JP2009030464A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2009030464A
JP2009030464A JP2007192821A JP2007192821A JP2009030464A JP 2009030464 A JP2009030464 A JP 2009030464A JP 2007192821 A JP2007192821 A JP 2007192821A JP 2007192821 A JP2007192821 A JP 2007192821A JP 2009030464 A JP2009030464 A JP 2009030464A
Authority
JP
Japan
Prior art keywords
oil
gas
compression mechanism
refrigerant
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007192821A
Other languages
Japanese (ja)
Inventor
Kenji Shimada
賢志 嶋田
Yasushi Aeba
靖 饗場
Hidenobu Shintaku
秀信 新宅
Manabu Sakai
学 阪井
Kenji Tonai
賢治 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007192821A priority Critical patent/JP2009030464A/en
Publication of JP2009030464A publication Critical patent/JP2009030464A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently deliver gas-liquid separated gas from an external delivery pipe 39, by substantially restricting and treating a refrigerant 27 and oil 6. <P>SOLUTION: Refrigerant gas 27 including the oil 6 is delivered from a delivery port 18, and passes through a stator passage 37 after passing through a rotor passage 36, and is delivered outside a sealed vessel 1 by passing through the external delivery pipe 39 arranged in a part above a position of a stator upper chamber 38 of a sealed vessel 1 after passing through to the stator upper chamber 38 on the outer periphery of a connecting passage 34, but the refrigerant gas 27 including the oil 6 collides with a gas-liquid separating collision wall 100 by arranging the gas-liquid separating collision wall 100 on the periphery of the external delivery pipe 39 as Fig. 1 so that the refrigerant gas 27 including the oil 6 is not delivered as it is outside the sealed vessel 1, and the oil 6 sticks to the gas-liquid separating collision wall 100, and only the refrigerant gas 27 is delivered outside the sealed vessel 1, and gas-liquid is efficiently separated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、業務用または家庭用、あるいは乗り物用の冷凍空調給湯、あるいは冷蔵庫などに用いられる密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used for refrigeration air conditioning hot water supply for business use, home use, or vehicle use, or a refrigerator.

従来、この種の密閉型圧縮機は、図4に示すように、密閉容器1内に圧縮機構2、この圧縮機構2の下方に設けた圧縮機構2を駆動するための電動機3と、この電動機3の回転力を圧縮機構2に伝達するためのクランク軸4とを備え、密閉容器1内の下部に設けたオイル溜め20のオイル6をクランク軸4を通じてクランク軸4の軸受部66や圧縮機構2の摺動部に供給する給油機構7とを備えている。   Conventionally, as shown in FIG. 4, this type of hermetic compressor includes a compression mechanism 2 in a hermetic container 1, an electric motor 3 for driving the compression mechanism 2 provided below the compression mechanism 2, and the electric motor 3 and a crankshaft 4 for transmitting the rotational force 3 to the compression mechanism 2, and the oil 6 of the oil sump 20 provided at the lower part in the sealed container 1 is passed through the crankshaft 4 to the bearing portion 66 of the crankshaft 4 and the compression mechanism. And an oil supply mechanism 7 that supplies the two sliding portions.

これによって、オイル6は給油機構7によって重力に逆らって軸受部66や圧縮機構2の摺動部に強制給油されて、円滑な動作を確保しながら、圧縮機構2で圧縮した冷媒ガスを密閉容器1内の電動機3の部分を通して電動機3を冷却した後、密閉容器1外に吐出するようにしており、軸受部66や圧縮機構2の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜め20に自然回収されるようにすることができる。しかし、冷媒ガスは常時オイルと接触してこれを随伴させ、密閉容器1から冷凍サイクルに供給される際にオイルを持ち出してしまい、冷凍サイクル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下をもたらす問題がある。   As a result, the oil 6 is forcibly supplied to the bearing 66 and the sliding portion of the compression mechanism 2 against the gravity by the oil supply mechanism 7, and the refrigerant gas compressed by the compression mechanism 2 is sealed in a sealed container while ensuring smooth operation. After the motor 3 is cooled through the portion of the motor 3 in 1, the oil is discharged to the outside of the hermetic container 1, and the oil after being supplied to the sliding portion of the bearing portion 66 and the compression mechanism 2 is supplied by supply pressure or gravity. It can move downward and be naturally recovered in the oil sump 20. However, the refrigerant gas always comes into contact with the oil and accompanies it, and when it is supplied from the sealed container 1 to the refrigeration cycle, the oil is taken out, and piping pressure loss in the refrigeration cycle, condensers, evaporators, etc. There exists a problem which brings about the fall of the heat exchange efficiency in a heat exchanger.

これを解消するのに従来、圧縮機構から密閉容器内に吐出した冷媒ガスが電動機を通ってそれを冷却しながら密閉容器外に吐出されるまでの冷媒ガスの通路を、オイルの衝突分離や遠心分離が繰り返し生じるように設計して、密閉容器外に吐出される冷媒ガスにオイルが随伴しないように工夫したり、特許文献1が開示しているように軸受部や圧縮機構から電動機部へのオイルの排出経路を、圧縮機構からの吐出冷媒の電動機部への流路から独立して設け、排出オイルは電動機の固定子の上に滴下させた後伝い落ちにより下部のオイル溜めに回収されるようにする一方、冷媒ガスは電動機部の片側に向け吐出して固定子と密閉容器との間の片側の通路を下降して電動機下部に至った後、固定子と回転子との間のエアギャップを上昇して密閉容器外に吐出する整然とした冷媒の流れを作って滴下し伝い落ちるオイルを随伴させにくくするにようにしている。
特開平7−189963号公報(第1−7項、第1,2,3,4,5図)
In order to solve this problem, conventionally, the refrigerant gas discharged from the compression mechanism into the sealed container passes through the electric motor until it is discharged to the outside of the sealed container while cooling it. It is designed so that separation occurs repeatedly, and it is devised so that oil does not accompany the refrigerant gas discharged outside the sealed container, or as disclosed in Patent Document 1, from the bearing part or the compression mechanism to the motor part. An oil discharge path is provided independently from the flow path of the refrigerant discharged from the compression mechanism to the electric motor section, and the discharged oil is dropped on the stator of the electric motor and then collected in the lower oil sump by passing down. On the other hand, the refrigerant gas is discharged toward one side of the motor part, descends on one side passage between the stator and the sealed container and reaches the lower part of the motor, and then air between the stator and the rotor. The gap is raised and sealed Creating a flow of orderly refrigerant discharged to the outside so that to hard to entrain oil falling Tsutai dropwise.
Japanese Patent Laid-Open No. 7-189963 (1-7, FIGS. 1, 2, 3, 4 and 5)

しかし、従来のどの方式も満足な気液分離はできていない。従来の方式は冷媒ガスやオイルの流れを拘束し切れず衝突や旋回が不十分であったりして、密閉容器外に吐出する冷媒ガスにオイルが混入することを防止し切れていない。   However, none of the conventional methods has achieved satisfactory gas-liquid separation. The conventional system does not completely restrict the flow of the refrigerant gas or oil, and does not sufficiently prevent the oil from being mixed into the refrigerant gas discharged out of the hermetic container due to insufficient collision and turning.

本発明の目的は、冷媒およびオイルをほぼ拘束して取扱って、十分に気液分離されたガスを吐出することができる密閉型圧縮機およびその気液分離吐出方法を提供することにある。   An object of the present invention is to provide a hermetic compressor and a gas-liquid separation / discharge method capable of discharging gas sufficiently separated into gas and liquid by handling the refrigerant and oil almost constrained.

本発明の密閉型圧縮機は、密閉容器内に圧縮機構と、圧縮機構を駆動するためこの圧縮機構の下方に設けた電動機と、電動機の回転力を圧縮機構に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルを前記クランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備えた密閉型圧縮機であって、圧縮機構から吐出されるガスが、圧縮機構上部の容器内吐出室、容器内吐出室から圧縮機構の下部に連通する圧縮機構連通路、圧縮機構連通路から回転子上部室に続く連絡路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出口を通って密閉容器外に吐出されるようにする容器内ガス通路を設けている。   A hermetic compressor of the present invention includes a compression mechanism in a hermetic container, an electric motor provided below the compression mechanism for driving the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, A hermetic compressor having an oil supply mechanism that supplies oil in an oil reservoir provided at a lower portion in a sealed container to a bearing portion of the crankshaft and a compression mechanism sliding portion through the crankshaft, and is discharged from the compression mechanism. Gas in the container above the compression mechanism, a compression mechanism communication path communicating from the discharge chamber in the container to the lower part of the compression mechanism, a communication path extending from the compression mechanism communication path to the rotor upper chamber, rotation with the rotor upper chamber The rotor passage provided in the rotor so as to communicate with the lower part of the rotor, the lower part of the rotor, and the lower part of the stator are sequentially passed to the motor, and the stator or the stator is hermetically sealed so that the lower part and the upper part of the stator are communicated. Between the container and After passing through the stator passage to the stator upper chamber around the outside of the communication path, it is discharged out of the sealed container through an external discharge port provided in a portion of the sealed container above the position of the stator upper chamber. An in-container gas passage is provided.

そして本発明は、冷媒およびオイルをほぼ拘束して取扱って、十分に気液分離されたガスを吐出するために、密閉容器上部もしくは側面にある外部吐出口の周囲に気液分離用衝突壁を設け、冷媒が気液分離用衝突壁に当たる事により、オイルと冷媒を衝突分離させるようにし、さらに密閉容器内壁を伝ってきたオイルが気液分離用衝突壁により密閉容器外に吐出させないようにしたことを特徴としている。   In the present invention, a gas-liquid separation collision wall is provided around the external discharge port at the top or side of the sealed container in order to discharge the gas and liquid sufficiently separated by handling the refrigerant and oil almost in a restricted manner. Provided that the refrigerant hits the gas-liquid separation collision wall so that the oil and the refrigerant collide with each other, and the oil that has traveled along the inner wall of the sealed container is prevented from being discharged out of the sealed container by the gas-liquid separation collision wall. It is characterized by that.

前記外部吐出口の周囲に設けた気液分離用衝突壁により、吐出される冷媒とオイルの混合ガスは外部吐出口を通過する前に気液分離用衝突壁に衝突することになる。この際、気液分離用衝突壁により衝突分離されオイルセパレータの役割を果たすことになり、冷媒とオイルは気液分離され、密閉容器外には冷媒のみが吐出される。   The gas-liquid separation collision wall provided around the external discharge port causes the discharged mixed gas of refrigerant and oil to collide with the gas-liquid separation collision wall before passing through the external discharge port. At this time, the gas is separated by the gas-liquid separation collision wall and serves as an oil separator. The refrigerant and the oil are separated from each other, and only the refrigerant is discharged out of the sealed container.

このように圧縮機構から吐出されたガスを拘束して取扱うことにより、圧縮機構から吐出されたガスが圧縮機構内や軸受部まわりを経る間にそれらに供給されていたオイルと接触してそれを随伴していても、外部吐出口の周囲に気液分離用衝突壁を設けることにより、冷媒とオイルの混合ガスは気液分離用衝突壁に衝突し、冷媒とオイルに気液分離されて密閉容器外には冷媒のみが吐出される。   By restricting and handling the gas discharged from the compression mechanism in this way, the gas discharged from the compression mechanism comes into contact with the oil supplied to them while passing through the compression mechanism and around the bearing portion. Even if it is accompanied, by providing a gas-liquid separation collision wall around the external discharge port, the mixed gas of refrigerant and oil collides with the gas-liquid separation collision wall, and the refrigerant and oil are separated into gas and liquid and sealed. Only the refrigerant is discharged out of the container.

本発明によれば、圧縮機構からの吐出ガスおよびそれに乗じて随伴している圧縮機構およびその軸受部に供給した後のオイルをほぼ拘束して取扱い、気液分離用衝突壁を設けることにより、オイルを含んだ冷媒ガスは気液分離用衝突壁に衝突し、オイルは気液分離用衝突壁に付着し気液分離を行って、オイルを十分に分離した冷媒ガスのみを密閉容器外に吐出することができる。   According to the present invention, the gas discharged from the compression mechanism and the compression mechanism that accompanies it and the oil that has been supplied to the bearing portion are substantially restrained and handled, and by providing a collision wall for gas-liquid separation, The refrigerant gas containing oil collides with the collision wall for gas-liquid separation, and the oil adheres to the collision wall for gas-liquid separation and performs gas-liquid separation, and only the refrigerant gas that has sufficiently separated the oil is discharged out of the sealed container. can do.

また、外部吐出パイプが密閉容器内で拡管されていることにより、気液分離用衝突壁の働きを、安価に可能なこと特徴としている。   In addition, since the external discharge pipe is expanded in a sealed container, the function of the gas-liquid separation collision wall can be achieved at low cost.

また、冷媒がCO2の場合に用いられる粘度の高いオイルを使用した場合、密閉容器の内壁に付着したオイルはそのまま密閉容器の内壁を伝って密閉容器外に吐出されてしまうのだが、外部吐出口の周囲に気液分離用衝突壁を設けることにより、密閉容器の内壁を伝って上がってきたオイルは気液分離用衝突壁を伝って密閉内吐出室上部に落下する。このことにより、オイルを十分に分離した冷媒ガスのみを密閉容器外に吐出することができる。   In addition, when high viscosity oil used when the refrigerant is CO2 is used, the oil adhering to the inner wall of the hermetic container is directly discharged to the outside of the hermetic container along the inner wall of the hermetic container. By providing a gas-liquid separation collision wall around the oil, the oil that has risen along the inner wall of the hermetic container falls along the gas-liquid separation collision wall to the upper part of the hermetic discharge chamber. As a result, only the refrigerant gas from which the oil has been sufficiently separated can be discharged out of the sealed container.

以下、本発明における実施の形態に係る密閉型圧縮機およびその気液分離吐出方法について図面を参照しながら説明し、本発明の理解に供する。   Hereinafter, a hermetic compressor and a gas-liquid separation and discharge method thereof according to an embodiment of the present invention will be described with reference to the drawings for understanding of the present invention.

本実施の形態は縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、ロータリ式の圧縮機構など各種の圧縮機構、それを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮し、圧縮機構が密閉容器内を上下に仕切り、その下部に電動機を収容する密閉型圧縮機であればその全般に適用して有効であり、本発明の範疇に属する。   This embodiment is an example of a case of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. However, the present invention is not limited to this, and various types of compression mechanisms such as a rotary compression mechanism, as well as the gas built in the sealed container together with the electric motor that drives the compression mechanism, are compressed. A hermetic compressor that divides the upper and lower parts and accommodates an electric motor in the lower part is effective when applied to all of them and belongs to the category of the present invention.

(実施の形態1)
本実施の形態の密閉型圧縮機は図1に示すように、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある主軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガス27を吸入して圧縮していき所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。
(Embodiment 1)
As shown in FIG. 1, the hermetic compressor according to the present embodiment includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in the hermetic container 1, and bolts on the main bearing member 11. The scroll type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12 and the rotation of the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11. A rotation restricting mechanism 14 such as an Oldham ring that guides the circular scroll to move is provided, and the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4, thereby causing the orbiting scroll 13 to move circularly. As a result, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 becomes smaller while moving from the outer peripheral side to the center portion. , The refrigerant gas 27 is sucked from the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12 and compressed, and the refrigerant gas that exceeds the predetermined pressure is fixed to the fixed scroll. The reed valve 19 is pushed open from the discharge port 18 at the center of 12 and discharged into the sealed container 1 repeatedly.

クランク軸4の下端は密閉容器1の下端部のオイル溜め20に達して、密閉容器1内に溶接や焼き嵌めして固定された副軸受21により軸受され、安定に回転することができる。電動機3は主軸受部材11と副軸受21との間に位置して、密閉容器1に溶接や焼き嵌めなどして固定された固定子3aと、クランク軸4の途中の外まわりに一体に結合された回転子3bとで構成され、回転子3bの上下端面の外周部分にはピン22により止め付けられたバランスウエイト23、24が設けられ、これにより回転子3bおよびクランク軸4が安定して回転し、旋回スクロール13を安定して円軌道運動させることができる。   The lower end of the crankshaft 4 reaches an oil sump 20 at the lower end of the sealed container 1 and is supported by a secondary bearing 21 fixed by welding or shrink fitting in the sealed container 1 so that it can rotate stably. The electric motor 3 is located between the main bearing member 11 and the auxiliary bearing 21 and is integrally coupled to a stator 3 a fixed to the sealed container 1 by welding or shrink fitting, and an outer periphery in the middle of the crankshaft 4. The balance weights 23 and 24 fixed by the pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, so that the rotor 3b and the crankshaft 4 rotate stably. Thus, the orbiting scroll 13 can be stably moved in a circular orbit.

給油機構7はクランク軸4の下端で駆動されるポンプ25によってオイル溜め20内のオイル6をクランク軸4を通縦しているオイル供給穴26を通じて圧縮機構2の各部の軸受部66や圧縮機構2の各摺動部に供給する。供給後のオイル6は供給圧や重力によって逃げ場を求めるようにして軸受部66を通じ主軸受部材11の下に流出して滴下し、最終的にオイル溜め20に回収される。   The oil supply mechanism 7 is driven by a pump 25 driven at the lower end of the crankshaft 4, and the oil 6 in the oil reservoir 20 is passed through the oil supply hole 26 passing through the crankshaft 4 and the bearing portions 66 and the compression mechanisms of the respective parts of the compression mechanism 2. 2 is supplied to each sliding part. The supplied oil 6 flows out and drops below the main bearing member 11 through the bearing portion 66 so as to obtain a clearance by supply pressure or gravity, and is finally collected in the oil sump 20.

しかし、実際には既述したように、圧縮機構2から吐出される図1に破線矢印で示す冷媒ガス27には圧縮機構2内で接触したオイル6を随伴させていたり、主軸受部材11の下に滴下してくる供給後のオイル6を飛散させて随伴させたりしていて、従来これを十分に分離できず密閉容器1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問題がある。   However, actually, as already described, the refrigerant gas 27 indicated by the broken line arrow in FIG. 1 discharged from the compression mechanism 2 is accompanied by the oil 6 that has contacted within the compression mechanism 2, or the main bearing member 11. There is a problem that the supplied oil 6 that is dripped down is scattered and accompanied, and the oil cannot be sufficiently separated conventionally and the oil is discharged together with the refrigerant gas discharged outside the sealed container 1.

図1に示す実施の形態はこのような問題を解消するために、圧縮機構2から吐出される冷媒ガス27が、圧縮機構2の上部の容器内吐出室31、この容器内吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出パイプ39を通って密閉容器1外に吐出されるのだが、オイル6を含んだ冷媒ガス27がそのまま密閉容器1外に吐出されないように、図1の様に外部吐出パイプ39周辺に気液分離用衝突壁100を設ける。   In the embodiment shown in FIG. 1, in order to solve such a problem, the refrigerant gas 27 discharged from the compression mechanism 2 is compressed into the container discharge chamber 31 above the compression mechanism 2 and the container discharge chamber 31. A compression mechanism communication path 32 for communicating the lower part of the mechanism 2, a communication path 34 continuing from the compression mechanism communication path 32 to the rotor upper chamber 33, and the rotor 3 b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35. Between the stator 3a or the stator 3a and the hermetic container 1 so that the lower part and the upper part of the stator 3a are further communicated with each other through the rotor passage 36 and the rotor lower chamber 35 that are provided in After passing through a stator passage 37 provided between them and passing through the stator upper chamber 38 around the outside of the communication path 34, an external discharge pipe 39 provided in a portion of the hermetic container 1 beyond the position of the stator upper chamber 38. Through the sealed container 1 It is, but as the refrigerant gas 27 containing oil 6 is not directly discharged into the sealed container 1 outside provided gas-liquid separation deflector 100 around the outside discharge pipe 39 as in FIG. 1.

回転子通路36を通った後、オイル6を含んだ冷媒ガス27は固定子通路37を通過し、連絡路34の外まわりの固定子上部室38位置以上の部分にある外部吐出パイプ39から密閉容器1外に吐出するのだが、外部吐出パイプ39の周囲に気液分離用衝突壁100を設けることによりオイル6を含んだ冷媒ガス27は気液分離用衝突壁100に衝突し、オイル6は気液分離用衝突壁100に付着し冷媒ガス27のみが外部吐出パイプ39から密閉容器1外に吐出される。   After passing through the rotor passage 36, the refrigerant gas 27 containing the oil 6 passes through the stator passage 37, and is sealed from an external discharge pipe 39 located at a position above the stator upper chamber 38 around the outside of the communication path 34. 1, the gas-liquid separation collision wall 100 is provided around the external discharge pipe 39 so that the refrigerant gas 27 containing the oil 6 collides with the gas-liquid separation collision wall 100, and the oil 6 Only the refrigerant gas 27 adhering to the liquid separation collision wall 100 is discharged out of the sealed container 1 from the external discharge pipe 39.

気液分離され気液分離用衝突壁100に付着したオイル6は, ミスト状態から凝集しオイル滴に成長し密閉容器1内壁や、副軸受け21を伝い落ちながら下のオイル溜め20に滴下して、冷媒ガス27に乗じる機会がほとんどなしに回収されるようにするので、冷媒ガス27に随伴しているオイル6を効率よく分離し回収することができる。   The oil 6 that has been gas-liquid separated and adhered to the gas-liquid separation collision wall 100 aggregates from the mist state and grows into oil droplets and drops on the inner wall of the sealed container 1 and the sub-bearing 21 to the oil reservoir 20 below. Since the refrigerant gas 27 is collected with almost no opportunity to ride, the oil 6 accompanying the refrigerant gas 27 can be separated and collected efficiently.

以上のようにしてオイル6を分離された冷媒ガス27は、密閉容器1の固定子上部室38の位置以上の部分にある外部吐出パイプ39から密閉容器1外に吐出するので、オイル6を随伴している冷媒ガス27と接触することなくオイルが十分に分離された状態で密閉容器1外に吐出して冷凍サイクルに供給することができる。従て、冷凍サイクル中での配管圧力損失や凝縮器、蒸発器などの熱交換器での熱交換効率の低下を防止することができる。   The refrigerant gas 27 from which the oil 6 has been separated as described above is discharged from the external discharge pipe 39 outside the position of the stator upper chamber 38 of the closed container 1 to the outside of the closed container 1. The oil can be discharged out of the sealed container 1 and supplied to the refrigeration cycle in a state where the oil is sufficiently separated without coming into contact with the refrigerant gas 27. Accordingly, it is possible to prevent a pipe pressure loss in the refrigeration cycle and a decrease in heat exchange efficiency in a heat exchanger such as a condenser or an evaporator.

(実施の形態2)
図2は、前記実施の形態1の気液分離用衝突壁100の外部吐出パイプ39側に突起を設けることにより、オイル6を含んだ冷媒ガス27の衝突分離回数が増し、より気液分離効果が期待できる。
(Embodiment 2)
FIG. 2 shows that by providing a protrusion on the external discharge pipe 39 side of the gas-liquid separation collision wall 100 of the first embodiment, the number of collision separations of the refrigerant gas 27 containing the oil 6 is increased, and the gas-liquid separation effect is further increased. Can be expected.

(実施の形態3)
図3は外部吐出パイプ39が密閉容器1内で拡管することにより、気液分離用衝突壁と同様の働きを安価に可能とすることができる。
(Embodiment 3)
In FIG. 3, when the external discharge pipe 39 is expanded in the sealed container 1, the same function as the gas-liquid separation collision wall can be made inexpensively.

本実施の形態は縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、ロータリ式の圧縮機構など各種の圧縮機構、それを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮し、圧縮機構が密閉容器内を上下に仕切り、その下部に電動機を収容する密閉型圧縮機であればその全般に適用して有効であり、本発明の範疇に属する。   This embodiment is an example of a case of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. However, the present invention is not limited to this, and various types of compression mechanisms such as a rotary compression mechanism, as well as the gas built in the sealed container together with the electric motor that drives the compression mechanism, are compressed. A hermetic compressor that divides the upper and lower parts and accommodates an electric motor in the lower part is effective when applied to all of them and belongs to the category of the present invention.

本発明の実施の形態に係る1つの密閉型圧縮機を示す断面図Sectional drawing which shows one closed type compressor which concerns on embodiment of this invention 本発明の実施の形態2を示す断面図Sectional drawing which shows Embodiment 2 of this invention 本発明の実施の形態3を示す断面図Sectional drawing which shows Embodiment 3 of this invention 従来例を示す断面図Sectional view showing a conventional example

符号の説明Explanation of symbols

1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
4 クランク軸
4a 主軸部
6 オイル
7 給油機構
12 固定スクロール
13 旋回スクロール
14 自転規制機構
15 圧縮室
16 吸入パイプ
17 吸入口
18 吐出口
20 オイル溜まり
21 副軸受
23 バランスウエイト
24 バランスウエイト
25 ポンプ
26 オイル供給穴
27 冷媒ガス
31 容器内吐出室
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
38 固定子上部室
39 外部吐出パイプ
66 軸受部
100 気液分離用衝突壁
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Electric motor 3a Stator 3b Rotor 4 Crankshaft 4a Main shaft part 6 Oil 7 Oil supply mechanism 12 Fixed scroll 13 Orbiting scroll 14 Rotation restriction mechanism 15 Compression chamber 16 Suction pipe 17 Suction port 18 Discharge port 20 Oil reservoir 21 Sub-bearing 23 Balance weight 24 Balance weight 25 Pump 26 Oil supply hole 27 Refrigerant gas 31 Discharge chamber in container 33 Upper rotor chamber 34 Communication path 35 Rotor lower chamber 36 Rotor passage 37 Stator passage 38 Stator upper chamber 39 External discharge pipe 66 Bearing 100 Collision wall for gas-liquid separation

Claims (4)

密閉容器内にスクロール圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、密閉容器上部もしくは側面にある外部吐出口の周囲に気液分離用衝突壁を設け、冷媒が気液分離用衝突壁に当たる事により、オイルと冷媒を衝突分離させるようにし、さらに密閉容器内壁を伝ってきたオイル気液分離用衝突壁により密閉容器外にオイルを吐出させないようにしたことを特徴とする密閉型圧縮機。 A scroll compression mechanism in the hermetic container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the hermetic container And an oil supply mechanism for supplying the oil in the oil reservoir provided in the crankshaft through the crankshaft to the bearing portion of the crankshaft and the sliding portion of the compression mechanism. So that the oil hits the gas-liquid separation collision wall so that the oil and the refrigerant collide with each other, and the oil-gas-liquid separation collision wall that has traveled along the inner wall of the sealed container prevents the oil from being discharged outside the sealed container. A hermetic compressor characterized in that 請求項1記載の密閉型圧縮機において、気液分離用衝突壁の外部吐出パイプ側に突起を設けることにより、オイルと冷媒の衝突分離回数が増し、密閉容器外にオイルを吐出させないようにしたことを特徴とする密閉型圧縮機。 In the hermetic compressor according to claim 1, by providing a projection on the external discharge pipe side of the gas-liquid separation collision wall, the number of collision separations of oil and refrigerant is increased, so that the oil is not discharged outside the sealed container. A hermetic compressor characterized by that. 請求項1記載の密閉型圧縮機において、外部吐出パイプが密閉容器内で拡管されており、気液分離用衝突壁の働きをすることにより、安価に気液分離用衝突を設けられるようになっていること特徴とする密閉型圧縮機。 The hermetic compressor according to claim 1, wherein the external discharge pipe is expanded in a hermetic container, and the gas-liquid separation collision can be provided at low cost by acting as a gas-liquid separation collision wall. A hermetic compressor characterized by 請求項1〜3いずれか1項に記載の密閉型圧縮機において、CO2冷媒を使い60m/S以上の粘度のオイルを使うことを特徴とする密閉型圧縮機。 In hermetic compressor according to any one of claims 1 to 3, a hermetic compressor, characterized in that use oil 60 m 2 / S or more viscosity using a CO2 refrigerant.
JP2007192821A 2007-07-25 2007-07-25 Hermetic compressor Pending JP2009030464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007192821A JP2009030464A (en) 2007-07-25 2007-07-25 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007192821A JP2009030464A (en) 2007-07-25 2007-07-25 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2009030464A true JP2009030464A (en) 2009-02-12

Family

ID=40401246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007192821A Pending JP2009030464A (en) 2007-07-25 2007-07-25 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2009030464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247095A (en) * 2010-05-24 2011-12-08 Panasonic Corp Scroll compressor
JP6021075B2 (en) * 2011-05-16 2016-11-02 パナソニックIpマネジメント株式会社 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247095A (en) * 2010-05-24 2011-12-08 Panasonic Corp Scroll compressor
JP6021075B2 (en) * 2011-05-16 2016-11-02 パナソニックIpマネジメント株式会社 Compressor

Similar Documents

Publication Publication Date Title
KR100572391B1 (en) Hermetic compressor
JP4979503B2 (en) Scroll compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JP2003269336A (en) Compressor and oil separator
JP6655327B2 (en) Hermetic scroll compressor and refrigeration air conditioner
JP2009030464A (en) Hermetic compressor
JP4256801B2 (en) Compressor and air conditioner
WO2004092587A1 (en) Enclosed compressor
JP2006336599A (en) Sealed compressor
JP2008031880A (en) Hermetic compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JP2009257272A (en) Hermetically-sealed compressor
JP2007309280A (en) Hermetic compressor
JP2010255482A (en) Hermetically-sealed compressor
JP2010121547A (en) Hermetic compressor
JP2004332628A (en) Hermetic compressor
JP2005299431A (en) Hermetic compressor
JP2009103030A (en) Hermetic compressor
WO2004090333A1 (en) Hermetic compressor
JP2008002418A (en) Hermetic compressor
JP2009062839A (en) Hermetic compressor
JP2008002416A (en) Hermetic compressor
JPH07189964A (en) Closed type motor-driven compressor
JP2006226207A (en) Hermetic compressor
JP5136498B2 (en) Hermetic compressor