JP3963125B2 - 内燃機関の制御装置及びハイブリッド車両 - Google Patents

内燃機関の制御装置及びハイブリッド車両 Download PDF

Info

Publication number
JP3963125B2
JP3963125B2 JP2002165335A JP2002165335A JP3963125B2 JP 3963125 B2 JP3963125 B2 JP 3963125B2 JP 2002165335 A JP2002165335 A JP 2002165335A JP 2002165335 A JP2002165335 A JP 2002165335A JP 3963125 B2 JP3963125 B2 JP 3963125B2
Authority
JP
Japan
Prior art keywords
engine
combustion mode
internal combustion
fuel injection
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002165335A
Other languages
English (en)
Other versions
JP2004011515A (ja
Inventor
祐輔 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002165335A priority Critical patent/JP3963125B2/ja
Publication of JP2004011515A publication Critical patent/JP2004011515A/ja
Application granted granted Critical
Publication of JP3963125B2 publication Critical patent/JP3963125B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing

Description

【0001】
【発明の属する技術分野】
本発明は、動力源として内燃機関(エンジン)と電動機とを備えるハイブリッド車両に関する。
【0002】
【従来の技術】
ガソリンなどを燃料とするエンジンと、電気エネルギーで動作する電動機とを動力源とする動力出力装置を搭載したハイブリッド車両が知られている。そのようなハイブリッド車両には、シリーズ型ハイブリッド車両、パラレル型ハイブリッド車両、及び、両者を組み合わせたタイプのハイブリッド車両がある。シリーズ型ハイブリッド車両は、エンジンによって発電機を駆動し、この発電機によって得られた電力をバッテリに充電し、バッテリに充電された電力をインバータを介して電動機に供給して電動機を駆動する。また、パラレル型ハイブリッド車両は、エンジンと電動機をクラッチを介して連結し、発進時には電動機を駆動させ、車両速度が所定速度になるとクラッチを連結してエンジン走行する。また、車両の加速時には、バッテリに充電されている電力を使用して電動機を駆動し、電動機による駆動力をエンジンによる駆動力に追加することもできる。
【0003】
【発明が解決しようとする課題】
このようなハイブリッド車両では、バッテリの充電量が目標以上となった場合にはエンジンを停止させ電動機のみによる走行に切り換えたり、あるいは、車両が停止した場合にエンジンを停止させたりする、いわゆる間欠運転が頻繁に行われる。しかしながら、このエンジン停止時にトルクが急激に変化すると運転者はこれを振動、ショックとして感じることになる。これは、ハイブリッド車両以外にも、車両停止時にアイドルストップを行うアイドルストップ車両でも同様のことである。
【0004】
本発明は、以上の点に鑑みてなされたものであり、間欠運転において動力源の切換がなされた場合のトルク差をなくして、ショック、振動などを防止し、運転快適性を向上させることが可能なハイブリッド車両を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明の1つの観点では、成層燃焼モード及び均質燃焼モードにおける動作が可能な内燃機関と、電動機とを備えるハイブリッド車両は、前記内燃機関の動作を停止させるための機関停止指示を出力する指示出力手段と、前記機関停止指示が入力されたときに、前記内燃機関の燃焼モードを強制的に成層燃焼モードに設定する燃焼モード設定手段と、前記成層燃焼モードへの燃焼モードの設定の前後における前記内燃機関の出力トルクが同一となるように前記燃焼モード設定時の燃料噴射量を決定し、前記燃焼モードの設定後、燃料噴射器による前記燃料噴射量を所定の変化量で低下させた後、燃料噴射を停止する噴射制御手段と、前記電動機を駆動するためのバッテリと、前記バッテリの充電量に基づいて前記電動機により発生可能な最大トルク値を算出する手段と、を備え、前記噴射制御手段は、前記内燃機関の出力トルク値が前記最大トルク値と一致したときに、燃焼噴射を停止する。
【0009】
上記のハイブリッド車両によれば、内燃機関の動作を停止させるための機関停止指示が出力されると、内燃機関の燃焼モードが成層燃焼モードに設定される。この際、成層燃焼モードへの燃焼モードの設定の前後における内燃機関の出力トルクが同一となるように、燃焼モード設定時の燃料噴射量を決定する。成層燃焼モードでは、燃料の噴射量により細かなトルク制御が可能であり、噴射制御手段は、燃料噴射器による、決定された燃料噴射量を所定の変化量で低下させて内燃機関の出力トルクを徐々に減少させた後、燃料噴射を停止して内燃機関を停止させる。これにより、成層燃焼モードへの設定時、及び内燃機関の停止時に、内燃機関の出力トルクが急激に減少してショックや振動が生じることが防止できる。
また、電動機を駆動するためのバッテリの充電量に基づいて、駆動力を電動機に切り換えた場合に得られる最大トルク値が計算される。そして、その最大トルク値となるまで前記燃料噴射量を低下させ、前記内燃機関のトルクが最大トルク値と等しくなったときに燃料噴射を停止して、内燃機関を停止する。よって、内燃機関から電動機に駆動力が切り換えられるときにトルク段差が生じないので、ショックや振動などの発生を防止することができる。
【0012】
上記のハイブリッド車両の他の一態様は、走行のための動力源を前記内燃機関と前記電動機との間で切り換える動力切換手段をさらに備え、前記動力切換手段は、前記噴射制御手段が燃料噴射を停止したときに前記動力源を前記内燃機関から前記電動機へ切り換える。よって、ショックや振動を生じることなく内燃機関から電動機へと駆動力を切り換えることができる。
【0014】
上記のハイブリッド車両のさらに他の一態様では、前記内燃機関は複数のシリンダを有し、前記燃料噴射器は前記シリンダ毎に設けられており、前記噴射制御手段は、前記複数の燃料噴射器を独立に制御して前記燃料噴射量を低下させる。この態様では、燃料噴射器は、シリンダ毎に設けられた燃料噴射器の単位で燃料噴射量を制御できるので、細かなレベルでトルクを制御して、円滑な動力切換を行うことができる。
本発明の他の観点では、成層燃焼モード及び均質燃焼モードにおける動作が可能な内燃機関と、電動機とを備えるハイブリッド車両は、前記内燃機関の動作を停止させるための機関停止指示を出力する指示出力手段と、前記機関停止指示が入力されたときに、前記内燃機関の燃焼モードを成層燃焼モードに設定する燃焼モード設定手段と、前記燃焼モードの設定後、燃料噴射器による燃料噴射量を所定の変化量で低下させた後、燃料噴射を停止する噴射制御手段と、前記電動機を駆動するためのバッテリと、前記バッテリの充電量に基づいて前記電動機により発生可能な最大トルク値を算出する手段と、を備え、前記噴射制御手段は、前記内燃機関の出力トルク値が前記最大トルク値と一致したときに、燃焼噴射を停止する。上記のハイブリッド車両によっても、内燃機関から電動機に駆動力が切り換えられるときにトルク段差が生じないので、ショックや振動などの発生を防止することができる。
【0015】
【発明の実施の形態】
本発明では、いわゆる直噴式エンジンを備えるハイブリッド車両において、動力源の切換時にエンジンを成層燃焼状態とし、燃料噴射量によりトルクを制御してトルク差をなくすことにより、動力源の切換を円滑に行うものである。以下、図面を参照して本発明の好適な実施の形態について説明する。
【0016】
[ハイブリッド車両]
以下、本発明の実施の形態を実施例に基づいて説明する。はじめに、本発明の内燃機関制御装置を適用したハイブリッド車両の構成について図1を用いて説明する。このハイブリッド車両の動力系統は、次の構成から成っている。動力系統に備えられた原動機としてのエンジン150はいわゆる直噴式ガソリンエンジンであり、クランクシャフト156を回転させる。エンジン150の運転はEFIECU170により制御されている。EFIECU170は内部にCPU、ROM、RAM等を有するワンチップ・マイクロコンピュータであり、CPUがROMに記録されたプログラムに従い、エンジン150の燃料噴射量や回転速度その他の制御を実行する。図示を省略したが、これらの制御を可能とするために、EFIECU170にはエンジン150の運転状態を示す種々のセンサが接続されている。
【0017】
動力系統には、他にモータMG1,MG2が備えられている。モータMG1,MG2は、同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータ132,142と、回転磁界を形成する三相コイルが巻回されたステータ133,143とを備える。ステータ133,143はケース119に固定されている。モータMG1,MG2のステータ133,143に巻回された三相コイルは、それぞれ駆動回路191,192を介してバッテリ194に接続されている。駆動回路191,192は、各相ごとにスイッチング素子としてのトランジスタを2つ1組で備えたトランジスタインバータである。駆動回路191,192は制御ユニット(ECU)190に接続されている。制御ユニット190からの制御信号によって駆動回路191,192のトランジスタがスイッチングされると、バッテリ194とモータMG1,MG2との間に電流が流れる。モータMG1,MG2はバッテリ194からの電力の供給を受けて回転駆動する電動機として動作することもできるし(以下、この運転状態を「力行」と呼ぶ)、ロータ132,142が外力により回転している場合には三相コイルの両端に起電力を生じさせる発電機として機能してバッテリ194を充電することもできる(以下、この運転状態を「回生」と呼ぶ)。
【0018】
エンジン150とモータMG1,MG2はそれぞれプラネタリギヤ120を介して機械的に結合されている。プラネタリギヤ120は、遊星歯車とも呼ばれ、以下に示すそれぞれのギヤに結合された3つの回転軸を有している。プラネタリギヤ120を構成するギヤは、中心で回転するサンギヤ121、サンギヤの周辺を自転しながら公転するプラネタリピニオンギヤ123、さらにその外周で回転するリングギヤ122である。プラネタリピニオンギヤ123はプラネタリキャリア124に軸支されている。本実施例のハイブリッド車両では、エンジン150のクランクシャフト156はダンパ130を介してプラネタリキャリア軸127に結合されている。ダンパ130はクランクシャフト156に生じる捻り振動を吸収するために設けられている。モータMG1のロータ132は、サンギヤ軸125に結合されている。モータMG2のロータ142は、リングギヤ軸126に結合されている。リングギヤ122の回転は、チェーンベルト129を介して駆動軸112および車輪116R,116Lに伝達される。
【0019】
かかるハイブリッド車両の基本的な動作を説明するために、まずプラネタリギヤ120の動作について説明する。プラネタリギヤ120は、上述した3つの回転軸のうち、2つの回転軸の回転数およびトルク(以下、両者をまとめて「回転状態」とよぶ)が決定されると残余の回転軸の回転状態が決まるという性質を有している。各回転軸の回転状態の関係は、機構学上周知の計算式によって求めることができるが、共線図と呼ばれる図により幾何学的に求めることもできる。
【0020】
図2に共線図の一例を示す。縦軸が各回転軸の回転数を示している。横軸は、各ギヤのギヤ比を距離的な関係で示している。サンギヤ軸125(図中のS)とリングギヤ軸126(図中のR)を両端にとり、位置Sと位置Rの間を1:ρに内分する位置Cをプラネタリキャリア軸127の位置とする。ρはリングギヤ122の歯数に対するサンギヤ121の歯数の比である。こうして定義された位置S,C,Rにそれぞれのギヤの回転軸の回転数Ns,Nc,Nrをプロットする。プラネタリギヤ120は、このようにプロットされた3点が必ず一直線に並ぶという性質を有している。この直線を動作共線と呼ぶ。動作共線は2点が決まれば一義的に決まる。従って、動作共線を用いることにより、3つの回転軸のうち2つの回転軸の回転数から残余の回転軸の回転数を求めることができる。
【0021】
また、プラネタリギヤ120では、各回転軸のトルクを動作共線に働く力に置き換えて示したとき、動作共線が剛体として釣り合いが保たれるという性質を有している。具体例として、プラネタリキャリア軸127に作用するトルクをTeとする。このとき、図2に示す通り、トルクTeに相当する大きさの力を位置Cで動作共線に鉛直下から上に作用させる。作用させる方向はトルクTeの方向に応じて定まる。また、リングギヤ軸126から出力されるトルクTrを位置Rにおいて動作共線に、鉛直上から下に作用させる。図中のTes,Terは剛体に作用する力の分配法則に基づいてトルクTeを等価な2つの力に分配したものである。「Tes=ρ/(1+ρ)×Te」「Ter=1/(1+ρ)×Te」なる関係がある。以上の力が作用した状態で、動作共線図が剛体として釣り合いがとれているという条件を考慮すれば、サンギヤ軸125に作用すべきトルクTm1,リングギヤ軸に作用すべきトルクTm2を求めることができる。トルクTm1はトルクTesと等しくなり、トルクTm2はトルクTrとトルクTerの差分に等しくなる。
【0022】
プラネタリキャリア軸127に結合されたエンジン150が回転をしているとき、動作共線に関する上述の条件を満足する条件下で、サンギヤ121およびリングギヤ122は様々な回転状態で回転することができる。サンギヤ121が回転しているときは、その回転動力を利用してモータMG1により発電することが可能である。リングギヤ122が回転しているときは、エンジン150から出力された動力を駆動軸112に伝達することが可能である。図1に示した構成を有するハイブリッド車両では、エンジン150から出力された動力を駆動軸に機械的に伝達される動力と、電力として回生される動力に分配し、さらに回生された電力を用いてモータMG2を力行して動力のアシストを行なうことによって所望の動力を出力しながら走行することができる。こうした動作状態は、ハイブリッド車両の通常走行時に取り得る状態である。なお、全開加速時等の高負荷時には、バッテリ194からもモータMG2に電力が供給され、駆動軸112に伝達する動力を増大している。
【0023】
また、上述のハイブリッド車両では、モータMG1またはMG2の動力を駆動軸112から出力することができるため、これらのモータにより出力される動力のみを用いて走行することもできる。従って、車両が走行中であっても、エンジン150は停止していたり、いわゆるアイドル運転していたりすることがある。この動作状態は、発進時、低速走行時に取り得る状態である。
【0024】
さらに、上述のハイブリッド車両では、エンジン150から出力された動力を2経路に分配するのではなく、駆動軸112側だけに伝達させることもできる。これは、高速定常走行時に取り得る動作状態であり、モータMG2は高速走行による慣性によって連れ回された状態となり、モータMG2によるアシストなしにエンジン150から出力された動力のみの走行となる。
【0025】
図3は、この高速定常走行時の共線図を示している。図2に示す共線図ではサンギヤ軸125の回転数Nsは正であったが、エンジン150の回転数Neとリングギヤ軸126の回転数Nrとによって、図3に示す共線図のように負となる。このときには、モータMG1では、回転の方向とトルクの作用する方向とが同じになるから、モータMG1は電動機として動作し、トルクTm1と回転数Nsとの積で表わされる電気エネルギーを消費する(逆転力行の状態)。一方、モータMG2では、回転の方向とトルクの作用する方向とが逆になるから、モータMG2は発電機として動作し、トルクTm2と回転数Nrとの積で表わされる電気エネルギーをリングギヤ軸126から回生することになる。
【0026】
このように、この実施例のハイブリッド車両は、プラネタリギヤ120の作用に基づいて種々の運転状態で走行することができる。
【0027】
この実施例の動力出力装置の運転全体は制御ユニット190により制御されている。制御ユニット190は、EFIECU170と同様、内部にCPU、ROM、RAM等を有するワンチップ・マイクロコンピュータである。制御ユニット190はEFIECU170と接続されており、両者は種々の情報を伝達し合うことが可能である。制御ユニット190は、エンジン150の制御に必要となるトルク指令値や回転数の指令値などの情報をEFIECU170に送信することにより、エンジン150の運転を間接的に制御することができる。制御ユニット190はこうして、動力出力装置全体の運転を制御しているのである。かかる制御を実現するために制御ユニット190には、種々のセンサ、例えば、駆動軸112の回転数を知るための回転数センサ144などが設けられている。リングギヤ軸126と駆動軸112は機械的に結合されているため、本実施例では、駆動軸112の回転数を知るための回転数センサ144をリングギヤ軸126に設け、モータMG2の回転を制御するためのセンサと共通にしている。
【0028】
[直噴式エンジン]
次に、図1に示すエンジン150の構成を説明する。エンジン150は、燃料室内に燃料を直接噴射する、いわゆる直噴式エンジンであり、その概略構成を図5に示す。図5に示すように、エンジン150は、EFIECU170により制御される。エンジン150は、シリンダブロック14を備えている。シリンダブロック14の内部には、シリンダ16が形成されている。なお、エンジン150は、複数のシリンダを備えているが、説明の便宜上、図5には複数のシリンダのうち1つのシリンダ16を示している。
【0029】
シリンダ16の内部にはピストン18が配設されている。ピストン18は、シリンダ16の内部を、図5における上下方向に摺動することができる。シリンダ16の内部において、ピストン18の上方には燃焼室20が形成されている。燃焼室20には、燃料噴射弁22の噴射口が露出している。エンジン150の運転中、燃料噴射弁22には燃料ポンプ24から燃料が圧送される。燃料噴射弁22及び燃料ポンプ24は、EFIECU170に接続されている。燃料ポンプ24は、EFIECU170から供給される制御信号に応じて燃料噴射弁22側へ燃料を圧送する。また、燃料噴射弁22は、EFIECU170から供給される制御信号に応じて燃焼室20内へ燃料を噴射する。
【0030】
また、燃焼室20には、点火プラグ26の先端が露出している。点火プラグ26は、EFIECU170から点火信号を供給されることにより、燃焼室20内の燃料に点火する。燃焼室20には、排気弁28を介して排気管30が連通している。燃焼室20には、また、吸気弁32を介して吸気マニホールド34の各枝管が連通している。吸気マニホールド34は、その上流側においてサージタンク36に連通している。サージタンク36の更に上流側には吸気管38が連通している。
【0031】
吸気管38には、スロットル弁40が配設されている。スロットル弁40は、スロットルモータ42に連結されている。そして、スロットルモータ42は、EFIECU170に接続されている。スロットルモータ42は、EFIECU170から供給される制御信号に応じてスロットル弁40の開度を変化させる。スロットル弁40の近傍には、スロットル開度センサ44が配設されている。スロットル開度センサ44は、スロットル弁40の開度(以下、スロットル開度SCと称す)に応じた電気信号をEFIECU170に向けて出力する。EFIECU170は、スロットル開度センサ44の出力信号に基づいてスロットル開度SCを検出する。
【0032】
EFIECU170には、また、イグニッションスイッチ76(以下、IGスイッチ76と称す)が接続されている。EFIECU170は、IGスイッチ76の出力信号に基づき、IGスイッチ76のオン/オフ状態を検出する。IGスイッチ76がオン状態からオフ状態とされると、燃料噴射弁22による燃料噴射、点火プラグ26による燃料の点火、及び、フューエルポンプ24による燃料の圧送が停止され、エンジン150の運転が停止される。
【0033】
アクセルペダル78の近傍には、アクセル開度センサ80が配設されている。アクセル開度センサ80は、アクセルペダル78の踏み込み量(以下、アクセル開度ACと称す)に応じた電気信号をEFIECU170に向けて出力する。EFIECU170は、アクセル開度センサの出力信号に基づいてアクセル開度ACを検出する。
【0034】
[エンジン自動停止時のトルク制御]
本例において、エンジン150は、その負荷状態に応じて成層燃焼モード又は均質燃焼(ストイキ燃焼)モードの何れかの燃焼モードで作動する。均質燃焼モードとは、アクセル開度等によって演算されたエンジン要求トルクに応じてスロットル開度SCを制御し、スロットル開度に応じた流量の空気を燃焼室20に供給することにより、燃焼室20内で均質燃焼を実現する動作モードである。一方、成層燃焼モードとは、スロットル開度SCを全開とし、多量の空気を燃焼室20に供給すると共に、アクセル開度等によって演算されたエンジン要求トルクに応じた量の燃料を圧縮行程において燃料噴射弁22から噴射させることにより、燃焼室20内で成層燃焼を実現する動作モードである。
【0035】
成層燃焼モードによれば、均質燃焼モード時よりも大きな空燃比で燃焼が行われるのでエンジン150の燃費が向上する。更に、成層燃焼モードによれば、スロットル開度SCが全開とされることで、エンジン150のポンピングロスが低減されることによっても燃費が向上する。従って、エンジン150の燃費を向上される観点から、エンジン150を可能な限り成層燃焼モードで作動させることが望ましい。
【0036】
また、成層燃焼モードでは、均質燃焼モードに比べ、燃料噴射量を制御することにより、トルクの細かな制御ができるという利点がある。均質燃焼モードでは、スロットル開度に応じた空気を燃焼室20へ供給し、その空気量に対して理論空燃比を実現するように燃料噴射量が決定される。逆に言えば、燃料噴射量は、スロットル開度に応じて燃料室20へ導入される空気量により間接的に制御されることになるため、エンジン150からの出力トルクの微調整が難しい。また、運転者がアクセルペダルを踏み込んでから、それに応じてスロットル開度SCが制御され、アクセル開度等によって演算されたエンジン要求トルクに見合った空気量が燃焼室内に導入されるまでには、一定の時間的遅延が生じるため、その分出力トルクの制御にも時間的遅延が生じることになる。
【0037】
これに対し、成層燃焼モードでは、アクセル開度によって演算されたエンジン要求トルクに見合った量の燃料を、燃料噴射弁22により燃料室内20に直接噴射する。よって、エンジンからの出力トルクを、エンジン要求トルクに応じた燃料噴射量により直接的に制御することができ、燃料噴射量を微調整することにより、きめ細かなトルク調整が可能となる。また、燃料噴射量が直接的に出力トルクを決定することになるので、トルク制御における時間的遅延も生じない。
【0038】
そこで、本発明では、ハイブリッド車両の間欠運転に伴うエンジン停止時に、エンジンの燃焼モードを均質燃焼モードから成層燃焼モードに切り換え、燃料噴射量により出力トルクを直接的に細かく調整することで、トルク差に起因するショックや振動を防止する。
【0039】
図6に、エンジン停止時のトルク制御のタイムチャートを示す。図6において、時刻t1においてエンジン停止指示がなされたとする。すると、EFIECU170は、波形201に示すように、エンジン150の燃焼モードを、それまでの均質燃焼モードから、成層燃焼モードへ切り換える。また、燃焼モードの切り換えに伴い、波形202に示すように、EFIECU170は燃料噴射弁22からの燃料噴射量の制御を行う。前述のように、エンジン150は複数のシリンダを有するが、波形202はそのうちの1つのシリンダにおいて燃料噴射弁22から噴射される燃焼噴射量を示している。ここで、EFIECU170は、均質燃焼モードから成層燃焼モード201への切り換えに伴い、時刻t1の前後でエンジンからの出力トルクが同一となるように、燃焼モード切り換え直後(即ち、時刻t1直後)の燃料噴射量を決定する。より具体的には、EFIECU170は、エンジン停止指示が発行された時点の均質燃焼モードにおけるエンジン出力トルクを記憶しておき、その出力トルクと同一となるように成層燃焼モード移行後の各シリンダにおける燃料噴射量を決定する。波形202においては、エンジン停止指示がなされた時刻t1に、各気筒の燃料噴射量が減少しているが、これは成層燃焼モードの方が少ない燃料噴射量で大きなトルクを得ることができるためである。成層燃焼モードへの切り換えにより、時刻t1で各気筒の燃料噴射量が減少しているが、発生トルクの波形205に示されるように、時刻t1時点で発生トルクは同一のレベルに維持されている。
【0040】
こうして、成層燃焼モードへの切り換えが完了すると、波形202に示すように、EFIECU170は各気筒の燃料噴射量を徐々に減少させる。これにより、波形205に示すように、エンジン150からの出力トルクは徐々に減少することになる。なお、成層燃焼モードでは前述のように燃料噴射量により直接的にトルク制御ができるので、時間的遅延などの問題はなく、出力トルクを予定通りに正確に減少させていくことができる。
【0041】
ここで、EFIECU170がトルクを減少させていく場合の目標値は、モータ駆動により得られる最大トルク値MGmaxとなる。間欠運転においては、エンジン停止後は、車両の走行のための駆動力はモータから得ることになる。その際、エンジン駆動からモータ駆動への切り換え前後でトルク差を生じないようにするためには、エンジン駆動中に出力トルクをモータの最大トルク値まで徐々に低下させた上で動力を切り換えることが必要となる。このため、EFIECU170は、成層燃焼モードへの切り換え後は、燃料噴射量を徐々に減らして、モータによる最大トルク値まで出力トルクを減少させる。
【0042】
そうして、成層燃焼モードによる出力トルクを減少させる過程では、EFIECU170は最初はエンジンの複数の気筒全てについて同量ずつ燃料噴射量を減少させる。しかし、各気筒には最小噴射量が予め設定されているので、最小噴射量を超えて燃料噴射量を低下させることはできない。そこで、全ての気筒について燃料噴射量を最小噴射量まで減少させた状態でも、未だエンジンの出力トルクが目標であるモータの最大トルク値MGmaxより大きい場合には減筒を行う。即ち、複数個の気筒のうちの1つについて燃料噴射を停止し、残りの気筒のみで燃料噴射を行う。
【0043】
仮にエンジン150が6気筒であると過程する。図6においては、時刻t2において、波形203に示すように減筒指示が出力されている。これに応答して、EFIECU170は1つの気筒の燃料噴射を停止し、その時点でのトルクと等しいトルクが得られるように、残りの5つの気筒の燃料噴射量を決定する。よって、燃料噴射を停止しない5つの各気筒の燃料噴射量は、波形203に示すように、減筒時(時刻t2)に増加することになる。
【0044】
その後、EFIECU170は、5つの各気筒で燃料噴射量を徐々に減少させ、再度燃料噴射量が最小噴射量になると、さらに1つの気筒を減筒する(時刻t3)。こうして、成層燃焼モードで動作中のエンジンの出力トルクが、モータの最大トルク値MGmaxと等しくなるまで、必要に応じて減筒を行いつつ燃料噴射量を減少させていく。これにより、波形205に示すように、エンジンの出力トルクは滑らかに減少していく。
【0045】
そして、エンジンの出力トルクがモータの最大トルク値MGmaxと等しくなると(時刻t4)、制御ユニット190は動力をモータに切り換える。即ち、波形204に示すように燃料噴射を停止し、エンジンを停止する。その後(時刻t4以降)は、車両はモータ駆動により走行する。
【0046】
図6の波形206は、比較例として、均質燃焼モードのまま、動力をエンジンからモータへ切り換えた場合のトルク変化を示している。動力をエンジンからモータへ切り換える時刻t4において、均質燃焼モードの出力トルクからモータの最大トルク値へ急激にトルクが減少するため、運転者は車両のショックや振動を感じることになる。これに対し、本発明のトルク制御では、波形205に示すように、トルクは滑らかに変化している。
【0047】
以上のように、本発明のトルク制御では、間欠運転中のエンジン停止時には、まず燃焼モードを成層燃焼モードに切り換えて、燃料噴射量により直接的に出力トルクを制御しながらモータの最大トルク値まで出力トルクを減少させ、その後、モータ駆動に切り換える。従って、波形205に示すように、均質燃焼モードから成層燃焼モードへの移行時(時刻t1)においても、その後にエンジンの出力トルクを減少させる過程においても、さらに動力をエンジンからモータへ切り換える時点(時刻t4)においても、トルクの急激な変動が生じることはなく、運転者がショックや振動を感じることはない。
【0048】
次に、上記のエンジン自動停止時のトルク制御処理について、図7のフローチャートを参照して説明する。なお、図7に示すトルク制御処理は、図1に示す制御ユニット(ECU)190及びEFIECU170が必要な通信を行いつつ、燃料ポンプ24や燃料噴射弁22などを制御することにより実行される。
【0049】
図7を参照すると、まず、EFIECU170は、制御ユニット190からのエンジン停止指示を検出する(ステップS1)。ハイブリッド車両の間欠運転では、制御ユニット190がバッテリ194の充電量を監視しており、充電量に応じて、例えばバッテリ194が過充電気味である場合などに、エンジン停止指示をEFIECU170へ出力する。
【0050】
EFIECU170はエンジン停止指示を受け取ると、図6に示すように、燃焼モードを均質モードから成層モードへ切り換える(ステップS2)。即ち、EFIECU170は燃料噴射量を制御することにより、エンジンからの出力トルクを制御するようになる。次に、EFIECU170は、現在のバッテリ194の充電量などに基づいて、モータ駆動による最大トルク値MGmaxを算出し、その値を目標として、各気筒の燃料噴射量を減少させる(ステップS3)。即ち、EFIECU170は所定量ずつ燃料噴射量を減少させ、エンジンの出力トルクがモータ駆動による最大トルク値MGmaxと等しくなったか否かを判定し(ステップS4)、等しくなっていない場合には、各気筒の燃料噴射量が最小噴射量と等しくなったか否かを判定する(ステップS5)。各気筒の燃料噴射量が最小噴射量と等しくなっていない場合、現在の気筒数でまだ燃料噴射量を減少させることができるので、処理はステップS3へ戻る。一方、各気筒の燃料噴射量が最小噴射量と等しくなった場合は、現在の気筒数のまま燃料噴射量をさらに減少させることはできないので、1気筒減筒し(ステップS6)、ステップS3へ戻る。
【0051】
こうして、ステップS3〜S6の処理を繰り返し、エンジンの出力トルクが、モータ駆動による最大トルク値MGmaxと等しくなると(ステップS4:Yes)、制御ユニット190は動力をエンジン150からモータMG1及びMG2に切り換え(ステップS7)、処理を終了する。その後は、モータ駆動により車両が走行することになる。
【0052】
[エンジン自動始動時のトルク制御]
次に、間欠運転において動力をモータからエンジンへ切り換える際、即ちエンジン自動始動時のトルク制御について説明する。上述したトルク制御の方法は、ハイブリッド車両の動力をモータからエンジンへ切り換える際にも適用できる。その場合の処理を図8のフローチャートを参照して説明する。
【0053】
いま、ハイブリッド車両がモータ駆動により走行しているとする。制御ユニット190はバッテリ194の充電量を監視しており、例えば充電量が所定値未満になったときに、エンジン始動指示をEFIECU170へ出力する(ステップS11)。EFIECU170は、エンジン始動指示を受け取ると、まず燃焼モードを成層燃焼モードに設定し(ステプS12)、徐々に燃料噴射量を増加させる(ステップS13)。燃料噴射量を増加させる際の目標値は、燃料噴射量に応じて決定されるエンジンの出力トルクが、現在の状態におけるモータの最大出力トルク値MGmaxと等しくなる値である。なお、このときには制御ユニット190は未だ動力をモータのまま維持している。
【0054】
そして、EFIECU170は、エンジンの出力トルクが最大出力トルク値MGmaxと等しくなったかを判定し(ステップS14)、等しくなったときに動力切り換え指示を制御ユニット190へ送り、制御ユニット190は動力をモータからエンジンに切り換える。その後、制御ユニット190は、必要なバッテリが必要な充電量に回復するまで、モータによる回生を行うことができる。
【0055】
エンジン自動始動時には、一般的にエンジンの燃焼室内は大気圧になっているので、動力をモータからエンジンに切り換える際に最初から均質燃焼モードとすると、多量の燃料噴射が急激に行われ、急に大きなトルク出力がなされてショックや振動が生じやすい。この点、上述のように、エンジン自動始動時にも成層燃焼を利用することにより、そのような不具合を防止することができる。
【0056】
なお、上記の実施形態では、ハイブリッド車両の間欠運転などにおけるエンジン停止時に行われるトルク制御処理について説明したが、本発明の適用はこの場合には限定されない。即ち、アイドルストップ車両におけるエンジン停止時や、通常の車両において単にエンジンを停止する場合にも本発明を同様に適用することができる。
【0057】
【発明の効果】
以上説明したように、本発明によれば、ハイブリッド車両の間欠運転におけるエンジン自動停止時において、エンジンを成層燃焼モードにして燃料噴射量により細かなトルク制御を行うことにより、モータ駆動への切り換え時にトルク差が生じないようにする。これにより、運転者がショックや振動を感じることがなくなる。
【図面の簡単な説明】
【図1】本発明を適用したハイブリッド車両の概略構成を示す。
【図2】ハイブリッド車両の基本的動作を説明するための共線図である。
【図3】ハイブリッド車両が高速定常走行している場合の共線図である。
【図4】ハイブリッド車両のバッテリ及びモータ駆動回路の構成を示す。
【図5】エンジンの構造の概略構成図である。
【図6】エンジン自動停止時のトルク制御のタイムチャートである。
【図7】エンジン自動停止時のトルク制御処理のフローチャートである。
【図8】エンジン自動始動時のトルク制御処理のフローチャートである。
【符号の説明】
22 燃料噴射弁
24 燃料ポンプ
38 吸気管
40 スロットル弁
44 スロットル開度センサ
76 イグニッションスイッチ
78 アクセルペダル
80 アクセル開度センサ
120 プラネタリギア
150 エンジン
170 EFIECU
190 制御ユニット(ECU)
194 バッテリ

Claims (4)

  1. 成層燃焼モード及び均質燃焼モードにおける動作が可能な内燃機関と、電動機とを備えるハイブリッド車両において、
    前記内燃機関の動作を停止させるための機関停止指示を出力する指示出力手段と、
    前記機関停止指示が入力されたときに、前記内燃機関の燃焼モードを強制的に成層燃焼モードに設定する燃焼モード設定手段と、
    前記成層燃焼モードへの燃焼モードの設定の前後における前記内燃機関の出力トルクが同一となるように前記燃焼モード設定時の燃料噴射量を決定し、前記燃焼モードの設定後、燃料噴射器による前記燃料噴射量を所定の変化量で低下させた後、燃料噴射を停止する噴射制御手段と、
    前記電動機を駆動するためのバッテリと、
    前記バッテリの充電量に基づいて前記電動機により発生可能な最大トルク値を算出する手段と、を備え、
    前記噴射制御手段は、前記内燃機関の出力トルク値が前記最大トルク値と一致したときに、燃焼噴射を停止することを特徴とするハイブリッド車両。
  2. 走行のための動力源を前記内燃機関と前記電動機との間で切り換える動力切換手段をさらに備え、
    前記動力切換手段は、前記噴射制御手段が燃料噴射を停止したときに前記動力源を前記内燃機関から前記電動機へ切り換えることを特徴とする請求項に記載のハイブリッド車両。
  3. 前記内燃機関は複数のシリンダを有し、前記燃料噴射器は前記シリンダ毎に設けられており、
    前記噴射制御手段は、前記複数の燃料噴射器を独立に制御して前記燃料噴射量を低下させることを特徴とする請求項1又は2に記載のハイブリッド車両。
  4. 成層燃焼モード及び均質燃焼モードにおける動作が可能な内燃機関と、電動機とを備えるハイブリッド車両において、
    前記内燃機関の動作を停止させるための機関停止指示を出力する指示出力手段と、
    前記機関停止指示が入力されたときに、前記内燃機関の燃焼モードを成層燃焼モードに設定する燃焼モード設定手段と、
    前記燃焼モードの設定後、燃料噴射器による燃料噴射量を所定の変化量で低下させた後、燃料噴射を停止する噴射制御手段と、
    前記電動機を駆動するためのバッテリと、
    前記バッテリの充電量に基づいて前記電動機により発生可能な最大トルク値を算出する手段と、を備え、
    前記噴射制御手段は、前記内燃機関の出力トルク値が前記最大トルク値と一致したときに、燃焼噴射を停止することを特徴とするハイブリッド車両。
JP2002165335A 2002-06-06 2002-06-06 内燃機関の制御装置及びハイブリッド車両 Expired - Fee Related JP3963125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165335A JP3963125B2 (ja) 2002-06-06 2002-06-06 内燃機関の制御装置及びハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165335A JP3963125B2 (ja) 2002-06-06 2002-06-06 内燃機関の制御装置及びハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2004011515A JP2004011515A (ja) 2004-01-15
JP3963125B2 true JP3963125B2 (ja) 2007-08-22

Family

ID=30433198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165335A Expired - Fee Related JP3963125B2 (ja) 2002-06-06 2002-06-06 内燃機関の制御装置及びハイブリッド車両

Country Status (1)

Country Link
JP (1) JP3963125B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111212A (ja) * 2008-11-05 2010-05-20 Toyota Motor Corp ハイブリッド車およびその制御方法
JP5724289B2 (ja) * 2010-10-25 2015-05-27 日産自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JP2004011515A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3250483B2 (ja) 駆動装置
JP3257486B2 (ja) 動力出力装置および内燃機関制御装置
EP0839683B1 (en) Power output apparatus, engine controller, and methods of controlling power output apparatus and engine
JP3894168B2 (ja) 動力出力装置およびその制御方法並びに自動車
JP4519085B2 (ja) 内燃機関の制御装置
JP3622529B2 (ja) 動力出力装置、およびそれを搭載したハイブリッド車両並びに原動機の動作点制御方法
JP5157275B2 (ja) ハイブリッド車の制御装置
JP2000008903A (ja) ハイブリッド型車両
JP3988296B2 (ja) 動力出力装置、およびそれを搭載したハイブリッド車両並びに電動発電機制御方法
JP2001292501A (ja) 車両用制御装置
JP2001123857A (ja) 駆動装置
JP2004011456A (ja) ハイブリッド車両
JP3783776B2 (ja) 動力出力装置およびこれを搭載する自動車
JP5949369B2 (ja) 内燃機関の停止制御装置
JP3956937B2 (ja) 自動車および自動車の制御装置
JP3963125B2 (ja) 内燃機関の制御装置及びハイブリッド車両
JP3937948B2 (ja) ハイブリッド車両の制御装置及び方法、並びにハイブリッド車両
JP2000278814A (ja) 車両の駆動装置
JP7192844B2 (ja) ハイブリッド車両の制御装置
CN115123246A (zh) 车辆控制装置
JP3809816B2 (ja) 動力出力装置
JP3452055B2 (ja) 動力出力装置および内燃機関制御装置
JP2004142590A (ja) 動力出力装置及びその制御方法並びにハイブリッド車両
JP3931744B2 (ja) ハイブリッド型の動力出力装置及びその制御方法、並びにハイブリッド車両
JP3414097B2 (ja) 車両用動力源制御装置ならびに自動車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees