JP3967665B2 - Electrolyte injection device and battery manufacturing method - Google Patents

Electrolyte injection device and battery manufacturing method Download PDF

Info

Publication number
JP3967665B2
JP3967665B2 JP2002324241A JP2002324241A JP3967665B2 JP 3967665 B2 JP3967665 B2 JP 3967665B2 JP 2002324241 A JP2002324241 A JP 2002324241A JP 2002324241 A JP2002324241 A JP 2002324241A JP 3967665 B2 JP3967665 B2 JP 3967665B2
Authority
JP
Japan
Prior art keywords
electrolyte
battery container
pressure
electrolytic solution
liquid injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002324241A
Other languages
Japanese (ja)
Other versions
JP2003208888A (en
Inventor
恭史 大石
辰彦 坂口
達也 西
和宏 寺口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002324241A priority Critical patent/JP3967665B2/en
Publication of JP2003208888A publication Critical patent/JP2003208888A/en
Application granted granted Critical
Publication of JP3967665B2 publication Critical patent/JP3967665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池容器に電解液を注液する電解液注液装置に関し、特に小型・高容量タイプの電池に適したものに関する。
【0002】
【従来の技術】
小型・高容量の電池に用いられる例えば角型でアルミ材製の肉厚が約0.3mm以下の電池容器に電解液を注液する注液方法が従来より用いられている。従来の注液方法には、窒素加圧方式(例えば特許文献1参照)と、液加圧方式(例えば特許文献2参照)が知られている。
【0003】
窒素加圧方式では、電池容器内を5torr以下にまで減圧し、また、電池容器に接続されるとともに電解液を収容する上部の貯溜部内を200torrにまで減圧させた後、その差圧で電解液を電池容器内に層流で入れ込む。その後、窒素ガスの加圧で残りの電解液を入れ込みつつ、アルミ缶である電池容器の変形を防止するため加圧と同時に容器外にもガスで加圧するものである。
【0004】
液加圧方式では、チャンバ内に収容された電池容器をチャンバごと減圧し、その後、注液ノズル部に電池容器の注液口を押し当て、モータ駆動の計量ポンプで電解液を強制的に電池容器に出しきる。その後、チャンバを加圧して注液口付近に残存する電解液をも電池容器内に無駄なく入れ込むものである。
【0005】
一方、電解液注液装置は電解液注液システムの一部を構成している。すなわち、電解液注液システムは、注液前の電池容器の重量を測定する前秤量装置と、電解液注液装置と、注液後の電池容器の重量を測定する後秤量装置から構成されており、これらの各装置は互いに独立した三部屋内にそれぞれ配置され、各部屋は外気と区切られた密閉構造となっている。電池容器はこれらの各装置間をエアチャック等で把持された状態で搬送されていた。
【0006】
【特許文献1】
特開平11−73942号公報(図1)
【0007】
【特許文献2】
特開2000−182599号公報(図1)
【0008】
【発明が解決しようとする課題】
上述した電解液の注液方法であると次のような問題があった。すなわち、窒素加圧方式においては、注液前の減圧で電池容器が収縮するため、電解液の注入量が低減する虞があった。また、加圧と同時に電池容器外からも加圧するため加圧力を上げると電解液が逆流して押し戻されてしまうという問題があった。さらに、差圧及び逆流により入りきらなかった電解液を電池容器内に入れきるためには例えば0.2MPa程度の逆流しない圧力値で加圧せざるを得ないが、窒素ガスが圧縮性であることから、時間をかけねば電解液が入りきらず、大幅に加圧時間が延びてしまっていた。
【0009】
一方、液加圧方式においては、計量ポンプでプランジャを駆動させて電解液を押し込んだ場合、電池容器内の内圧(計量ポンプの出口側の圧力)が1.0MPa以上にまで跳ね上がり、パルスモータ等の駆動では内圧の反作用によってモータの制御系が脱調するという問題があった。また、液径路内に気泡が混入して累積しても気泡を抜くことができず、この気泡が収縮・膨張する等して、結果として注液量不足、注液量のバラツキを生む原因となっていた。
【0010】
さらに、電池容器がアルミ材であることから、前秤量装置からの搬送工程及び後秤量装置への搬送工程に用いられるエアチャックによる把持ミスにより、稼働率の低下や電池容器への打痕・傷の発生等による歩留りの低下を引き起こしていた。また、電解液注液装置は1つの部屋で区切られていることから、例えば電解液の清掃等のメンテナンスを行う場合、電解液注液システム全体を停止しなければならない。さらに、電解液は非水電解質であるためメンテナンス毎に各部屋内の水分管理を実施しなければならない。このため、メンテナンスを行うためには、半日間システム全体を停止する必要があり、稼働率の低下を招く原因となっていた。
【0011】
一方、液加圧方式において、電極タブが注液口から突出した円筒状の電池容器に注液する場合、注液ノズル内に電極タブに対する逃げ穴が必要となる。この逃げ穴に電解液が残存するため、計量した電解液を電池容器内に注液しきれず、0.3〜0.5g程度の損失が発生したり、0.3g以上の注液量のバラツキ等が発生し、注液量精度向上の障害となっていた。さらに、注液直後は電極タブが電解液で濡れており、後工程の封口体溶接工程で封口体が電極タブに安定して溶接できないという問題もあった。
【0012】
そこで本発明は、電池容器内に所定量の電解液を効率よく注入することができるとともに、電池容器を傷つけることがない電解液注液装置及び電池の製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記課題を解決し目的を達成するために、本発明の電解液注液装置及び電池の製造方法は次のように構成されている。
【0014】
(1)電池容器内に電解液を注液する電解液注液装置において、所定量の電解液を吸引する計量ポンプと、上記電池容器の注液口に液密に挿入される注液ノズルと、上記電池容器内を減圧する減圧手段と、上記計量ポンプと上記注液ノズルとを接続する電解液管路と、この電解液管路に設けられたバルブと、上記電解液管路内の上記電解液の圧力を検出する圧力センサとを備え、上記計量ポンプは、上記電解液を収容するシリンダと、このシリンダ内に挿入されその挿入量により上記プランジャと、このプランジャを駆動するサーボモータと、このサーボモータの動作を制御する制御部を具備し、上記制御部は、上記圧力センサにより検出された上記電解液管路内の圧力が予め定められた圧力に超えないように制御するように設定されていることを特徴とする。
【0015】
)上記(1)に記載された電解液注液装置であって、上記減圧手段は、減圧ポンプ、大気開放バルブ、加圧ポンプに接続されたガス管路を備え、上記バルブは、出口側が上記注液ノズルに接続され、入口側が上記電解液管路と上記ガス管路とを切り換える三方弁であることを特徴とする。
【0016】
)電池容器内に電解液を注液する電池の製造方法において、所定量の電解液を計量ポンプのシリンダ内に収容する収容工程と、上記電池容器内を減圧する減圧工程と、上記計量ポンプに電解液管路を介して接続された注液ノズルを上記電池容器の注液口に液密に挿入するノズル挿入工程と、上記シリンダにサーボモータにより駆動されるプランジャを押し込むことで収容された上記電解液を上記注液ノズルへ送り込むプランジャ駆動工程と、上記電解液管路内の上記電解液の圧力を検出する圧力検出工程とを備え、上記プランジャ駆動工程は、上記圧力が予め設定された圧力を超えないように制御する制御工程とを備えていることを特徴とする。
【0017】
上記(3)に記載された電池の製造方法であって、上記制御工程は、上記注液ノズルの入口側を加圧ポンプに接続されたガス管路に切り替えて上記注液ノズル内の電解液を上記電池容器内に送り込む送出工程と、上記注液ノズルの入口側を大気開放バルブに接続されたガス管路に切り替えて上記電池容器内を大気圧に戻す開放工程とを備えていることを特徴とする。
【0018】
)上記(4)に記載された電解液注液方法であって、上記電池容器の電極を加熱された挟持具により挟持して上記電解液を蒸発させる電解液蒸発工程をさらに備えていることを特徴とする。
【0019】
【発明の実施の形態】
図1は本発明の第1の実施の形態に係る電解液注液装置10を模式的に示す図である。電解液注液装置10は液加圧方式を採用している。電解液注液装置10は、電解液供給部20と、電池容器収容部30と、制御部40とから構成されている。なお、図中50は電池容器、60は搬送容器を示している。
【0020】
電解液供給部20は、電解液を収容するタンク21と、パルスモータで駆動する計量ポンプ22と、一対の注液バルブ23及び注液ノズル24とを備えている。タンク21と計量ポンプ22とは電解液管路25、計量ポンプ22と注液バルブ23とは電解液管路26により接続されている。注液ノズル24の先端は図2の(b)に示すように後述する電池容器50の注液口52と嵌合するように形成されているとともに、液密に接触させるためのOリング24aが設けられている。また、電解液管路26には圧力センサ27及び泡抜きバルブ28が設けられている。なお、電解液管路25,26は電解液Eで充填されている。圧力センサ27の出力は制御部40に入力されている。
【0021】
計量ポンプ22は、シリンダ22aと、このシリンダ22aに挿入されたプランジャ22bと、このプランジャ22bを駆動するサーボモータ22cとを備えており、パルスモータ22cは制御部40により制御されている。
【0022】
電池容器収容部30は、チャンバ31と、このチャンバ31内に設けられ搬送容器60を保持するとともに上下動させる保持台32とを備えている。チャンバ31には、真空バルブ33、加圧バルブ34、大気開放バルブ35が接続されている。
【0023】
図2の(a),(b)は搬送容器60及び電池容器50を保持するホルダ63を示す斜視図である。電池容器50は、直方体状の容器本体51と、この容器本体51の上部に設けられた注液口52とを備えている。搬送容器60は、基体61と、この基体61に設けられた孔部62と、この孔部62に着脱自在に嵌合されるホルダ63とを備えている。ホルダ63は、電池容器50を着脱自在に保持するように構成されており、注液ノズル24の0リング24aと注液口52とを確実に接触させるために電池容器50の膨らみを抑える形状となっている。また、電池容器50への傷防止、電解液Eによる腐食防止を考えピーク材等の樹脂により形成されている。
【0024】
このように構成された電解液注液装置10は、次のようにして電池容器50に電解液Eを注液する。なお、図3は、電解液注液装置10における圧力センサ27による電解液管路26内の圧力変化を示す図である。
【0025】
最初に電解液供給部20において、サーボモータ22cを作動させ、プランジャ22bをシリンダ22aから抜く方向に作動させることで、タンク21内の電解液Eを計量ポンプ22内に所定量吸引する。一方、電池容器収容部30において、チャンバ31が下がった状態で、搬送機構(不図示)により注液前の計量工程が終了した搬送容器60が保持台32上に搬送され固定される。
【0026】
次に注液プロセスを開始する。なお、注液プロセスは図3中Tで示される区間である。保持台32が下がった状態でチャンバ31を上昇させて密閉容器を構成し、真空バルブ33を開き電池容器50内も含めてチャンバ31内を40Torrにまで減圧真空引きする(図3中Ta)。次に、保持台32を上昇させ、電池容器50の注液口52内に注液ノズル24を挿入し、かつ、Oリング24aにより液密に接触させる。
【0027】
次に、一方の注液バルブ23を開き、電解液管路26内部と電池容器50内部の差圧により電解液Eが一方の電池容器50に注液する。差圧により入りきらない分の電解液Eは計量ポンプ22を作動させ、プランジャ22bをサーボモータ22cにより押し込む。予め設定された圧力(例えば、0.55MPa/cm)を上限として設定し、この圧力を超えないようにサーボモータ22cを制御することにより、徐々に電池容器50に押し込まれる(図3中Tb1)。設定値を超えた場合には、サーボモータ22cを停止させて電池容器50内に電解液Eが浸透し、液圧が下がるのを待つ(図3中Tb2)。そして、所定のストロークだけプランジャ22bが移動し、所定量だけ吐出した後、注液バルブ23を閉じるとともに、サーボモータ22cの動作を停止する。これにより、一方の電池容器50に所定量の電解液Eが注液される。
【0028】
次に、他方の注液バルブ23を開き、電解液管路26内部と電池容器50内部の差圧により電解液Eが他方の電池容器50に注液する。差圧により入りきらない分の電解液Eは計量ポンプ22を作動させ、プランジャ22bをサーボモータ22cにより押し込むことにより注液する。予め設定された圧力(例えば、0.55MPa)を上限として設定し、徐々に電池容器50に押し込まれる。設定値を超えた場合には、サーボモータ22cを停止させて電池容器50内に電解液Eが浸透し、液圧が下がるのを待つ。そして、残りのストロークだけプランジャ22bが移動し、所定量だけ吐出した後、注液バルブ23を閉じるとともに、サーボモータ22cの動作を停止する。これにより、他方の電池容器50に所定量の電解液Eが注液される(図3中Tc)。
【0029】
次に、電池容器50内の電解液Eの逆流を防ぐため、保持台32を上昇したまま加圧バルブ34を開き0.5〜0.6MPaでチャンバ31の電池容器50外を加圧する(図3中Td)。そして、大気開放バルブ28を開くことで電池容器50及びチャンバ31内を大気圧に戻し(図3中Te)、保持台32を下降させ、さらにチャンバ31を下降させることで、プロセスが終了する。
【0030】
なお、定期的に泡抜きバルブ28の開閉により累積した気泡を電解液管路26から追い出す。
【0031】
上述したように本実施の形態に係る電解液注液装置10によれば、電解液管路26内の過剰な圧力による電解液管路26や計量ポンプ22ヘの負荷を防ぐことで、液漏れの防止や計量ポンプ22の正確な制御を図ることができ、高い精度で電解液Eを電池容器50内に注液することができる。また、電解液管路26内の気泡を追い出すことができるため、注液量不足、注液量のバラツキの発生を抑えることができる。さらに、電池容器50は電解液Eの注液に伴って受ける変形を搬送容器60により防止されているため、電池容器50の容量が変わることがない。以上のことより、注液量のバラツキを3σ=0.2g〜0.1gとし、歩留まりを向上させることが可能となった。
【0032】
一方、電解液管路26内の圧力を管理しているため、上限値に近い比較的高い圧力で注液を行うことができることから注液プロセス時間を短縮することができ、効率の良い注液を行うことができる。
【0033】
また、電池容器50は搬送容器60により保持されているため、エアチャック等により直接把持されることがなく、打痕や傷の発生を効果的に防止できた。したがって、高容量タイプのアルミ缶電池に対し生産数、稼働率、歩留りを低下することなく生産できることが可能になった。
【0034】
図4は本発明の第2の実施の形態に係る電解液注液装置100を模式的に示す図、図5の(a)は注液ノズル114及び電池容器150を一部切欠して示す側面図、図5の(b)はチャック133と電池容器150を示す斜視図である。電解液注液装置100は、電解液供給部110と、圧力調整部120と、電池容器収容部130と、制御部140とから構成されている。なお、図中150は電池容器、160は搬送容器を示している。
【0035】
電解液供給部110は、電解液を収容するタンク111と、パルスモータで駆動する計量ポンプ112と、一対の注液バルブ113及び注液ノズル114とを備えている。タンク111と計量ポンプ112とは電解液管路115により、計量ポンプ112と注液バルブ113とは電解液管路116により、それぞれ接続されている。注液バルブ113は、出口側を電解液管路116、入口側を注液ノズル114及び後述するガス経路121相互に切替え可能な三方弁である。
【0036】
注液ノズル114の先端は図5の(a)に示すように後述する電池容器150の注液口152と嵌合するように形成されている。また、電解液管路116には圧力センサ117及び泡抜きバルブ118が設けられている。なお、電解液管路115,116は電解液Eで充填されている。圧力センサ117の出力は制御部140に入力されている。
【0037】
計量ポンプ112は、シリンダ112aと、このシリンダ112aに挿入されたプランジャ112bと、このプランジャ112bを駆動するサーボモータ112cとを備えており、パルスモータ112cは制御部140により制御されている。
【0038】
圧力調整部120は、注液バルブ113に接続されたガス管路121と、このガス管路121に接続された真空バルブ122、加圧バルブ123、大気開放バルブ124と、ガス管路121内の圧力を検知する圧力センサ125を備えている。圧力センサ125の出力は制御部140に入力されている。
【0039】
電池容器収容部130は、チャンバ131と、このチャンバ131内に設けられ搬送容器160を保持するとともに上下動させる保持台132と、ヒータ付のチャック133とを備えている。
【0040】
図5に示すように、は注液ノズル114及び電池容器150を一部切欠して示す側面図である。電池容器150は、円筒状の容器本体151と、この容器本体151の上部に設けられた注液口152と、電極タブ153とを備えている。
【0041】
搬送容器160は、電池容器150を着脱自在に保持するように構成されており、注液ノズル114と注液口152とを確実に接触させるために電池容器150の膨らみを抑える形状となっている。また、電池容器150への傷防止、電解液Eによる腐食防止を考えピーク材等の樹脂により形成されている。
【0042】
このように構成された電解液注液装置100は、次のようにして電池容器150に電解液Eを注液する。最初に電解液供給部110において、サーボモータ112cを作動させ、プランジャ112bをシリンダ112aから抜く方向に作動させることで、タンク111内の電解液Eを計量ポンプ112内に所定量吸引する。一方、電池容器収容部130において、チャンバ131が下がった状態で、搬送機構(不図示)により注液前の計量工程が終了した搬送容器160が保持台132上に搬送され固定される。
【0043】
次に注液プロセスを開始する。保持台132が下がった状態でチャンバ131を上昇させて注液ノズル114を電池容器150の注液口152に嵌入することで密閉容器を構成する。そして、注液バルブ113をガス管路121側に切り替えるとともに、真空バルブ122を開き電池容器150内を5Torrにまで減圧真空引きする。
【0044】
次に、注液バルブ113を電解液管路116側に切り替える。これにより、電解液管路116内部と電池容器150内部の差圧により電解液Eが一方の電池容器150に注液される。差圧により入りきらない分の電解液Eは計量ポンプ112を作動させ、プランジャ112bをサーボモータ112cにより押し込む。予め設定された圧力(例えば、0.55MPa/cm)を上限として設定し、この圧力を超えないようにサーボモータ112cを制御することにより、徐々に電池容器150に押し込まれる。設定値を超えた場合には、サーボモータ112cを停止させて電池容器150内に電解液Eが浸透し、液圧が下がるのを待つ。そして、所定のストロークだけプランジャ112bが移動し、所定量だけ吐出した後、注液バルブ113を閉じるとともに、サーボモータ112cの動作を停止する。
【0045】
次に、注液バルブ113をガス管路121側に切り替えるとともに、真空バルブ122を閉じ、加圧バルブ123を開く。これにより、注液バルブ113内に残っていた電解液Eを電池容器150内に入れる。これにより、一方の電池容器150に所定量の電解液Eが注液される。同様にして、他方の電池容器150にも電解液を注液する。
【0046】
次に、大気開放バルブ124を開くことで電池容器150内を大気圧に戻し、保持台132を下降させ、さらにチャンバ131を下降させることで、プロセスが終了する。さらに、ヒータで加熱したチャック133で電極タブ153を挟むことで電解液Eを蒸発させ、完全に除去させる。これにより、注液の次工程における電極タブ153ヘの封口体溶接不良を0.1%未満に低減することができた。
【0047】
なお、定期的に泡抜きバルブ118の開閉により累積した気泡を電解液管路116から追い出す。
【0048】
上述したように本第2の実施の形態に係る電解液注液装置100によれば、電解液管路116内の過剰な圧力による電解液管路116や計量ポンプ112ヘの負荷を防ぐことで、液漏れの防止や計量ポンプ112の正確な制御を図ることができ、高い精度で電解液Eを電池容器150内に注液することができる。また、円筒状の電池容器150で電極タブ153が突出しているタイプであって注液ノズル113内に電解液Eが残った場合であっても、計量ポンプ112にて計測した量の電解液を全て電池容器150内に注液することができる。さらに、また、電解液管路116内の気泡を追い出すことができるため、注液量不足、注液量のバラツキの発生を抑えることができる。さらに、電池容器150は電解液Eの注液に伴って受ける変形を搬送容器160により防止されているため、電池容器150の容量が変わることがない。以上のことより、注液量のバラツキを3σ=0.1g以内とし、歩留まりを向上させることが可能となった。
【0049】
一方、電解液管路116内の圧力を管理しているため、上限値に近い比較的高い圧力で注液を行うことができることから注液プロセス時間を短縮することができ、効率の良い注液を行うことができる。
【0050】
また、電池容器150は搬送容器160により保持されているため、エアチャック等により直接把持されることがなく、打痕や傷の発生を効果的に防止できた。したがって、高容量タイプのアルミ缶電池に対し生産数、稼働率、歩留りを低下することなく生産できることが可能になった。
【0051】
さらに、注液バルブ113として電解液経路116及びガス経路121との切り替えが可能である三方弁方式を採用したので、チャンバ131を減圧する必要がなくなり、電池容器150内を5torr以下に真空引きできる。このため、電池容器150内に収容された正極・負極である巻回コイルヘの電解液浸透が促進できる。例えば、注液量が6gの場合に180秒以下とすることができた。また円筒電池では注液後、電極タブをヒータで100℃〜200℃にまで加熱したチャック133で例えば2秒程度挟むことで確実にタブを乾燥させ、封口体溶接不良を0.1%未満にまで低減させることができた。
【0052】
なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。
【0053】
【発明の効果】
本発明によれば、電池容器内に所定量の電解液を効率よく注入することができるとともに、電池容器の傷の発生を防ぐことが可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る電解液注液装置を模式的に示す図。
【図2】 同電解液注液装置において用いられる搬送容器及びホルダを示す斜視図。
【図3】 同電解液注液装置における電解液管路内の圧力変化を示すグラフ。
【図4】 本発明の第2の実施の形態に係る電解液注液装置を模式的に示す図。
【図5】 (a)は電解液注液装置に組み込まれた注液ノズル114及び電池容器150を一部切欠して示す側面図、(b)はチャック133と電池容器150を示す斜視図。
【符号の説明】
10,100…電解液注液装置、20,110…電解液供給部、22,112…計量ポンプ、22a,112a…シリンダ、22b,112b…プランジャ、22c,112c…サーボモータ、23,113…注液バルブ、24,114…注液ノズル、26,116…電解液管路、27,117…圧力センサ、28,118…泡抜きバルブ、30,130…電池容器収容部、40…制御部、50,150…電池容器、52,152…注液口、60,160…搬送容器,120…圧力調整部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte solution injection device for injecting an electrolyte solution into a battery container, and more particularly to a device suitable for a small and high capacity type battery.
[0002]
[Prior art]
For example, a liquid injection method for injecting an electrolytic solution into a battery container having a thickness of about 0.3 mm or less, for example, a square-shaped aluminum material, which is used for a small and high-capacity battery has been conventionally used. As conventional liquid injection methods, a nitrogen pressurization method (for example, see Patent Document 1) and a liquid pressurization method (for example, see Patent Document 2) are known.
[0003]
In the nitrogen pressurization method, the inside of the battery container is depressurized to 5 torr or less, and the upper reservoir part connected to the battery container and containing the electrolyte is depressurized to 200 torr, and then the electrolyte Into the battery container in a laminar flow. Thereafter, while the remaining electrolyte is introduced by pressurization of nitrogen gas, in order to prevent deformation of the battery container which is an aluminum can, the gas is pressurized outside the container simultaneously with pressurization.
[0004]
In the liquid pressurization method, the battery container housed in the chamber is decompressed together with the chamber, and then the liquid container inlet is pressed against the liquid injection nozzle, and the electrolyte is forced to be charged by the motor-driven metering pump. Put out into a container. Thereafter, the chamber is pressurized and the electrolyte remaining in the vicinity of the liquid injection port is also introduced into the battery container without waste.
[0005]
On the other hand, the electrolyte solution injection device constitutes a part of the electrolyte solution injection system. That is, the electrolyte solution injection system includes a pre-weighing device that measures the weight of the battery container before pouring, an electrolyte solution pouring device, and a post-weighing device that measures the weight of the battery container after pouring. These devices are arranged in three rooms that are independent from each other, and each room has a sealed structure separated from the outside air. The battery container was transported between these devices while being gripped by an air chuck or the like.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-73942 (FIG. 1)
[0007]
[Patent Document 2]
JP 2000-182599 A (FIG. 1)
[0008]
[Problems to be solved by the invention]
The electrolyte solution injection method described above has the following problems. That is, in the nitrogen pressurization method, since the battery container contracts due to the reduced pressure before the injection, there is a possibility that the injection amount of the electrolytic solution is reduced. Further, since pressure is applied from the outside of the battery container at the same time as pressurization, there is a problem that when the pressurizing force is increased, the electrolytic solution flows backward and is pushed back. Furthermore, in order to fill the battery container with the electrolyte solution that could not enter due to the differential pressure and the backflow, for example, pressure must be applied at a pressure value that does not backflow of about 0.2 MPa, but nitrogen gas is compressible. Therefore, unless time was taken, the electrolyte solution could not be filled, and the pressurization time was significantly extended.
[0009]
On the other hand, in the liquid pressurization method, when the electrolyte is pushed in by driving the plunger with a metering pump, the internal pressure in the battery container (pressure on the outlet side of the metering pump) jumps to 1.0 MPa or more, and a pulse motor, etc. However, there was a problem that the motor control system stepped out due to the reaction of the internal pressure. In addition, even if air bubbles are mixed in the liquid path and accumulated, the air bubbles cannot be removed and the air bubbles contract and expand, resulting in insufficient liquid injection volume and variations in liquid injection volume. It was.
[0010]
In addition, since the battery container is made of aluminum material, the operating rate is reduced and dents / scratches on the battery container are caused by mistakes in gripping by the air chuck used in the transport process from the pre-weighing device and the transport process to the post-weighing device. This caused a decrease in yield due to the occurrence of Further, since the electrolyte solution injection device is partitioned in one room, for example, when performing maintenance such as cleaning of the electrolyte solution, the entire electrolyte solution injection system must be stopped. Furthermore, since the electrolytic solution is a non-aqueous electrolyte, moisture management in each room must be performed for each maintenance. For this reason, in order to perform maintenance, it is necessary to stop the entire system for half a day, which causes a reduction in operating rate.
[0011]
On the other hand, in the liquid pressurization method, when the electrode tab is injected into a cylindrical battery container protruding from the injection port, a relief hole for the electrode tab is required in the injection nozzle. Since the electrolytic solution remains in the escape hole, the measured electrolytic solution cannot be completely poured into the battery container, and a loss of about 0.3 to 0.5 g is generated or the amount of injected liquid is more than 0.3 g. Etc. occurred and became an obstacle to the improvement of the injection volume accuracy. Furthermore, immediately after the injection, the electrode tab is wetted with the electrolytic solution, and there is a problem that the sealing body cannot be stably welded to the electrode tab in the sealing body welding process in the subsequent step.
[0012]
Accordingly, an object of the present invention is to provide an electrolytic solution pouring device and a method for manufacturing a battery that can efficiently inject a predetermined amount of electrolytic solution into a battery container and that do not damage the battery container.
[0013]
[Means for Solving the Problems]
In order to solve the above problems and achieve the object, the electrolytic solution injection device and the battery manufacturing method of the present invention are configured as follows.
[0014]
(1) In an electrolyte solution injection device for injecting an electrolyte solution into a battery container, a metering pump for sucking a predetermined amount of electrolyte solution, and a solution nozzle inserted in a liquid-tight manner into the solution container inlet , Decompression means for decompressing the inside of the battery container, an electrolyte pipe line connecting the metering pump and the liquid injection nozzle, a valve provided in the electrolyte pipe line, and the above in the electrolyte pipe line A pressure sensor that detects the pressure of the electrolytic solution, and the metering pump includes a cylinder that stores the electrolytic solution, the plunger that is inserted into the cylinder, and a servo motor that drives the plunger according to the amount of insertion. A control unit for controlling the operation of the servo motor is provided, and the control unit is set to control so that the pressure in the electrolyte pipe line detected by the pressure sensor does not exceed a predetermined pressure. Has been And wherein the door.
[0015]
( 2 ) The electrolyte solution injection device described in (1) above, wherein the decompression means includes a decompression pump, an air release valve, and a gas pipe connected to the pressurization pump, and the valve has an outlet The side is connected to the liquid injection nozzle, and the inlet side is a three-way valve for switching between the electrolyte line and the gas line.
[0016]
( 3 ) In a method for manufacturing a battery in which an electrolytic solution is injected into a battery container, a housing step for housing a predetermined amount of electrolytic solution in a cylinder of a metering pump, a decompression step for decompressing the inside of the battery container, and the metering A nozzle insertion step for liquid-tightly inserting a liquid injection nozzle connected to a pump through an electrolyte line into a liquid injection port of the battery container and a plunger driven by a servo motor into the cylinder are accommodated. A plunger driving step for feeding the electrolytic solution to the liquid injection nozzle, and a pressure detecting step for detecting the pressure of the electrolytic solution in the electrolytic solution pipe. The plunger driving step is configured such that the pressure is set in advance. And a control step for controlling so as not to exceed the pressure.
[0017]
( 4 ) The battery manufacturing method according to (3), wherein the control step switches the inlet side of the liquid injection nozzle to a gas pipe connected to a pressurizing pump, and the inside of the liquid injection nozzle A feeding step for feeding the electrolyte solution into the battery container, and an opening step for switching the inlet side of the liquid injection nozzle to a gas line connected to an air release valve to return the inside of the battery container to atmospheric pressure. It is characterized by being.
[0018]
( 5 ) The electrolytic solution pouring method described in (4) above, further comprising an electrolytic solution evaporation step of evaporating the electrolytic solution by sandwiching the electrode of the battery container with a heated clamping tool. It is characterized by that.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram schematically showing an electrolyte solution injection device 10 according to a first embodiment of the present invention. The electrolyte injection device 10 employs a liquid pressurization method. The electrolyte solution injection device 10 includes an electrolyte solution supply unit 20, a battery container housing unit 30, and a control unit 40. In the figure, 50 indicates a battery container, and 60 indicates a transport container.
[0020]
The electrolytic solution supply unit 20 includes a tank 21 that stores an electrolytic solution, a metering pump 22 that is driven by a pulse motor, and a pair of liquid injection valves 23 and a liquid injection nozzle 24. The tank 21 and the metering pump 22 are connected by an electrolyte solution line 25, and the metering pump 22 and the liquid injection valve 23 are connected by an electrolyte solution line 26. As shown in FIG. 2B, the tip of the liquid injection nozzle 24 is formed so as to be fitted with a liquid injection port 52 of a battery container 50 described later, and an O-ring 24a for making liquid contact is formed. Is provided. In addition, a pressure sensor 27 and a bubble removal valve 28 are provided in the electrolyte solution line 26. The electrolytic solution lines 25 and 26 are filled with the electrolytic solution E. The output of the pressure sensor 27 is input to the control unit 40.
[0021]
The metering pump 22 includes a cylinder 22a, a plunger 22b inserted into the cylinder 22a, and a servo motor 22c that drives the plunger 22b. The pulse motor 22c is controlled by the control unit 40.
[0022]
The battery container housing unit 30 includes a chamber 31 and a holding base 32 that is provided in the chamber 31 and holds the transfer container 60 and moves it up and down. A vacuum valve 33, a pressurization valve 34, and an atmosphere release valve 35 are connected to the chamber 31.
[0023]
2A and 2B are perspective views showing the holder 63 that holds the transport container 60 and the battery container 50. FIG. The battery container 50 includes a rectangular parallelepiped container main body 51 and a liquid injection port 52 provided on the upper part of the container main body 51. The transport container 60 includes a base 61, a hole 62 provided in the base 61, and a holder 63 that is detachably fitted in the hole 62. The holder 63 is configured to detachably hold the battery container 50, and has a shape that suppresses the swelling of the battery container 50 in order to reliably contact the 0 ring 24 a of the liquid injection nozzle 24 and the liquid injection port 52. It has become. Further, it is made of a resin such as a peak material in consideration of preventing damage to the battery container 50 and preventing corrosion due to the electrolytic solution E.
[0024]
The electrolyte solution injection device 10 configured as described above injects the electrolyte solution E into the battery container 50 as follows. FIG. 3 is a diagram showing a pressure change in the electrolyte pipe line 26 by the pressure sensor 27 in the electrolyte solution injection device 10.
[0025]
First, in the electrolyte supply unit 20, the servo motor 22 c is operated, and the plunger 22 b is operated in the direction of pulling out from the cylinder 22 a, thereby sucking a predetermined amount of the electrolyte E in the tank 21 into the metering pump 22. On the other hand, in the battery container housing 30, with the chamber 31 lowered, the transport container 60 that has completed the measuring step before liquid injection by the transport mechanism (not shown) is transported and fixed on the holding table 32.
[0026]
Next, the injection process is started. The injection process is a section indicated by T in FIG. With the holding base 32 lowered, the chamber 31 is raised to form a sealed container, the vacuum valve 33 is opened, and the inside of the chamber 31 including the inside of the battery container 50 is evacuated to 40 Torr (Ta in FIG. 3). Next, the holding base 32 is raised, the liquid injection nozzle 24 is inserted into the liquid injection port 52 of the battery container 50, and is brought into liquid-tight contact with the O-ring 24a.
[0027]
Next, one liquid injection valve 23 is opened, and the electrolytic solution E is injected into one battery container 50 by the pressure difference between the electrolyte pipe line 26 and the battery container 50. Electrolyte E which does not enter due to the differential pressure activates the metering pump 22 and pushes the plunger 22b by the servo motor 22c. A preset pressure (for example, 0.55 MPa / cm 2 ) is set as an upper limit, and the servo motor 22c is controlled so as not to exceed this pressure, whereby the battery container 50 is gradually pushed into the battery container 50 (Tb1 in FIG. 3). ). When the set value is exceeded, the servo motor 22c is stopped and the electrolytic solution E penetrates into the battery container 50 and waits for the liquid pressure to drop (Tb2 in FIG. 3). Then, after the plunger 22b moves by a predetermined stroke and discharges by a predetermined amount, the liquid injection valve 23 is closed and the operation of the servo motor 22c is stopped. As a result, a predetermined amount of electrolytic solution E is injected into one battery container 50.
[0028]
Next, the other liquid injection valve 23 is opened, and the electrolytic solution E is injected into the other battery container 50 by the pressure difference between the electrolyte pipe line 26 and the battery container 50. Electrolyte E which does not enter due to the differential pressure is injected by operating the metering pump 22 and pushing the plunger 22b by the servo motor 22c. A preset pressure (for example, 0.55 MPa) is set as an upper limit, and the pressure is gradually pushed into the battery container 50. When the set value is exceeded, the servo motor 22c is stopped and the electrolytic solution E penetrates into the battery container 50 and waits for the liquid pressure to drop. Then, after the plunger 22b moves by the remaining stroke and discharges by a predetermined amount, the liquid injection valve 23 is closed and the operation of the servo motor 22c is stopped. Thereby, a predetermined amount of electrolyte E is injected into the other battery container 50 (Tc in FIG. 3).
[0029]
Next, in order to prevent the backflow of the electrolyte E in the battery container 50, the pressurization valve 34 is opened while the holding base 32 is raised, and the outside of the battery container 50 in the chamber 31 is pressurized at 0.5 to 0.6 MPa (FIG. 3 Td). Then, the atmosphere release valve 28 is opened to return the battery container 50 and the chamber 31 to atmospheric pressure (Te in FIG. 3), the holding base 32 is lowered, and the chamber 31 is further lowered to complete the process.
[0030]
It should be noted that the bubbles accumulated by opening and closing the bubble removal valve 28 are periodically expelled from the electrolyte solution line 26.
[0031]
As described above, according to the electrolyte solution injection device 10 according to the present embodiment, liquid leakage is prevented by preventing a load on the electrolyte solution line 26 and the metering pump 22 due to excessive pressure in the electrolyte line 26. And accurate control of the metering pump 22 can be achieved, and the electrolytic solution E can be injected into the battery container 50 with high accuracy. In addition, since the bubbles in the electrolyte pipe line 26 can be driven out, it is possible to suppress an insufficient amount of injection and variations in the injection amount. Furthermore, since the battery container 50 is prevented from being deformed by the transfer container 60 due to the injection of the electrolytic solution E, the capacity of the battery container 50 does not change. From the above, it was possible to improve the yield by setting the variation in the injection amount to 3σ = 0.2 g to 0.1 g.
[0032]
On the other hand, since the pressure in the electrolyte pipe line 26 is managed, the injection can be performed at a relatively high pressure close to the upper limit value, so that the injection process time can be shortened and efficient injection is possible. It can be performed.
[0033]
Further, since the battery container 50 is held by the transport container 60, the battery container 50 is not directly gripped by an air chuck or the like, and the occurrence of dents and scratches can be effectively prevented. Therefore, it has become possible to produce high capacity type aluminum can batteries without lowering the production number, operating rate, and yield.
[0034]
FIG. 4 is a diagram schematically showing an electrolyte solution injection device 100 according to the second embodiment of the present invention, and FIG. 5A is a side view in which the injection nozzle 114 and the battery container 150 are partially cut away. FIG. 5B is a perspective view showing the chuck 133 and the battery container 150. The electrolyte solution injection device 100 includes an electrolyte solution supply unit 110, a pressure adjustment unit 120, a battery container housing unit 130, and a control unit 140. In the figure, 150 indicates a battery container, and 160 indicates a transport container.
[0035]
The electrolytic solution supply unit 110 includes a tank 111 that stores an electrolytic solution, a metering pump 112 that is driven by a pulse motor, and a pair of liquid injection valves 113 and a liquid injection nozzle 114. The tank 111 and the metering pump 112 are connected to each other by an electrolyte line 115, and the metering pump 112 and the liquid injection valve 113 are connected to each other by an electrolyte line 116. The liquid injection valve 113 is a three-way valve that can be switched between an electrolyte line 116 on the outlet side, a liquid injection nozzle 114 on the inlet side, and a gas path 121 described later.
[0036]
As shown in FIG. 5A, the tip of the liquid injection nozzle 114 is formed so as to be fitted to a liquid injection port 152 of a battery container 150 described later. In addition, a pressure sensor 117 and a bubble removal valve 118 are provided in the electrolyte pipe line 116. The electrolytic solution lines 115 and 116 are filled with the electrolytic solution E. The output of the pressure sensor 117 is input to the control unit 140.
[0037]
The metering pump 112 includes a cylinder 112a, a plunger 112b inserted into the cylinder 112a, and a servo motor 112c that drives the plunger 112b. The pulse motor 112c is controlled by the control unit 140.
[0038]
The pressure adjustment unit 120 includes a gas pipe 121 connected to the liquid injection valve 113, a vacuum valve 122 connected to the gas pipe 121, a pressurization valve 123, an atmosphere release valve 124, and a gas pipe 121. A pressure sensor 125 for detecting pressure is provided. The output of the pressure sensor 125 is input to the control unit 140.
[0039]
The battery container housing unit 130 includes a chamber 131, a holding table 132 that is provided in the chamber 131 and holds the transfer container 160 and moves up and down, and a chuck 133 with a heater.
[0040]
As shown in FIG. 5, FIG. 5 is a side view showing the liquid injection nozzle 114 and the battery container 150 with a part cut away. The battery container 150 includes a cylindrical container main body 151, a liquid injection port 152 provided on the upper portion of the container main body 151, and an electrode tab 153.
[0041]
The transport container 160 is configured to detachably hold the battery container 150, and has a shape that suppresses the swelling of the battery container 150 in order to reliably contact the liquid injection nozzle 114 and the liquid injection port 152. . Further, it is made of a resin such as a peak material in consideration of preventing damage to the battery container 150 and preventing corrosion due to the electrolytic solution E.
[0042]
The electrolyte solution injection device 100 configured as described above injects the electrolyte solution E into the battery container 150 as follows. First, in the electrolyte supply unit 110, the servo motor 112c is operated, and the plunger 112b is operated in the direction of pulling out from the cylinder 112a, whereby the electrolyte E in the tank 111 is sucked into the metering pump 112 by a predetermined amount. On the other hand, in the battery container housing part 130, the transport container 160 that has completed the measuring step before liquid injection by the transport mechanism (not shown) is transported and fixed on the holding stand 132 with the chamber 131 lowered.
[0043]
Next, the injection process is started. With the holding stand 132 lowered, the chamber 131 is raised, and the liquid injection nozzle 114 is fitted into the liquid injection port 152 of the battery container 150 to constitute a sealed container. Then, the liquid injection valve 113 is switched to the gas pipeline 121 side, and the vacuum valve 122 is opened to evacuate the battery container 150 to 5 Torr.
[0044]
Next, the injection valve 113 is switched to the electrolyte pipe line 116 side. As a result, the electrolytic solution E is injected into one battery container 150 by the pressure difference between the electrolytic solution pipe line 116 and the battery container 150. Electrolyte E that does not enter due to the differential pressure operates metering pump 112 and pushes plunger 112b with servo motor 112c. A preset pressure (for example, 0.55 MPa / cm 2 ) is set as an upper limit, and the servo motor 112c is controlled so as not to exceed this pressure, whereby the battery container 150 is gradually pushed. When the set value is exceeded, the servo motor 112c is stopped and the electrolytic solution E penetrates into the battery container 150 and waits for the liquid pressure to drop. Then, after the plunger 112b has moved by a predetermined stroke and discharged by a predetermined amount, the liquid injection valve 113 is closed and the operation of the servo motor 112c is stopped.
[0045]
Next, the injection valve 113 is switched to the gas pipeline 121 side, the vacuum valve 122 is closed, and the pressurization valve 123 is opened. As a result, the electrolyte E remaining in the liquid injection valve 113 is put into the battery container 150. As a result, a predetermined amount of electrolyte E is injected into one battery container 150. Similarly, the electrolytic solution is also poured into the other battery container 150.
[0046]
Next, the atmosphere release valve 124 is opened to return the inside of the battery container 150 to atmospheric pressure, the holding base 132 is lowered, and the chamber 131 is further lowered to complete the process. Further, the electrolytic solution E is evaporated and completely removed by sandwiching the electrode tab 153 with the chuck 133 heated by the heater. Thereby, the sealing body welding defect to the electrode tab 153 in the next process of liquid injection could be reduced to less than 0.1%.
[0047]
It should be noted that the bubbles accumulated by opening and closing the bubble removal valve 118 are periodically expelled from the electrolyte pipe line 116.
[0048]
As described above, according to the electrolyte solution injection device 100 according to the second embodiment, it is possible to prevent a load on the electrolyte pipe line 116 and the metering pump 112 due to excessive pressure in the electrolyte pipe line 116. Therefore, it is possible to prevent liquid leakage and to accurately control the metering pump 112, and to inject the electrolyte E into the battery container 150 with high accuracy. Further, even if the electrode tab 153 protrudes from the cylindrical battery container 150 and the electrolyte E remains in the liquid injection nozzle 113, the amount of electrolyte measured by the metering pump 112 is reduced. All can be poured into the battery container 150. Furthermore, since bubbles in the electrolytic solution pipe 116 can be driven out, it is possible to suppress an insufficient amount of injection and variations in the injection amount. Further, since the battery container 150 is prevented from being deformed by the transfer container 160 due to the injection of the electrolytic solution E, the capacity of the battery container 150 does not change. From the above, it was possible to improve the yield by setting the variation in the injection amount within 3σ = 0.1 g.
[0049]
On the other hand, since the pressure in the electrolyte pipe line 116 is managed, the injection can be performed at a relatively high pressure close to the upper limit value, so that the injection process time can be shortened and efficient injection is possible. It can be performed.
[0050]
In addition, since the battery container 150 is held by the transport container 160, the battery container 150 is not directly gripped by an air chuck or the like, and the occurrence of dents and scratches can be effectively prevented. Therefore, it has become possible to produce high capacity type aluminum can batteries without lowering the production number, operating rate, and yield.
[0051]
Furthermore, since a three-way valve system that can switch between the electrolyte path 116 and the gas path 121 is adopted as the liquid injection valve 113, it is not necessary to depressurize the chamber 131, and the inside of the battery container 150 can be evacuated to 5 torr or less. . For this reason, electrolyte solution penetration into the wound coil which is the positive electrode / negative electrode housed in the battery container 150 can be promoted. For example, when the injection volume was 6 g, it could be 180 seconds or less. In addition, in a cylindrical battery, after pouring, the tab is securely dried by sandwiching the electrode tab with a chuck 133 heated to 100 ° C. to 200 ° C. with a heater for about 2 seconds, for example. Can be reduced to.
[0052]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being able to inject | pour predetermined amount electrolyte solution efficiently into a battery container, it becomes possible to prevent generation | occurrence | production of the damage | wound of a battery container.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an electrolytic solution injecting device according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing a transport container and a holder used in the electrolyte solution injection device.
FIG. 3 is a graph showing a pressure change in an electrolyte pipe line in the electrolyte injection device.
FIG. 4 is a diagram schematically showing an electrolyte solution injection device according to a second embodiment of the present invention.
5A is a side view showing the liquid injection nozzle 114 and the battery container 150 incorporated in the electrolytic solution injection apparatus in a partially cutaway view, and FIG. 5B is a perspective view showing the chuck 133 and the battery container 150. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10,100 ... Electrolyte injection apparatus, 20, 110 ... Electrolyte supply part, 22, 112 ... Metering pump, 22a, 112a ... Cylinder, 22b, 112b ... Plunger, 22c, 112c ... Servo motor, 23, 113 ... Note Liquid valve, 24, 114 ... Injection nozzle, 26, 116 ... Electrolyte line, 27, 117 ... Pressure sensor, 28, 118 ... Foam vent valve, 30, 130 ... Battery container housing part, 40 ... Control part, 50 , 150 ... battery container, 52, 152 ... liquid injection port, 60, 160 ... transport container, 120 ... pressure adjusting unit.

Claims (5)

電池容器内に電解液を注液する電解液注液装置において、
所定量の電解液を吸引する計量ポンプと、
上記電池容器の注液口に液密に挿入される注液ノズルと、
上記電池容器内を減圧する減圧手段と、
上記計量ポンプと上記注液ノズルとを接続する電解液管路と、
この電解液管路に設けられたバルブと、
上記電解液管路内の上記電解液の圧力を検出する圧力センサとを備え、
上記計量ポンプは、上記電解液を収容するシリンダと、このシリンダ内に挿入されその挿入量により上記プランジャと、このプランジャを駆動するサーボモータと、このサーボモータの動作を制御する制御部を具備し、
上記制御部は、上記圧力センサにより検出された上記電解液管路内の圧力が予め定められた圧力に超えないように制御するように設定されていることを特徴とする電解液注液装置。
In an electrolyte solution injection device for injecting an electrolyte solution into a battery container,
A metering pump for sucking a predetermined amount of electrolyte;
A liquid injection nozzle which is inserted in a liquid-tight manner into the liquid container inlet;
Decompression means for decompressing the inside of the battery container;
An electrolyte line connecting the metering pump and the liquid injection nozzle;
A valve provided in the electrolyte line;
A pressure sensor for detecting the pressure of the electrolytic solution in the electrolytic solution line,
The metering pump includes a cylinder that stores the electrolytic solution, a plunger inserted into the cylinder, a servo motor that drives the plunger according to the amount of insertion, and a controller that controls the operation of the servo motor. ,
The electrolyte solution injection device, wherein the control unit is set to control so that a pressure in the electrolyte solution line detected by the pressure sensor does not exceed a predetermined pressure.
上記減圧手段は、減圧ポンプ、大気開放バルブ、加圧ポンプに接続されたガス管路を備え、
上記バルブは、出口側が上記注液ノズルに接続され、入口側が上記電解液管路と上記ガス管路とを切り換える三方弁であることを特徴とする請求項1に記載の電解液注液装置。
The decompression means includes a gas pipe connected to a decompression pump, an air release valve, and a pressurization pump,
2. The electrolytic solution injection apparatus according to claim 1, wherein the valve is a three-way valve whose outlet side is connected to the liquid injection nozzle and whose inlet side switches between the electrolytic solution line and the gas line.
電池容器内に電解液を注液する電池の製造方法において、
所定量の電解液を計量ポンプのシリンダ内に収容する収容工程と、
上記電池容器内を減圧する減圧工程と、
上記計量ポンプに電解液管路を介して接続された注液ノズルを上記電池容器の注液口に液密に挿入するノズル挿入工程と、
上記シリンダにサーボモータにより駆動されるプランジャを押し込むことで収容された上記電解液を上記注液ノズルへ送り込むプランジャ駆動工程と、
上記電解液管路内の上記電解液の圧力を検出する圧力検出工程とを備え、
上記プランジャ駆動工程は、上記圧力が予め設定された圧力を超えないように制御する制御工程とを備えていることを特徴とする電池の製造方法
In the battery manufacturing method of injecting the electrolyte into the battery container,
An accommodating step of accommodating a predetermined amount of electrolyte in the cylinder of the metering pump;
A decompression step of decompressing the inside of the battery container;
A nozzle insertion step of liquid-tightly inserting a liquid injection nozzle connected to the metering pump via an electrolyte line into the liquid container inlet;
A plunger driving step of feeding the electrolyte contained in the cylinder by pushing a plunger driven by a servo motor into the cylinder;
A pressure detection step of detecting the pressure of the electrolyte in the electrolyte line,
The plunger drive step, a method of manufacturing a battery, characterized in that a control step of controlling so as not to exceed the pressure at which the pressure is set in advance.
上記制御工程は、上記注液ノズルの入口側を加圧ポンプに接続されたガス管路に切り替えて上記注液ノズル内の電解液を上記電池容器内に送り込む送出工程と、
上記注液ノズルの入口側を大気開放バルブに接続されたガス管路に切り替えて上記電池容器内を大気圧に戻す開放工程とを備えていることを特徴とする請求項3に記載の電池の製造方法
The control step is a delivery step of switching the inlet side of the liquid injection nozzle to a gas line connected to a pressurizing pump and sending the electrolytic solution in the liquid injection nozzle into the battery container;
4. The battery according to claim 3, further comprising an opening step of switching the inlet side of the liquid injection nozzle to a gas pipe connected to an air release valve to return the inside of the battery container to atmospheric pressure . Manufacturing method .
上記電池容器の電極を加熱された挟持具により挟持して上記電解液を蒸発させる電解液蒸発工程をさらに備えていることを特徴とする請求項4に記載の電池の製造方法The battery manufacturing method according to claim 4, further comprising an electrolyte solution evaporation step of holding the electrode of the battery container with a heated holding tool and evaporating the electrolyte solution.
JP2002324241A 2001-11-07 2002-11-07 Electrolyte injection device and battery manufacturing method Expired - Fee Related JP3967665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002324241A JP3967665B2 (en) 2001-11-07 2002-11-07 Electrolyte injection device and battery manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001342383 2001-11-07
JP2001-342383 2001-11-07
JP2002324241A JP3967665B2 (en) 2001-11-07 2002-11-07 Electrolyte injection device and battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2003208888A JP2003208888A (en) 2003-07-25
JP3967665B2 true JP3967665B2 (en) 2007-08-29

Family

ID=27666975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002324241A Expired - Fee Related JP3967665B2 (en) 2001-11-07 2002-11-07 Electrolyte injection device and battery manufacturing method

Country Status (1)

Country Link
JP (1) JP3967665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848105B1 (en) 2013-10-16 2018-04-11 주식회사 엘지화학 Pressuring apparatus able to detecting leakage of pressuring chamber

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217566A (en) * 2002-01-25 2003-07-31 Shin Kobe Electric Mach Co Ltd Electrolyte filling device and electrolyte filling method
JP2011134631A (en) * 2009-12-25 2011-07-07 Shibuya Kogyo Co Ltd Method and device for filling battery container with electrolyte
JP5595985B2 (en) * 2011-06-28 2014-09-24 長野オートメーション株式会社 Liquid supply device
KR101309277B1 (en) * 2012-04-26 2013-09-16 주식회사 나래나노텍 Improved electrolyte injection apparatus and method
KR101419468B1 (en) 2012-12-21 2014-07-16 재단법인 포항산업과학연구원 Apparatus for removing unreacted coal slurry in coal gasifier and method thereof
CN103811712B (en) * 2014-02-28 2016-01-06 山东爱通工业机器人科技有限公司 The automatic production line that the fluid injection of a kind of power soft package lithium battery is sealed in advance
CN107256944B (en) * 2017-07-28 2023-07-25 海口邦兴新能源科技有限公司 Vacuum priming device of monomer large capacity polymer lithium ion battery
KR101860386B1 (en) * 2017-08-31 2018-06-29 주식회사 에스와이티컴퍼니 Supplying device of electrolyte for battery
CN107732132A (en) * 2017-11-20 2018-02-23 东莞市互赢能源科技有限公司 A kind of cylindrical battery automatic filling machine
DE102019109208B3 (en) 2019-04-08 2020-10-01 Dürr Systems Ag Application device and corresponding application process
EP4043728B1 (en) * 2019-10-09 2024-07-24 Nagano Automation Co., Ltd. Device for supplying liquid
CN114628867A (en) * 2020-12-14 2022-06-14 纪顺机电工业股份有限公司 Electrolyte injection method for lithium battery
CN113026054B (en) * 2021-02-06 2022-09-02 西藏大学 Detection system for producing hydrogen and oxygen by photoelectrocatalysis decomposition of water and use method thereof
JP7477552B2 (en) 2022-03-17 2024-05-01 プライムプラネットエナジー&ソリューションズ株式会社 Battery manufacturing method
CN114976527B (en) * 2022-05-25 2024-02-20 江苏国航动力科技有限公司 Transmission system and transmission method for lithium battery liquid injection
DE102022114834A1 (en) 2022-06-13 2023-12-14 Dürr Systems Ag Method and application device for applying a filling material into a cavity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173942A (en) * 1997-06-20 1999-03-16 Toshiba Corp Device and method for liquid-injecting, and battery thereof
JP2000182599A (en) * 1998-12-18 2000-06-30 Toshiba Corp Electrolytic solution injecting device and method therefor
JP2003086173A (en) * 2001-09-06 2003-03-20 Shibaura Mechatronics Corp Liquid injection device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101848105B1 (en) 2013-10-16 2018-04-11 주식회사 엘지화학 Pressuring apparatus able to detecting leakage of pressuring chamber

Also Published As

Publication number Publication date
JP2003208888A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP3967665B2 (en) Electrolyte injection device and battery manufacturing method
KR102288108B1 (en) Method and device for filling of liquid material
US6554579B2 (en) Liquid dispensing system with enhanced filter
JP5419616B2 (en) Bubble mixing prevention mechanism, liquid material discharging apparatus including the mechanism, and liquid material discharging method
US8910671B2 (en) Apparatus for supplying electrolyte
JP2011222221A (en) Electrolyte injecting method and electrolyte injecting device
KR101847843B1 (en) A hydraulic liquid filling device
JP2001110400A (en) Device and method for puring electrolyte
CN115207578B (en) Battery liquid injection method and battery liquid injection system
TWI225319B (en) Electrolyte injection device and battery production method
JP2007095707A (en) Manufacturing method of fluid injector and battery
JPH11126598A (en) Electrolyte injecting device
JP2020184452A (en) Battery manufacturing method
JP2022120351A (en) Electrolyte injection system for open battery and electrolyte injection method for open battery
JP7477552B2 (en) Battery manufacturing method
JP4292444B2 (en) Electrolyte filling method in manufacturing process of dry cell
JP3521296B2 (en) Ink injection method and ink injection apparatus
JP2005197087A (en) Electrolytic solution injector
KR200269066Y1 (en) Device for filling electrolyte of battery manufacturing equipment
JP2000340215A (en) Injecting method for electrolyte in manufacturing battery, and electrolyte injecting device
CN118083887A (en) Vacuum liquid injection system and liquid injection method
JP2005319607A (en) Liquid injector of cartridge and injection method
CN109065829B (en) Melt pouring system
CN218677515U (en) Battery liquid filling machine
JPH09199109A (en) Device and method for injection electrolyte in manufacture of battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees