JP3961189B2 - Hermetic compressor and gas-liquid separation and discharge method - Google Patents

Hermetic compressor and gas-liquid separation and discharge method Download PDF

Info

Publication number
JP3961189B2
JP3961189B2 JP2000098020A JP2000098020A JP3961189B2 JP 3961189 B2 JP3961189 B2 JP 3961189B2 JP 2000098020 A JP2000098020 A JP 2000098020A JP 2000098020 A JP2000098020 A JP 2000098020A JP 3961189 B2 JP3961189 B2 JP 3961189B2
Authority
JP
Japan
Prior art keywords
compression mechanism
rotor
passage
stator
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098020A
Other languages
Japanese (ja)
Other versions
JP2001280252A (en
Inventor
博之 河野
敬 森本
定幸 山田
博正 芦谷
飯田  登
作田  淳
修一 山本
澤井  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000098020A priority Critical patent/JP3961189B2/en
Publication of JP2001280252A publication Critical patent/JP2001280252A/en
Application granted granted Critical
Publication of JP3961189B2 publication Critical patent/JP3961189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、業務用または家庭用、あるいは乗り物用の冷凍空調、あるいは冷蔵庫などに用いられる密閉型圧縮機に関するものである。
【0002】
【従来の技術】
従来、この種の密閉型圧縮機は、本実施の形態に係る密閉型のスクロール圧縮機を示す図1を参照して、密閉容器1内に圧縮機構2、この圧縮機構2の下方に設けた圧縮機構2を駆動するための電動機3と、この電動機3の回転力を圧縮機構2に伝達するためのクランク軸4とを備え、密閉容器1内の下部に設けたオイル溜め5のオイル6をクランク軸4を通じてクランク軸4の軸受部66や圧縮機構2の摺動部に供給する給油機構7とを備えている。
【0003】
これによって、オイル6は給油機構7によって重力に逆らって軸受部66や圧縮機構2の摺動部に強制給油されて、円滑な動作を確保しながら、圧縮機構2で圧縮した冷媒ガスを密閉容器1内の電動機3の部分を通して電動機3を冷却した後密閉容器1外に吐出するようにしており、前記軸受部66や圧縮機構2の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜め20に自然回収されるようにすることができる。しかし、冷媒ガスは常時オイルと接触してこれを随伴させ、密閉容器から冷凍サイクルに供給される際にオイルを持ち込んでしまい、冷凍サイクル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下をもたらす問題がある。
【0004】
これを解消するのに従来、圧縮機構から密閉容器内に吐出した冷媒ガスが電動機を通ってそれを冷却しながら密閉容器外に吐出されるまでの冷媒ガスの通路を、オイルの衝突分離や遠心分離が繰り返し生じるように設計して、密閉容器外に吐出される冷媒ガスにオイルが随伴しないように工夫したり、特開平7−189963号公報が開示しているように軸受部や圧縮機構から電動機部へのオイルの排出経路を、圧縮機構からの吐出冷媒の電動機部への流路から独立して設け、排出オイルは電動機の固定子の上に滴下させた後伝い落ちにより下部のオイル溜めに回収されるようにする一方、冷媒ガスは電動機部の片側に向け吐出して固定子と密閉容器との間の片側の通路を下降して電動機下部に至った後、固定子と回転子との間のエアギャップを上昇して密閉容器外に吐出する整然とした冷媒の流れを作って前記滴下し伝い落ちるオイルを随伴させにくくするにようにしている。
【0005】
【発明が解決しようとする課題】
しかし、従来のどの方式も満足な気液分離はできていない。冷媒ガスの流れによる衝突分離や遠心分離を図る従来の方式は、圧縮機構や電動機の固定子に設ける冷媒通路の設け方によって冷媒ガスの流れを規制して各部との衝突や回転子やバランスウエイトの回転を利用した旋回流が生じるようにするものであるが、冷媒ガスやオイルの流れを拘束し切れず衝突や旋回が不十分であったり、冷媒がその流路や流れの乱れによってオイルと再三接触して随伴させやすかったりして、密閉容器外に吐出する冷媒ガスにオイルが混入することを防止し切れていない。
【0006】
また、上記公報に開示のものは、圧縮機構やその軸受部に供給した後のオイルを集めて取扱うのでオイルが凝集し、電動機に向け流下ないしは滴下し、滴下する場合でもそのオイル滴は大きく、圧縮機構から電動機側に吐出されてくる冷媒ガスに乗じにくく随伴されにくい。しかし、滴下するオイルは電動機の固定子上部のコイル部など複雑な隙間や構造を持った部分に流下ないしは滴下して固定子下部の複雑な隙間や構造を持ったコイル部などへと伝い落ちて電動機下部のオイル溜めに至るので、せっかく独自に取扱われながら冷媒との接触域が長い上に、複雑な隙間および構造を持った固定子上下のコイル部を伝い落ちながらの冷媒ガスとの接触で、伝い落ちるオイルの一部は冷媒ガスにより分散されてその流れに乗じてしまい随伴されるので、やはり、密閉容器外に吐出する冷媒ガスにオイルが混入することを防止し切れていない。
【0007】
本発明の目的は、冷媒およびオイルをほぼ拘束して取扱って、十分に気液分離されたガスを吐出することができる密閉型圧縮機およびその気液分離吐出方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の密閉型圧縮機およびその気液分離吐出方法は、密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備えたことを基本構成とする密閉型圧縮機に関するものであり、
上記の目的を達成するために、第1の密閉型圧縮機は、圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室に続く連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設けたことを特徴としている。
【0009】
このような構成では、先ず、圧縮機構の上部の容器内吐出室と、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路とが、圧縮機構およびその軸受部の外回りに位置して、圧縮機構から吐出されるガスを一括して圧縮機構下部の連絡路に吐出させ、連絡路が吐出されてきたガスを回転子上部室に導いて回転子の回転子通路内を通り回転子下部室へ回転子の回転を受けた強い旋回流を持って吐出させる。このように圧縮機構から吐出されたガスを拘束して取扱うことにより、圧縮機構から吐出されたガスが圧縮機構内や軸受部まわりを経る間にそれらに供給されていたオイルと接触してそれを随伴していても、前記強い旋回流によって気液分離を行ないオイルを外方へ追いやって電動機の固定子の内周に付着させてオイル溜めに近いところでガスから分離し、ガスに乗じる機会がほとんどなく伝い落ちて直ぐ下のオイル溜めに滴下し回収されるようにするので、ガスに随伴しているオイルを効率よく分離することができる。
【0010】
また、回転子通路を通るガスに随伴しているオイルは回転子の回転による遠心力で回転子通路の外側面に押し付けられてミスト状態から凝集しオイル滴に成長するので、前記遠心分離による気液分離効率をより高めるし、遠心分離されるオイル滴は固定子の内周に押し付けられて凝集しさらに大きく成長して下方のオイル溜めに滴下するので、気液分離後のオイルがオイル溜めに滴下するのに、回転子下部室から電動機下部室に至って後、上向きにユーターンして固定子通路に向かうガスの流れに乗じにくい上、前記ユーターンするガスの流れはユーターン時の遠心力により、随伴しているあるいは随伴しようとするオイルをその重力も手伝って下のオイル溜めに向け振り落としまた弾き飛ばす作用をするので、前記遠心分離した、およびまだガス中に残っているオイルの回収率を高めることができる。
【0011】
さらに、以上のようにしてオイルを分離されたガスは固定子通路を通って前記軸受まわりにある連絡路のさらに外まわりの固定子上部室に達して、密閉容器の固定子上部室以上の位置にある吐出口から吐出するようになるので、オイルやオイルを随伴しているガスと接触することなくオイルが十分に分離された状態で密閉容器外に吐出することができる。
【0012】
さらに、また、圧縮機構から吐出されたガスは回転子通路および固定子通路を通るので、電動機を効率よく冷却することができる。
【0013】
外部吐出口は密閉容器の固定子上部室に設けられてもよいが、外部吐出口が密閉容器の圧縮機構の上の容器外向け吐出室に設けられ、この容器外向け吐出室と前記固定子上部室とを連通させるように圧縮機構または圧縮機構と密閉容器との間に圧縮機構上昇連通路が設けられていると、ガスが固定子上部室から圧縮機構上昇連通路に入る際に圧縮機構部との間での衝突により、ガス中になお残存していることのあるオイルをさらに分離することができるので、オイルの分離効果が一層向上する。
【0014】
回転子通路の断面積よりも固定子通路の断面積の方が大きい構成では、遠心分離後密閉容器の上部へ吹き上げるガスの流速を低下させるので、オイルを随伴させる勢力を弱めて残留オイルや新たなオイルを吹き上げにくくし、オイルの分離効果を高めることができる。
【0016】
回転子通路に回転子の外周に開口する1つまたはそれ以上の外向きの分岐穴を設けた構成では、回転子の回転による遠心力で回転子通路の外側に押し付けられるオイルが前記分岐穴を通じ固定子外周に遠心排出されてガスからいち早く分離され固定子の内周に大きなオイル滴とし付着して伝い落ちるようになり、ガスが回転子通路から回転子下部室に吐出されて遠心分離されるのと併せ、オイルの分離効果を高めることができる。
【0017】
室外吐出室と固定子上部室とを連通させる圧縮機構上昇連通路と固定子連通路との軸線が互いにずれている構成では、固定子通路から固定子上部室に吐出されたガスが圧縮機構上昇通路に入るときの圧縮機構部との衝突を逃げなく強く行なわせるので、オイル分離効果を高めることができる。
【0018】
第2の密閉型圧縮機は、圧縮機構から吐出されるガスが、圧縮機構上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設けたことを特徴としている。
【0019】
このような構成では、圧縮機構から吐出されるガスを一括して圧縮機構下部の連絡路に吐出させ、連絡路が吐出されてきたガスを電動機の回転子上部室に導いて回転子の回転子通路内を通り回転子下部室へ回転子の回転を受けた強い旋回流を持って吐出させるのに、連絡路を通路カバーが形成して内外を仕切るので、第1の密閉型圧縮機に比して、圧縮機構からのガスを回転子上部空間に案内して回転子通路に入るように拘束しやすく、前記回転子の回転と旋回流とによるオイル分離を回避するガスの流れをなくしてオイル分離効果を高めることができるし、遠心分離後固定子上部空間に吹き上げ密閉容器外に吐出されるガスがオイル分離前のガスや連絡路内側に位置する軸受部からのオイルと接触するのを防止して新たにオイルが混入しないようにして吐出するガスのオイル分離効果を高めることができる。
