonetetracarboxylic dianhydride, 4,4 '-(hexafluoroisopropylidene) diphthalic anhydride, 2,2'-bis (3,4-dicarboxypheny E) Propanoic acid dianhydride and the like.
The aliphatic tetracarboxylic dianhydride is not particularly limited. For example, as the alicyclic one, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic Acid dianhydride, 5- (dioxotetrahydrofuryl-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, 4- (2,5-dioxotetrahydrofuran-3-yl) tetralin-1,2 -Dicarboxylic anhydride, tetrahydrofuran-2,3,4,5-tetracarboxylic dianhydride, bicyclo-3,3 ', 4,4'-tetracarboxylic dianhydride, 1,2,3,4 Examples thereof include cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, etc. Two or more of these may be used in combination.
From the viewpoint of further improving the solubility, heat resistance and transparency of the polyimide, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter sometimes abbreviated as 6FDA), further lower heat of the polyimide molded body From the standpoint of expansibility, tetracarboxylic dianhydride having a rigid and linear structure, ie, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, Suitable as a polymerization component.
When an aromatic or aliphatic tetracarboxylic dianhydride other than TACHQ represented by the formula (1) is used as a copolymerization component, the ratio of TACHQ to all tetracarboxylic dianhydrides is preferably 55 mol. % Or more, more preferably 70 mol% or more, still more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
 本発明にかかるポリアミド酸を重合する際、重合反応性およびポリイミドの要求特性を著しく損なわない範囲で、式(5)で表されるTFMB以外の芳香族または脂肪族ジアミンを共重合成分として併用することができる。
 その際に使用可能な芳香族ジアミンとしては、特に限定されないが、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、2,4-ジアミノキシレン、2,4-ジアミノデュレン、4,4’-ジアミノジフェニルメタン、4,4’-メチレンビス(2-メチルアニリン)、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-ジアミノジフェニルエ-テル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、4-アミノフェニル-4’-アミノベンゾエート、ベンジジン、3,3’-ジヒドロキシベンジジン、3,3’-ジメトキシベンジジン、o-トリジン、m-トリジン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、p-ターフェニレンジアミン等が挙げられる。
 また、脂肪族ジアミンとしては、鎖状脂肪族乃至脂環式ジアミンであり、脂環式ジアミンとしては、特に限定されないが、例えば、4,4’-メチレンビス(シクロヘキシルアミン)、イソホロンジアミン、トランス-1,4-ジアミノシクロヘキサン、シス-1,4-ジアミノシクロヘキサン、1,4-シクロヘキサンビス(メチルアミン)、2,5-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、2,6-ビス(アミノメチル)ビシクロ〔2.2.1〕ヘプタン、3,8-ビス(アミノメチル)トリシクロ〔5.2.1.0〕デカン、1,3-ジアミノアダマンタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、2,2-ビス(4-アミノシクロヘキシル)ヘキサフルオロプロパン、鎖状脂肪族ジアミンとしては、特に限定されないが、例えば、1,3-プロパンジアミン、1,4-テトラメチレンジアミン、1,5-ペンタメチレンジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、ジアミノシロキサン等が挙げられる。またこれらを2種類以上併用することもできる。
When polymerizing the polyamic acid according to the present invention, an aromatic or aliphatic diamine other than TFMB represented by the formula (5) is used as a copolymerization component in a range that does not significantly impair the polymerization reactivity and the required characteristics of polyimide. be able to.
The aromatic diamine that can be used in this case is not particularly limited. For example, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 2,4-diaminoxylene, 2,4-diaminodurene, 4,4'-diaminodiphenylmethane, 4,4'-methylenebis (2-methylaniline), 4,4'-methylenebis (2-ethylaniline), 4,4'-methylenebis (2, 6-dimethylaniline), 4,4′-methylenebis (2,6-diethylaniline), 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 2, 4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminobenzanilide, 4-aminophenyl-4'-aminobenzoate, benzidine, 3,3'-dihydroxybenzidine, 3,3 ' -Dimethoxybenzidine, o-tolidine, m-tolidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene 4,4′-bis (4-aminophenoxy) biphenyl, bis (4- (3-aminophenoxy) phenyl) sulfone, bis (4- (4-aminophenoxy) phenyl) sulfone, 2,2-bis (4 -(4-Aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexaful Ropuropan, 2,2-bis (4-aminophenyl) hexafluoropropane, p- terphenyl-phenylenediamine, and the like.
The aliphatic diamine is a chain aliphatic to alicyclic diamine, and the alicyclic diamine is not particularly limited. For example, 4,4′-methylenebis (cyclohexylamine), isophoronediamine, trans- 1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,4-cyclohexanebis (methylamine), 2,5-bis (aminomethyl) bicyclo [2.2.1] heptane, 2,6- Bis (aminomethyl) bicyclo [2.2.1] heptane, 3,8-bis (aminomethyl) tricyclo [5.2.1.0] decane, 1,3-diaminoadamantane, 2,2-bis (4 -Aminocyclohexyl) propane, 2,2-bis (4-aminocyclohexyl) hexafluoropropane, and chain aliphatic diamine Although not limited thereto, for example, 1,3-propanediamine, 1,4-tetramethylenediamine, 1,5-pentamethylenediamine, 1,6-hexamethylenediamine, 1,7-heptamethylenediamine, 1,8- Examples include octamethylene diamine, 1,9-nonamethylene diamine, and diaminosiloxane. Two or more of these may be used in combination.
 重合反応の際、使用される溶媒としてはN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性溶媒が好ましいが、原料モノマーと生成するポリアミド酸、そしてイミド化されたポリイミドが溶解すれば如何なる溶媒であっても何ら問題なく使用でき、特にその溶媒の構造には限定されない。具体的には例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m-クレゾール、p-クレゾール、o-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル等のエーテル系溶媒、その他汎用溶媒として、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用でき、これらを2種類以上混合して用いてもよい。 In the polymerization reaction, the solvent used is preferably an aprotic solvent such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, etc., but is formed with the raw material monomer. As long as the polyamic acid and the imidized polyimide are dissolved, any solvent can be used without any problem, and the structure of the solvent is not particularly limited. Specifically, for example, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, ester solvents such as butyl acetate, ethyl acetate and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycols such as diethylene glycol dimethyl ether, triethylene glycol and triethylene glycol dimethyl ether Solvent, phenol solvents such as phenol, m-cresol, p-cresol, o-cresol, 3-chlorophenol, 4-chlorophenol, cyclopentanone, cyclohexanone, acetone, methyl Ketone solvents such as ethyl ketone, diisobutyl ketone and methyl isobutyl ketone, ether solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane and dibutyl ether, and other general-purpose solvents include acetophenone, 1,3-dimethyl- 2-imidazolidinone, sulfolane, dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, Petroleum naphtha solvents can also be used, and two or more of these may be used in combination.
 式(1)で表されるTACHQと式(5)で表されるTFMBを重付加反応させてポリアミド酸を得た後、次いでこれをイミド化することにより、当該産業上極めて有用な本発明のポリイミドを得ることができる。
 本発明のポリイミドは、高分子主鎖の直線性、剛直性、側鎖に嵩高い置換基が存在するという化学構造上の特徴から、ポリイミド樹脂とした際に、様々な種類の有機溶媒に対する溶解性に優れ、かつ、熱可塑性をも併せ持つために加工性に優れ、更に、そのポリイミドの成形体、特にフィルムは、低い線熱膨張係数、そして高い透明性を併せ持つ材料とすることができる。
 通常、テトラカルボン酸二無水物とジアミンとの重合反応性は、最終的に得られるポリイミド成形体の靭性に大きな影響を及ぼす。重合反応性が十分高くないと、高重合体が得られず、結果としてポリマー鎖同士の絡み合いが低くなり、ポリイミド成形体が脆弱になる恐れがある。本発明で使用する式(1)のTACHQと式(5)のTFMBは、十分に高い重合反応性を示すため、そのような懸念がない。
TACHQ represented by the formula (1) and TFMB represented by the formula (5) are polyaddition-reacted to obtain a polyamic acid, and then imidized to obtain a very useful industrially useful product of the present invention. A polyimide can be obtained.
The polyimide of the present invention is soluble in various kinds of organic solvents when used as a polyimide resin due to the linearity and rigidity of the polymer main chain and the chemical structural features of having bulky substituents in the side chain. In addition, it has excellent processability because it has both thermoplasticity and thermoplasticity. Further, a molded product of the polyimide, particularly a film, can be a material having both a low linear thermal expansion coefficient and high transparency.
Usually, the polymerization reactivity of tetracarboxylic dianhydride and diamine greatly affects the toughness of the finally obtained polyimide molded body. If the polymerization reactivity is not sufficiently high, a high polymer cannot be obtained, and as a result, the entanglement between polymer chains becomes low and the polyimide molded body may become brittle. The TACHQ of the formula (1) and the TFMB of the formula (5) used in the present invention show sufficiently high polymerization reactivity, so there is no such concern.
