JP2009103030A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2009103030A
JP2009103030A JP2007274990A JP2007274990A JP2009103030A JP 2009103030 A JP2009103030 A JP 2009103030A JP 2007274990 A JP2007274990 A JP 2007274990A JP 2007274990 A JP2007274990 A JP 2007274990A JP 2009103030 A JP2009103030 A JP 2009103030A
Authority
JP
Japan
Prior art keywords
oil
stator
compression mechanism
gas
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007274990A
Other languages
Japanese (ja)
Inventor
Yushi Hashimoto
雄史 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007274990A priority Critical patent/JP2009103030A/en
Publication of JP2009103030A publication Critical patent/JP2009103030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor which handles coolant and oil in substantially constrained manner, and discharges a gas in which a gas and a liquid are sufficiently separated. <P>SOLUTION: A refrigerant separated from unliquified mist of oil is led to a stator upper chamber 33 around the outside of a restriction area from a motor lower chamber through a stator or a stator passage between the stator and a hermetic vessel. The mist of oil is liquified by a circular-shaped collision plate oil separator 28 provided at an inner wall side of a hermetic container 1 of the space portion, and is dropped into an oil reservoir by its own weight from a space of the hermetic vessel through spaces of the stator passage 37, the hermetic vessel 1 and the stator 3a. The coolant gas is discharged to the outside the hermetic container in an upper part of the stator upper chamber, and thus the coolant gas subjected to vapor-liquid separation from oil is discharged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は冷凍空調分野等に使用される密閉型圧縮機に関するものである。   The present invention relates to a hermetic compressor used in the field of refrigeration and air conditioning.

従来、この種の密閉型圧縮機は、密閉容器内に圧縮機構、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構に伝達するためのクランク軸とを備え、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構の摺動部に供給する給油機構とを備えている。   Conventionally, this type of hermetic compressor includes a compression mechanism in a hermetic container, an electric motor for driving the compression mechanism provided below the compression mechanism, and a crank for transmitting the rotational force of the electric motor to the compression mechanism. And an oil supply mechanism that supplies oil in an oil reservoir provided at a lower portion in the sealed container to a bearing portion of the crankshaft and a sliding portion of the compression mechanism through the crankshaft.

これによって、オイルは給油機構によって重力に逆らって軸受部や圧縮機構の摺動部に強制給油されて、円滑な動作を確保しながら、圧縮機構で圧縮した冷媒ガスを密閉容器内の電動機の部分を通して電動機を冷却した後密閉容器外に吐出するようにしており、前記軸受部や圧縮機構の摺動部に供給した後のオイルが供給圧や重力によって下方に移動しオイル溜めに自然回収されるようにすることができる。しかし、冷媒ガスは常時オイルと接触してこれを随伴させ、密閉容器から冷凍サイクルに供給される際にオイルを持ち込んでしまい、冷凍サイクル中での配管圧力損失や凝縮器や蒸発器などの熱交換器での熱交換効率の低下をもたらす問題がある。   As a result, the oil is forcibly supplied to the sliding portion of the bearing portion and the compression mechanism against the gravity by the oil supply mechanism, and the refrigerant gas compressed by the compression mechanism is part of the motor in the sealed container while ensuring a smooth operation. After the motor is cooled, the oil is discharged out of the sealed container, and the oil supplied to the bearing part and the sliding part of the compression mechanism moves downward by the supply pressure and gravity and is naturally recovered in the oil reservoir. Can be. However, the refrigerant gas always comes in contact with oil and entrains it, bringing in oil when it is supplied from the sealed container to the refrigeration cycle, and pipe pressure loss in the refrigeration cycle and heat from condensers, evaporators, etc. There is a problem that causes a reduction in heat exchange efficiency in the exchanger.

これを解消するのに従来、圧縮機構から密閉容器内に吐出した冷媒ガスが電動機を通ってそれを冷却しながら密閉容器外に吐出されるまでの冷媒ガスの通路を、オイルの衝突分離や遠心分離が繰り返し生じるように設計して、密閉容器外に吐出される冷媒ガスにオイルが随伴しないように工夫したり、軸受部や圧縮機構から排出されたオイルは圧縮機構からの吐出冷媒と合流した後電動機の回転子の中を通過し下部で遠心分離させることにより滴下させた後伝い落ちにより下部のオイル溜めに回収されるようにする一方、分離された冷媒ガスは固定子と密閉容器との間の通路を上昇して密閉容器外に吐出する整然とした冷媒の流れを作って前記滴下し伝い落ちるオイルを随伴させにくくするにようにしている(例えば、特許文献1参照)。
特開平7−189963号公報
In order to solve this problem, conventionally, the refrigerant gas discharged from the compression mechanism into the sealed container passes through the electric motor until it is discharged to the outside of the sealed container while cooling it. Designed so that separation occurs repeatedly so that the oil does not accompany the refrigerant gas discharged outside the sealed container, or the oil discharged from the bearing and compression mechanism merges with the refrigerant discharged from the compression mechanism After passing through the rotor of the rear motor and dropping at the lower part, it is collected in the oil sump at the lower part by passing down, while the separated refrigerant gas flows between the stator and the sealed container. An orderly refrigerant flow that is discharged to the outside of the hermetic container is created by raising the passage between them so as to make it difficult to accompany the oil that drops and propagates (see, for example, Patent Document 1).
JP-A-7-189963

しかし、従来のどの方式も満足な気液分離はできていない。冷媒ガスの流れによる衝突分離や遠心分離を図る従来の方式は、圧縮機構や電動機の固定子に設ける冷媒通路の設け方によって冷媒ガスの流れを規制して各部との衝突や回転子やバランスウエイトの回転を利用した旋回流が生じるようにするものであるが、冷媒ガスやオイルの流れを拘束し切れず衝突や旋回が不十分であったり、冷媒がその流路や流れの乱れによってオイルと再三接触して随伴させやすかったりして、密閉容器外に吐出する冷媒ガスにオイルが混入することを防止し切れていない。   However, none of the conventional methods has achieved satisfactory gas-liquid separation. The conventional method of performing collision separation and centrifugal separation by the flow of refrigerant gas regulates the flow of refrigerant gas by providing a refrigerant passage provided in the compression mechanism or the stator of the electric motor, and collides with each part, rotor and balance weight. However, the flow of refrigerant gas and oil cannot be constrained and collision and swirl are insufficient. It is not easy to prevent the oil from being mixed into the refrigerant gas discharged out of the hermetic container because it is easily contacted with repeated contact.

また、特許文献1に開示のものは、軸受部や圧縮機構から排出されたオイルは圧縮機構からの吐出冷媒と合流した後電動機の回転子の中を通過し下部で遠心分離させることにより滴下させた後伝い落ちにより下部のオイル溜めに回収されるようにする一方、分離された冷媒ガスは固定子と密閉容器との間の通路を上昇して密閉容器外に吐出する整然とした冷媒の流れを作って前記滴下し伝い落ちるオイルを随伴させにくくするにようにしている、しかしながら、オイルが冷媒ガスにより分散されてその流れに乗じてしまい随伴されるので、やはり、密閉容器外に吐出する冷媒ガスにオイルが混入することを防止し切れていない。   In addition, in the one disclosed in Patent Document 1, the oil discharged from the bearing portion and the compression mechanism is dropped by merging with the refrigerant discharged from the compression mechanism, passing through the rotor of the electric motor, and being centrifuged at the lower part. The separated refrigerant gas rises up the passage between the stator and the hermetic container and is discharged out of the hermetic container while being collected in the lower oil sump. The oil is made difficult to accompany the oil that drops and propagates. However, since the oil is dispersed by the refrigerant gas and accompanies the flow, the refrigerant gas discharged outside the sealed container is also used. The oil has not been prevented from entering.

本発明の目的は、冷媒およびオイルをほぼ拘束して取扱って、十分に気液分離されたガスを吐出することができる密閉型圧縮機およびその気液分離吐出方法を提供することにある。   An object of the present invention is to provide a hermetic compressor and a gas-liquid separation / discharge method capable of discharging gas sufficiently separated into gas and liquid by handling the refrigerant and oil almost constrained.

本発明の密閉型圧縮機は、密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、圧縮機構から密閉容器内へ吐出されるガスおよび圧縮機構およびその軸受部への供給後のオイルをほぼ拘束して回転子上部室から回転子通路に通して回転子下部室に導くことにより回転子の回転による強制旋回に供して気液の遠心分離を行ない、液化したオイルを固定子のコイルエンドに付着して伝い落ち下部のオイル溜めへ滴下させる、一方液化しきれなかったミスト状のオイルと分離された冷媒は電動機下部室から固定子または固定子と密閉容器との間の固定子通路に通して前記拘束域外回りの固定子上部室に導かれる、そこの空間部分の密閉容器の内壁側に設置された円形状の衝突板オイルセパレータによりミスト状のオイルは液化され固定子通路と密閉容器と固定子の空間を密閉容器の空間部分よりオイルの自重落下によりオイル溜めへ滴下される、また、冷媒ガスは固定子上部室の位置以上の部分から密閉容器外に吐出させて、オイルと気液分離した冷媒ガスを吐出することを特徴としている。   The hermetic compressor of the present invention includes a compression mechanism in a hermetic container, an electric motor for driving the compression mechanism provided below the compression mechanism, and a crank for transmitting the rotational force of the electric motor to the compression mechanism unit. A gas discharged from the compression mechanism into the sealed container is provided with a shaft and an oil supply mechanism that supplies oil in an oil reservoir provided in a lower portion of the sealed container to the bearing portion of the crankshaft and the sliding portion of the compression mechanism through the crankshaft. In addition, the oil after being supplied to the compression mechanism and its bearing portion is almost restrained and guided from the rotor upper chamber through the rotor passage to the rotor lower chamber to be subjected to forced swirling by the rotation of the rotor, thereby Centrifugation is performed, and the liquefied oil adheres to the coil end of the stator and is dropped into the oil reservoir in the lower part. A circular collision plate installed on the inner wall side of the hermetic container in the space portion thereof, which is guided to the stator upper chamber outside the restraint area through a stator passage between the stator or the stator and the hermetic container The mist-like oil is liquefied by the oil separator, and the space of the stator passage, the sealed container, and the stator is dropped from the space portion of the sealed container to the oil sump due to the falling weight of the oil. It is characterized in that the refrigerant gas separated from oil and gas-liquid is discharged from the portion above the position to the outside of the sealed container.

本発明によれば、圧縮機構からの吐出ガスおよびそれに乗じて随伴している圧縮機構およびその軸受部に供給した後のオイルをほぼ拘束して取扱い、回転子通路を通すことで回転子の回転による強い遠心分離に供して効率のよい遠心分離を行って後、液化されたオイルを固定子のコイルエンド部に当てることによりオイルを捕捉しオイル溜りへ滴下させ、またミスト状のオイルは密閉容器内壁の固定子上部に設置された円形状の衝突板であるオイルセパレータに衝突することにより液化させ、オイル溜りへ滴下することにより、十分に気液分離したガスを密閉容器外に吐出し供給することができる。   According to the present invention, the gas discharged from the compression mechanism and the accompanying compression mechanism and the oil after being supplied to the bearing portion thereof are substantially restrained and handled, and the rotor rotates by passing through the rotor passage. After centrifuging efficiently with a strong centrifuge, the liquefied oil is applied to the coil end of the stator to catch the oil and let it drop into the oil reservoir. It is liquefied by colliding with an oil separator, which is a circular collision plate installed on the stator on the inner wall, and dropped into the oil reservoir to discharge and supply gas that has been sufficiently gas-liquid separated to the outside of the sealed container. be able to.

以下、本発明における実施の形態に係る密閉型圧縮機およびその気液分離吐出方法について図1を参照しながら説明し、本発明の理解に供する。   Hereinafter, a hermetic compressor according to an embodiment of the present invention and a gas-liquid separation and discharge method thereof will be described with reference to FIG. 1 for understanding of the present invention.

本実施の形態は縦型でスクロール式の圧縮機構を内蔵した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、ロータリ式の圧縮機構など各種の圧縮機構をそれを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮し、圧縮機構が密閉容器内を上下に仕切り、その下部に電動機を収容する密閉型圧縮機であればその全般に適用して有効であり、本発明の範囲に属する。   This embodiment is an example of a case of a hermetic compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. However, the present invention is not limited to this, and various compression mechanisms such as a rotary compression mechanism are compressed with respect to general gas contained in a sealed container together with an electric motor that drives the compression mechanism. A hermetic compressor that divides the upper and lower parts and accommodates an electric motor in the lower part is effective when applied to all of them and belongs to the scope of the present invention.

(実施の形態1)
本実施の形態の密閉型圧縮機は図1に示すように、密閉容器1内に溶接や焼き嵌めなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある主軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガスを吸入して圧縮していき所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。
(Embodiment 1)
As shown in FIG. 1, the hermetic compressor according to the present embodiment includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in the hermetic container 1, and bolts on the main bearing member 11. The scroll type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12 and the rotation of the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11. A rotation restricting mechanism 14 such as an Oldham ring that guides the circular scroll to move is provided, and the orbiting scroll 13 is eccentrically driven by the main shaft portion 4a at the upper end of the crankshaft 4, thereby causing the orbiting scroll 13 to move circularly. As a result, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 becomes smaller while moving from the outer peripheral side to the center portion. The refrigerant gas that has become a predetermined pressure or higher as the refrigerant gas is compressed by sucking and compressing the refrigerant gas from the suction pipe 16 communicating with the outside of the sealed container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12. The reed valve 19 is pushed open from the discharge port 18 at the center of the container and discharged into the sealed container 1 repeatedly.

クランク軸4の下端は密閉容器1の下端部のオイル溜め20に達して、密閉容器1内に溶接や焼き嵌めして固定された副軸受部材21により軸受され、安定に回転することができる。電動機3は主軸受部材11と副軸受部材21との間に位置して、密閉容器1に溶接や焼き嵌めなどして固定された固定子3aと、クランク軸4の途中の外まわりに一体に結合された回転子3bとで構成され、回転子3bの上下端面の外周部分にはピン22により止め付けられたバランスウエイト23、24が設けられ、これにより回転子3bおよびクランク軸4が安定して回転し、旋回スクロール13を安定して円軌道運動させることができる。   The lower end of the crankshaft 4 reaches the oil sump 20 at the lower end of the sealed container 1 and is supported by a secondary bearing member 21 fixed by welding or shrink fitting in the sealed container 1 and can rotate stably. The electric motor 3 is located between the main bearing member 11 and the sub-bearing member 21, and is integrally coupled to a stator 3 a fixed to the sealed container 1 by welding or shrink fitting, and an outer periphery in the middle of the crankshaft 4. Balance weights 23 and 24 fixed by pins 22 are provided on the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, so that the rotor 3b and the crankshaft 4 are stabilized. By rotating, the orbiting scroll 13 can be stably moved in a circular orbit.

給油機構7はクランク軸4の下端で駆動されるポンプ25によってオイル溜め20内のオイル6をクランク軸4を通縦しているオイル供給穴26を通じて圧縮機構2の各部の軸受部や圧縮機構2の各摺動部に供給する。供給後のオイル6は供給圧や重力によって逃げ場を求めるようにして軸受部を通じ主軸受部材11の下に流出して滴下し、最終的にオイル溜め20に回収される。   The oil supply mechanism 7 includes a bearing 25 in each part of the compression mechanism 2 and a compression mechanism 2 through an oil supply hole 26 that vertically passes the oil 6 in the oil reservoir 20 by a pump 25 driven at the lower end of the crankshaft 4. To each sliding part. The supplied oil 6 flows out and drops below the main bearing member 11 through the bearing portion so as to obtain a clearance by supply pressure or gravity, and is finally collected in the oil sump 20.

さらに圧縮機構2から吐出される冷媒ガスが、圧縮機構2の上部の容器内吐出室31、この容器内吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35、を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って前記連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出パイプ39を通って密閉容器1外に吐出されるようにする容器内ガス通路を設けてある。   Further, the refrigerant gas discharged from the compression mechanism 2 has an in-container discharge chamber 31 in the upper part of the compression mechanism 2, a compression mechanism communication path 32 that connects the in-container discharge chamber 31 and the lower part of the compression mechanism 2, and this compression mechanism communication path. The motor passes through the communication path 34 extending from the rotor 32 to the rotor upper chamber 33, the rotor passage 36 provided in the rotor 3b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35, and the rotor lower chamber 35 sequentially. Of the communication path 34 through the stator 3a or the stator passage 37 provided between the stator 3a and the hermetic container 1 so that the lower part and the upper part of the stator 3a communicate with each other. After passing through the outer stator upper chamber 38, the inside of the container is adapted to be discharged out of the sealed container 1 through an external discharge pipe 39 provided in a portion of the sealed container 1 that is located above the position of the stator upper chamber 38. A gas passage is provided.

このような容器内ガス通路の容器内吐出室31と、圧縮機構連通路32とは、圧縮機構2およびその軸受部の外回りに位置して、圧縮機構2から吐出される冷媒ガスを一括して圧縮機構2の下部の連絡路34に吐出させる。続いて連絡路34は吐出されてきた冷媒ガスを回転子上部室33に導いて回転子3bおよびバランスウエイト23の回転による影響で緩く旋回する状態で回転子通路36内に進入させて下方に通りぬけ、遠心分離により外側に向かう液化されたオイル6は固定子3aのコイルエンドに付着して伝い落ち下部のオイル溜め20へ滴下させる、一方液化されなかったミスト状のオイルとオイルと分離された冷媒は電動機下部室から固定子3aまたは固定子3aと密閉容器1との間の固定子通路に通して前記拘束域外回りの固定子上部室そして圧縮機構2の外側の通路を通過し密閉容器1上部に導かれミスト状のオイルは上部室の密閉容器の内壁に配備されたオイルセパレータ28により衝突し液化されオイル6の自重によりオイル溜め20に滴下されることにより、オイル6の気液分離効果を高めることが出来る。   The in-container discharge chamber 31 of the in-container gas passage and the compression mechanism communication passage 32 are located outside the compression mechanism 2 and its bearing portion, and collectively collect the refrigerant gas discharged from the compression mechanism 2. It discharges to the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas to the rotor upper chamber 33 and allows the refrigerant gas to enter the rotor passage 36 in a state where the refrigerant gas swirls loosely due to the rotation of the rotor 3b and the balance weight 23 and passes downward. The oil 6 that has been liquefied toward the outside by the centrifugal separation adheres to the coil end of the stator 3a and is dropped to the oil reservoir 20 at the bottom, while it is separated from the mist-like oil and oil that have not been liquefied. The refrigerant passes through the stator 3a or the stator passage between the stator 3a and the hermetic container 1 from the lower chamber of the motor, passes through the stator upper chamber outside the restraint area and the outer passage of the compression mechanism 2, and passes through the hermetic container 1. The mist-like oil guided to the upper part collides with the oil separator 28 provided on the inner wall of the hermetic container in the upper chamber and is liquefied and dripped into the oil reservoir 20 by the weight of the oil 6. Is it thus possible to increase the gas-liquid separation effect of the oil 6.

以上のように、本発明にかかる密閉型圧縮機は、従来の密閉型圧縮機に対して気液分離効果をたかめることによりシステムに吐出するオイルを削減することによりシステム損失を抑制できる、密閉型圧縮機を提供することができる。   As described above, the hermetic compressor according to the present invention is a hermetic type capable of suppressing the system loss by reducing the oil discharged to the system by increasing the gas-liquid separation effect with respect to the conventional hermetic compressor. A compressor can be provided.

本発明の実施例を示す密閉型圧縮機の断面図Sectional drawing of a hermetic compressor showing an embodiment of the present invention

符号の説明Explanation of symbols

1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
4 クランク軸
6 オイル
7 給油機構
17 吸入口
18 吐出口
20 オイル溜め
23 バランスウエイト
24 バランスウエイト
27 冷媒ガス
28 オイルセパレータ
31 容器内吐出室
32 圧縮機構連通路
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Electric motor 3a Stator 3b Rotor 4 Crankshaft 6 Oil 7 Oil supply mechanism 17 Intake port 18 Discharge port 20 Oil sump 23 Balance weight 24 Balance weight 27 Refrigerant gas 28 Oil separator 31 In-vessel discharge chamber 32 Compression Mechanism communication path 33 Rotor upper chamber 34 Connecting path 35 Rotor lower chamber 36 Rotor path 37 Stator path

Claims (1)

密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備えた密閉型圧縮機の気液分離方法であって、圧縮機構から密閉容器内へ吐出されるガスおよび圧縮機構およびその軸受部への供給後のオイルをほぼ拘束して回転子上部室から回転子通路に通して回転子下部室に導くことにより回転子の回転による強制旋回に供して気液の遠心分離を行ない、液化されたオイルを固定子のコイルエンドに付着して伝い落ち下部のオイル溜めへ滴下させる一方液化されなかったミスト状のオイルと冷媒は電動機下部室から固定子または固定子と密閉容器との間の固定子通路に通して拘束域外回りの固定子上部室に導き、圧縮機構部外部の通路部を通過し、圧縮機構部上部に据付けられた板状の部品によりミスト化されたオイルと衝突させることにより液化させ圧縮機構部と密閉容器との間の空間部分より自重落下によりオイル溜めまで滴下する、また冷媒ガスは密閉容器の固定子上部室の位置以上の部分から密閉容器外に吐出させて、オイルと気液分離した冷媒ガスを吐出することを特徴とする密閉型圧縮機。 A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container A gas-liquid separation method for a hermetic compressor including an oil supply mechanism that supplies oil in a provided oil reservoir to a bearing portion of a crankshaft and a sliding portion of a compression mechanism through a crankshaft, and from the compression mechanism to a sealed container The discharged gas, the compression mechanism, and the oil supplied to the bearing are almost restrained and guided from the rotor upper chamber to the rotor lower chamber through the rotor passage to be forcedly swung by the rotation of the rotor. Centrifugation of the gas and liquid is performed, and the liquefied oil adheres to the coil end of the stator and is dropped and dropped into the oil reservoir in the lower part. A plate that is passed through a stator passage between the stator or the stator and the airtight container, leads to the stator upper chamber around the restraint area, passes through the passage outside the compression mechanism, and is installed at the top of the compression mechanism. It is liquefied by colliding with oil that has been misted by the parts of the part, and drops from the space between the compression mechanism and the sealed container to the oil reservoir due to its own weight drop, and the refrigerant gas is located in the upper chamber of the stator of the sealed container A hermetic compressor that discharges refrigerant gas separated from oil and gas-liquid by discharging from the above portion to the outside of the hermetic container.
JP2007274990A 2007-10-23 2007-10-23 Hermetic compressor Pending JP2009103030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007274990A JP2009103030A (en) 2007-10-23 2007-10-23 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007274990A JP2009103030A (en) 2007-10-23 2007-10-23 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2009103030A true JP2009103030A (en) 2009-05-14

Family

ID=40704969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007274990A Pending JP2009103030A (en) 2007-10-23 2007-10-23 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2009103030A (en)

Similar Documents

Publication Publication Date Title
US8888476B2 (en) Horizontal scroll compressor
JP2017053285A (en) Compressor
JP4175148B2 (en) Hermetic compressor
JP2007315366A (en) Compressor
JP4979503B2 (en) Scroll compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JP4127108B2 (en) Hermetic compressor
JP5709544B2 (en) Compressor
JP2006348928A (en) Compressor
JP2006336599A (en) Sealed compressor
JP2009103030A (en) Hermetic compressor
JP2009030464A (en) Hermetic compressor
JP2009062839A (en) Hermetic compressor
JP2008002418A (en) Hermetic compressor
JP6090169B2 (en) Compressor
JP2004332628A (en) Hermetic compressor
JP2008002416A (en) Hermetic compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JP2008031880A (en) Hermetic compressor
JP2008002417A (en) Hermetic compressor
JP2007309280A (en) Hermetic compressor
JP2009257272A (en) Hermetically-sealed compressor
JP2006226207A (en) Hermetic compressor
JP2010255482A (en) Hermetically-sealed compressor
JP3894009B2 (en) Hermetic compressor