【0020】
容器内吐出室が、圧縮機構の上部吐出口を覆うように設けられたマフラーにて形成されている構成では、圧縮機構上部室を利用した消音作用が得られるのに併せ、遠心分離後に固定子上部室に吹き上げたガスを圧縮機構部に衝突させてオイルを分離し圧縮機構上昇通路を通じて圧縮機構上部室に導き密閉容器外に吐出する場合、このオイル分離後密閉容器外に吐出するガスが圧縮機構から吐出されるオイル分離前のガスと接触するのを防止してオイル分離効果を高めることができる。
【0021】
通路カバーが、圧縮機構側から回転子上端の外周に設けられているバランスウエイト内側まで延びている構成、および、圧縮機構側から回転子上端に設けられているバランスウエイトの外側まで延びている構成では、圧縮機構から吐出されるガスを回転子通路にまで導く拘束性が増大し、その分オイル分離効果を高めることができる。
【0022】
通路カバーが、クランク軸の軸受部材の外まわりに設けた環状の軸受カバーであると、圧縮機構部およびその軸受部に供給されたオイルを通路カバーが形成する連絡路内に集めて吐出ガスとともに前記遠心分離に供されるように拘束することができ、かつ、遠心分離後に固定子上部室に吹き上げて密閉容器外に吐出されるガスが軸受部からのオイルやオイルを随伴している遠心分離前のガスと接触して新たにオイルを随伴するようなことを回避し、オイル分離効果を高めることができる。
【0023】
軸受カバーが軸受部材との間に圧縮機構連通路の一部を形成している構成では、圧縮機構から吐出され圧縮機構連通路を通じて圧縮機構下部に至ったガスを回転子上部空間に対応する密閉容器中央部の連絡路に導くのに軸受部材の外面を利用して通路を形成しやすい。
【0024】
通路カバーが、その下端部が固定子とほぼ接するか、あるいは固定子または回転子と近接して、連絡路から回転子通路に流れるガスが途中で外部に流出するのを抑制するシール部を構成した構成では、ガスおよびオイルを遠心分離に供する拘束性をさらに高めてオイルの分離効果を高めることができる。
【0025】
通路カバーは、バランスウエイトが形成するようにもできる。
【0026】
第3の密閉型圧縮機は、圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設け、回転子下部室に固定子通路からの吐出ガスを衝突させるオイル分離板を設けたことを特徴としている。
【0027】
このような構成では、回転子通路から回転子下部室に吐出された直後のガスを分離板に強く衝突させて、随伴しているオイルをよく分離し、またオイルのミストを液滴化しかつ成長させて直ぐ旋回による遠心分離に供することにより、また、分離板が回転子下部室に吐出されたガスの旋回領域を扁平に狭めて旋回速度を上げ遠心分離作用を高めることにより、第1、第2の密閉型圧縮機に比し、オイルの分離効果を高めることができる。
【0028】
分離板と回転子の下端との間の空間の円周上の少なくとも一部が側方へ開口していれば遠心分離ができ、バランスウエイトによって部分的に塞がれるようなことがあってもよい。
【0029】
分離板がクランク軸との間に通路隙間を形成している構成では、オイルと遠心分離されるガスをオイルの遠心分離方向とほぼ直角の中央部にある通路隙間を通じて電動機下部室に吐出することを促進し、遠心分離されるオイルが電動機下部室に吐出するガスに随伴するのを防止しやすくなるのでオイルの分離効果を高めることができる。
【0030】
通路隙間が回転子通路よりも内側にある構成では、通路隙間が回転子通路から回転子下部室に吐出されたガスが分離板との衝突を回避するバイパスとなるのを防止して、オイルの分離板による衝突分離効果が低下しないようにすることができる。
【0031】
前記連絡路内に圧縮機構およびその軸受部からのオイル排出路が開口している構成では、圧縮機構部およびその軸受部に供した後のオイルが連絡路外に流れてオイル分離後に密閉容器外に吐出されるガスと接触するのを防止しやすいので、オイルの分離効果を高めることができる。
【0032】
オイル排出路が、前記圧縮機構連通路とは反対の側に設けられている構成では、連絡路に流下し、または滴下するオイルが圧縮機構連通路から圧縮機構下部に吐出し連絡路に流れるガスによって飛散され、ミスト化するのを防止して、ガスと合わせて取扱いながらガスとの分離効率を高められる。
【0033】
上記第1〜第3の密閉型圧縮機における作用は、以下のような密閉型圧縮機の気液分離吐出方法の発明としても実現することができる。その密閉型圧縮機の気液分離吐出方法は、圧縮機構から密閉容器内へ吐出されるガスおよび圧縮機構およびその軸受部への供給後のオイルを圧縮機構の上部の容器内吐出室、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路にてほぼ拘束して回転子上部室から回転子通路に通して回転子下部室に導くことにより回転子の回転による強制旋回に供して気液の遠心分離を行ない、遠心分離により外側に向かうオイルは固定子の内周に付着し伝い落ちるようにして直ぐ下のオイル溜めに滴下させる一方、オイルと分離された冷媒は電動機下部室から固定子または固定子と密閉容器との間の固定子通路に通して前記容器内吐出室、圧縮機構連通路、連絡路がなす束域外回りの固定子上部室に導き、密閉容器の固定子上部室の位置以上の部分から密閉容器外に吐出させて、オイルと気液分離した冷媒ガスを吐出することを特徴としている。
【0034】
この場合も、回転子通路を通るオイルにつき、回転子通路から回転子外周に向け分岐した分岐穴による遠心排出を図ることができるし、回転子通路から回転子下部室に吐出される冷媒ガスを分離板に衝突させて衝突分離を図ることもできる。
【0035】
本発明のそれ以上の目的及び特徴は、以下の詳細な説明及び図面によって明らかになる。本発明の各特徴は、可能な限りにおいて、それ単独で、あるいは種々な組み合わせで複合して用いることができる。
【0036】
【発明の実施の形態】
以下、本発明における実施の形態に係る密閉型圧縮機およびその気液分離吐出方法について図を参照しながら説明し、本発明の理解に供する。
【0037】
本実施の形態は縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、ロータリ式の圧縮機構など各種の圧縮機構をそれを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮し、圧縮機構が密閉容器内を上下に仕切り、その下部に電動機を収容する密閉型圧縮機であればその全般に適用して有効であり、本発明の範疇に属する。
【0038】
本実施の形態の密閉型圧縮機は図1〜図3に示すように、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある主軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガスを吸入して圧縮していき所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。
【0039】
クランク軸4の下端は密閉容器1の下端部のオイル溜め20に達して、密閉容器1内に溶接や焼き嵌めして固定された副軸受部材21により軸受され、安定に回転することができる。電動機3は主軸受部材11と副軸受部材21との間に位置して、密閉容器1に溶接や焼き嵌めなどして固定された固定子3aと、クランク軸4の途中の外まわりに一体に結合された回転子3bとで構成され、回転子3bの上下端面の外周部分にはピン22により止め付けられたバランスウエイト23、24が設けられ、これにより回転子3bおよびクランク軸4が安定して回転し、旋回スクロール13を安定して円軌道運動させることができる。
【0040】
給油機構7はクランク軸4の下端で駆動されるポンプ25によってオイル溜め20内のオイル6をクランク軸4を通縦しているオイル供給穴26を通じて圧縮機構2の各部の軸受部66や圧縮機構2の各摺動部に供給する。供給後のオイル6は供給圧や重力によって逃げ場を求めるようにして軸受部66を通じ主軸受部材11の下に流出して滴下し、最終的にオイル溜め20に回収される。
【0041】
しかし、実際には既述したように、圧縮機構2から吐出される図1に破線矢印で示す冷媒ガス27には圧縮機構2内で接触したオイル6を随伴させていたり、上記主軸受部材11の下に滴下してくる供給後のオイル6を飛散させて随伴させたりしていて、従来これを十分に分離できず密閉容器1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問題がある。
【0042】
図1〜図3に示す各実施の形態はこのような問題を解消するために、
圧縮機構2から吐出される冷媒ガス27が、圧縮機構2の上部の容器内吐出室31、この容器内吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35、を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って前記連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出パイプ39を通って密閉容器1外に吐出されるようにする容器内ガス通路Aを設けてある。
【0043】
このような容器内ガス通路Aの容器内吐出室31と、圧縮機構連通路32とは、圧縮機構2およびその軸受部66の外回りに位置して、圧縮機構2から吐出される冷媒ガス27を一括して圧縮機構2の下部の連絡路34に吐出させる。続いて連絡路34は吐出されてきた冷媒ガス27を回転子上部室33に導いて回転子3bおよびバランスウエイト23の回転による影響で緩く旋回する状態で回転子通路36内に進入させて下方に通りぬけ回転子下部室35へ回転子3bの回転を受けた強い旋回流Bを持って吐出させる。
【0044】
このように圧縮機構2から吐出された冷媒ガス27を拘束して取扱うことにより、圧縮機構2から吐出された冷媒ガス27が圧縮機構2内や軸受部66まわりを経る間にそれらに供給されていたオイル6と接触してそれを随伴していても、前記強い旋回流Bによって気液分離を行ないオイル6を外方へ追いやって固定子3aの内周に付着させてオイル溜め20に近いところで冷媒ガス27から実線矢印で示すように効果的に分離し、以降分離したオイル6は伝い落ちながら直ぐ下のオイル溜めに滴下して、冷媒ガス27に乗じる機会がほとんどなしに回収されるようにするので、冷媒ガス27に随伴しているオイル6を効率よく分離し回収することができる。
【0045】
また、回転子通路36を通る冷媒ガス27に随伴しているオイル6は回転子3bの回転による遠心力で回転子通路36の外側面に押し付けられてミスト状態から凝集しオイル滴に成長するので、前記遠心分離による気液分離効率をより高めるし、遠心分離されるオイル滴は固定子3aの内周に押し付けられて凝集しさらに大きく成長して下方のオイル溜め20に滴下するので、気液分離後のオイル6がオイル溜め20に滴下するのに、回転子下部室35から電動機下部室41に至って後、上向きにユーターンして固定子通路37に向かう冷媒ガス27の流れCに乗じにくい上、前記ユーターンする冷媒ガス27の流れCはユーターン時の遠心力により、随伴しているあるいは随伴しようとするオイル6をその重力も手伝って下のオイル溜め20に向け振り落とし、また弾き飛ばす作用をするので、前記遠心分離した、また冷媒ガス27中になお残っているオイル6の回収率を高めることができる。
【0046】
以上のようにしてオイル6を分離された冷媒ガス27は、固定子通路37を通って前記軸受部66まわりにある連絡路34のさらに外まわりの固定子上部室38に達して、密閉容器1の固定子上部室38の位置以上の部分にある外部吐出パイプ39から密閉容器1外に吐出するので、オイル6を随伴している冷媒ガス27と接触することなくオイルが十分に分離された状態で密閉容器1外に吐出して冷凍サイクルに供給することができる。従って、冷凍サイクル中での配管圧力損失や凝縮器、蒸発器などの熱交換器での熱交換効率の低下を防止することができる。しかも、圧縮機構2から吐出された冷媒ガス27は回転子通路36および固定子通路37を通るので、電動機3を効率よく冷却することができる。
【0047】
外部吐出パイプ39は密閉容器1の固定子上部室38に設けられてもよいが、外部吐出パイプ39を図示するように密閉容器1の圧縮機構2の上の圧縮機構上部室42に設け、この圧縮機構上部室42と前記固定子上部室38とを連通させるように圧縮機構2または圧縮機構2と密閉容器1との間に圧縮機構上昇連通路43を設けていることにより、冷媒ガス27が固定子上部室38から圧縮機構上昇連通路43に入る際に圧縮機構2部との間での衝突により、冷媒ガス27中になお残存しているオイル6をさらに分離することができるので、オイル6の分離効果が一層向上する。
【0048】
また、回転子通路36の総断面積よりも固定子通路37の総断面積の方が大きくなるようにしてある。これにより、遠心分離後に固定子上部室38へ吹き上げる冷媒ガス27の流速を低下させるので、オイル6を随伴させる勢力を弱めて残留しておりあるいは新たに接触するオイル6を吹き上げにくくし、オイル6の分離効果を高めることができる。
【0049】
さらに、圧縮機構上昇連通路43と固定子通路37との軸線が互いにずれるようにしている。これにより、固定子通路37から固定子上部室38に吐出された冷媒ガス27が圧縮機構上昇連通路43に入るときの圧縮機構2部との衝突を逃げなく強く行なわせるので、オイル分離効果を高めることができる。このため、軸線の位置ずれは大きいほどよく、図示はしていないが円周方向に位置ずれさせるとずれ量を大きく設定することができる。
【0050】
容器内吐出室31は図示するように、圧縮機構2の上部吐出口18を覆うように設けられたマフラー50にて形成している。これにより、圧縮機構上部室42を利用した消音作用が得られるのに併せ、遠心分離後に固定子上部室38に吹き上げた冷媒ガス27を圧縮機構2部に衝突させてオイル6をさらに分離し圧縮機構上昇連通路43を通じて圧縮機構上部室42に導き密閉容器1外に吐出する上記構造において、このオイル分離後に密閉容器1外に吐出する冷媒ガス27が圧縮機構上部室42内で圧縮機構2から吐出されるオイル分離前の冷媒ガス27と接触するのを防止してオイル分離効果を高めることができる。
【0051】
前記連絡路34は冷媒ガス27の流路を決められれば開放型でもよいが、本実施の形態では図に示すように通路カバー51で囲って形成してある。これにより、連絡路34が圧縮機構2の下部に吐出された冷媒ガス27を確実に拘束して回転子通路36に導きやすくなるので、吐出冷媒ガス27の上記拘束による気液分離の確率が高くなりオイルの分離効果が高くなる。また、通路カバー51は連絡路34の内外を仕切っていて、オイルを分離され固定子上部室38に吐出されてくる冷媒ガス27がオイル分離前の冷媒ガス27と接触したり軸受部66から流下してくるオイル6と接触したりするのを防止するので、密閉容器1外に吐出されるまでに新たにオイル6を随伴させるようなことをなくしてオイル分離効果を高めることができる。冷媒ガス27の連絡路34による拘束は連絡路34が圧縮機構連通路32から回転子通路36に続くようにするのが好適である。
【0052】
この意味で、通路カバー51が図1に示す場合のように、その下端部が固定子3aとほぼ接するか、あるいは固定子3aまたは回転子3bと近接して、連絡路34から回転子通路36に流れる冷媒ガス27が途中で外部に流出するのを抑制するシール部を構成することにより、冷媒ガス27およびオイル6を遠心分離に供する拘束性をさらに高めてオイル6の分離効果を高めることができる。
【0053】
通路カバー51が、図2に示すように圧縮機構2側から回転子3bの上端の外周に設けられているバランスウエイト23の内側まで延びている構成、および、図3に示すように圧縮機構2側からバランスウエイト23の外側まで延びていることによっても、圧縮機構2から吐出される冷媒ガスを回転子通路36にまで導く拘束性が増大し、その分オイル分離効果を高めることができる。
【0054】
特に、通路カバー51は主軸受部材11の外まわりに設けた環状の軸受カバーとしてあり、圧縮機構2部およびその軸受部66に供給されたオイル6を通路カバー51が形成する連絡路34内に集めて冷媒ガス27とともに前記遠心分離に供されるように拘束することができ、かつ、遠心分離後に固定子上部室38に吹き上げて密閉容器1外に吐出される冷媒ガス27がオイル6を随伴している遠心分離前の冷媒ガス27と接触して新たにオイル6を随伴するようなことを回避し、オイル分離効果を高めることができる。
【0055】
通路カバー51は主軸受部材11にフランジ部51a1をボルト止めした金属製の軸受カバー51aとこの軸受カバー51aの内周に形成している下向きの筒部51a2に継ぎ足した絶縁材料よりなる筒カバー51bとで構成している。特に、図1〜図3に示すように通路カバー51が主軸受部材11との間に圧縮機構2の圧縮機構連通路32の一部を形成するのに金属製の軸受カバー51aは耐久性において好適であり、このような通路構成では、圧縮機構2から吐出され圧縮機構連通路32を通じて圧縮機構2の下部に至った冷媒ガス27を回転子上部室33に対応する密閉容器1の中央部の連絡路34に導くのに主軸受部材11の外面を利用して通路を形成しやすい。また、通路カバー51が図1、図3に示すように固定子3aのコイル部3cに接触し、また近接する場合にその部分が絶縁性の筒カバー51bであることにより互いの電気的な影響がなくなるので好適である。筒カバー51bの材料としてはPETやポリテトラフルオロエチレン(商品名テフロン)製のシートなどがあり、これらはかさ張らないしコイル部3cと接触してもそれを傷めない利点がある。
【0056】
しかし、通路カバー51は、図示しないがバランスウエイト23によって形成することもでき、これによると、通路カバー51を設けるのに特別な部材および取りつけ構造が不要となる。
【0057】
さらに、図1〜図3に示すように、回転子下部室35に回転子通路36から吐出される冷媒ガス27を衝突させてオイル6を分離する分離板61を設けてある。分離板61は円形でバランスウエイト24と共にバランスウエイト24をスペーサとして回転子3bに取りつけられている。これにより、回転子通路36から回転子下部室35に吐出された直後の冷媒ガス27が分離板61に強く衝突して、随伴しているオイル6をよく分離し、またオイル6のミストを液滴化しかつ成長させて直ぐ旋回による遠心分離に供することにより、また、分離板61が回転子下部室35に吐出された冷媒ガス27の旋回領域を扁平に狭めて旋回速度を上げ遠心分離作用を高めることにより、オイル6の分離効果を高めることができる。
【0058】
分離板61と回転子3bの下端との間の空間の円周上の少なくとも一部が側方へ開口していれば遠心分離ができ、バランスウエイト24によって部分的に塞がれるようなことがあってもよい。
【0059】
分離板61はまたクランク軸4との間にガスの通路隙間62を形成しているので、オイル6と遠心分離される冷媒ガス27をオイル6の遠心分離方向とほぼ直角の中央部にある通路隙間62を通じて電動機下部室41に吐出することを促進し、遠心分離されるオイル6が電動機下部室41に吐出する冷媒ガス27に随伴するのを防止しやすくなるのでオイルの分離効果を高めることができる。当然、分離板61と固定子3aの内周との間にも通路隙間が設けられ、遠心分離されたオイル6が固定子3aの内面を伝い落ちれるようにする。
【0060】
また、前記通路隙間62が図1〜図3に示すように回転子通路36よりも内側にあるので、通路隙間62が回転子通路36から回転子下部室35に吐出された冷媒ガス27が分離板61との衝突を回避するバイパスとなるのを防止して、オイル6の分離板61による衝突分離効果が低下しないようにすることができる。
【0061】
さらに、図1に示すものは連絡路34内に軸受部66からのオイル排出路63が開口している。これにより、圧縮機構2部およびその軸受部66に供した後のオイル6が連絡路外に流れてオイル分離後に密閉容器1外に吐出される冷媒ガス27と接触するのを防止しやすいので、オイル6の分離効果を高めることができる。
【0062】
しかも、このオイル排出路63が、圧縮機構連通路32とは反対の側に設けられているので、連絡路34に流下し、または滴下するオイル6が圧縮機構連通路32から圧縮機構2の下部に吐出し連絡路34に流れる冷媒ガス27によって飛散され、ミスト化するのを防止して、冷媒ガス27と合わせて取扱いながら冷媒ガス27との分離効率を高められる。
【0063】
なお、図1に仮想線で示すように回転子通路36に回転子3bの外周に開口する1つまたはそれ以上の外向きの分岐穴64を設けると、回転子3bの回転による遠心力で回転子通路36の外側に押し付けられるオイル6が前記分岐穴64を通じ回転子3bの外周から遠心排出されて冷媒ガス27からいち早く分離され固定子3aの内周に大きなオイル滴をなして付着し伝い落ちるようになり、冷媒ガス27が回転子通路36から回転子下部室35に吐出されて遠心分離されるのと併せ、オイル6の分離効果を高めることができる。
【0064】
【発明の効果】
本発明によれば、上記の説明で明らかなように、圧縮機構からの吐出ガスおよびそれに乗じて随伴している圧縮機構およびその軸受部に供給した後のオイルをほぼ拘束して取扱い、回転子通路を通すことで回転子の回転による強い遠心分離に供して効率のよい遠心分離を行って後、電動機下部室でのガスのユーターンとそれによるオイルの遠心分離を伴い固定子通路から固定子上部室に至らせながら、圧縮機構から回転子通路に入るオイル分離前のガスとの接触を防止して密閉容器外に吐出することが主因となって、電動機部に吐出がスを回して冷却を図りながらオイルを十分に分離したガスを密閉容器外に吐出し供給することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る1つの密閉型圧縮機を示す断面図である。
【図2】本発明の実施の形態に係る今1つの密閉型圧縮機を示す断面図である。
【図3】本発明の実施の形態に係る別の密閉型圧縮機を示す断面図である。
【符号の説明】
1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
4 クランク軸
6 オイル
7 給油機構
17 吸入口
18 吐出口
20 オイル溜め
23、24 バランスウエイト
27 冷媒ガス
31 容器内吐出室
32 圧縮機構連通路
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
38 固定子上部室
39 外部吐出パイプ
41 電動機下部室
42 圧縮機構上部室
43 圧縮機構上昇連通路
40 油回収通路
50 マフラー
51 通路カバー(軸受カバー)
61 分離板
62 通路隙間
63 オイル排出路
64 分岐穴
66 軸受部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic compressor for use in a refrigeration air conditioner, a refrigerator, or the like for business use, home use, or vehicle use.
[0002]
[Prior art]
Conventionally, this type of hermetic compressor is provided with a compression mechanism 2 in a hermetic container 1 below the compression mechanism 2 with reference to FIG. 1 showing the hermetic scroll compressor according to the present embodiment. An electric motor 3 for driving the compression mechanism 2 and a crankshaft 4 for transmitting the rotational force of the electric motor 3 to the compression mechanism 2 are provided, and an oil 6 in an oil sump 5 provided at a lower portion in the sealed container 1 is supplied. An oil supply mechanism 7 that supplies the bearing portion 66 of the crankshaft 4 and the sliding portion of the compression mechanism 2 through the crankshaft 4 is provided.
[0003]
As a result, the oil 6 is forcibly supplied to the bearing 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, and the refrigerant gas compressed by the compression mechanism 2 is sealed in a sealed container while ensuring smooth operation. The electric motor 3 is cooled through the portion of the electric motor 3 in 1 and then discharged to the outside of the sealed container 1, and the oil after being supplied to the sliding portion of the bearing 66 and the compression mechanism 2 is caused by supply pressure and gravity. It can move downward and be naturally recovered in the oil sump 20. However, the refrigerant gas always comes in contact with oil and entrains it, bringing in oil when it is supplied from the sealed container to the refrigeration cycle, and pipe pressure loss in the refrigeration cycle and heat from condensers, evaporators, etc. There is a problem that causes a reduction in heat exchange efficiency in the exchanger.
[0004]
In order to solve this problem, conventionally, the refrigerant gas discharged from the compression mechanism into the sealed container passes through the electric motor until it is discharged to the outside of the sealed container while cooling it. Designed so that separation occurs repeatedly, it is devised so that oil does not accompany the refrigerant gas discharged out of the sealed container, or as disclosed in JP-A-7-189963, from the bearing portion and the compression mechanism. An oil discharge path to the motor section is provided independently from the flow path of the refrigerant discharged from the compression mechanism to the motor section, and the discharged oil is dropped on the stator of the motor and then transferred to the lower oil reservoir. While the refrigerant gas is discharged toward one side of the motor part and descends on one side passage between the stator and the sealed container to reach the lower part of the motor, the stator and rotor Air gap between So that to hard to entrain the dripped Tsutai fall oil make the flow of orderly refrigerant discharged out of the sealed container to rise.
[0005]
[Problems to be solved by the invention]
However, none of the conventional methods has achieved satisfactory gas-liquid separation. The conventional method of performing collision separation and centrifugal separation by the flow of refrigerant gas regulates the flow of refrigerant gas by providing a refrigerant passage provided in the compression mechanism or the stator of the electric motor, and collides with each part, rotor and balance weight. However, the flow of refrigerant gas and oil cannot be constrained and collision and swirl are insufficient. It is not easy to prevent the oil from being mixed into the refrigerant gas discharged out of the hermetic container due to repeated contact and easy accompaniment.
[0006]
In addition, since the oil disclosed in the above publication collects and handles the oil after being supplied to the compression mechanism and its bearing portion, the oil aggregates, flows or drops toward the motor, and even when dropped, the oil droplets are large, It is difficult for the refrigerant gas discharged from the compression mechanism to the electric motor side to be easily accompanied. However, the dripping oil flows down or drops into the coil part with a complicated gap or structure such as the coil part at the top of the stator of the electric motor and drops down to the coil part with a complicated gap or structure under the stator. Since it reaches the oil sump at the bottom of the motor, it has a long contact area with the refrigerant while being handled independently, and in contact with the refrigerant gas while passing down the upper and lower coils of the stator with complicated gaps and structures Since part of the oil that flows down is dispersed by the refrigerant gas and is accompanied by the flow, the oil is not completely prevented from being mixed into the refrigerant gas discharged to the outside of the sealed container.
[0007]
An object of the present invention is to provide a hermetic compressor and a gas-liquid separation / discharge method capable of discharging gas sufficiently separated into gas and liquid by handling the refrigerant and oil almost constrained.
[0008]
[Means for Solving the Problems]
A hermetic compressor and a gas-liquid separation and discharge method according to the present invention include a compression mechanism in a hermetic container, an electric motor for driving a compression mechanism provided below the compression mechanism, and a rotational force of the electric motor as a compression mechanism. The basic structure is provided with a crankshaft for transmission to the part, and an oil supply mechanism for supplying oil in an oil sump provided in the lower part of the sealed container to the bearing part of the crankshaft and the compression mechanism sliding part through the crankshaft And relates to a hermetic compressor
In order to achieve the above object, in the first hermetic compressor, the gas discharged from the compression mechanism communicates with the discharge chamber in the container above the compression mechanism and from the discharge chamber in the container to the lower portion of the compression mechanism. The compression mechanism communication path, the communication path extending from the compression mechanism communication path to the rotor upper chamber, the rotor passage provided in the rotor so as to communicate the rotor upper chamber and the rotor lower chamber, and the rotor lower chamber in order. Through the stator passage provided between the stator or the stator and the airtight container so that the lower portion and the upper portion of the stator communicate with each other. In this case, an in-container gas passage is provided so as to be discharged to the outside of the sealed container through an external discharge port provided in a portion of the sealed container above the position of the stator upper chamber.
[0009]
In such a configuration, first, the in-container discharge chamber at the upper part of the compression mechanism and the compression mechanism communication passage that communicates the in-container discharge chamber and the lower part of the compression mechanism are positioned outside the compression mechanism and its bearing portion. The gas discharged from the compression mechanism is collectively discharged to the communication path below the compression mechanism, and the gas discharged from the communication path is guided to the rotor upper chamber and passes through the rotor passage of the rotor. The lower chamber is discharged with a strong swirling flow that receives the rotation of the rotor. By restricting and handling the gas discharged from the compression mechanism in this way, the gas discharged from the compression mechanism comes into contact with the oil supplied to them while passing through the compression mechanism and around the bearing portion. Even if accompanied, gas-liquid separation is performed by the strong swirling flow, the oil is chased outward, attached to the inner periphery of the stator of the motor, separated from the gas near the oil sump, and there is almost an opportunity to ride on the gas The oil accompanying the gas can be efficiently separated because it is dropped and collected in the oil reservoir immediately below.
[0010]
In addition, the oil accompanying the gas passing through the rotor passage is pressed against the outer surface of the rotor passage by the centrifugal force generated by the rotation of the rotor and aggregates from the mist state to grow into oil droplets. Liquid separation efficiency is further increased, and the oil droplets that are centrifuged are pressed against the inner circumference of the stator and agglomerate to grow further and drop into the oil sump below. After dropping from the rotor lower chamber to the motor lower chamber, it is difficult to take advantage of the gas flow toward the stator passage after going up, and the U-turn gas flow is accompanied by the centrifugal force at the time of U-turn. The oil that is being or is going to accompany it is spun off and blown toward the lower oil sump with the help of its gravity. It is possible to increase the recovery rate of the oil remaining in the gas.
[0011]
Further, the gas from which the oil has been separated as described above passes through the stator passage, reaches the stator upper chamber around the outside of the connecting passage around the bearing, and reaches a position above the stator upper chamber of the hermetic container. Since the oil is discharged from a certain discharge port, the oil can be discharged out of the sealed container in a state where the oil is sufficiently separated without coming into contact with the oil or a gas accompanying the oil.
[0012]
Furthermore, since the gas discharged from the compression mechanism passes through the rotor passage and the stator passage, the electric motor can be efficiently cooled.
[0013]
The external discharge port may be provided in the upper chamber of the closed container stator, but the external discharge port is provided in the external discharge chamber above the compression mechanism of the closed container, and the external discharge chamber and the stator. When a compression mechanism ascending communication path is provided between the compression mechanism or the compression mechanism and the hermetic container so as to communicate with the upper chamber, the compression mechanism is used when gas enters the compression mechanism ascending communication path from the stator upper chamber. Since the oil that may still remain in the gas can be further separated by the collision with the part, the oil separation effect is further improved.
[0014]
In a configuration in which the cross-sectional area of the stator passage is larger than the cross-sectional area of the rotor passage, the flow rate of the gas blown up to the top of the sealed container after centrifugation is reduced. Oil can be made difficult to blow up and the oil separation effect can be enhanced.
[0016]
In the configuration in which the rotor passage is provided with one or more outward branch holes opened on the outer periphery of the rotor, the oil pressed to the outside of the rotor passage by the centrifugal force due to the rotation of the rotor passes through the branch holes. Centrifugal discharge to the outer periphery of the stator, it is quickly separated from the gas, adheres as a large oil droplet to the inner periphery of the stator, and flows down, and the gas is discharged from the rotor passage to the rotor lower chamber and centrifuged. In addition, the oil separation effect can be enhanced.
[0017]
In a configuration in which the axes of the compression mechanism ascending communication path and the stator communication path that communicate between the outdoor discharge chamber and the stator upper chamber are shifted from each other, the gas discharged from the stator passage to the stator upper chamber rises. Since the collision with the compression mechanism when entering the passage is made strong without escape, the oil separation effect can be enhanced.
[0018]
The second hermetic compressor includes a discharge chamber in the container above the compression mechanism, a compression mechanism communication passage that allows the gas discharged from the compression mechanism to communicate with the lower portion of the compression mechanism, and the compression mechanism communication passage. To the upper chamber of the rotor through the communication path surrounded by the passage cover, the rotor passage provided in the rotor so that the rotor upper chamber and the rotor lower chamber communicate with each other, the rotor lower chamber through the motor in order The stator has passed through the stator passage provided between the stator or the stator and the hermetic container so that the lower portion and the upper portion of the stator communicate with each other, and has passed through the stator upper chamber around the outside of the communication path. After that, an in-container gas passage is provided so as to be discharged to the outside of the sealed container through an external discharge port provided in a portion of the sealed container above the position of the stator upper chamber.
[0019]
In such a configuration, the gas discharged from the compression mechanism is collectively discharged to the communication path below the compression mechanism, and the gas discharged from the communication path is led to the rotor upper chamber of the electric motor to rotate the rotor of the rotor. Compared to the first hermetic compressor, the passage cover is formed by the passage cover and the inside and outside of the rotor are discharged into the rotor lower chamber through the passage with a strong swirling flow. The gas from the compression mechanism is easily restrained so as to guide the gas into the rotor upper space and enter the rotor passage, and the oil flow is avoided by avoiding the oil separation due to the rotation and the swirling flow of the rotor. The separation effect can be enhanced, and the gas blown up to the stator upper space after centrifugation and discharged to the outside of the sealed container is prevented from coming into contact with the gas before oil separation and the oil from the bearing located inside the communication path And no new oil It is possible to enhance the oil separation effect of the gas discharged by way.
[0020]
In the configuration in which the discharge chamber in the container is formed by a muffler provided so as to cover the upper discharge port of the compression mechanism, a noise reduction action using the upper chamber of the compression mechanism can be obtained, and the stator after centrifugation When the gas blown up to the upper chamber collides with the compression mechanism section to separate the oil and lead it to the compression mechanism upper chamber through the compression mechanism ascending passage and discharge it outside the sealed container, the gas discharged outside the sealed container after this oil separation is compressed The oil separation effect can be enhanced by preventing contact with the gas before oil separation discharged from the mechanism.
[0021]
A configuration in which the passage cover extends from the compression mechanism side to the inside of the balance weight provided on the outer periphery of the upper end of the rotor, and a configuration that extends from the compression mechanism side to the outside of the balance weight provided at the upper end of the rotor Then, the restraint property which guides the gas discharged from the compression mechanism to the rotor passage increases, and the oil separation effect can be enhanced correspondingly.
[0022]
When the passage cover is an annular bearing cover provided around the outer periphery of the crankshaft bearing member, the compression mechanism portion and the oil supplied to the bearing portion are collected in a communication path formed by the passage cover and are discharged together with the discharge gas. Before centrifugal separation, which can be constrained to be subjected to centrifugal separation, and the gas blown up to the stator upper chamber after centrifugal separation and discharged out of the sealed container is accompanied by oil from the bearing or oil The oil separation effect can be improved by avoiding the oil coming in contact with the gas.
[0023]
In the configuration in which the bearing cover forms a part of the compression mechanism communication path with the bearing member, the gas discharged from the compression mechanism and reaching the lower part of the compression mechanism through the compression mechanism communication path is sealed corresponding to the rotor upper space. It is easy to form a passage by using the outer surface of the bearing member to guide to the communication path in the center of the container.
[0024]
The passage cover is configured so that the lower end of the passage cover is substantially in contact with the stator or close to the stator or the rotor, and a seal portion is configured to suppress the gas flowing from the communication path to the rotor passage from flowing out to the outside. With the above-described configuration, it is possible to further enhance the restriction of subjecting the gas and oil to centrifugal separation to enhance the oil separation effect.
[0025]
The passage cover may be formed with a balance weight.
[0026]
The third hermetic compressor includes a container discharge chamber in the upper part of the compression mechanism, a compression mechanism communication passage that allows the gas discharged from the compression mechanism to communicate with the lower part of the compression mechanism, and the compression mechanism communication. A communication path surrounded by a passage cover from the passage to the rotor upper chamber, a rotor passage provided in the rotor so that the rotor upper chamber communicates with the rotor lower chamber, and the rotor lower chamber are sequentially passed. Goes under the motor and passes through the stator or the stator passage provided between the stator and the hermetic container so that the lower part and the upper part of the stator communicate with each other. After that, an in-container gas passage is provided to be discharged out of the sealed container through an external discharge port provided at a position above the position of the stator upper chamber of the sealed container, and the stator passage is provided in the rotor lower chamber. Oil separation plate that collides with gas discharged from It is characterized by providing.
[0027]
In such a configuration, the gas immediately after being discharged from the rotor passage into the rotor lower chamber strongly collides with the separation plate, so that the accompanying oil is well separated, and the oil mist is formed into droplets and grows. First, the separation plate is subjected to centrifugal separation by swirling, and the separation plate narrows the swirling region of the gas discharged into the rotor lower chamber flatly to increase the swirling speed and enhance the centrifugal separation action. Compared with the hermetic type compressor 2, the oil separation effect can be enhanced.
[0028]
If at least a part of the circumference of the space between the separation plate and the lower end of the rotor is open to the side, it can be centrifuged and even if it is partially blocked by the balance weight Good.
[0029]
In the configuration in which the separation plate forms a passage gap with the crankshaft, the oil and the gas to be centrifuged are discharged into the lower chamber of the motor through the passage gap in the central portion substantially perpendicular to the oil centrifugal direction. The oil separation effect can be enhanced because it is easy to prevent the oil to be centrifuged from accompanying the gas discharged into the lower chamber of the motor.
[0030]
In the configuration in which the passage gap is on the inner side of the rotor passage, the passage gap prevents the gas discharged from the rotor passage into the rotor lower chamber from being a bypass to avoid collision with the separation plate, and the oil It is possible to prevent the collision separation effect due to the separation plate from being lowered.
[0031]
In the configuration in which the compression mechanism and the oil discharge path from the bearing portion are opened in the communication path, the oil after being supplied to the compression mechanism section and the bearing portion flows out of the communication path and is separated from the sealed container after oil separation. Since it is easy to prevent contact with the gas discharged to the oil, the oil separation effect can be enhanced.
[0032]
In the configuration in which the oil discharge path is provided on the side opposite to the compression mechanism communication path, the gas that flows down to the communication path or the oil that drops is discharged from the compression mechanism communication path to the lower part of the compression mechanism and flows to the communication path. Therefore, it is possible to prevent the mist from being scattered and to increase the separation efficiency from the gas while handling it together with the gas.
[0033]
The operation of the first to third hermetic compressors can be realized as the invention of the gas-liquid separation and discharge method of the hermetic compressor as follows. Gas-liquid separation of the hermetic compressor vomit The method uses the gas discharged from the compression mechanism into the sealed container and the oil after the supply to the compression mechanism and its bearings. Discharge chamber in the container above the compression mechanism, a compression mechanism communication path that connects the discharge chamber in the container and the lower part of the compression mechanism, and a communication path surrounded by a passage cover so as to continue from the compression mechanism communication path to the rotor upper chamber At Nearly constrained, through the rotor upper chamber through the rotor passage and led to the rotor lower chamber, the gas and liquid are centrifuged for forced rotation by the rotation of the rotor, and the oil going outwards is fixed by centrifugation The oil separated from the oil is passed from the lower chamber of the motor through the stator passage between the stator or the stator and the airtight container. Said The discharge chamber in the container, the compression mechanism communication path, and the communication path Imprisonment Out of bundle area This is characterized in that it is guided to the upper chamber of the stator and discharged from the portion of the sealed container above the position of the stator upper chamber to the outside of the sealed container, and the refrigerant gas separated from oil and gas-liquid is discharged.
[0034]
Also in this case, the oil passing through the rotor passage can be centrifugally discharged by a branch hole branched from the rotor passage toward the outer periphery of the rotor, and the refrigerant gas discharged from the rotor passage to the rotor lower chamber can be discharged. Collision separation can be achieved by colliding with the separation plate.
[0035]
Further objects and features of the present invention will become apparent from the following detailed description and drawings. Each feature of the present invention can be used alone or in combination in various combinations as much as possible.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a hermetic compressor according to an embodiment of the present invention and a gas-liquid separation and discharge method thereof will be described with reference to the drawings for understanding of the present invention.
[0037]
This embodiment is an example of a case of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. However, the present invention is not limited to this, and various compression mechanisms such as a rotary compression mechanism are compressed with respect to general gas contained in a sealed container together with an electric motor that drives the compression mechanism. A hermetic compressor that divides the upper and lower parts and accommodates an electric motor in the lower part is effective when applied to all of them and belongs to the category of the present invention.
[0038]
As shown in FIGS. 1 to 3, the hermetic compressor of the present embodiment includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in the hermetic container 1, and the main bearing member 11. The scroll-type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12 and the fixed scroll 12, and the orbiting scroll 13 rotates between the orbiting scroll 13 and the main bearing member 11. Is provided with an anti-rotation mechanism 14 such as an Oldham ring that guides the orbit to move in a circular orbit, and the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4 to thereby make the orbiting scroll 13 circular. The compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 is moved orbitally and moved from the outer peripheral side to the center while moving small. The refrigerant gas that has become a predetermined pressure or higher is fixed by sucking and compressing the refrigerant gas from the suction pipe 16 that leads to the outside of the sealed container 1 and the suction port 17 on the outer periphery of the fixed scroll 12. The reed valve 19 is pushed open from the discharge port 18 at the center of the scroll 12 and discharged into the sealed container 1 repeatedly.
[0039]
The lower end of the crankshaft 4 reaches the oil sump 20 at the lower end of the sealed container 1 and is supported by a secondary bearing member 21 fixed by welding or shrink fitting in the sealed container 1 and can rotate stably. The electric motor 3 is located between the main bearing member 11 and the sub-bearing member 21, and is integrally coupled to a stator 3 a fixed to the sealed container 1 by welding or shrink fitting, and an outer periphery in the middle of the crankshaft 4. Balance weights 23 and 24 fixed by pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, so that the rotor 3b and the crankshaft 4 are stabilized. By rotating, the orbiting scroll 13 can be stably moved in a circular orbit.
[0040]
The oil supply mechanism 7 is driven by a pump 25 driven at the lower end of the crankshaft 4, and the oil 6 in the oil reservoir 20 is passed through the oil supply hole 26 passing through the crankshaft 4 and the bearing portions 66 and the compression mechanisms of the respective parts of the compression mechanism 2. 2 is supplied to each sliding part. The supplied oil 6 flows out and drops below the main bearing member 11 through the bearing portion 66 so as to obtain a clearance by supply pressure or gravity, and is finally collected in the oil sump 20.
[0041]
However, in fact, as described above, the refrigerant gas 27 shown by the broken line arrow in FIG. 1 discharged from the compression mechanism 2 is accompanied by the oil 6 that is in contact with the compression mechanism 2 or the main bearing member 11. There is a problem that the supplied oil 6 dripping below is scattered and accompanied, and the oil cannot be sufficiently separated conventionally and the oil is discharged together with the refrigerant gas discharged outside the sealed container 1. .
[0042]
Each embodiment shown in FIGS. 1 to 3 solves such a problem.
The refrigerant gas 27 discharged from the compression mechanism 2 includes an in-container discharge chamber 31 in the upper part of the compression mechanism 2, a compression mechanism communication path 32 that connects the in-container discharge chamber 31 and the lower part of the compression mechanism 2, and this compression mechanism communication path. The motor passes through the communication path 34 extending from the rotor 32 to the rotor upper chamber 33, the rotor passage 36 provided in the rotor 3b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35, and the rotor lower chamber 35 sequentially. Of the communication path 34 through the stator 3a or the stator passage 37 provided between the stator 3a and the hermetic container 1 so that the lower part and the upper part of the stator 3a communicate with each other. After passing through the outer stator upper chamber 38, the inside of the container is adapted to be discharged out of the sealed container 1 through an external discharge pipe 39 provided in a portion of the sealed container 1 that is located above the position of the stator upper chamber 38. A gas passage A is provided.
[0043]
The in-container discharge chamber 31 of the in-container gas passage A and the compression mechanism communication passage 32 are positioned outside the compression mechanism 2 and its bearing portion 66 to allow the refrigerant gas 27 discharged from the compression mechanism 2 to flow. Collective discharge is performed to the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33 and enters into the rotor passage 36 in a state where the refrigerant gas 27 turns gently due to the rotation of the rotor 3b and the balance weight 23 and moves downward. The passing through rotor lower chamber 35 is discharged with a strong swirl flow B that has been subjected to the rotation of the rotor 3b.
[0044]
In this way, the refrigerant gas 27 discharged from the compression mechanism 2 is restrained and handled, so that the refrigerant gas 27 discharged from the compression mechanism 2 is supplied to them while passing through the compression mechanism 2 and around the bearing portion 66. Even if the oil 6 comes into contact with the oil 6 and is accompanied by it, gas separation is performed by the strong swirling flow B, and the oil 6 is driven outward to adhere to the inner periphery of the stator 3a and close to the oil reservoir 20. The oil 6 is effectively separated from the refrigerant gas 27 as indicated by a solid arrow, and thereafter, the separated oil 6 is dripped into the oil reservoir immediately below while being transferred, and is collected with almost no opportunity to ride the refrigerant gas 27. Therefore, the oil 6 accompanying the refrigerant gas 27 can be efficiently separated and recovered.
[0045]
Further, the oil 6 accompanying the refrigerant gas 27 passing through the rotor passage 36 is pressed against the outer surface of the rotor passage 36 by the centrifugal force caused by the rotation of the rotor 3b, and aggregates from the mist state and grows into oil droplets. Further, the gas-liquid separation efficiency by the centrifugal separation is further enhanced, and the oil droplets to be centrifuged are pressed against the inner periphery of the stator 3a to aggregate, grow larger and drop into the oil reservoir 20 below. Although the separated oil 6 drips into the oil reservoir 20, after reaching the motor lower chamber 41 from the rotor lower chamber 35, it is difficult to multiply the flow C of the refrigerant gas 27 toward the stator passage 37 after making an upward turn. The flow C of the refrigerant gas 27 that makes the U-turn is caused by the centrifugal force at the time of the U-turn, and the oil 6 that is accompanied or is going to be accompanied by the gravity of the oil 6 below. Shaken Toward, also because the action flick, the centrifuged, also can increase the recovery of oil 6 are still remaining in the refrigerant gas 27.
[0046]
The refrigerant gas 27 from which the oil 6 has been separated as described above passes through the stator passage 37, reaches the stator upper chamber 38 further outside the communication path 34 around the bearing portion 66, and reaches the sealed container 1. Since the oil is discharged out of the sealed container 1 from the external discharge pipe 39 located at a position higher than the position of the stator upper chamber 38, the oil is sufficiently separated without coming into contact with the refrigerant gas 27 accompanying the oil 6. It can be discharged out of the sealed container 1 and supplied to the refrigeration cycle. Therefore, it is possible to prevent a pipe pressure loss in the refrigeration cycle and a decrease in heat exchange efficiency in a heat exchanger such as a condenser or an evaporator. Moreover, since the refrigerant gas 27 discharged from the compression mechanism 2 passes through the rotor passage 36 and the stator passage 37, the electric motor 3 can be efficiently cooled.
[0047]
The external discharge pipe 39 may be provided in the stator upper chamber 38 of the hermetic container 1, but the external discharge pipe 39 is provided in the compression mechanism upper chamber 42 above the compression mechanism 2 of the hermetic container 1 as shown in FIG. By providing the compression mechanism ascending communication passage 43 between the compression mechanism 2 or the compression mechanism 2 and the hermetic container 1 so as to allow the compression mechanism upper chamber 42 and the stator upper chamber 38 to communicate with each other, the refrigerant gas 27 is generated. Since the oil 6 still remaining in the refrigerant gas 27 can be further separated by the collision with the compression mechanism 2 part when entering the compression mechanism ascending communication passage 43 from the stator upper chamber 38, the oil The separation effect of 6 is further improved.
[0048]
Further, the total cross-sectional area of the stator passage 37 is larger than the total cross-sectional area of the rotor passage 36. As a result, the flow rate of the refrigerant gas 27 blown up to the stator upper chamber 38 after the centrifugal separation is lowered, so that the remaining force or the newly contacting oil 6 is hardly blown up by weakening the force accompanying the oil 6. The separation effect can be enhanced.
[0049]
Further, the axes of the compression mechanism ascending communication passage 43 and the stator passage 37 are shifted from each other. As a result, the refrigerant gas 27 discharged from the stator passage 37 to the stator upper chamber 38 can strongly collide with the compression mechanism 2 part when entering the compression mechanism ascending communication passage 43 without escaping. Can be increased. For this reason, the larger the displacement of the axis, the better, and although not shown, the displacement can be set large if the displacement is made in the circumferential direction.
[0050]
As shown in the drawing, the in-container discharge chamber 31 is formed by a muffler 50 provided so as to cover the upper discharge port 18 of the compression mechanism 2. As a result, a silencing action using the compression mechanism upper chamber 42 is obtained, and at the same time, the refrigerant gas 27 blown up to the stator upper chamber 38 after centrifugation collides with the compression mechanism 2 part to further separate and compress the oil 6. In the above-described structure in which the gas is guided to the compression mechanism upper chamber 42 through the mechanism ascending communication passage 43 and discharged to the outside of the sealed container 1, the refrigerant gas 27 discharged to the outside of the sealed container 1 after the oil separation is discharged from the compression mechanism 2 in the compression mechanism upper chamber 42. The oil separation effect can be enhanced by preventing contact with the refrigerant gas 27 before the oil separation to be discharged.
[0051]
The communication path 34 may be an open type as long as the flow path of the refrigerant gas 27 is determined, but in the present embodiment, it is formed by being surrounded by a path cover 51 as shown in the figure. As a result, the communication path 34 reliably restrains the refrigerant gas 27 discharged to the lower part of the compression mechanism 2 and easily guides it to the rotor passage 36. Therefore, the probability of gas-liquid separation due to the restriction of the discharged refrigerant gas 27 is high. The oil separation effect becomes higher. The passage cover 51 divides the inside and outside of the communication path 34 so that the refrigerant gas 27 separated from the oil and discharged to the stator upper chamber 38 comes into contact with the refrigerant gas 27 before oil separation or flows down from the bearing portion 66. Since the oil 6 is prevented from coming into contact with the oil 6, the oil separation effect can be enhanced without the oil 6 being newly accompanied before being discharged out of the sealed container 1. It is preferable that the refrigerant gas 27 is restrained by the communication path 34 so that the communication path 34 continues from the compression mechanism communication path 32 to the rotor path 36.
[0052]
In this sense, as shown in FIG. 1, the lower end of the passage cover 51 is substantially in contact with the stator 3 a, or close to the stator 3 a or the rotor 3 b, so that the rotor passage 36 is connected to the rotor passage 36. By constructing a seal portion that suppresses the refrigerant gas 27 flowing to the outside from flowing out to the outside, it is possible to further enhance the restraint property of subjecting the refrigerant gas 27 and the oil 6 to centrifugal separation and enhance the oil 6 separation effect. it can.
[0053]
The passage cover 51 extends from the compression mechanism 2 side to the inside of the balance weight 23 provided on the outer periphery of the upper end of the rotor 3b as shown in FIG. 2, and the compression mechanism 2 as shown in FIG. Also by extending from the side to the outside of the balance weight 23, the restraint property of guiding the refrigerant gas discharged from the compression mechanism 2 to the rotor passage 36 is increased, and the oil separation effect can be enhanced accordingly.
[0054]
In particular, the passage cover 51 is an annular bearing cover provided around the outer periphery of the main bearing member 11, and the oil 6 supplied to the compression mechanism 2 part and the bearing part 66 is collected in the communication path 34 formed by the passage cover 51. The refrigerant gas 27 can be constrained to be used for the centrifugal separation together with the refrigerant gas 27, and the refrigerant gas 27 blown up to the stator upper chamber 38 after the centrifugal separation and discharged to the outside of the sealed container 1 is accompanied by the oil 6. Therefore, it is possible to avoid the oil 6 from being newly brought in contact with the refrigerant gas 27 before being centrifuged, and the oil separation effect can be enhanced.
[0055]
The passage cover 51 is a cylindrical cover 51b made of an insulating material added to a metal bearing cover 51a having a flange 51a1 bolted to the main bearing member 11 and a downwardly facing cylindrical portion 51a2 formed on the inner periphery of the bearing cover 51a. It consists of and. In particular, as shown in FIG. 1 to FIG. 3, the metal bearing cover 51 a is used to form a part of the compression mechanism communication passage 32 of the compression mechanism 2 between the passage cover 51 and the main bearing member 11. In such a passage configuration, the refrigerant gas 27 discharged from the compression mechanism 2 and reaching the lower portion of the compression mechanism 2 through the compression mechanism communication passage 32 is passed through the central portion of the sealed container 1 corresponding to the rotor upper chamber 33. It is easy to form a passage using the outer surface of the main bearing member 11 to guide the connecting passage 34. Further, when the passage cover 51 is in contact with the coil portion 3c of the stator 3a as shown in FIGS. 1 and 3 and closes to the coil portion 3c, the portion is an insulating tube cover 51b. Is preferable. The material of the tube cover 51b is PET, Polytetrafluoroethylene (trade name: Teflon) There is a sheet made of metal and the like, and these have the advantage that they are not bulky and do not damage the coil portion 3c even if it comes into contact.
[0056]
However, although not shown, the passage cover 51 can also be formed by the balance weight 23. According to this, a special member and a mounting structure are not required to provide the passage cover 51.
[0057]
Further, as shown in FIGS. 1 to 3, a separation plate 61 that separates the oil 6 by causing the refrigerant gas 27 discharged from the rotor passage 36 to collide with the rotor lower chamber 35 is provided. The separation plate 61 is circular and is attached to the rotor 3b together with the balance weight 24 using the balance weight 24 as a spacer. As a result, the refrigerant gas 27 immediately after being discharged from the rotor passage 36 into the rotor lower chamber 35 strongly collides with the separation plate 61, so that the accompanying oil 6 is well separated, and the mist of the oil 6 is removed from the liquid. By dropping and growing and subjecting to centrifugal separation by swirling immediately, the separating plate 61 flattenes the swirling region of the refrigerant gas 27 discharged to the rotor lower chamber 35 to increase the swirling speed, thereby performing the centrifugal separation action. By raising, the separation effect of the oil 6 can be enhanced.
[0058]
If at least a part of the circumference of the space between the separation plate 61 and the lower end of the rotor 3b is open to the side, centrifugal separation can be performed, and the balance weight 24 may partially block it. There may be.
[0059]
Since the separation plate 61 forms a gas passage gap 62 between the separation plate 61 and the crankshaft 4, the refrigerant gas 27 to be centrifuged with the oil 6 is passed through the passage at the central portion substantially perpendicular to the centrifugal direction of the oil 6. It is facilitated to discharge to the motor lower chamber 41 through the gap 62, and it becomes easy to prevent the oil 6 to be separated from being accompanied by the refrigerant gas 27 discharged to the motor lower chamber 41, so that the oil separation effect can be enhanced. it can. Naturally, a passage gap is also provided between the separation plate 61 and the inner periphery of the stator 3a so that the oil 6 that has been centrifuged can flow down the inner surface of the stator 3a.
[0060]
Since the passage gap 62 is inside the rotor passage 36 as shown in FIGS. 1 to 3, the passage gap 62 is separated from the refrigerant gas 27 discharged from the rotor passage 36 into the rotor lower chamber 35. By preventing a bypass to avoid a collision with the plate 61, the collision separation effect of the oil 6 by the separation plate 61 can be prevented from deteriorating.
[0061]
Further, in the case shown in FIG. 1, an oil discharge path 63 from the bearing portion 66 is opened in the communication path 34. This makes it easy to prevent the oil 6 after being supplied to the compression mechanism 2 part and the bearing part 66 from flowing out of the communication path and coming into contact with the refrigerant gas 27 discharged outside the sealed container 1 after oil separation. The separation effect of the oil 6 can be enhanced.
[0062]
Moreover, since the oil discharge path 63 is provided on the side opposite to the compression mechanism communication path 32, the oil 6 that flows down or drops into the communication path 34 from the compression mechanism communication path 32 is located below the compression mechanism 2. The refrigerant gas 27 is scattered by the refrigerant gas 27 flowing into the communication path 34 and prevented from becoming mist, and the separation efficiency with the refrigerant gas 27 can be improved while being handled together with the refrigerant gas 27.
[0063]
In addition, when one or more outward branch holes 64 opened on the outer periphery of the rotor 3b are provided in the rotor passage 36 as indicated by phantom lines in FIG. The oil 6 pressed to the outside of the child passage 36 is centrifugally discharged from the outer periphery of the rotor 3b through the branch hole 64, and is quickly separated from the refrigerant gas 27, and adheres to the inner periphery of the stator 3a by forming a large oil droplet. As a result, the refrigerant gas 27 is discharged from the rotor passage 36 into the rotor lower chamber 35 and centrifuged, and the separation effect of the oil 6 can be enhanced.
[0064]
【The invention's effect】
According to the present invention, as apparent from the above description, the discharge gas from the compression mechanism, the compression mechanism that accompanies it, and the oil that has been supplied to the bearing portion thereof are substantially restrained and handled, and the rotor After passing through the passage and subjecting it to strong centrifugal separation by rotation of the rotor and performing efficient centrifugation, gas u-turn in the lower chamber of the motor and the resulting centrifugal separation of the oil, from the stator passage to the upper portion of the stator The main cause is to prevent contact with the gas before oil separation entering the rotor passage from the compression mechanism while discharging to the chamber, and discharge outside the sealed container. The gas from which the oil has been sufficiently separated can be discharged and supplied outside the sealed container.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one hermetic compressor according to an embodiment of the present invention.
FIG. 2 is a sectional view showing another hermetic compressor according to the embodiment of the present invention.
FIG. 3 is a cross-sectional view showing another hermetic compressor according to the embodiment of the present invention.
[Explanation of symbols]
1 Airtight container
2 Compression mechanism
3 Electric motor
3a Stator
3b rotor
4 Crankshaft
6 Oil
7 Refueling mechanism
17 Suction port
18 Discharge port
20 Oil sump
23, 24 Balance weight
27 Refrigerant gas
31 Discharge chamber in the container
32 Compression mechanism communication path
33 Rotor upper chamber
34 connection
35 Rotor lower chamber
36 Rotor passage
37 Stator passage
38 Stator upper chamber
39 External discharge pipe
41 Lower motor room
42 Upper chamber of compression mechanism
43 Compression mechanism ascending communication path
40 Oil recovery passage
50 muffler
51 Passage cover (bearing cover)
61 separator
62 Passage gap
63 Oil discharge passage
64 branch hole
66 Bearing part

Claims (23)

密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、
圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室に続く連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設けたことを特徴とする密閉型圧縮機。
A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container An oil supply mechanism for supplying the oil in the provided oil reservoir to the bearing portion of the crankshaft and the compression mechanism sliding portion through the crankshaft,
The gas discharged from the compression mechanism communicates with the discharge chamber in the container above the compression mechanism, the compression mechanism communication path communicating from the discharge chamber in the container to the lower part of the compression mechanism, and the communication from the compression mechanism communication path to the rotor upper chamber. The rotor, the rotor upper chamber and the rotor lower chamber are communicated with each other through the rotor passage, the rotor lower chamber, and the lower motor, and the lower and upper portions of the stator are communicated with each other. After passing through the stator or the stator passage provided between the stator and the airtight container to the stator upper chamber around the outside of the communication path, and then provided in a portion above the position of the stator upper chamber of the airtight container. A hermetic compressor comprising an in-container gas passage that allows the gas to be discharged out of the hermetic container through the external discharge port.
外部吐出口は密閉容器の固定子上部室に設けられている請求項1に記載の密閉型圧縮機。  The hermetic compressor according to claim 1, wherein the external discharge port is provided in a stator upper chamber of the hermetic container. 外部吐出口は密閉容器の圧縮機構上部室に設けられ、この圧縮機構上部室と前記固定子上部室とを連通させるように圧縮機構または圧縮機構と密閉容器との間に圧縮機構上昇連通路が設けられている請求項1に記載の密閉型圧縮機。  The external discharge port is provided in an upper chamber of the compression mechanism of the sealed container, and a compression mechanism ascending communication path is provided between the compression mechanism or the compression mechanism and the sealed container so as to communicate the compression mechanism upper chamber and the stator upper chamber. The hermetic compressor according to claim 1, wherein the hermetic compressor is provided. 回転子通路の断面積よりも固定子通路の断面積の方が大きい請求項1〜3のいずれか1項に記載の密閉型圧縮機。  The hermetic compressor according to any one of claims 1 to 3, wherein a cross-sectional area of the stator passage is larger than a cross-sectional area of the rotor passage. 回転子通路に回転子の外周に開口する1つまたはそれ以上の外向きの分岐穴を設けてある請求項1〜のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 4 , wherein the rotor passage is provided with one or more outward branch holes that open to an outer periphery of the rotor. 圧縮機構上昇連通路と固定子通路との軸線は互いに位置ずれしている請求項3に記載の密閉型圧縮機。  The hermetic compressor according to claim 3, wherein the axes of the compression mechanism ascending communication passage and the stator passage are displaced from each other. 密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、
圧縮機構から吐出されるガスが、圧縮機構上部の容器内吐出室、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設けたことを特徴とする密閉型圧縮機。
A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container An oil supply mechanism for supplying the oil in the provided oil reservoir to the bearing portion of the crankshaft and the compression mechanism sliding portion through the crankshaft,
The gas discharged from the compression mechanism continues in the container discharge chamber above the compression mechanism, the compression mechanism communication passage that connects the discharge chamber in the container and the lower portion of the compression mechanism, and the compression mechanism communication passage to the rotor upper chamber. The communication path surrounded by the passage cover, the rotor passage provided in the rotor so that the rotor upper chamber and the rotor lower chamber communicate with each other, the rotor lower chamber, and the lower part of the stator. Through the stator or the stator passage provided between the stator and the hermetic container so that the upper part communicates with the upper part, and after passing through the stator upper chamber around the outside of the communication path, the stator upper chamber of the hermetic container A hermetic compressor characterized in that an in-container gas passage is provided to be discharged out of the hermetic container through an external discharge port provided at a portion above the position.
容器内吐出室は、圧縮機構の上部吐出口を覆うように設けられたマフラーが形成している請求項に記載の密閉型圧縮機。The hermetic compressor according to claim 7 , wherein the in-container discharge chamber is formed by a muffler provided so as to cover an upper discharge port of the compression mechanism. 通路カバーは、圧縮機構側から回転子上端の外周に設けられているバランスウエイト内側まで延びている請求項7、8のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 7 and 8 , wherein the passage cover extends from the compression mechanism side to an inner side of a balance weight provided on an outer periphery of an upper end of the rotor. 通路カバーは、圧縮機構側から回転子上端に設けられているバランスウエイトの外側まで延びている請求項7、8のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 7 and 8 , wherein the passage cover extends from the compression mechanism side to the outside of a balance weight provided at an upper end of the rotor. 通路カバーは、クランク軸の軸受部材の外まわりに設けた環状の軸受カバーである請求項7〜10のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 7 to 10 , wherein the passage cover is an annular bearing cover provided around an outer periphery of a bearing member of the crankshaft. 軸受カバーは軸受部材との間に圧縮機構連通路の一部を形成している請求項11に記載の密閉型圧縮機。The hermetic compressor according to claim 11 , wherein the bearing cover forms a part of the compression mechanism communication path between the bearing cover and the bearing member. 通路カバーは、その下端部が固定子とほぼ接するか、あるいは固定子または回転子と近接して、連絡路から固定子通路に流れるガスが途中で外部に流出するのを抑制するシール部を構成している請求項7〜12のいずれか1項に記載の密閉型圧縮機。The passage cover has a seal part that suppresses the gas flowing from the communication path to the stator in the middle while the lower end of the passage cover is substantially in contact with the stator or close to the stator or the rotor. The hermetic compressor according to any one of claims 7 to 12 . 通路カバーは、バランスウエイトが形成している請求項に記載の密閉型圧縮機。The hermetic compressor according to claim 7 , wherein the passage cover is formed with a balance weight. 密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、
圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設け、回転子下部室に固定子通路からの吐出ガスを衝突させるオイル分離板を設けたことを特徴とする密閉型圧縮機。
A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container An oil supply mechanism for supplying the oil in the provided oil reservoir to the bearing portion of the crankshaft and the compression mechanism sliding portion through the crankshaft,
The gas discharged from the compression mechanism continues in the container discharge chamber in the upper part of the compression mechanism, the compression mechanism communication path that connects the discharge chamber in the container and the lower part of the compression mechanism, and the compression mechanism communication path to the rotor upper chamber. Through the passageway enclosed by the passage cover, the rotor passage provided in the rotor so that the rotor upper chamber and the rotor lower chamber communicate with each other, the rotor lower chamber, and the stator, and then the stator. After passing through the stator or the stator passage provided between the stator and the hermetic container so as to communicate the lower part and the upper part, the stator upper part of the hermetic container is passed through the stator upper chamber around the communication path. Oil separation in which an in-container gas passage is provided to be discharged out of the sealed container through an external discharge port provided above the chamber position, and the discharge gas from the stator passage collides with the rotor lower chamber It is characterized by having a board Closed compressor.
分離板と回転子の下端との間の空間の円周上の少なくとも一部が側方へ開口している請求項15に記載の密閉型圧縮機。The hermetic compressor according to claim 15 , wherein at least a part of the circumference of the space between the separation plate and the lower end of the rotor is open to the side. 分離板はクランク軸との間に通路隙間を形成している請求項16に記載の密閉型圧縮機。The hermetic compressor according to claim 16 , wherein a passage gap is formed between the separation plate and the crankshaft. 通路隙間は回転子通路よりも内側にある請求項17に記載の密閉型圧縮機。  The hermetic compressor according to claim 17, wherein the passage gap is inside the rotor passage. 前記連絡路内に圧縮機構およびその軸受部からのオイル排出路が開口している請求項1〜18のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 18 , wherein a compression mechanism and an oil discharge path from a bearing portion thereof are open in the communication path. オイル排出路は、前記圧縮機構連通路とは反対の側に設けられている請求項19に記載の密閉型圧縮機。The hermetic compressor according to claim 19 , wherein the oil discharge path is provided on a side opposite to the compression mechanism communication path. 密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備えた密閉型圧縮機の気液分離吐出方法であって、
圧縮機構から密閉容器内へ吐出されるガスおよび圧縮機構およびその軸受部への供給後のオイルを圧縮機構の上部の容器内吐出室、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室まで続くように通路カバーで囲われた連絡路にてほぼ拘束して回転子上部室から回転子通路に通して回転子下部室に導くことにより回転子の回転による強制旋回に供して気液の遠心分離を行ない、遠心分離により外側に向かうオイルは固定子の内周に付着して伝い落ち下部のオイル溜めへ滴下させる一方、オイルと分離された冷媒は電動機下部室から固定子または固定子と密閉容器との間の固定子通路に通して前記容器内吐出室、圧縮機構連通路、連絡路がなす拘束域外回りの固定子上部室に導き、密閉容器の固定子上部室の位置以上の部分から密閉容器外に吐出させて、オイルと気液分離した冷媒ガスを吐出することを特徴とする密閉型圧縮機の気液分離吐出方法。
A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container A gas-liquid separation and discharge method of a hermetic compressor including an oil supply mechanism that supplies oil in an oil reservoir provided to a bearing portion of the crankshaft and a compression mechanism sliding portion through the crankshaft,
Gas discharged from the compression mechanism into the sealed container, the compression mechanism, and the oil supplied to the bearing portion in the container discharge chamber in the upper part of the compression mechanism, and the compression mechanism for communicating the discharge chamber in the container and the lower part of the compression mechanism By connecting the communication passage and the compression mechanism communication passage to the rotor upper chamber so that the communication passage is surrounded by a passage cover and leading from the rotor upper chamber through the rotor passage to the rotor lower chamber. Centrifugal separation of the gas and liquid is performed for the forced swirl by the rotation of the rotor, and the oil going outward by the centrifugal separation adheres to the inner circumference of the stator and drops and drops into the oil reservoir in the lower part, while being separated from the oil. The refrigerant passes from the lower chamber of the motor to the stator or the stator passage between the stator and the sealed container, and is introduced to the stator upper chamber outside the restraint area formed by the discharge chamber in the container, the compression mechanism communication path, and the communication path. , Sealed capacity Of the stator from a position above the portion of the upper chamber is ejected to the outside of the sealed container, the gas-liquid separation method for discharging a hermetic compressor, characterized in that for discharging the oil and gas-liquid separation refrigerant gas.
回転子通路を通るオイルにつき、回転子通路から回転子外周に開口する外向きの分岐穴による遠心排出を図る請求項21に記載の密閉型圧縮機の気液分離吐出方法。The gas-liquid separation and discharge method for a hermetic compressor according to claim 21 , wherein the oil passing through the rotor passage is subjected to centrifugal discharge through an outward branch hole opened from the rotor passage to the outer periphery of the rotor. 回転子通路から回転子下部室に吐出される冷媒ガスを分離板に衝突させて衝突分離を図る請求項21、22のいずれか1項に記載の密閉型圧縮機の気液分離吐出方法。The gas-liquid separation and discharge method for a hermetic compressor according to any one of claims 21 and 22 , wherein the refrigerant gas discharged from the rotor passage to the rotor lower chamber collides with the separation plate to achieve collision separation.
JP2000098020A 2000-03-31 2000-03-31 Hermetic compressor and gas-liquid separation and discharge method Expired - Fee Related JP3961189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098020A JP3961189B2 (en) 2000-03-31 2000-03-31 Hermetic compressor and gas-liquid separation and discharge method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098020A JP3961189B2 (en) 2000-03-31 2000-03-31 Hermetic compressor and gas-liquid separation and discharge method

Publications (2)

Publication Number Publication Date
JP2001280252A JP2001280252A (en) 2001-10-10
JP3961189B2 true JP3961189B2 (en) 2007-08-22

Family

ID=18612564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098020A Expired - Fee Related JP3961189B2 (en) 2000-03-31 2000-03-31 Hermetic compressor and gas-liquid separation and discharge method

Country Status (1)

Country Link
JP (1) JP3961189B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4127108B2 (en) * 2003-04-18 2008-07-30 松下電器産業株式会社 Hermetic compressor
JP4440564B2 (en) 2003-06-12 2010-03-24 パナソニック株式会社 Scroll compressor
US7905715B2 (en) * 2003-06-17 2011-03-15 Panasonic Corporation Scroll compressor having a fixed scroll part and an orbiting scroll part
JP4440565B2 (en) * 2003-06-24 2010-03-24 パナソニック株式会社 Scroll compressor
JP2006226209A (en) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd Closed type compressor
JP4618050B2 (en) * 2005-08-29 2011-01-26 ダイキン工業株式会社 Compressor
KR100686747B1 (en) * 2005-12-20 2007-02-26 엘지전자 주식회사 Scroll compressor
JP2007170414A (en) * 2007-03-28 2007-07-05 Mitsubishi Electric Corp Compressor
WO2012127553A1 (en) * 2011-03-18 2012-09-27 パナソニック株式会社 Compressor
US10634142B2 (en) 2016-03-21 2020-04-28 Emerson Climate Technologies, Inc. Compressor oil separation and assembly method

Also Published As

Publication number Publication date
JP2001280252A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US5391066A (en) Motor compressor with lubricant separation
JP4175148B2 (en) Hermetic compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JPS61164616A (en) Gas-liquid separation apparatus
CN112065715B (en) Scroll compressor and thermoregulation device
JP2009036136A (en) Scroll compressor
JP4127108B2 (en) Hermetic compressor
JP5709544B2 (en) Compressor
JP3633638B2 (en) Electric compressor
JP2006336599A (en) Sealed compressor
JP3747999B2 (en) Scroll compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JP3894009B2 (en) Hermetic compressor
JP2004332628A (en) Hermetic compressor
JP2009030464A (en) Hermetic compressor
JPH07189964A (en) Closed type motor-driven compressor
WO2004090333A1 (en) Hermetic compressor
JP2004316590A (en) Sealed type compressor
JP4638313B2 (en) Hermetic rotary compressor
JP2005299431A (en) Hermetic compressor
JP3616123B2 (en) Hermetic electric compressor
JP2009103030A (en) Hermetic compressor
JP2008031880A (en) Hermetic compressor
JP2008002416A (en) Hermetic compressor
CN113530797A (en) Oil separator, compressor unit spare and heat exchange equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3961189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees