JP3894009B2 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP3894009B2
JP3894009B2 JP2002073612A JP2002073612A JP3894009B2 JP 3894009 B2 JP3894009 B2 JP 3894009B2 JP 2002073612 A JP2002073612 A JP 2002073612A JP 2002073612 A JP2002073612 A JP 2002073612A JP 3894009 B2 JP3894009 B2 JP 3894009B2
Authority
JP
Japan
Prior art keywords
compression mechanism
rotor
oil
stator
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002073612A
Other languages
Japanese (ja)
Other versions
JP2003269355A (en
Inventor
博正 芦谷
敬 森本
博之 河野
裕文 ▲よし▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002073612A priority Critical patent/JP3894009B2/en
Publication of JP2003269355A publication Critical patent/JP2003269355A/en
Application granted granted Critical
Publication of JP3894009B2 publication Critical patent/JP3894009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、業務用または家庭用、あるいは乗り物用の冷凍空調、あるいは冷蔵庫などに用いられる密閉型圧縮機に関するものである。
【0002】
【従来の技術】
従来、この種の密閉型圧縮機は、特開2001−280282号公報に開示されている。図2を参照して説明する。密閉容器101内に圧縮機構102と、この圧縮機構102の下方に設けた圧縮機構102を駆動するための電動機103と、この電動機103の回転力を圧縮機構102部に伝達するためのクランク軸104と、密閉容器101内の下部に設けたオイル溜め105のオイル106をクランク軸104を通じてクランク軸104の軸受部166や圧縮機構102の摺動部に供給する給油機構107とを備え、圧縮機構102から吐出されるガスが、圧縮機構102の上部の容器内吐出室131、この容器内吐出室131と圧縮機構102の下部を連通させる圧縮機構連通路132、この圧縮機構連通路132から回転子上部室133に続く連絡路134、回転子上部室133と回転子下部室135を連通させるように回転子103bに設けた回転子通路136、回転子下部室135、を順次経て電動機103下に至り、さらに固定子103aの下部と上部とを連通させるように固定子103aまたは固定子103aと密閉容器101との間に設けられた固定子通路137を通って前記連絡路134外まわりの固定子上部室138に抜けた後、密閉容器101の固定子上部室138の位置以上の部分に設けられた外部吐出パイプ139を通って密閉容器101外に吐出されるようにする容器内ガス通路Aを設けたことを特徴としている。
【0003】
このような構成では、先ず、圧縮機構102の上部の容器内吐出室131と、この容器内吐出室131と圧縮機構102の下部を連通させる圧縮機構連通路132とが、圧縮機構102およびその軸受部166の外回りに位置して、圧縮機構102から吐出されるガスを一括して圧縮機構102の下部の連絡路134に吐出させ、連絡路134が吐出されてきたガスを回転子上部室133に導いて回転子103bの回転子通路136内を通り回転子下部室135へ回転子103bの回転を受けた強い旋回流を持って吐出させる。このように圧縮機構102から吐出されたガスを拘束して取扱うことにより、圧縮機構102から吐出されたガスが圧縮機構102内や軸受部166まわりを経る間にそれらに供給されていたオイル106と接触してそれを随伴していても、前記強い旋回流によって気液分離を行ないオイル106を外方へ追いやって電動機103の固定子103aの内周に付着させてオイル溜め105に近いところでガスから分離し、ガスに乗じる機会がほとんどなく伝い落ちて直ぐ下のオイル溜め105に滴下し回収されるようにするので、ガスに随伴しているオイル106を効率よく分離することができる。
【0004】
また、回転子通路136を通るガスに随伴しているオイル106は回転子103bの回転による遠心力で回転子通路136の外側面に押し付けられてミスト状態から凝集しオイル滴に成長するので、前記遠心分離による気液分離効率をより高めるし、遠心分離されるオイル滴は固定子103aの内周に押し付けられて凝集しさらに大きく成長して下方のオイル溜め105に滴下するので、気液分離後のオイル106がオイル溜め105に滴下するのに、回転子下部室135から固定子103aの下部に至って後、上向きにユーターンして固定子通路137に向かうガスの流れに乗じにくい上、前記ユーターンするガスの流れはユーターン時の遠心力により、随伴しているあるいは随伴しようとするオイル106をその重力も手伝って下のオイル溜め105に向け振り落としまた弾き飛ばす作用をするので、前記遠心分離した、およびまだガス中に残っているオイルの回収率を高めることができる。
【0005】
【発明が解決しようとする課題】
しかし、従来の方式では、圧縮機構から吐出されたガスが、圧縮機構内や軸受部まわりを経る間にそれらに供給された後、接触を余儀なくされるオイルが高差圧あるいは高速度のような、過剰に圧縮機構に供給される条件においては、混合するオイルの、ガスに対する相対量が増大するため、前記遠心分離によっても、効率よくガスとオイルは分離するのに限界がある。
【0006】
本発明の目的は、高差圧あるいは高速度のようなオイルが過剰に圧縮機構に供給される条件においても、冷媒ガスおよびオイルをほぼ拘束して取り扱って、充分に気液分離されたガスを吐出することができる密閉型圧縮機を提供することにある。
【0007】
【課題を解決するための手段】