 本発明のポリイミドを製造する方法は特に限定されず、公知の方法を適宜適用することができる。具体的には例えば、以下の方法により合成できる。先ず式(5)のTFMBを重合溶媒に溶解し、この溶液に式(5)のTFMBと実質的に等モルの式(1)のTACHQ粉末を徐々に添加し、メカニカルスターラー等を用い、0~100℃の範囲、好ましくは20~60℃で0.5~150時間好ましくは1~48時間撹拌する。この際モノマー濃度は、通常、5~50重量%の範囲、好ましくは10~40重量%の範囲である。このようなモノマー濃度範囲で重合を行うことにより均一で高重合度のポリアミド酸を得ることができる。ポリアミド酸の重合度が増加しすぎて、重合溶液が撹拌しにくくなった場合は、適宜同一溶媒で希釈することもできる。ポリイミド成形体の靭性の観点からポリアミド酸の重合度はできるだけ高いことが望ましい。上記モノマー濃度範囲で重合を行うことによりポリマーの重合度が十分高く、モノマー及びポリマーの溶解性も十分確保することができる。上記範囲より低い濃度で重合を行うと、ポリアミド酸の重合度が十分高くならない場合があり、また、上記モノマー濃度範囲より高濃度で重合を行うと、モノマーや生成するポリマーの溶解が不十分となる場合がある。また、脂肪族ジアミンを使用した場合、重合初期にしばしば塩形成が起こり、重合が妨害されるが、塩形成を抑制しつつできるだけ重合度を上げるためには、重合時のモノマー濃度を上記の好適な濃度範囲に管理することが好ましい。 The method for producing the polyimide of the present invention is not particularly limited, and known methods can be appropriately applied. Specifically, for example, it can be synthesized by the following method. First, TFMB of formula (5) is dissolved in a polymerization solvent, and TACHQ powder of formula (1), which is substantially equimolar to TFMB of formula (5), is gradually added to this solution, and a mechanical stirrer or the like is used. Stir at a temperature in the range of -100 ° C, preferably 20-60 ° C for 0.5-150 hours, preferably 1-48 hours. In this case, the monomer concentration is usually in the range of 5 to 50% by weight, preferably in the range of 10 to 40% by weight. By carrying out polymerization in such a monomer concentration range, a polyamic acid having a uniform and high degree of polymerization can be obtained. When the polymerization degree of the polyamic acid increases too much and the polymerization solution becomes difficult to stir, it can be appropriately diluted with the same solvent. From the viewpoint of the toughness of the polyimide molded body, it is desirable that the degree of polymerization of the polyamic acid is as high as possible. By performing the polymerization in the above monomer concentration range, the degree of polymerization of the polymer is sufficiently high, and the solubility of the monomer and polymer can be sufficiently ensured. When the polymerization is performed at a concentration lower than the above range, the degree of polymerization of the polyamic acid may not be sufficiently high, and when the polymerization is performed at a concentration higher than the above monomer concentration range, the monomer and the polymer to be generated are not sufficiently dissolved. There is a case. In addition, when an aliphatic diamine is used, salt formation often occurs at the initial stage of polymerization and the polymerization is hindered. However, in order to increase the degree of polymerization as much as possible while suppressing salt formation, the monomer concentration during polymerization is preferably set as described above. It is preferable to manage the concentration range within a range.
 次にポリアミド酸をイミド化する方法について説明する。本発明のポリイミドは、公知の方法でイミド化が可能である。例えば、脱水環化試薬によってポリアミド酸をイミド化する化学イミド化法、ポリアミド酸を高沸点溶媒中で重合した後、続いてキシレン等の共沸剤存在下で150℃以上に加熱して副生する水を系内から除去して高重合度のポリイミドを溶液状態で得る溶液熱イミド化法、または、ポリアミド酸溶液をガラス基板等の支持体上に流延し乾燥して得られたポリアミド酸のフィルム状成形体を加熱炉等で250℃以上、好ましくは300℃以上で加熱してイミド化する熱イミド化法が挙げられる。透明性の高いポリイミド成形体を得るためには、これらのイミド化方法の内、穏和な条件下でイミド化が可能な化学イミド化法が好ましい。 Next, a method for imidizing polyamic acid will be described. The polyimide of the present invention can be imidized by a known method. For example, a chemical imidation method in which polyamic acid is imidized with a dehydrating cyclization reagent, polyamic acid is polymerized in a high-boiling solvent, and then heated to 150 ° C. or higher in the presence of an azeotropic agent such as xylene as a by-product. Solution heat imidation method that removes water from the system to obtain polyimide with a high degree of polymerization in solution, or polyamic acid obtained by casting and drying a polyamic acid solution on a support such as a glass substrate There is a thermal imidation method in which the film-like molded body is imidized by heating at 250 ° C. or higher, preferably 300 ° C. or higher in a heating furnace or the like. In order to obtain a highly transparent polyimide molded body, among these imidization methods, a chemical imidation method capable of imidization under mild conditions is preferable.
 化学イミド化方法について詳しく説明する。先に記載した方法で得られたポリアミド酸溶液を重合時に使用した溶媒と同一の溶媒で希釈する。撹拌し易い適度な溶液粘度に希釈したポリアミド酸溶液をメカニカルスターラーなどで撹拌しながら、この中に有機酸の無水物と、塩基性触媒として3級アミンからなる脱水閉環剤(化学イミド化剤)を滴下し、0~100℃、好ましくは10~50℃で1~72時間撹拌することで化学的にイミド化を完結させる。その際に使用可能な有機酸無水物としては特に限定されないが、無水酢酸、無水プロピオン酸等が挙げられる。試薬の取り扱いや精製のし易さから無水酢酸が好適に使用される。また塩基性触媒としては、ピリジン、トリエチルアミン、キノリン等が使用できるが試薬の取り扱いや分離のし易さからピリジンが好適に用いられるが、これらに限定されない。化学イミド化剤中の有機酸無水物量は、ポリアミド酸の理論脱水量の1~10倍モルの範囲であり、より好ましくは1~5倍モルである。また塩基性触媒の量は、有機酸無水物量に対して0.1~2倍モルの範囲であり、より好ましくは0.1~1倍モルの範囲である。 The chemical imidization method will be described in detail. The polyamic acid solution obtained by the method described above is diluted with the same solvent used in the polymerization. While stirring a polyamic acid solution diluted to an appropriate solution viscosity that is easy to stir with a mechanical stirrer, etc., a dehydrating ring-closing agent (chemical imidizing agent) consisting of an organic acid anhydride and a tertiary amine as a basic catalyst. Is dripped and stirred at 0 to 100 ° C., preferably 10 to 50 ° C. for 1 to 72 hours to complete imidation chemically. Although it does not specifically limit as an organic acid anhydride which can be used in that case, Acetic anhydride, propionic anhydride, etc. are mentioned. Acetic anhydride is preferably used because of easy handling and purification of the reagent. As the basic catalyst, pyridine, triethylamine, quinoline and the like can be used, but pyridine is preferably used because of easy handling and separation of the reagent, but is not limited thereto. The amount of the organic acid anhydride in the chemical imidizing agent is in the range of 1 to 10 times mol, more preferably 1 to 5 times mol of the theoretical dehydration amount of the polyamic acid. The amount of the basic catalyst is in the range of 0.1 to 2 moles, more preferably in the range of 0.1 to 1 moles, relative to the amount of the organic acid anhydride.
 上記のように化学イミド化後の反応溶液中には、化学イミド化剤やカルボン酸などの副生成物(以下、不純物という)が混入しているため、これらを除去してポリイミドを精製する必要がある。精製は公知の方法が利用できる。例えば、最も簡便な方法としては、イミド化した反応溶液を撹拌しながら大量の貧溶媒中に滴下してポリイミドを析出させた後、ポリイミド粉末を回収して不純物が除去されるまで繰返し洗浄し、減圧乾燥して、ポリイミド粉末を得る方法が適用できる。この時、使用できる貧溶媒としては、ポリイミドを析出させ、不純物を効率よく除去でき、乾燥し易い溶媒であれば特に限定されないが、例えば、水、メタノール、エタノール、イソプロパノールなどのアルコール類が好適であり、これらを混合して用いてもよい。貧溶媒中に滴下して析出させる時のポリイミド溶液の濃度は、高すぎると析出するポリイミドが粒塊となり、その粗大な粒子中に不純物が残留する可能性や、得られたポリイミド粉末を溶媒に溶解する時間が長時間要する恐れがある。一方、ポリイミド溶液の濃度を薄くし過ぎると、多量の貧溶媒が必要となり、廃溶剤処理による環境負荷増大や製造コスト高になるため好ましくない。したがって、貧溶媒中に滴下する時のポリイミド溶液の濃度は、20重量%以下、より好ましくは10重量%以下である。この時使用する貧溶媒の量はポリイミド溶液の等量以上が好ましく、5~100倍量が好適である。得られたポリイミド粉末を回収し、残留溶媒を真空乾燥や熱風乾燥などで除去する。乾燥温度と時間は、ポリイミドが変質せず、残留溶媒が蒸発する温度であれば制限はなく、30~200℃の温度範囲において48時間以下で乾燥させることが好ましい。 As mentioned above, chemical imidization agents and by-products such as carboxylic acids (hereinafter referred to as impurities) are mixed in the reaction solution after chemical imidation, so it is necessary to remove these and purify the polyimide. There is. A known method can be used for purification. For example, as the simplest method, after dripping in a large amount of poor solvent while stirring the imidized reaction solution to precipitate polyimide, the polyimide powder is recovered and repeatedly washed until impurities are removed, A method of obtaining polyimide powder by drying under reduced pressure can be applied. At this time, the poor solvent that can be used is not particularly limited as long as it is a solvent that allows polyimide to be precipitated and impurities can be efficiently removed and is easily dried. For example, alcohols such as water, methanol, ethanol, and isopropanol are suitable. There may be a mixture of these. When the concentration of the polyimide solution when it is dropped into a poor solvent and deposited is too high, the deposited polyimide becomes agglomerates, and impurities may remain in the coarse particles, and the obtained polyimide powder is used as a solvent. It may take a long time to dissolve. On the other hand, if the concentration of the polyimide solution is too thin, a large amount of poor solvent is required, which is not preferable because the environmental load increases due to waste solvent treatment and the production cost increases. Therefore, the concentration of the polyimide solution when dropped in the poor solvent is 20% by weight or less, more preferably 10% by weight or less. The amount of the poor solvent used at this time is preferably equal to or greater than that of the polyimide solution, and is preferably 5 to 100 times. The obtained polyimide powder is recovered, and the residual solvent is removed by vacuum drying or hot air drying. The drying temperature and time are not particularly limited as long as the polyimide does not change in quality and the residual solvent evaporates, and it is preferable to dry in a temperature range of 30 to 200 ° C. for 48 hours or less.
 本発明のポリイミドは、ポリイミド成形体の靭性及び溶液のハンドリングの観点から、ポリイミドの固有粘度として、好ましくは0.1~10.0dL/gの範囲であり、より好ましくは0.3~5.0dL/gの範囲である。 The polyimide of the present invention preferably has a polyimide intrinsic viscosity in the range of 0.1 to 10.0 dL / g, more preferably 0.3 to 5. The range is 0 dL / g.
 本発明のポリイミドは、様々な種類の有機溶媒に可溶なことから、使用用途や加工条件に合わせて溶媒を選ぶことができる。例えば、長時間にわたり連続塗工する場合、ポリイミド溶液中の溶媒が大気中の水分を吸湿し、ポリイミドが析出する恐れがあるので、トリエチレングリコールジメチルエーテル、γ-ブチロラクトンあるいはシクロペンタノンなどの低吸湿性溶媒を使用することが好ましい。したがって、本発明のポリイミドは低吸湿性を示す様々な溶媒や混合溶媒を選ぶことができる。使用される低吸湿性溶媒は、特に限定されないが、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン、酢酸ブチル、酢酸エチル、酢酸イソブチル等のエステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコール、トリエチレングリコールジメチルエーテル等のグリコール系溶媒、フェノール、m-クレゾール、p-クレゾール、o-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、シクロペンタノン、シクロヘキサノン、アセトン、メチルエチルケトン、ジイソブチルケトン、メチルイソブチルケトン等のケトン系溶媒、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、ジエトキシエタン、ジブチルエ-テル等のエ-テル系溶媒、その他汎用溶媒として、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、クロロホルム、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用でき、これらを2種類以上混合して用いてもよい。また、吸湿性溶媒であるN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド溶媒でも、上記低吸湿性溶媒と混合することで、吸湿によるポリイミドの析出を抑制することもできる。 Since the polyimide of the present invention is soluble in various types of organic solvents, the solvent can be selected according to the intended use and processing conditions. For example, in the case of continuous coating over a long period of time, the solvent in the polyimide solution may absorb moisture in the air and the polyimide may be deposited, so low moisture absorption such as triethylene glycol dimethyl ether, γ-butyrolactone or cyclopentanone. It is preferable to use an organic solvent. Therefore, various solvents and mixed solvents exhibiting low hygroscopicity can be selected for the polyimide of the present invention. The low hygroscopic solvent used is not particularly limited. For example, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, α-methyl-γ-butyrolactone, butyl acetate, acetic acid Ester solvents such as ethyl and isobutyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as diethylene glycol dimethyl ether, triethylene glycol and triethylene glycol dimethyl ether, phenol, m-cresol, p-cresol, o-cresol, Phenolic solvents such as 3-chlorophenol and 4-chlorophenol, keto such as cyclopentanone, cyclohexanone, acetone, methyl ethyl ketone, diisobutyl ketone, methyl isobutyl ketone Solvents such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, diethoxyethane, dibutyl ether, and other general-purpose solvents such as acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, Dimethyl sulfoxide, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, chloroform, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvents, etc. Two or more of these may be mixed and used. Also, amide solvents such as hygroscopic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone can be mixed with the above low hygroscopic solvent to precipitate polyimide due to moisture absorption. Can also be suppressed.
 本発明のポリイミドを溶媒に溶解して溶液とするときの固形分濃度としては、ポリイミドの分子量、製造方法や製造するフィルムの厚さにもよるが、5重量%以上が好ましい。固形分濃度が低すぎると、十分な膜厚のフィルムを形成することが困難となる。本発明のポリイミドを溶媒に溶解するときの方法としては、例えば、溶媒を撹拌しながら本発明のポリイミド粉末を加え、空気中、または不活性ガス中で室温~溶媒の沸点以下の温度範囲で1~48時間かけて溶解させ、ポリイミド溶液にすることができる。
 また、本発明のポリイミドには、必要に応じて離型剤、フィラー、染料、顔料、シランカップリング剤、架橋剤、末端封止剤、酸化防止剤、消泡剤、レベリング剤などの添加物を加えることができる。
 得られたポリイミド溶液は、公知の方法で製膜し、ポリイミド成形体やフィルムを形成できる。例えば、ポリイミド溶液をガラス基板等の支持体上にドクターブレード等を用いて流延し、熱風乾燥器、赤外線乾燥炉、真空乾燥器、イナートオーブン等を用いて、通常、40~300℃の範囲、好ましくは、50~250℃の範囲で乾燥することによってポリイミドフィルムを形成することができる。
The solid concentration when the polyimide of the present invention is dissolved in a solvent to form a solution depends on the molecular weight of the polyimide, the production method and the thickness of the film to be produced, but is preferably 5% by weight or more. If the solid content concentration is too low, it is difficult to form a film having a sufficient film thickness. As a method for dissolving the polyimide of the present invention in a solvent, for example, the polyimide powder of the present invention is added while stirring the solvent, and 1 in the air or in an inert gas at a temperature range from room temperature to the boiling point of the solvent. It can be dissolved over ˜48 hours to make a polyimide solution.
In addition, the polyimide of the present invention may contain additives such as mold release agents, fillers, dyes, pigments, silane coupling agents, crosslinking agents, end-capping agents, antioxidants, antifoaming agents, and leveling agents as necessary. Can be added.
The obtained polyimide solution can be formed into a film by a known method to form a polyimide molded body or film. For example, a polyimide solution is cast on a support such as a glass substrate using a doctor blade or the like, and usually in the range of 40 to 300 ° C. using a hot air dryer, an infrared drying furnace, a vacuum dryer, an inert oven, or the like. Preferably, the polyimide film can be formed by drying in the range of 50 to 250 ° C.
 以下、本発明を実施例により具体的に説明するが、これら実施例に限定されるものではない。
 なお、以下の例における物性値は、次の方法により測定した。
<赤外吸収スペクトル>
 フーリエ変換赤外分光光度計FT/IR4100(日本分光社製)を用い、KBr透過法にてテトラカルボン酸二無水物の赤外吸収スペクトルを測定した。また、ポリイミド薄膜の赤外吸収スペクトルは、透過法によって測定した。
H-NMRスペクトル>
 フーリエ変換核磁気共鳴分光光度計JNM-ECP400(JEOL製)を用い、重水素化ジメチルスルホキシド中でテトラカルボン酸二無水物および化学イミド化したポリイミド粉末のH-NMRスペクトルを測定した。
<示差走査熱量分析(融点)>
 テトラカルボン酸二無水物の融点は、示差走査熱量分析装置DSC3100(ネッチ社)を用いて、窒素雰囲気中、昇温速度5℃/分で測定した。融点が高く融解ピークがシャープであるほど、高純度であることを示す。
<固有粘度>
 0.5重量%のポリアミド酸溶液、または、ポリイミド溶液の還元粘度は、オストワルド粘度計を用いて30℃で測定した。この値をもって固有粘度とみなした。
<ポリイミド粉末の有機溶媒への溶解性試験>
 ポリイミド粉末10mgに対し、表1に記載の有機溶媒1g(固形分濃度1重量%)をサンプル管に入れ、試験管ミキサーを用いて5分間撹拌して溶解状態を目視で確認した。溶媒として、クロロホルム(CF)、アセトン、テトラヒドロフラン(THF)、1,4-ジオキサン(DOX)、酢酸エチル、シクロペンタノン(CPN)、シクロヘキサノン(CHN)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、m-クレゾール、ジメチルスルホキシド(DMSO)、γ-ブチロルラクトン(GBL)、トリエチレングリコールジメチルエーテル(Tri-GL)を使用した。
 評価結果は、室温で溶解した場合を++、加熱により溶解し、且つ室温まで放冷後も均一性を保持していた場合を+、膨潤/一部溶解した場合を±、不溶の場合を-と表示した。
<ガラス転移温度:T、熱可塑性>
 TA Instruments社製動的粘弾性測定装置(Q800)を用いて周波数0.1Hz、振幅0.1%、昇温速度5℃/分における損失ピークからポリイミドフィルムのガラス転移温度を求めた。また、ガラス転移温度直後の貯蔵弾性率曲線の低下の急峻さより熱可塑性を評価した。
<線熱膨張係数:CTE>
 ポリイミドフィルムの線熱膨張係数は、ネッチ社製TMA4000を用いて(サンプルサイズ 幅5mm、長さ15mm)、荷重を膜厚(μm)×0.5gとして、5℃/minで150℃まで一旦昇温(1回目の昇温)させた後、20℃まで冷却し、さらに5℃/minで昇温(2回目の昇温)させて2回目の昇温時のTMA曲線より計算した。線熱膨張係数は100~200℃の間の平均値として求めた。
<ポリイミド膜の透過率:T400
 日本分光社製紫外可視近赤外分光光度計(V-650)を用いて、ポリイミドフィルム(20μm厚)の200-700nmにおける光透過率を測定し、400nmの波長における光透過率を透明性の指標として用いた。また、透過率が0.5%以下となる波長(カットオフ波長)も求めた。
<黄色度(イエローネスインデックス):YI>
 紫外-可視分光光度計V-530(日本分光社製)を用い、波長380~780nmにおけるポリイミドフィルムの光透過率(T%)からVWCT-615型 カラ-診断プログラム(日本分光社製)によってJISK77373に準拠して黄色度(YI)算出した。
<全光線透過率およびヘイズ>
 Haze Meter NDH4000(日本電色工業製)を用い、JISK7361に準拠したポリイミドフィルムの全光線透過率とJISK7136に準拠したヘイズ(濁度)を求めた。
<複屈折:Δn>
 アタゴ社製アッベ屈折計(アッベ1T)を用いて、ポリイミドフィルム面に平行な方向(nin)と垂直な方向(膜厚方向)(nout)の屈折率をアッベ屈折計(ナトリウムランプ使用、波長589nm)で測定し、これらの屈折率の差から複屈折(Δn=nin-nout)を求めた。複屈折値が高いほど、ポリマー鎖の面内配向度が高いことを意味する。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, it is not limited to these Examples.
The physical property values in the following examples were measured by the following methods.
<Infrared absorption spectrum>
Using a Fourier transform infrared spectrophotometer FT / IR4100 (manufactured by JASCO Corporation), the infrared absorption spectrum of tetracarboxylic dianhydride was measured by the KBr transmission method. Moreover, the infrared absorption spectrum of the polyimide thin film was measured by the transmission method.
< 1 H-NMR spectrum>
Using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), 1 H-NMR spectrum of tetracarboxylic dianhydride and chemically imidized polyimide powder in deuterated dimethyl sulfoxide was measured.
<Differential scanning calorimetry (melting point)>
The melting point of tetracarboxylic dianhydride was measured using a differential scanning calorimeter DSC3100 (Netch Co., Ltd.) in a nitrogen atmosphere at a temperature rising rate of 5 ° C./min. The higher the melting point and the sharper the melting peak, the higher the purity.
<Intrinsic viscosity>
The reduced viscosity of a 0.5% by weight polyamic acid solution or polyimide solution was measured at 30 ° C. using an Ostwald viscometer. This value was regarded as the intrinsic viscosity.
<Solubility test of polyimide powder in organic solvent>
With respect to 10 mg of the polyimide powder, 1 g of an organic solvent shown in Table 1 (solid content concentration 1% by weight) was placed in a sample tube, stirred for 5 minutes using a test tube mixer, and the dissolved state was visually confirmed. As a solvent, chloroform (CF), acetone, tetrahydrofuran (THF), 1,4-dioxane (DOX), ethyl acetate, cyclopentanone (CPN), cyclohexanone (CHN), N, N-dimethylformamide (DMF), N , N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), m-cresol, dimethyl sulfoxide (DMSO), γ-butyrolactone (GBL), triethylene glycol dimethyl ether (Tri-GL) did.
The evaluation results are ++ when dissolved at room temperature, + when dissolved by heating and maintaining uniformity after being allowed to cool to room temperature, ± when swollen / partially dissolved, and − Is displayed.
<Glass transition temperature: T g , thermoplasticity>
The glass transition temperature of the polyimide film was determined from the loss peak at a frequency of 0.1 Hz, an amplitude of 0.1%, and a heating rate of 5 ° C./min using a TA Instruments dynamic viscoelasticity measuring device (Q800). Further, the thermoplasticity was evaluated from the steepness of the decrease in the storage elastic modulus curve immediately after the glass transition temperature.
<Linear thermal expansion coefficient: CTE>
The linear thermal expansion coefficient of the polyimide film was once increased to 150 ° C. at 5 ° C./min using TMA4000 manufactured by Netch Co. (sample size: width 5 mm, length 15 mm) with a load of film thickness (μm) × 0.5 g. The temperature was raised (first temperature increase), then cooled to 20 ° C., further heated at 5 ° C./min (second temperature increase), and calculated from the TMA curve at the second temperature increase. The linear thermal expansion coefficient was determined as an average value between 100 and 200 ° C.
<Transmissivity of polyimide membrane: T400 >
Using a UV-Vis near-infrared spectrophotometer (V-650) manufactured by JASCO Corporation, the light transmittance at 200-700 nm of a polyimide film (20 μm thick) is measured, and the light transmittance at a wavelength of 400 nm is determined to be transparent. Used as an indicator. Further, the wavelength (cutoff wavelength) at which the transmittance was 0.5% or less was also determined.
<Yellowness (Yellowness Index): YI>
Using a UV-visible spectrophotometer V-530 (manufactured by JASCO Corp.), the light transmittance (T%) of the polyimide film at a wavelength of 380 to 780 nm was determined from JISK77373 by the VWCT-615 type color diagnostic program (manufactured by JASCO Corporation). The yellowness (YI) was calculated according to the above.
<Total light transmittance and haze>
Using Haze Meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.), the total light transmittance of the polyimide film based on JISK7361 and the haze (turbidity) based on JISK7136 were determined.
<Birefringence: Δn>
Using an Abbe refractometer (Abbe 1T) manufactured by Atago Co., Ltd., the refractive index in the direction parallel to the polyimide film surface (n in ) and in the direction perpendicular to the film thickness (n out ) (n out ) is measured using an Abbe refractometer (using a sodium lamp, The birefringence (Δn = n in −n out ) was determined from the difference in refractive index. The higher the birefringence value, the higher the in-plane orientation degree of the polymer chain.
<合成例1>
A.TAHQの合成
 下記式(6)で表されるテトラカルボン酸二無水物(TAHQ)は次のように合成した。ナスフラスコに無水トリメリット酸クロリド12.6751g(60.1940mmol)を入れ、脱水テトラヒドロフラン(THF)33mLに室温で溶解させ、セプタムシールして溶液Aを調製した。更に別のフラスコ中でハイドロキノン(HQ)2.2209g(20.1700mmol)を脱水THF8.2mL、ピリジン9.7mL(120mmol)を加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジによって約5分間かけて徐々に滴下し、その後室温で24時間撹拌した。反応終了後、白色沈殿を濾別し、THFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、洗液に硝酸銀水溶液を添加し白色沈殿が見られなくなったことをもって確認した。洗浄した生成物を回収し、100℃で12時間真空乾燥した。得られた生成物は、白色粉末であり、収量は8.0287g、収率87.6%であった。
Figure JPOXMLDOC01-appb-C000012
B.TAHQの同定
 生成物は、フーリエ変換赤外分光光度計FT/IR4100(日本分光社製)より、3082cm-1に芳香族C-H伸縮振動吸収帯、1847cm-1および1781cm-1に酸無水物基C=O伸縮振動吸収帯、1742cm-1にエステル基C=O伸縮振動吸収帯を確認した。
 また、フーリエ変換核磁気共鳴分光光度計JNM-ECP400(JEOL製)を用いてH-NMR測定を行った結果、(DMSO-d,δ,ppm):7.54(s,4H),8.30(d,J=7.9Hz,2H),8.65(sd,J=0.72Hz,2H),8.67(dd,J=8.0Hz,1.3Hz,2H)と帰属でき、元素分析値は推定値C:62.89%,H:2.20%,実測値C:62.69%,H:2.42%であり、生成物はTAHQであることが確認された。
 また、示差走査熱量分析装置DSC3100(ネッチ社)によって融点を測定したところ、272.4℃に鋭い融解ピ-クを示したことからこの生成物は高純度であることが示唆された。
<Synthesis Example 1>
A. Synthesis of TAHQ Tetracarboxylic dianhydride (TAHQ) represented by the following formula (6) was synthesized as follows. 12.6751 g (60.1940 mmol) of trimellitic anhydride chloride was placed in an eggplant flask, dissolved in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A. Further, in another flask, 2.2209 g (20.1700 mmol) of hydroquinone (HQ) was added to 8.2 mL of dehydrated THF and 9.7 mL (120 mmol) of pyridine, followed by septum sealing to prepare Solution B. While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe over about 5 minutes, and then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and ion exchange water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed product was collected and dried in vacuum at 100 ° C. for 12 hours. The obtained product was a white powder, and the yield was 8.0287 g and the yield was 87.6%.
Figure JPOXMLDOC01-appb-C000012
B. Identification product TAHQ, from a Fourier transform infrared spectrophotometer FT / IR4100 (manufactured by JASCO Corporation), aromatic C-H stretching vibration absorption band at 3082cm -1, acid anhydrides 1847Cm -1 and 1781cm -1 The group C═O stretching vibration absorption band was confirmed, and the ester group C═O stretching vibration absorption band was confirmed at 1742 cm −1 .
As a result of 1 H-NMR measurement using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 7.54 (s, 4H), Assigned as 8.30 (d, J = 7.9 Hz, 2H), 8.65 (sd, J = 0.72 Hz, 2H), 8.67 (dd, J = 8.0 Hz, 1.3 Hz, 2H) The elemental analysis values are estimated values C: 62.89%, H: 2.20%, measured values C: 62.69%, H: 2.42%, and the product was confirmed to be TAHQ. It was.
Further, when the melting point was measured by a differential scanning calorimeter DSC3100 (Netch Co., Ltd.), a sharp melting peak was observed at 272.4 ° C., suggesting that this product was of high purity.
<合成例2>
A.テトラカルボン酸二無水物TAPhの合成
 下記式(7)で表されるテトラカルボン酸二無水物(TAPh)は次のように合成した。ナスフラスコに無水トリメリット酸クロリド15.1116g(71.8mmol)を入れ、脱水テトラヒドロフラン(THF)16.5mLに室温で溶解させ、セプタムシールして溶液Aを調製した。更に別のフラスコ中で2-フェニルハイドロキノン6.2721g(34mmol)を脱水THF23.5mL、ピリジン8.7mL(108mmol)を加えてセプタムシールし溶液Bを調製した。氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジによって約5分かけて徐々に滴下し、その後室温で24時間撹拌した。反応終了後、白色沈殿を濾別し、THFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、洗液に硝酸銀水溶液を添加し白色沈殿が見られなくなったことをもって確認した。洗浄した生成物を回収し、80℃1時間、更に100℃で12時間真空乾燥した。得られた生成物は、白色粉末であり、収量は17.93g、収率98.7%であった。
Figure JPOXMLDOC01-appb-C000013
B.TAPhの同定
 生成物は、フーリエ変換赤外分光光度計FT/IR4100(日本分光社製)より、3092,3065cm-1に芳香族C-H伸縮振動吸収帯、1847cm-1および1775cm-1に酸無水物基C=O伸縮振動吸収帯、1752cm-1にエステル基C=O伸縮振動吸収帯を確認した。
 また、フーリエ変換核磁気共鳴分光光度計JNM-ECP400(JEOL製)を用いてH-NMR測定を行った結果、(DMSO-d,δ,ppm):7.30-7.40(m,3H),7.55-7.66(m,5H),8.23(d,J=7.8Hz,1H),8.29-8.32(m,1H),8.50-8.56(m,2H),8.66-8.70(m,2H)と帰属でき、元素分析値は推定値C:67.42%,H:2.64%,実測値C:67.49%,H:2.82%であ
り、生成物はTAPhであることが確認された。
 また、示差走査熱量分析装置DSC3100(ネッチ社)によって融点を測定したところ、198.4℃に鋭い融解ピークを示したことからこの生成物は高純度であることが示唆された。
<Synthesis Example 2>
A. Synthesis of tetracarboxylic dianhydride TAPh A tetracarboxylic dianhydride (TAPh) represented by the following formula (7) was synthesized as follows. Trimellitic chloride 15.1116 g (71.8 mmol) was placed in an eggplant flask, dissolved in 16.5 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A. Further, in a separate flask, 6.2721 g (34 mmol) of 2-phenylhydroquinone was added with 23.5 mL of dehydrated THF and 8.7 mL (108 mmol) of pyridine, and a septum was sealed to prepare solution B. While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe over about 5 minutes, and then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and ion exchange water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed product was collected and vacuum-dried at 80 ° C. for 1 hour and further at 100 ° C. for 12 hours. The obtained product was a white powder, and the yield was 17.93 g and the yield was 98.7%.
Figure JPOXMLDOC01-appb-C000013
B. Identification product TAPh the acid Fourier transform infrared spectrophotometer FT / IR4100 from (manufactured by JASCO Corporation), aromatic C-H stretching vibration absorption band at 3092,3065Cm -1, to 1847cm -1 and 1775 cm -1 An anhydride group C═O stretching vibration absorption band was confirmed, and an ester group C═O stretching vibration absorption band was confirmed at 1752 cm −1 .
Further, as a result of 1 H-NMR measurement using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 7.30-7.40 (m 3H), 7.55-7.66 (m, 5H), 8.23 (d, J = 7.8 Hz, 1H), 8.29-8.32 (m, 1H), 8.50-8 .56 (m, 2H), 8.66-8.70 (m, 2H), and the elemental analysis values are estimated C: 67.42%, H: 2.64%, measured C: 67. 49%, H: 2.82%, and the product was confirmed to be TAPh.
Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Co., Ltd.), a sharp melting peak was observed at 198.4 ° C., suggesting that this product was of high purity.
<実施例1>
A.式(1)で表されるテトラカルボン酸二無水物TACHQの合成
 式(1)で表されるTACHQは次のように合成した。ナスフラスコに無水トリメリット酸クロリド12.7003g(60.3137mmol)を入れ、脱水テトラヒドロフラン(THF)33mLに室温で溶解させ、セプタムシールして溶液Aを調製した。更に別のフラスコ中で2-シクロヘキシルハイドロキノン(CHQ)3.8551g(20.0661mmol)を脱水THF6.5mL、ピリジン9.7mL(120mmol)を加えてセプタムシールし溶液Bを調製した。
 氷浴中で冷却、撹拌しながら、溶液Aに溶液Bをシリンジによって約5分かけて徐々に滴下し、その後室温で24時間撹拌した。反応終了後、白色沈殿を濾別し、THFおよびイオン交換水で洗浄した。ピリジン塩酸塩の除去は、洗液に硝酸銀水溶液を添加し白色沈殿が見られなくなったことをもって確認した。洗浄した粗生成物を回収し、100℃で12時間真空乾燥した。得られた粗生成物は、白色粉末であり、収量は6.54g、収率87.6%であった。
(精製)
 得られた粗生成物2.5526gを無水酢酸とトルエン(体積比1:10)混合溶媒に90℃で溶解させた後、自然放冷して72時間静置した。析出した白色粉末を濾別し、160℃で12時間真空乾燥した。得られた白色粉末の収量は1.3602g、再結晶収率は53.3%であった。
Figure JPOXMLDOC01-appb-C000014
B.TACHQの同定
 再結晶によって精製した生成物は、フーリエ変換赤外分光光度計FT/IR4100(日本分光社製)より、2928cm-1に脂肪族C-H伸縮振動吸収帯、1861cm-1および1778cm-1に酸無水物基C=O伸縮振動吸収帯、1745cm-1にエステル基C=O伸縮振動吸収帯を確認した。
 また、フーリエ変換核磁気共鳴分光光度計JNM-ECP400(JEOL製)を用いてH-NMR測定を行った結果、(DMSO-d,δ,ppm):1.80-1.23(m,10H),2.69(t,J=12Hz,1H),7.50-7.18(m,3H),8.33-8.29(m,2H),8.71-8.65(m,4H)と帰属でき、元素分析値は理論値C:66.67%,H:3.73%,実測値C:66.27%,H:3.78%であり、生成物はTACHQであることが確認された。
 また、示差走査熱量分析装置DSC3100(ネッチ社)によって融点を測定したところ、229.1℃に鋭い融解ピ-クを示したことからこの生成物は高純度であることが示唆された。
<Example 1>
A. Synthesis of tetracarboxylic dianhydride TACHQ represented by formula (1) TACHQ represented by formula (1) was synthesized as follows. Into an eggplant flask, 12.7003 g (60.3137 mmol) of trimellitic anhydride chloride was placed, dissolved in 33 mL of dehydrated tetrahydrofuran (THF) at room temperature, and sealed with a septum to prepare solution A. Further, in a separate flask, 3.8551 g (20.0661 mmol) of 2-cyclohexylhydroquinone (CHQ) was added to 6.5 mL of dehydrated THF and 9.7 mL (120 mmol) of pyridine, followed by septum sealing to prepare solution B.
While cooling and stirring in an ice bath, solution B was gradually added dropwise to solution A with a syringe over about 5 minutes, and then stirred at room temperature for 24 hours. After completion of the reaction, the white precipitate was filtered off and washed with THF and ion exchange water. Removal of pyridine hydrochloride was confirmed by adding a silver nitrate aqueous solution to the washing solution and no white precipitate was observed. The washed crude product was collected and vacuum-dried at 100 ° C. for 12 hours. The obtained crude product was a white powder, and the yield was 6.54 g and the yield was 87.6%.
(Purification)
After 2.5526 g of the obtained crude product was dissolved in a mixed solvent of acetic anhydride and toluene (volume ratio 1:10) at 90 ° C., it was allowed to cool naturally and allowed to stand for 72 hours. The precipitated white powder was separated by filtration and vacuum dried at 160 ° C. for 12 hours. The yield of the obtained white powder was 1.3602 g, and the recrystallization yield was 53.3%.
Figure JPOXMLDOC01-appb-C000014
B. Identification of TACHQ The product purified by recrystallization was obtained from a Fourier transform infrared spectrophotometer FT / IR4100 (manufactured by JASCO Corporation) at 2928 cm −1 with an aliphatic C—H stretching vibration absorption band, 1861 cm −1 and 1778 cm −. An acid anhydride group C═O stretching vibration absorption band was confirmed in 1 and an ester group C═O stretching vibration absorption band was confirmed in 1745 cm −1 .
Further, as a result of 1 H-NMR measurement using a Fourier transform nuclear magnetic resonance spectrophotometer JNM-ECP400 (manufactured by JEOL), (DMSO-d 6 , δ, ppm): 1.80-1.23 (m , 10H), 2.69 (t, J = 12 Hz, 1H), 7.50-7.18 (m, 3H), 8.33-8.29 (m, 2H), 8.71-8.65. (M, 4H), the elemental analysis values were the theoretical value C: 66.67%, H: 3.73%, the actual measurement value C: 66.27%, H: 3.78%, and the product was It was confirmed to be TACHQ.
Further, when the melting point was measured with a differential scanning calorimeter DSC3100 (Netch Co., Ltd.), a sharp melting peak was observed at 229.1 ° C., suggesting that this product was of high purity.
<実施例2>
A.式(8)で表される繰り返し単位のポリイミドの合成
(ポリアミド酸の重合)TACHQ/TFMB
 2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)3mmolを脱水N,N-ジメチルアセトアミド(DMAc)に溶解した。ここに実施例1に記載のTACHQ粉末3mmolをゆっくり加え、室温で72時間撹拌し、適宜DMAcを加えポリイミド前駆体であるポリアミド酸を得た(固形分濃度16.7重量%)。得られたポリアミド酸の固有粘度は、1.72dL/gであった。
(化学イミド化反応)
 得られたポリアミド酸溶液を脱水DMAcで固形分濃度約10.0重量%に希釈後、これを撹拌しながら2.8mL(30mmol)の無水酢酸と1.2mL(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、滴下終了後更に24時間撹拌した。得られたポリイミド溶液を大量のメタノールにゆっくりと滴下しポリイミドを沈澱させた。得られた白色沈殿物をメタノールで十分洗浄し、100℃で12時間真空乾燥した。得られた繊維状ポリイミド粉末についてH-NMR測定を行ったところ、ポリアミド酸に特有のCOOHプロトン(δ=13ppm付近)およびNHCOプロトン(δ=11ppm付近)は観測されなかったことから、化学イミド化反応は完結していることが示唆された。得られたポリイミドの固有粘度は、2.55dL/gであり、高分子量体であった。また、ポリイミド粉末の溶媒に対する溶解性を表1に示す。表1より優れた溶媒溶解性を示すことがわかる。
<Example 2>
A. Synthesis of Polyimide of Repeating Unit Represented by Formula (8) (Polyamide Acid Polymerization) TACHQ / TFMB
3 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). To this, 3 mmol of TACHQ powder described in Example 1 was slowly added and stirred at room temperature for 72 hours, and DMAc was appropriately added to obtain a polyamic acid as a polyimide precursor (solid content concentration 16.7% by weight). The obtained polyamic acid had an intrinsic viscosity of 1.72 dL / g.
(Chemical imidization reaction)
The resulting polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 2.8 mL (30 mmol) of acetic anhydride and 1.2 mL (15 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition. The obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide. The resulting white precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours. When 1 H-NMR measurement was performed on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm) characteristic of polyamic acid were not observed. It was suggested that the chemical reaction was complete. The obtained polyimide had an intrinsic viscosity of 2.55 dL / g and was a high molecular weight product. Table 1 shows the solubility of the polyimide powder in the solvent. It can be seen from Table 1 that the solvent solubility is superior.
B.ポリイミド溶液の調製およびポリイミドフィルムの製膜
 上記のポリイミド粉末をγ-ブチロラクトン(GBL)に加温しながら再溶解し6.0重量%の均一溶液を調製した。このポリイミド溶液をガラス基板上に流延し、80℃2時間熱風乾燥器中で乾燥した。その後、基板ごと真空中200℃で1時間乾燥して室温まで放冷後、ガラス基板からポリイミドフィルムを剥離した。このポリイミドフィルムをもう一度真空中200℃で1時間熱処理して残留歪を除去した。
 得られたポリイミドフィルムの赤外吸収スペクトルを図1、動的粘弾性曲線を図2、熱的特性・光学的特性を表2に示す。図1より目的のポリイミドであることが同定できる。図2より急峻な貯蔵弾性率の低下が225℃付近で観測され、高い熱可塑性を示すことがわかる。表2より、線熱膨張係数(CTE)が11.9ppm/Kと低く、無色透明なフィルムであることがわかる。これらの優れた特性は、式(2)の構造による効果である。
Figure JPOXMLDOC01-appb-C000015
B. Preparation of polyimide solution and film formation of polyimide film The above polyimide powder was redissolved in γ-butyrolactone (GBL) while heating to prepare a 6.0 wt% uniform solution. This polyimide solution was cast on a glass substrate and dried in a hot air dryer at 80 ° C. for 2 hours. Thereafter, the whole substrate was dried in vacuum at 200 ° C. for 1 hour, allowed to cool to room temperature, and then the polyimide film was peeled off from the glass substrate. This polyimide film was once again heat treated in vacuum at 200 ° C. for 1 hour to remove residual strain.
FIG. 1 shows an infrared absorption spectrum of the obtained polyimide film, FIG. 2 shows a dynamic viscoelastic curve, and Table 2 shows thermal characteristics and optical characteristics. From FIG. 1, it can identify that it is the target polyimide. As can be seen from FIG. 2, a sharp decrease in storage modulus is observed around 225 ° C., indicating high thermoplasticity. From Table 2, it can be seen that the linear thermal expansion coefficient (CTE) is as low as 11.9 ppm / K and is a colorless and transparent film. These excellent characteristics are the effects of the structure of formula (2).
Figure JPOXMLDOC01-appb-C000015
<実施例3>
A.下記式(9)で表される繰り返し単位のポリイミドの合成
(ポリアミド酸の重合)TACHQ(80)6FDA(20)/TFMB
 2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)3mmolを脱水N,N-ジメチルアセトアミド(DMAc)に溶解した。ここに実施例1に記載のTACHQ粉末2.4mmolと4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)粉末0.6mmolをゆっくり加え、室温で72時間撹拌し、適宜DMAcを加えポリイミド前駆体であるポリアミド酸を得た(固形分濃度22.7重量%)。得られたポリアミド酸の固有粘度は、0.91dL/gであった。
(化学イミド化反応)
 得られたポリアミド酸溶液を脱水DMAcで固形分濃度約10.0重量%に希釈後、これを撹拌しながら2.8mL(30mmol)の無水酢酸と1.2mL(15mmol)のピリジンの混合溶液を室温でゆっくり滴下し、滴下終了後更に24時間撹拌した。得られたポリイミド溶液を大量のメタノールにゆっくりと滴下しポリイミドを沈澱させた。得られた白色沈殿物をメタノ-ルで十分洗浄し、100℃で12時間真空乾燥した。得られた繊維状ポリイミド粉末についてH-NMR測定を行ったところ、ポリアミド酸に特有のCOOHプロトン(δ=13ppm付近)およびNHCOプロトン(δ=11ppm付近)は観測されなかったことから、化学イミド化反応は完結していることが示唆された。得られたポリイミドの固有粘度は、1.75dL/gであり、高分子量体であった。また、ポリイミド粉末の溶媒に対する溶解性を表1に示す。表1より優れた溶媒溶解性を示すことがわかる。
<Example 3>
A. Synthesis of polyimide having a repeating unit represented by the following formula (9) (polymerization of polyamic acid) TACHQ (80) 6FDA (20) / TFMB
3 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). To this, 2.4 mmol of TACHQ powder described in Example 1 and 0.6 mmol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) powder were slowly added and stirred at room temperature for 72 hours. In addition, a polyamic acid as a polyimide precursor was obtained (solid content concentration 22.7% by weight). The obtained polyamic acid had an intrinsic viscosity of 0.91 dL / g.
(Chemical imidization reaction)
The resulting polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 2.8 mL (30 mmol) of acetic anhydride and 1.2 mL (15 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition. The obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide. The resulting white precipitate was thoroughly washed with methanol and vacuum dried at 100 ° C. for 12 hours. When 1 H-NMR measurement was performed on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm) characteristic of polyamic acid were not observed. It was suggested that the chemical reaction was complete. The obtained polyimide had an intrinsic viscosity of 1.75 dL / g and was a high molecular weight product. Table 1 shows the solubility of the polyimide powder in the solvent. It can be seen from Table 1 that the solvent solubility is superior.
B.ポリイミド溶液の調製およびポリイミドフィルムの製膜
 上記のポリイミド粉末をシクロペンタノン(CPN)に加温しながら再溶解し8.0重量%の均一溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃2時間熱風乾燥器で乾燥した。その後、基板ごと真空中200℃で1時間乾燥して室温まで放冷後、ガラス基板からポリイミドフィルムを剥離した。このポリイミドフィルムをもう一度真空中200℃で1時間熱処理して残留歪を除去した。得られたポリイミドフィルムの赤外吸収スペクトルを図3、動的粘弾性曲線を図4、熱的特性・光学的特性を表2に示す。図3より目的のポリイミドであることが同定できる。図4より急峻な貯蔵弾性率の低下が225℃付近で観測され、高い熱可塑性を示すことがわかる。表2より、線熱膨張係数(CTE)が24.7ppm/Kと低く、無色透明なフィルムであることがわかる。これらの優れた特性は、式(2)の構造による効果である。
Figure JPOXMLDOC01-appb-C000016
B. Preparation of polyimide solution and film formation of polyimide film The above polyimide powder was redissolved while heating in cyclopentanone (CPN) to prepare a 8.0 wt% uniform solution. This polyimide solution was cast on a glass substrate and dried with a hot air dryer at 60 ° C. for 2 hours. Thereafter, the whole substrate was dried in vacuum at 200 ° C. for 1 hour and allowed to cool to room temperature, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200 ° C. for 1 hour to remove residual strain. FIG. 3 shows the infrared absorption spectrum of the obtained polyimide film, FIG. 4 shows the dynamic viscoelasticity curve, and Table 2 shows the thermal characteristics and optical characteristics. From FIG. 3, it can identify that it is the target polyimide. As can be seen from FIG. 4, a steep decrease in storage elastic modulus is observed around 225 ° C., indicating high thermoplasticity. From Table 2, it can be seen that the linear thermal expansion coefficient (CTE) is as low as 24.7 ppm / K and is a colorless and transparent film. These excellent characteristics are the effects of the structure of formula (2).
Figure JPOXMLDOC01-appb-C000016
<実施例4>
A.下記式(10)で表される繰り返し単位のポリイミドの合成
(ポリアミド酸の重合)TACHQ(50)6FDA(50)/TFMB
 2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)2mmolを脱水N,N-ジメチルアセトアミド(DMAc)に溶解した。ここに実施例1に記載のTACHQ粉末1.0mmolと4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)粉末1.0mmolをゆっくり加え、室温で72時間撹拌し、適宜DMAcを加えポリイミド前駆体であるポリアミド酸を得た(固形分濃度30重量%)。
 得られたポリアミド酸の固有粘度は、0.56dL/gであった。
(化学イミド化反応)
 得られたポリアミド酸溶液を脱水DMAcで固形分濃度約10.0重量%に希釈後、これを撹拌しながら1.9mL(20mmol)の無水酢酸と0.8mL(10mmol)のピリジンの混合溶液を室温でゆっくり滴下し、滴下終了後更に24時間撹拌した。得られたポリイミド溶液を大量のメタノールにゆっくりと滴下しポリイミドを沈澱させた。得られた白色沈殿物をメタノールで十分洗浄し、100℃で12時間真空乾燥した。得られた繊維状ポリイミド粉末についてH-NMR測定を行ったところ、ポリアミド酸に特有のCOOHプロトン(δ=13ppm付近)およびNHCOプロトン(δ=11ppm付近)は観測されなかったことから、化学イミド化反応は完結していることが示唆された。得られたポリイミドの固有粘度は、0.76dL/gであった。また、ポリイミド粉末の溶媒に対する溶解性を表1に示す。表1より優れた溶媒溶解性を示すことがわかる。
<Example 4>
A. Synthesis of polyimide having a repeating unit represented by the following formula (10) (polymerization of polyamic acid) TACHQ (50) 6FDA (50) / TFMB
2 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). To this, 1.0 mmol of TACHQ powder described in Example 1 and 1.0 mmol of 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) powder were slowly added and stirred at room temperature for 72 hours. In addition, polyamic acid as a polyimide precursor was obtained (solid content concentration 30% by weight).
The resulting polyamic acid had an intrinsic viscosity of 0.56 dL / g.
(Chemical imidization reaction)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 1.9 mL (20 mmol) of acetic anhydride and 0.8 mL (10 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and stirred for another 24 hours after completion of the addition. The obtained polyimide solution was slowly dropped into a large amount of methanol to precipitate the polyimide. The resulting white precipitate was sufficiently washed with methanol and vacuum dried at 100 ° C. for 12 hours. When 1 H-NMR measurement was performed on the obtained fibrous polyimide powder, COOH protons (near δ = 13 ppm) and NHCO protons (near δ = 11 ppm) characteristic of polyamic acid were not observed. It was suggested that the chemical reaction was complete. The intrinsic viscosity of the obtained polyimide was 0.76 dL / g. Table 1 shows the solubility of the polyimide powder in the solvent. It can be seen from Table 1 that the solvent solubility is superior.
B.ポリイミド溶液の調製およびポリイミドフィルムの製膜
 上記のポリイミド粉末を室温でシクロペンタノン(CPN)に再溶解し23重量%の均一溶液を調製した。このポリイミド溶液をガラス基板上に流延し、60℃2時間熱風乾燥器で乾燥した。その後、基板ごと真空中200℃で1時間乾燥して室温まで放冷後、ガラス基板からポリイミドフィルムを剥離した。このポリイミドフィルムをもう一度真空中200℃で1時間熱処理して残留歪を除去した。
 得られたポリイミドフィルムの赤外吸収スペクトルを図5、動的粘弾性曲線を図6、熱的特性・光学的特性を表2に示す。図5より目的のポリイミドであることが同定できる。図6より急峻な貯蔵弾性率の低下が230℃付近で観測され、高い熱可塑性を示すことが、更には、表2より無色透明なフィルムであることがわかる。
Figure JPOXMLDOC01-appb-C000017
B. Preparation of polyimide solution and film formation of polyimide film The above polyimide powder was redissolved in cyclopentanone (CPN) at room temperature to prepare a 23 wt% uniform solution. This polyimide solution was cast on a glass substrate and dried with a hot air dryer at 60 ° C. for 2 hours. Thereafter, the whole substrate was dried in vacuum at 200 ° C. for 1 hour and allowed to cool to room temperature, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 200 ° C. for 1 hour to remove residual strain.
FIG. 5 shows an infrared absorption spectrum of the obtained polyimide film, FIG. 6 shows a dynamic viscoelastic curve, and Table 2 shows thermal characteristics and optical characteristics. From FIG. 5, it can identify that it is the target polyimide. From FIG. 6, it can be seen that a steep decrease in storage elastic modulus is observed at around 230 ° C. and shows high thermoplasticity, and further, from Table 2, it is clear that the film is colorless and transparent.
Figure JPOXMLDOC01-appb-C000017
<比較例1>
A.下記式(11)で表される繰り返し単位のポリイミドの合成
(ポリアミド酸の重合)TAPh(100)/TFMB
 2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)3mmolを脱水N-メチル-2-ピロリドン(NMP)に溶解した。ここに合成例2に記載のTAPh粉末3mmolをゆっくり加え、室温で72時間撹拌し、ポリイミド前駆体であるポリアミド酸を得た(固形分濃度20重量%)。得られたポリアミド酸の固有粘度は、1.6dL/gであった。
B.ポリイミドフィルムの製膜
 ポリアミド酸溶液をガラス基板上に流延し、80℃3時間熱風乾燥器で乾燥した。その後、基板ごと真空中250℃で1時間、350℃で1時間熱イミド化した後、ガラス基板からポリイミドフィルムを剥離した。このポリイミドフィルムをもう一度真空中200℃で1時間熱処理して残留歪を除去した。
 得られたポリイミドフィルムの熱的特性・光学的特性を表2に示す。表2より、低い光透過率、そして激しい黄変と濁りがあることがわかる。式(8)の繰り返し単位のポリイミド中のシクロヘキシル基をフェニル基に変えたために、式(11)の繰り返し単位のポリイミドフィルムの光学特性は著しく悪化したと考えられる。つまり、同じような嵩高い構造であっても、シクロヘキシル基の構造が極めて有用であることがわかる。
Figure JPOXMLDOC01-appb-C000018
<Comparative Example 1>
A. Synthesis of polyimide having a repeating unit represented by the following formula (11) (polyamide acid polymerization) TAPh (100) / TFMB
3 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N-methyl-2-pyrrolidone (NMP). To this, 3 mmol of TAPh powder described in Synthesis Example 2 was slowly added and stirred at room temperature for 72 hours to obtain a polyamic acid as a polyimide precursor (solid content concentration 20% by weight). The intrinsic viscosity of the obtained polyamic acid was 1.6 dL / g.
B. Formation of Polyimide Film A polyamic acid solution was cast on a glass substrate and dried with a hot air dryer at 80 ° C. for 3 hours. Thereafter, the whole substrate was heat imidized at 250 ° C. for 1 hour and 350 ° C. for 1 hour, and then the polyimide film was peeled off from the glass substrate. This polyimide film was once again heat treated in vacuum at 200 ° C. for 1 hour to remove residual strain.
Table 2 shows the thermal characteristics and optical characteristics of the obtained polyimide film. From Table 2, it can be seen that there is low light transmittance, and severe yellowing and turbidity. Since the cyclohexyl group in the polyimide of the repeating unit of the formula (8) was changed to a phenyl group, it is considered that the optical properties of the polyimide film of the repeating unit of the formula (11) were significantly deteriorated. That is, it can be seen that the structure of the cyclohexyl group is extremely useful even with a similar bulky structure.
Figure JPOXMLDOC01-appb-C000018
<比較例2>
A.式(12)で表される繰り返し単位のポリイミドの合成
(ポリアミド酸の重合)TAHQ/TFMB
 2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)2mmolを脱水N,N-ジメチルアセトアミド(DMAc)に溶解した。ここに合成例1に記載のTAHQ粉末2mmolをゆっくり加え、室温で72時間撹拌し、適宜DMAcを加えポリイミド前駆体であるポリアミド酸を得た(固形分濃度11.4重量%)。得られたポリアミド酸の固有粘度は、4.45dL/gであった。
(化学イミド化反応)
 得られたポリアミド酸溶液を脱水DMAcで固形分濃度約10.0重量%に希釈後、これを撹拌しながら1.9mL(20mmol)の無水酢酸と0.8mL(10mmol)のピリジンの混合溶液を室温でゆっくり滴下し、滴下終了後更に3時間で溶液の流動性が消失しゲル化した。式(8)と式(12)の繰り返し単位のポリイミドの比較から嵩高いシクロヘキシル基が、溶媒に対する溶解性を極めて高めていることがわかる。
<Comparative Example 2>
A. Synthesis of Polyimide of Repeating Unit Represented by Formula (12) (Polyamide Acid Polymerization) TAHQ / TFMB
2 mmol of 2,2′-bis (trifluoromethyl) benzidine (TFMB) was dissolved in dehydrated N, N-dimethylacetamide (DMAc). Here, 2 mmol of TAHQ powder described in Synthesis Example 1 was slowly added and stirred at room temperature for 72 hours, and DMAc was appropriately added to obtain a polyamic acid as a polyimide precursor (solid content concentration 11.4 wt%). The obtained polyamic acid had an intrinsic viscosity of 4.45 dL / g.
(Chemical imidization reaction)
The obtained polyamic acid solution was diluted with dehydrated DMAc to a solid content concentration of about 10.0% by weight, and a mixed solution of 1.9 mL (20 mmol) of acetic anhydride and 0.8 mL (10 mmol) of pyridine was then stirred. The solution was slowly added dropwise at room temperature, and the fluidity of the solution disappeared and gelled in another 3 hours after completion of the addition. From comparison of the polyimides of the repeating units of formula (8) and formula (12), it can be seen that the bulky cyclohexyl group has extremely enhanced solubility in the solvent.
B.ポリイミドフィルムの製膜
 上記のポリアミド酸溶液をガラス基板上に流延し、60℃2時間熱風乾燥器で乾燥した。その後、基板ごと真空中200℃で0.5時間、250℃で2時間熱イミド化した後、ガラス基板からポリイミドフィルムを剥離した。このポリイミドフィルムをもう一度真空中300℃で1時間熱処理して残留歪を除去した。
 得られたポリイミドフィルムの動的粘弾性曲線を図7、熱的特性・光学的特性を表2に示す。図7より、貯蔵弾性率の低下が始まる温度が375℃と高いため、式(8)の繰り返し単位のポリイミドよりも熱加工性に劣ることがわかる。また黄色度やヘイズも高めであり光学特性も劣っている。
 つまり、式(2)のシクロヘキシル基は、極めて重要な働きをしていることがわかる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
B. Formation of Polyimide Film The above polyamic acid solution was cast on a glass substrate and dried with a hot air dryer at 60 ° C. for 2 hours. Thereafter, the whole substrate was thermally imidized at 200 ° C. for 0.5 hours and 250 ° C. for 2 hours, and then the polyimide film was peeled from the glass substrate. This polyimide film was once again heat treated in vacuum at 300 ° C. for 1 hour to remove residual strain.
FIG. 7 shows the dynamic viscoelasticity curve of the obtained polyimide film, and Table 2 shows the thermal characteristics and optical characteristics. From FIG. 7, it can be seen that the temperature at which the storage elastic modulus begins to decrease is as high as 375 ° C., so that it is inferior in thermal workability to the repeating unit polyimide of formula (8). Moreover, yellowness and haze are also high and optical characteristics are also inferior.
That is, it can be seen that the cyclohexyl group of the formula (2) plays an extremely important role.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021

Claims (5)

  1.  下記式(1): 
    Figure JPOXMLDOC01-appb-C000001
    で表されるテトラカルボン酸二無水物。
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    Tetracarboxylic dianhydride represented by
  2.  下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表される繰り返し単位を有するポリイミド。
    Following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    The polyimide which has a repeating unit represented by these.
  3.  式(2)で表される繰り返し単位の含有率が、ポリイミド中の全ての繰り返し単位に対し55mol%以上であることを特徴とする請求項2に記載のポリイミド。 The content rate of the repeating unit represented by Formula (2) is 55 mol% or more with respect to all the repeating units in a polyimide, The polyimide of Claim 2 characterized by the above-mentioned.
  4.  請求項2または3に記載のポリイミドと有機溶媒とを含有するポリイミド溶液であって、固形分濃度が5重量%以上であることを特徴とするポリイミド溶液。 A polyimide solution comprising the polyimide according to claim 2 or 3 and an organic solvent, wherein the polyimide solution has a solid content concentration of 5% by weight or more.
  5.  請求項2または3に記載のポリイミド成形体。 The polyimide molded body according to claim 2 or 3.
PCT/JP2016/078448 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide WO2017057360A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187011187A KR102591070B1 (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide
JP2017543430A JP6715496B2 (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article made of the polyimide
CN201680056630.8A CN108137804B (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article comprising the polyimide
KR1020237015346A KR102619074B1 (en) 2015-09-30 2016-09-27 Polyimide derived from tetracarboxylic dianhydride, and molded article produced from said polyimide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015192377 2015-09-30
JP2015-192377 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057360A1 true WO2017057360A1 (en) 2017-04-06

Family

ID=58423803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078448 WO2017057360A1 (en) 2015-09-30 2016-09-27 Novel tetracarboxylic dianhydride, polyimide derived from said tetracarboxylic dianhydride, and molded article produced from said polyimide

Country Status (5)

Country Link
JP (1) JP6715496B2 (en)
KR (2) KR102591070B1 (en)
CN (1) CN108137804B (en)
TW (1) TWI708769B (en)
WO (1) WO2017057360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075395A1 (en) * 2019-10-15 2021-04-22 住友化学株式会社 Optical film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229331A (en) * 2019-04-28 2019-09-13 南京岳子化工有限公司 A kind of thermoplastic polyimide resin powder and preparation method thereof
CN112194792B (en) * 2020-06-16 2022-03-29 中国科学院长春应用化学研究所 High-strength low-thermal-expansion transparent polyimide and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258229A (en) * 1996-03-25 1997-10-03 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2004182757A (en) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
WO2010093021A1 (en) * 2009-02-12 2010-08-19 本州化学工業株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
JP2013082876A (en) * 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195711B (en) * 2006-12-06 2012-07-04 大立高分子工业股份有限公司 Polyamic acid component and alignment film produced by the same
CN104151823B (en) * 2014-09-02 2019-02-26 长春聚明光电材料有限公司 Kapton and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258229A (en) * 1996-03-25 1997-10-03 Japan Synthetic Rubber Co Ltd Liquid crystal orienting agent
JP2004182757A (en) * 2002-11-29 2004-07-02 Kanegafuchi Chem Ind Co Ltd Polyimide resin and its production method
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
WO2010093021A1 (en) * 2009-02-12 2010-08-19 本州化学工業株式会社 Ester group-containing tetracarboxylic acid dianhydride, polyester polyimide precursor, polyesterimide, and methods for producing same
JP2013082876A (en) * 2011-03-16 2013-05-09 Kaneka Corp Polyimide solution and polyimide film obtained from the solution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. SEK ET AL.: "New semiladder Polymers:1. Synthesis and properties of new (esterimidazopyrrolone)s", POLYMER, vol. 39, no. 26, 1998, pages 7001 - 7008, XP004138394 *
D. SEK ET AL.: "New semiladder Polymers:III. Synthesis and properties of new (esterimidazopyrrolone)s", POLYMER, vol. 41, 2000, pages 49 - 56, XP004244030 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075395A1 (en) * 2019-10-15 2021-04-22 住友化学株式会社 Optical film

Also Published As

Publication number Publication date
KR102619074B1 (en) 2023-12-27
JP6715496B2 (en) 2020-07-01
KR20180061248A (en) 2018-06-07
CN108137804B (en) 2021-01-19
KR102591070B1 (en) 2023-10-17
KR20230066490A (en) 2023-05-15
TW201730172A (en) 2017-09-01
TWI708769B (en) 2020-11-01
CN108137804A (en) 2018-06-08
JPWO2017057360A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6165153B2 (en) Polyimide and molded body thereof
JP5182886B2 (en) NOVEL DIAMINE, POLYIMIDE PRECURSOR, POLYIMIDE, COATING OPTICAL COMPENSATION FILM COMPRISING THE SAME, AND METHOD FOR PRODUCING THE SAME
JP5581463B2 (en) Diamine, polyimide, and polyimide film and use thereof
JP4961726B2 (en) Polyimide precursor and polyimide, and polyimide-based plastic substrate and method for producing the same.
JP2008231327A (en) Polyimide having high transparency and its manufacturing method
JP6236349B2 (en) Polyimide and its use
KR102422752B1 (en) Novel tetracarboxylic dianhydride and polyimide and polyimide copolymer obtained from acid dianhydride
JP6693676B2 (en) Polyimide and polyimide film
JP6715496B2 (en) Novel tetracarboxylic dianhydride, polyimide derived from the tetracarboxylic dianhydride, and molded article made of the polyimide
JP5325491B2 (en) Novel coating type optical compensation film and method for producing the same
JP2006336009A (en) New polyimide copolymer and molded article of polyimide obtained by molding the same
JP6584011B2 (en) Diamine compound having fluorene skeleton, polyamic acid, and polyimide
JP2016196630A (en) Novel polyimide copolymer
JP4928347B2 (en) Polyimide, polyimide varnish, optical compensation film, polyimide, and method for producing optical compensation film.
TWI780171B (en) Composition for forming flexible device substrate
JP5015070B2 (en) Novel coating type optical compensation film and method for producing the same
JP5166312B2 (en) Polyimide copolymer, coating type optical compensation film comprising the same, and method for producing the same
WO2020158523A1 (en) Novel diamine, novel polyimide derived therefrom, and molded body thereof
JP2013028796A (en) Polyimide precursor, polyimide precursor solution composition, polyimide, polyimide solution composition, polyimide film, substrate, and molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543430

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011187

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16851531

Country of ref document: EP

Kind code of ref document: A1