本発明の密閉型圧縮機は、密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室に続く連通路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出パイプを通って密閉容器外に吐出されるようにする容器内ガス通路を設け、圧縮機構を潤滑したオイルが、圧縮機構の下部の圧縮機構排出路、この圧縮機構排出路に連通する回転子上部オイル連通路、この回転子上部オイル連通路と前記回転子下部室とを連通させるように回転子に設けた前記回転子通路と異なる回転子オイル連通路を通じるようにしたことを特徴としている。
【0008】
このような構成では、先ず、圧縮機構の上部の容器内吐出室と、この容器内吐出室と圧縮機構の下部を連通させる圧縮機構連通路とが、圧縮機構およびその軸受部の外回りに位置して、圧縮機構から吐出されるガスを一括して圧縮機下部の連通路に吐出させ、連通路が吐出されてきたガスを回転子上部室に導いて回転子の回転子通路内を通り回転子下部室へ回転子の回転を受けた強い旋回流を持って吐出させる。このように圧縮機構から吐出されたガスを拘束して取扱うことにより、圧縮機構から吐出されたガスが圧縮機構内や軸受部まわりを経る間にそれらに供給されていたオイルと接触してそれを随伴していても、前記強い旋回流によって気液分離を行ないオイルを外方へ追いやって電動機の固定子の内周に付着させてオイル溜めに近いところでガスから分離し、ガスに乗じる機会がほとんどなく伝い落ちて直ぐ下のオイル溜めに滴下し回収されるようにするので、ガスに随伴しているオイルを効率よく分離することができる。
【0009】
また、回転子通路を通るガスに随伴しているオイルは回転子の回転による遠心力で回転子通路の外側面に押し付けられてミスト状態から凝集しオイル滴に成長するので、前記遠心分離による気液分離効率をより高めるし、遠心分離されるオイル滴は固定子の内周に押し付けられて凝集しさらに大きく成長して下方のオイル溜めに滴下するので、気液分離後のオイルがオイル溜めに滴下するのに、回転子下部室から電動機下部室に至って後、上向きにユーターンして固定子通路に向かうガスの流れに乗じにくい上、前記ユーターンするガスの流れはユーターン時の遠心力により、随伴しているあるいは随伴しようとするオイルをその重力も手伝って下のオイル溜めに向け振り落としまた弾き飛ばす作用をするので、前記遠心分離した、およびまだガス中に残っているオイルの回収率を高めることができる。
【0010】
また、回転子上部室から回転子連通路に至るガスの通路と、圧縮機構排出路から、回転子上部オイル連通路、回転子オイル連通路に至るオイルの通路が分離されているので、前記回転子下部室に至った時点で、圧縮機構から排出され、そのまま凝集したオイル滴の状態で、ガスと混合するため、前記遠心分離による気液分離効率をより高めることができる。
【0011】
【発明の実施の形態】
以下、本発明における実施の形態に係る密閉型圧縮機について図を参照しながら説明し、本発明の理解に供する。
【0012】
本発明実施の形態は縦型でスクロール式の圧縮機構を内臓した冷凍サイクル用の密閉型圧縮機の場合の一例であり、圧縮対象は冷媒ガスである。しかし、本発明はこれに限られることはなく、ロータリ式の圧縮機構など各種の圧縮機構をそれを駆動する電動機とともに密閉容器内に内蔵したガス一般を対象として圧縮する密閉型圧縮機全般に適用して有効であり、本発明の範疇に属する。
【0013】
本実施の形態の密閉型圧縮機は図1に示すように、密閉容器1内に溶接や焼きばめなどして固定したクランク軸4の主軸受部材11と、この主軸受部材11上にボルト止めした固定スクロール12との間に、固定スクロール12と噛み合う旋回スクロール13を挟み込んでスクロール式の圧縮機構2を構成し、旋回スクロール13と主軸受部材11との間に旋回スクロール13の自転を防止して円軌道運動するように案内するオルダムリングなどによる自転規制機構14を設けて、クランク軸4の上端にある偏心軸部4aにて旋回スクロール13を偏心駆動することにより旋回スクロール13を円軌道運動させ、これにより固定スクロール12と旋回スクロール13との間に形成している圧縮室15が外周側から中央部に移動しながら小さくなるのを利用して、密閉容器1外に通じた吸入パイプ16および固定スクロール12の外周部の吸入口17から冷媒ガスを吸入して圧縮していき所定圧以上になった冷媒ガスは固定スクロール12の中央部の吐出口18からリード弁19を押し開いて密閉容器1内に吐出させることを繰り返す。
【0014】
クランク軸4の下端は密閉容器1の下端部のオイル溜め20に達して、密閉容器1内に溶接や焼きばめして固定された副軸受部材21により軸受され、安定に回転することができる。電動機3は主軸受部材11と副軸受部材21との間に位置して、密閉容器1に溶接や焼きばめなどして固定された固定子3aと、クランク軸4の途中の外まわりに一体に結合された回転子3bとで構成され、回転子3bの上下端面の外周部分にはピン22により止め付けられたバランスウェイト23、24が設けられ、これにより回転子3bおよびクランク軸4が安定して回転し、旋回スクロール13を安定して円軌道運動させることができる。
【0015】
給油機構7はクランク軸4の下端で駆動されるポンプ25によってオイル溜め20内のオイル6をクランク軸4を通縦しているオイル供給穴26を通じて圧縮機構2の各部の軸受部66や圧縮機構2の各摺動部に供給する。供給後のオイル6は供給圧や重力によって逃げ場を求めるようにして軸受部66を通じ主軸受部材11の下に流出して滴下し、最終的にオイル溜め20に回収される。
【0016】
しかし、実際には既述したように、圧縮機構2から吐出される図1に破線矢印で示す冷媒ガス27には圧縮機構2内で接触したオイル6を随伴させていたり、上記主軸受部材11の下に滴下してくる供給後のオイル6を飛散させて随伴させたりしていて、従来これを十分に分離できず密閉容器1外に吐出する冷媒ガスとともにオイルも吐出されてしまう問題がある。
【0017】
図1に示す実施の形態はこのような問題を解消するために、圧縮機構2から吐出される冷媒ガス27が、圧縮機構2の上部の容器内吐出室31、この容器内吐出室31と圧縮機構2の下部を連通させる圧縮機構連通路32、この圧縮機構連通路32から回転子上部室33に続く連絡路34、回転子上部室33と回転子下部室35を連通させるように回転子3bに設けた回転子通路36、回転子下部室35、を順次経て電動機3の下に至り、さらに固定子3aの下部と上部とを連通させるように固定子3aまたは固定子3aと密閉容器1との間に設けられた固定子通路37を通って前記連絡路34の外まわりの固定子上部室38に抜けた後、密閉容器1の固定子上部室38の位置以上の部分に設けられた外部吐出パイプ39を通って密閉容器外に吐出されるようにする容器内ガス通路Aを設けてある。
【0018】
このような容器内ガス通路Aの容器内吐出室31と、圧縮機構連通路32とは、圧縮機構2およびその軸受部66の外回りに位置して、圧縮機構2から吐出される冷媒ガス27を一括して圧縮機構2の下部の連絡路34に吐出させる。続いて連絡路34は吐出されてきた冷媒ガス27を回転子上部室33に導いて回転子3bおよびバランスウェイト23の回転による影響で緩く旋回する状態で回転子通路36内に進入させて下方に通りぬけ回転子下部室35へ回転子3bの回転を受けた強い旋回流Bを持って吐出させる。
【0019】
一方、給油機構7により圧縮機構2に供給したオイル6は、圧縮機構2の軸受部66や圧縮機構2の各摺動部を潤滑した後、圧縮機構排出路41から圧縮機構2の下部に排出される。その後、回転子上部室33と隔てた空間となる回転子上部オイル連通路42を通り、続いて回転子通路36と異なる回転子オイル連通路43を通じて、回転子下部室35に至る。この回転子上部室33と回転子上部オイル連通路42を隔てるようにバランスウェイト23の形状により構成する場合もある。
【0020】
このように圧縮機構2から吐出された冷媒ガス27を拘束して取り扱うことにより、圧縮機構2から吐出された冷媒ガス27が圧縮機構2内や軸受部66まわりを経る間にそれらに供給されていたオイル6と接触してそれを随伴していても、前記強い旋回流Bによって気液分離を行ないオイル6を外方へ追いやって固定子3aの内周に付着させてオイル溜め20に近いところで冷媒ガス27から実線矢印で示すように効果的に分離し、以降分離したオイル6は伝い落ちながら直ぐ下のオイル溜めに滴下して、冷媒ガス27に乗じる機会がほとんどなしに回収されるようにするので、冷媒ガス27に随伴しているオイル6を効率よく分離し回収することができる。
【0021】
また、回転子通路36を通る冷媒ガス27に随伴しているオイル6は回転子3bの回転による遠心力で回転子通路36の外側面に押し付けられてミスト状態から凝集しオイル滴に成長するので、前記遠心分離による気液分離効率をより高めるし、遠心分離されるオイル滴は固定子3aの内周に押し付けられて凝集しさらに大きく成長して下方のオイル溜め20に滴下するので、気液分離後のオイル6がオイル溜め20に滴下するのに、回転子下部室35から電動機下部室に至って後、上向きにユーターンして固定子通路37に向かう冷媒ガス27の流れCに乗じにくい上、前記ユーターンする冷媒ガス27の流れCはユーターン時の遠心力により、随伴しているあるいは随伴しようとするオイル6をその重力も手伝って下のオイル溜め20に向け振り落とし、また弾き飛ばす作用をするので、前記遠心分離した、また冷媒ガス27中になお残っているオイル6の回収率を高めることができる。
【0022】
また、回転子上部室33から回転子通路36に至るガスの通路と、圧縮機構排出路41から、回転子上部オイル連通路42、回転子オイル連通路43に至るオイルの通路が分離されているので、前記回転子下部室35に至った時点で、圧縮機構2から排出され、そのまま凝集したオイル滴の状態で、ガスと混合するため、前記遠心分離による気液分離効率をより高めることができる。回転子上部室33付近における冷媒ガス27とオイル6の混合が抑制されるため、回転子上部室33付近から直接固定子上部室38に漏れ出す少量の冷媒ガス27の流れに含まれるオイル6は主に圧縮室15時点で供給された微量のオイル6のみとなり、密閉容器1外に吐出される冷媒ガス27に対する、オイルの分離効率をより高めることができる。
【0023】
【発明の効果】
本発明によれば、上記の説明で明らかなように、圧縮機構からの吐出ガスおよびそれに乗じて随伴している圧縮機構およびその軸受部に供給した後のオイルをほぼ拘束して取り扱い、回転子通路を通すことで回転子の回転による強い遠心分離に供して効率のよい遠心分離を行って後、電動機下部室でのガスのユーターンとそれによるオイルの遠心分離を伴い固定子通路から固定子上部室に至らせながら、圧縮機構から回転子通路に入るオイル分離前のガスとの接触を防止して密閉容器外に吐出することが主因となって、電動機部に吐出ガスを回して冷却を図りながらオイルを十分に分離したガスを密閉容器外に吐出し供給することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る密閉型圧縮機を示す断面図
【図2】従来の密閉型圧縮機を示す断面図
【符号の説明】
1 密閉容器
2 圧縮機構
3 電動機
3a 固定子
3b 回転子
4 クランク軸
6 オイル
7 給油機構
17 吸入口
18 吐出口
20 オイル溜め
23、24 バランスウェイト
27 冷媒ガス
31 容器内吐出室
32 圧縮機構連通路
33 回転子上部室
34 連絡路
35 回転子下部室
36 回転子通路
37 固定子通路
38 固定子上部室
39 外部吐出パイプ
41 圧縮機構排出路
42 回転子上部オイル連通路
43 回転子オイル連通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic compressor for use in a refrigeration air conditioner, a refrigerator, or the like for business use, home use, or vehicle use.
[0002]
[Prior art]
Conventionally, this type of hermetic compressor is disclosed in JP-A-2001-280282. This will be described with reference to FIG. A compression mechanism 102 in the hermetic container 101, an electric motor 103 for driving the compression mechanism 102 provided below the compression mechanism 102, and a crankshaft 104 for transmitting the rotational force of the electric motor 103 to the compression mechanism 102 portion. And an oil supply mechanism 107 for supplying the oil 106 of the oil reservoir 105 provided at the lower part in the sealed container 101 to the bearing portion 166 of the crankshaft 104 and the sliding portion of the compression mechanism 102 through the crankshaft 104. The gas discharged from the container discharge chamber 131 in the upper part of the compression mechanism 102, the compression mechanism communication path 132 that connects the discharge chamber 131 in the container and the lower part of the compression mechanism 102, and the upper part of the rotor from the compression mechanism communication path 132 The communication path 134 following the chamber 133, the rotor upper chamber 133 and the rotor lower chamber 135 are provided in the rotor 103b so as to communicate with each other. It is provided between the stator 103a or the stator 103a and the sealed container 101 so as to reach the lower part of the motor 103 through the trochanter passage 136 and the rotor lower chamber 135 in order, and to further communicate the lower part and the upper part of the stator 103a. After passing through the formed stator passage 137 to the stator upper chamber 138 around the outside of the communication path 134, it passes through the external discharge pipe 139 provided at a portion of the hermetic container 101 at a position higher than the position of the stator upper chamber 138. An in-container gas passage A is provided so as to be discharged out of the hermetic container 101.
[0003]
In such a configuration, first, the in-container discharge chamber 131 in the upper part of the compression mechanism 102 and the compression mechanism communication path 132 that communicates the in-container discharge chamber 131 with the lower part of the compression mechanism 102 include the compression mechanism 102 and its bearing. The gas discharged from the compression mechanism 102 is collectively discharged to the communication path 134 below the compression mechanism 102, and the gas discharged from the communication path 134 is discharged to the rotor upper chamber 133. It is guided and passed through the rotor passage 136 of the rotor 103b and discharged to the rotor lower chamber 135 with a strong swirl flow that has been subjected to the rotation of the rotor 103b. By restricting and handling the gas discharged from the compression mechanism 102 in this way, the oil 106 supplied to the gas discharged from the compression mechanism 102 while passing through the inside of the compression mechanism 102 or around the bearing portion 166 and the oil 106 are used. Even if it is in contact with it, gas-liquid separation is performed by the strong swirling flow, and the oil 106 is driven outward to adhere to the inner periphery of the stator 103a of the motor 103, and from the gas near the oil sump 105. The oil 106 accompanying the gas can be efficiently separated because it is separated and hardly dropped on the gas and is dropped and collected in the oil reservoir 105 immediately below.
[0004]
Further, the oil 106 accompanying the gas passing through the rotor passage 136 is pressed against the outer surface of the rotor passage 136 by the centrifugal force generated by the rotation of the rotor 103b, and aggregates from the mist state and grows into oil droplets. The gas-liquid separation efficiency by centrifugation is further increased, and the oil droplets to be centrifuged are pressed against the inner periphery of the stator 103a, aggregate and grow further, and drop into the oil reservoir 105 below. The oil 106 is dripped into the oil sump 105, and after reaching the lower part of the stator 103a from the rotor lower chamber 135, it is difficult to take advantage of the gas flow toward the stator passage 137 after being turned upward. The gas flow is caused by centrifugal force at the time of the U-turn, and the oil 106 that is or is going to accompany the oil 106 also helps the gravity to lower the oil. Since the effect of fly shaken off also play toward the reservoir 105, the centrifuged, and still it is possible to increase the recovery rate of the oil remaining in the gas.
[0005]
[Problems to be solved by the invention]
However, in the conventional system, the gas discharged from the compression mechanism is supplied to them while passing through the inside of the compression mechanism or around the bearing portion, and then the oil that is forced to come into contact has a high differential pressure or high speed. Under the condition that the compression mechanism is excessively supplied, the relative amount of the oil to be mixed increases with respect to the gas. Therefore, there is a limit in efficiently separating the gas and the oil even by the centrifugal separation.
[0006]
It is an object of the present invention to handle a gas that has been sufficiently gas-liquid separated by handling the refrigerant gas and oil almost in a restraint even under conditions where excessive oil such as high differential pressure or high speed is supplied to the compression mechanism. An object of the present invention is to provide a hermetic compressor capable of discharging.
[0007]
[Means for Solving the Problems]
The hermetic compressor of the present invention includes a compression mechanism in a hermetic container, an electric motor for driving the compression mechanism provided below the compression mechanism, and a crank for transmitting the rotational force of the electric motor to the compression mechanism unit. A shaft and an oil supply mechanism that supplies oil in an oil reservoir provided in the lower part of the sealed container to the bearing portion of the crankshaft and the compression mechanism sliding portion through the crankshaft, and the gas discharged from the compression mechanism is a compression mechanism A discharge chamber in the upper container, a compression mechanism communication path communicating from the discharge chamber in the container to the lower portion of the compression mechanism, a communication path continuing from the compression mechanism communication path to the rotor upper chamber, the rotor upper chamber and the rotor lower chamber Through the rotor passage provided in the rotor so as to communicate with the rotor, the lower chamber of the rotor, and under the motor, and further, the stator or the stator and the sealed container are connected so that the lower part and the upper part of the stator are communicated with each other. Fixed between After passing through the passage to the stator upper chamber around the outside of the communication path, it is discharged outside the sealed container through an external discharge pipe provided in a portion of the sealed container above the position of the stator upper chamber. An oil gas passage provided in the container and having lubricated the compression mechanism is connected to the compression mechanism discharge path below the compression mechanism, the rotor upper oil communication path communicating with the compression mechanism discharge path, the rotor upper oil communication path and the rotation The rotor oil communication passage is different from the rotor passage provided in the rotor so as to communicate with the child lower chamber.
[0008]
In such a configuration, first, the in-container discharge chamber at the upper part of the compression mechanism and the compression mechanism communication passage that communicates the in-container discharge chamber and the lower part of the compression mechanism are positioned outside the compression mechanism and its bearing portion. The gas discharged from the compression mechanism is collectively discharged into the communication passage below the compressor, and the gas discharged from the communication passage is guided to the rotor upper chamber and passes through the rotor passage of the rotor. The lower chamber is discharged with a strong swirling flow that receives the rotation of the rotor. By restricting and handling the gas discharged from the compression mechanism in this way, the gas discharged from the compression mechanism comes into contact with the oil supplied to them while passing through the compression mechanism and around the bearing portion. Even if accompanied, gas-liquid separation is performed by the strong swirling flow, the oil is chased outward, attached to the inner periphery of the stator of the motor, separated from the gas near the oil sump, and there is almost an opportunity to ride on the gas The oil accompanying the gas can be efficiently separated because it is dropped and collected in the oil reservoir immediately below.
[0009]
In addition, the oil accompanying the gas passing through the rotor passage is pressed against the outer surface of the rotor passage by the centrifugal force generated by the rotation of the rotor and aggregates from the mist state to grow into oil droplets. Liquid separation efficiency is further increased, and the oil droplets that are centrifuged are pressed against the inner circumference of the stator and agglomerate to grow further and drop into the oil sump below. After dropping from the rotor lower chamber to the motor lower chamber, it is difficult to take advantage of the gas flow toward the stator passage after going up, and the U-turn gas flow is accompanied by the centrifugal force at the time of U-turn. The oil that is being or is going to accompany it is spun off and blown toward the lower oil sump with the help of its gravity. It is possible to increase the recovery rate of the oil remaining in the gas.
[0010]
Further, the gas passage from the rotor upper chamber to the rotor communication passage and the oil passage from the compression mechanism discharge passage to the rotor upper oil communication passage and the rotor oil communication passage are separated from each other. When it reaches the child lower chamber, it is mixed with gas in the state of oil droplets discharged from the compression mechanism and agglomerated as it is, so that the gas-liquid separation efficiency by the centrifugal separation can be further increased.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a hermetic compressor according to an embodiment of the present invention will be described with reference to the drawings for understanding of the present invention.
[0012]
The embodiment of the present invention is an example of a closed type compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. However, the present invention is not limited to this, and is applicable to all types of hermetic compressors that compress various types of compression mechanisms, such as rotary compression mechanisms, with the electric motor that drives them and the general gas contained in the hermetic container. Therefore, it is effective and belongs to the category of the present invention.
[0013]
As shown in FIG. 1, the hermetic compressor of the present embodiment includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in a hermetic container 1, and bolts on the main bearing member 11. The scroll-type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 that meshes with the fixed scroll 12 between the fixed scroll 12 and the rotation of the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11. Then, an anti-rotation mechanism 14 such as an Oldham ring that guides the circular scroll to move is provided, and the orbiting scroll 13 is eccentrically driven by the eccentric shaft portion 4 a at the upper end of the crankshaft 4. As a result, the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 moves small from the outer peripheral side to the center portion. The refrigerant gas that has become a predetermined pressure or higher as the refrigerant gas is compressed by sucking and compressing the refrigerant gas from the suction pipe 16 communicating with the outside of the sealed container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12 is fixed to the fixed scroll. The reed valve 19 is pushed open from the discharge port 18 at the center of 12 and discharged into the sealed container 1 repeatedly.
[0014]
The lower end of the crankshaft 4 reaches the oil sump 20 at the lower end of the sealed container 1 and is supported by the auxiliary bearing member 21 fixed by welding or shrink fitting in the sealed container 1 so that it can rotate stably. The electric motor 3 is located between the main bearing member 11 and the auxiliary bearing member 21, and is integrally formed with a stator 3 a fixed to the sealed container 1 by welding or shrink fitting, and the outer periphery in the middle of the crankshaft 4. Balance weights 23 and 24 are provided at the outer peripheral portions of the upper and lower end surfaces of the rotor 3b, and the rotor 3b and the crankshaft 4 are stabilized. And the orbiting scroll 13 can be stably moved in a circular orbit.
[0015]
The oil supply mechanism 7 is driven by a pump 25 driven at the lower end of the crankshaft 4, and the oil 6 in the oil reservoir 20 is passed through the oil supply hole 26 passing through the crankshaft 4 and the bearing portions 66 and the compression mechanisms of the respective parts of the compression mechanism 2. 2 is supplied to each sliding part. The supplied oil 6 flows out and drops below the main bearing member 11 through the bearing portion 66 so as to obtain a clearance by supply pressure or gravity, and is finally collected in the oil sump 20.
[0016]
However, in fact, as described above, the refrigerant gas 27 shown by the broken line arrow in FIG. 1 discharged from the compression mechanism 2 is accompanied by the oil 6 that is in contact with the compression mechanism 2 or the main bearing member 11. There is a problem that the supplied oil 6 dripping below is scattered and accompanied, and the oil cannot be sufficiently separated conventionally and the oil is discharged together with the refrigerant gas discharged outside the sealed container 1. .
[0017]
In the embodiment shown in FIG. 1, in order to solve such a problem, the refrigerant gas 27 discharged from the compression mechanism 2 is compressed into the container discharge chamber 31 above the compression mechanism 2 and the container discharge chamber 31. A compression mechanism communication path 32 for communicating the lower part of the mechanism 2, a communication path 34 continuing from the compression mechanism communication path 32 to the rotor upper chamber 33, and the rotor 3 b so as to communicate the rotor upper chamber 33 and the rotor lower chamber 35. The stator 3a or the stator 3a and the hermetic container 1 so as to reach the lower part of the motor 3 through the rotor passage 36 and the rotor lower chamber 35 provided in this order, and to communicate with the lower part and the upper part of the stator 3a. After passing through the stator passage 37 provided between them and the stator upper chamber 38 around the outside of the communication path 34, the external discharge provided in the portion above the position of the stator upper chamber 38 of the sealed container 1. Outside sealed container through pipe 39 It is provided with a container inside the gas passage A that to be discharged.
[0018]
The in-container discharge chamber 31 of the in-container gas passage A and the compression mechanism communication passage 32 are positioned outside the compression mechanism 2 and its bearing portion 66 to allow the refrigerant gas 27 discharged from the compression mechanism 2 to flow. Collective discharge is performed to the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33 and allows the refrigerant gas 27 to enter the rotor passage 36 in a state in which it slowly turns due to the rotation of the rotor 3b and the balance weight 23 and moves downward. The passing through rotor lower chamber 35 is discharged with a strong swirl flow B that has been subjected to the rotation of the rotor 3b.
[0019]
On the other hand, the oil 6 supplied to the compression mechanism 2 by the oil supply mechanism 7 lubricates the bearing portions 66 of the compression mechanism 2 and the sliding portions of the compression mechanism 2, and then is discharged from the compression mechanism discharge path 41 to the lower portion of the compression mechanism 2. Is done. After that, it passes through the rotor upper oil communication passage 42 which is a space separated from the rotor upper chamber 33, and then reaches the rotor lower chamber 35 through the rotor oil communication passage 43 different from the rotor passage 36. In some cases, the balance weight 23 may be configured so that the rotor upper chamber 33 and the rotor upper oil communication passage 42 are separated from each other.
[0020]
In this way, the refrigerant gas 27 discharged from the compression mechanism 2 is restrained and handled, so that the refrigerant gas 27 discharged from the compression mechanism 2 is supplied to them while passing through the compression mechanism 2 and around the bearing portion 66. Even if the oil 6 comes into contact with the oil 6 and is accompanied by it, gas separation is performed by the strong swirling flow B, and the oil 6 is driven outward to adhere to the inner periphery of the stator 3a and close to the oil reservoir 20. The oil 6 is effectively separated from the refrigerant gas 27 as indicated by a solid arrow, and thereafter, the separated oil 6 is dripped into the oil reservoir immediately below while being transferred, and is collected with almost no opportunity to ride the refrigerant gas 27. Therefore, the oil 6 accompanying the refrigerant gas 27 can be efficiently separated and recovered.
[0021]
Further, the oil 6 accompanying the refrigerant gas 27 passing through the rotor passage 36 is pressed against the outer surface of the rotor passage 36 by the centrifugal force caused by the rotation of the rotor 3b, and aggregates from the mist state and grows into oil droplets. Further, the gas-liquid separation efficiency by the centrifugal separation is further enhanced, and the oil droplets to be centrifuged are pressed against the inner periphery of the stator 3a to aggregate, grow larger and drop into the oil reservoir 20 below. The separated oil 6 drops into the oil reservoir 20, and after reaching the motor lower chamber from the rotor lower chamber 35, it is difficult to take advantage of the flow C of the refrigerant gas 27 toward the stator passage 37 after turning upward. The flow C of the refrigerant gas 27 that makes the U-turn is caused by the centrifugal force at the time of the U-turn, and the oil 6 that accompanies or intends to accompany the oil 6 also helps the gravity to the lower oil reservoir 20. Only shaken, and since the action flick, the centrifuged, also can increase the recovery of oil 6 are still remaining in the refrigerant gas 27.
[0022]
Further, a gas passage from the rotor upper chamber 33 to the rotor passage 36 and an oil passage from the compression mechanism discharge passage 41 to the rotor upper oil communication passage 42 and the rotor oil communication passage 43 are separated. Therefore, when it reaches the rotor lower chamber 35, it mixes with the gas in the state of oil droplets discharged from the compression mechanism 2 and agglomerated as it is, so that the gas-liquid separation efficiency by the centrifugal separation can be further increased. . Since mixing of the refrigerant gas 27 and the oil 6 in the vicinity of the rotor upper chamber 33 is suppressed, the oil 6 contained in a small amount of the refrigerant gas 27 leaking directly from the vicinity of the rotor upper chamber 33 to the stator upper chamber 38 is Only a small amount of oil 6 supplied mainly at the time of the compression chamber 15 is obtained, and the oil separation efficiency with respect to the refrigerant gas 27 discharged outside the sealed container 1 can be further increased.
[0023]
【The invention's effect】
According to the present invention, as is apparent from the above description, the discharge gas from the compression mechanism and the compression mechanism that accompanies the discharge gas and the oil that has been supplied to the bearing portion are substantially restrained and handled. After passing through the passage and subjecting it to strong centrifugal separation by rotation of the rotor and performing efficient centrifugation, gas u-turn in the lower chamber of the motor and the resulting centrifugal separation of the oil, from the stator passage to the upper portion of the stator The main cause is to prevent contact with the gas before oil separation entering the rotor passage from the compression mechanism while discharging to the chamber, and discharge the gas outside the sealed container. However, the gas from which the oil has been sufficiently separated can be discharged and supplied outside the sealed container.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a hermetic compressor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a conventional hermetic compressor.
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism 3 Electric motor 3a Stator 3b Rotor 4 Crankshaft 6 Oil 7 Oil supply mechanism 17 Inlet 18 Discharge 20 Oil sump 23, 24 Balance weight 27 Refrigerant gas 31 Discharge chamber 32 in the container Compression mechanism communication path 33 Rotor upper chamber 34 Communication path 35 Rotor lower chamber 36 Rotor passage 37 Stator passage 38 Stator upper chamber 39 External discharge pipe 41 Compression mechanism discharge passage 42 Rotor upper oil communication passage 43 Rotor oil communication passage

Claims (1)

密閉容器内に圧縮機構と、この圧縮機構の下方に設けた圧縮機構を駆動するための電動機と、この電動機の回転力を圧縮機構部に伝達するためのクランク軸と、密閉容器内の下部に設けたオイル溜めのオイルをクランク軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給する給油機構とを備え、
圧縮機構から吐出されるガスが、圧縮機構の上部の容器内吐出室、この容器内吐出室から圧縮機構の下部に連通させる圧縮機構連通路、この圧縮機構連通路から回転子上部室に続く連通路、回転子上部室と回転子下部室を連通させるように回転子に設けた回転子通路、回転子下部室、を順次経て電動機下に至り、さらに固定子の下部と上部とを連通させるように固定子または固定子と密閉容器との間に設けられた固定子通路を通って前記連絡路外まわりの固定子上部室に抜けた後、密閉容器の固定子上部室の位置以上の部分に設けられた外部吐出パイプを通って密閉容器外に吐出されるようにする容器内ガス通路を設け、
圧縮機構を潤滑したオイルが、圧縮機構の下部の圧縮機構排出路、この圧縮機構排出路に連通する回転子上部オイル連通路、この回転子上部オイル連通路と前記回転子下部室とを連通させるように回転子に設けた前記回転子通路と異なる回転子オイル連通路を通じるようにしたことを特徴とする密閉型圧縮機。
A compression mechanism in the sealed container, an electric motor for driving the compression mechanism provided below the compression mechanism, a crankshaft for transmitting the rotational force of the electric motor to the compression mechanism, and a lower part in the sealed container An oil supply mechanism for supplying the oil in the provided oil reservoir to the bearing portion of the crankshaft and the compression mechanism sliding portion through the crankshaft,
Gas discharged from the compression mechanism is discharged from the discharge chamber in the container above the compression mechanism, a compression mechanism communication path communicating from the discharge chamber in the container to the lower portion of the compression mechanism, and the communication from the compression mechanism communication path to the rotor upper chamber. The rotor passage and rotor lower chamber provided in the rotor so as to communicate the passage, the rotor upper chamber and the rotor lower chamber sequentially reach the motor, and further communicate the lower and upper portions of the stator. After passing through the stator or the stator passage provided between the stator and the airtight container to the stator upper chamber around the outside of the communication path, and then provided in a portion above the position of the stator upper chamber of the airtight container. A gas passage in the container is provided to be discharged out of the sealed container through the external discharge pipe formed,
Oil that has lubricated the compression mechanism communicates the compression mechanism discharge path below the compression mechanism, the rotor upper oil communication path communicating with the compression mechanism discharge path, and the rotor upper oil communication path and the rotor lower chamber. Thus, a hermetic compressor characterized in that it passes through a rotor oil communication path different from the rotor path provided in the rotor.
JP2002073612A 2002-03-18 2002-03-18 Hermetic compressor Expired - Fee Related JP3894009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073612A JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073612A JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2003269355A JP2003269355A (en) 2003-09-25
JP3894009B2 true JP3894009B2 (en) 2007-03-14

Family

ID=29203230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073612A Expired - Fee Related JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP3894009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962212B2 (en) * 2007-08-24 2012-06-27 パナソニック株式会社 Scroll compressor

Also Published As

Publication number Publication date
JP2003269355A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
EP0819220B1 (en) Gas flow and lubrication of a scroll compressor
JP4979503B2 (en) Scroll compressor
US6315536B1 (en) Suction inlet screen and funnel for a compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JP3894009B2 (en) Hermetic compressor
JP5709544B2 (en) Compressor
JP4127108B2 (en) Hermetic compressor
JP4052404B2 (en) Hermetic scroll compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JP2006336599A (en) Sealed compressor
JP2001271749A (en) Closed electrically driven compressor
JP2004316590A (en) Sealed type compressor
JP2004308623A (en) Hermetic compressor
JP2004332628A (en) Hermetic compressor
JP2009030464A (en) Hermetic compressor
JPWO2013069287A1 (en) Compressor
JPH01190986A (en) Compressor
JP2005299431A (en) Hermetic compressor
JP2008002416A (en) Hermetic compressor
JP4928769B2 (en) Compressor
JP2005344537A (en) Scroll compressor
JP2006037798A (en) Hermetic compressor
JP2009062839A (en) Hermetic compressor
JP2008031880A (en) Hermetic compressor
JPS6053691A (en) Closed type screw compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3894009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees