JP2003269355A - Sealed compressor - Google Patents

Sealed compressor

Info

Publication number
JP2003269355A
JP2003269355A JP2002073612A JP2002073612A JP2003269355A JP 2003269355 A JP2003269355 A JP 2003269355A JP 2002073612 A JP2002073612 A JP 2002073612A JP 2002073612 A JP2002073612 A JP 2002073612A JP 2003269355 A JP2003269355 A JP 2003269355A
Authority
JP
Japan
Prior art keywords
rotor
compression mechanism
oil
passage
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002073612A
Other languages
Japanese (ja)
Other versions
JP3894009B2 (en
Inventor
Hiromasa Ashitani
博正 芦谷
Takashi Morimoto
敬 森本
Hiroyuki Kono
博之 河野
裕文 ▲よし▼田
Hirofumi Yoshiden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002073612A priority Critical patent/JP3894009B2/en
Publication of JP2003269355A publication Critical patent/JP2003269355A/en
Application granted granted Critical
Publication of JP3894009B2 publication Critical patent/JP3894009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To almost restrictively treat a refrigerant and oil, and to deliver gas sufficiently separated from liquid. <P>SOLUTION: Refrigerant gas 27 from a compression mechanism 2 and oil 6 after supply to the compression mechanism 2 and a bearing part 66 are almost restricted, and the refrigerant gas 27 is passed through a rotor passage 36 from a rotor upper chamber 33. The oil 6 is passed through a rotor oil communicating passage 43 from a rotor upper oil communicating passage 43 separately from this refrigerant gas 27, introduced to a rotor lower chamber 35, and offered for forced turning by rotation of a rotor 3b, to centrifuge the gas and the liquid. The refrigerant gas 27 separated from the oil is passed through a stator passage 37 from a lower part of a stator 3a, introduced to a stator upper chamber 38 outside a restricting area, and delivered outside a sealed vessel 1 from a part above a position of the stator upper chamber 38 of the sealed vessel 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、業務用または家庭
用、あるいは乗り物用の冷凍空調、あるいは冷蔵庫など
に用いられる密閉型圧縮機に関するものである。 【0002】 【従来の技術】従来、この種の密閉型圧縮機は、特開2
001−280282号公報に開示されている。図2を
参照して説明する。密閉容器101内に圧縮機構102
と、この圧縮機構102の下方に設けた圧縮機構102
を駆動するための電動機103と、この電動機103の
回転力を圧縮機構102部に伝達するためのクランク軸
104と、密閉容器101内の下部に設けたオイル溜め
105のオイル106をクランク軸104を通じてクラ
ンク軸104の軸受部166や圧縮機構102の摺動部
に供給する給油機構107とを備え、圧縮機構102か
ら吐出されるガスが、圧縮機構102の上部の容器内吐
出室131、この容器内吐出室131と圧縮機構102
の下部を連通させる圧縮機構連通路132、この圧縮機
構連通路132から回転子上部室133に続く連絡路1
34、回転子上部室133と回転子下部室135を連通
させるように回転子103bに設けた回転子通路13
6、回転子下部室135、を順次経て電動機103下に
至り、さらに固定子103aの下部と上部とを連通させ
るように固定子103aまたは固定子103aと密閉容
器101との間に設けられた固定子通路137を通って
前記連絡路134外まわりの固定子上部室138に抜け
た後、密閉容器101の固定子上部室138の位置以上
の部分に設けられた外部吐出パイプ139を通って密閉
容器101外に吐出されるようにする容器内ガス通路A
を設けたことを特徴としている。 【0003】このような構成では、先ず、圧縮機構10
2の上部の容器内吐出室131と、この容器内吐出室1
31と圧縮機構102の下部を連通させる圧縮機構連通
路132とが、圧縮機構102およびその軸受部166
の外回りに位置して、圧縮機構102から吐出されるガ
スを一括して圧縮機構102の下部の連絡路134に吐
出させ、連絡路134が吐出されてきたガスを回転子上
部室133に導いて回転子103bの回転子通路136
内を通り回転子下部室135へ回転子103bの回転を
受けた強い旋回流を持って吐出させる。このように圧縮
機構102から吐出されたガスを拘束して取扱うことに
より、圧縮機構102から吐出されたガスが圧縮機構1
02内や軸受部166まわりを経る間にそれらに供給さ
れていたオイル106と接触してそれを随伴していて
も、前記強い旋回流によって気液分離を行ないオイル1
06を外方へ追いやって電動機103の固定子103a
の内周に付着させてオイル溜め105に近いところでガ
スから分離し、ガスに乗じる機会がほとんどなく伝い落
ちて直ぐ下のオイル溜め105に滴下し回収されるよう
にするので、ガスに随伴しているオイル106を効率よ
く分離することができる。 【0004】また、回転子通路136を通るガスに随伴
しているオイル106は回転子103bの回転による遠
心力で回転子通路136の外側面に押し付けられてミス
ト状態から凝集しオイル滴に成長するので、前記遠心分
離による気液分離効率をより高めるし、遠心分離される
オイル滴は固定子103aの内周に押し付けられて凝集
しさらに大きく成長して下方のオイル溜め105に滴下
するので、気液分離後のオイル106がオイル溜め10
5に滴下するのに、回転子下部室135から固定子10
3aの下部に至って後、上向きにユーターンして固定子
通路137に向かうガスの流れに乗じにくい上、前記ユ
ーターンするガスの流れはユーターン時の遠心力によ
り、随伴しているあるいは随伴しようとするオイル10
6をその重力も手伝って下のオイル溜め105に向け振
り落としまた弾き飛ばす作用をするので、前記遠心分離
した、およびまだガス中に残っているオイルの回収率を
高めることができる。 【0005】 【発明が解決しようとする課題】しかし、従来の方式で
は、圧縮機構から吐出されたガスが、圧縮機構内や軸受
部まわりを経る間にそれらに供給された後、接触を余儀
なくされるオイルが高差圧あるいは高速度のような、過
剰に圧縮機構に供給される条件においては、混合するオ
イルの、ガスに対する相対量が増大するため、前記遠心
分離によっても、効率よくガスとオイルは分離するのに
限界がある。 【0006】本発明の目的は、高差圧あるいは高速度の
ようなオイルが過剰に圧縮機構に供給される条件におい
ても、冷媒ガスおよびオイルをほぼ拘束して取り扱っ
て、充分に気液分離されたガスを吐出することができる
密閉型圧縮機を提供することにある。 【0007】 【課題を解決するための手段】本発明の密閉型圧縮機
は、密閉容器内に圧縮機構と、この圧縮機構の下方に設
けた圧縮機構を駆動するための電動機と、この電動機の
回転力を圧縮機構部に伝達するためのクランク軸と、密
閉容器内の下部に設けたオイル溜めのオイルをクランク
軸を通じてクランク軸の軸受部や圧縮機構摺動部に供給
する給油機構とを備え、圧縮機構から吐出されるガス
が、圧縮機構の上部の容器内吐出室、この容器内吐出室
から圧縮機構の下部に連通させる圧縮機構連通路、この
圧縮機構連通路から回転子上部室に続く連通路、回転子
上部室と回転子下部室を連通させるように回転子に設け
た回転子通路、回転子下部室、を順次経て電動機下に至
り、さらに固定子の下部と上部とを連通させるように固
定子または固定子と密閉容器との間に設けられた固定子
通路を通って前記連絡路外まわりの固定子上部室に抜け
た後、密閉容器の固定子上部室の位置以上の部分に設け
られた外部吐出パイプを通って密閉容器外に吐出される
ようにする容器内ガス通路を設け、圧縮機構を潤滑した
オイルが、圧縮機構の下部の圧縮機構排出路、この圧縮
機構排出路に連通する回転子上部オイル連通路、この回
転子上部オイル連通路と前記回転子下部室とを連通させ
るように回転子に設けた前記回転子通路と異なる回転子
オイル連通路を通じるようにしたことを特徴としてい
る。 【0008】このような構成では、先ず、圧縮機構の上
部の容器内吐出室と、この容器内吐出室と圧縮機構の下
部を連通させる圧縮機構連通路とが、圧縮機構およびそ
の軸受部の外回りに位置して、圧縮機構から吐出される
ガスを一括して圧縮機下部の連通路に吐出させ、連通路
が吐出されてきたガスを回転子上部室に導いて回転子の
回転子通路内を通り回転子下部室へ回転子の回転を受け
た強い旋回流を持って吐出させる。このように圧縮機構
から吐出されたガスを拘束して取扱うことにより、圧縮
機構から吐出されたガスが圧縮機構内や軸受部まわりを
経る間にそれらに供給されていたオイルと接触してそれ
を随伴していても、前記強い旋回流によって気液分離を
行ないオイルを外方へ追いやって電動機の固定子の内周
に付着させてオイル溜めに近いところでガスから分離
し、ガスに乗じる機会がほとんどなく伝い落ちて直ぐ下
のオイル溜めに滴下し回収されるようにするので、ガス
に随伴しているオイルを効率よく分離することができ
る。 【0009】また、回転子通路を通るガスに随伴してい
るオイルは回転子の回転による遠心力で回転子通路の外
側面に押し付けられてミスト状態から凝集しオイル滴に
成長するので、前記遠心分離による気液分離効率をより
高めるし、遠心分離されるオイル滴は固定子の内周に押
し付けられて凝集しさらに大きく成長して下方のオイル
溜めに滴下するので、気液分離後のオイルがオイル溜め
に滴下するのに、回転子下部室から電動機下部室に至っ
て後、上向きにユーターンして固定子通路に向かうガス
の流れに乗じにくい上、前記ユーターンするガスの流れ
はユーターン時の遠心力により、随伴しているあるいは
随伴しようとするオイルをその重力も手伝って下のオイ
ル溜めに向け振り落としまた弾き飛ばす作用をするの
で、前記遠心分離した、およびまだガス中に残っている
オイルの回収率を高めることができる。 【0010】また、回転子上部室から回転子連通路に至
るガスの通路と、圧縮機構排出路から、回転子上部オイ
ル連通路、回転子オイル連通路に至るオイルの通路が分
離されているので、前記回転子下部室に至った時点で、
圧縮機構から排出され、そのまま凝集したオイル滴の状
態で、ガスと混合するため、前記遠心分離による気液分
離効率をより高めることができる。 【0011】 【発明の実施の形態】以下、本発明における実施の形態
に係る密閉型圧縮機について図を参照しながら説明し、
本発明の理解に供する。 【0012】本発明実施の形態は縦型でスクロール式の
圧縮機構を内臓した冷凍サイクル用の密閉型圧縮機の場
合の一例であり、圧縮対象は冷媒ガスである。しかし、
本発明はこれに限られることはなく、ロータリ式の圧縮
機構など各種の圧縮機構をそれを駆動する電動機ととも
に密閉容器内に内蔵したガス一般を対象として圧縮する
密閉型圧縮機全般に適用して有効であり、本発明の範疇
に属する。 【0013】本実施の形態の密閉型圧縮機は図1に示す
ように、密閉容器1内に溶接や焼きばめなどして固定し
たクランク軸4の主軸受部材11と、この主軸受部材1
1上にボルト止めした固定スクロール12との間に、固
定スクロール12と噛み合う旋回スクロール13を挟み
込んでスクロール式の圧縮機構2を構成し、旋回スクロ
ール13と主軸受部材11との間に旋回スクロール13
の自転を防止して円軌道運動するように案内するオルダ
ムリングなどによる自転規制機構14を設けて、クラン
ク軸4の上端にある偏心軸部4aにて旋回スクロール1
3を偏心駆動することにより旋回スクロール13を円軌
道運動させ、これにより固定スクロール12と旋回スク
ロール13との間に形成している圧縮室15が外周側か
ら中央部に移動しながら小さくなるのを利用して、密閉
容器1外に通じた吸入パイプ16および固定スクロール
12の外周部の吸入口17から冷媒ガスを吸入して圧縮
していき所定圧以上になった冷媒ガスは固定スクロール
12の中央部の吐出口18からリード弁19を押し開い
て密閉容器1内に吐出させることを繰り返す。 【0014】クランク軸4の下端は密閉容器1の下端部
のオイル溜め20に達して、密閉容器1内に溶接や焼き
ばめして固定された副軸受部材21により軸受され、安
定に回転することができる。電動機3は主軸受部材11
と副軸受部材21との間に位置して、密閉容器1に溶接
や焼きばめなどして固定された固定子3aと、クランク
軸4の途中の外まわりに一体に結合された回転子3bと
で構成され、回転子3bの上下端面の外周部分にはピン
22により止め付けられたバランスウェイト23、24
が設けられ、これにより回転子3bおよびクランク軸4
が安定して回転し、旋回スクロール13を安定して円軌
道運動させることができる。 【0015】給油機構7はクランク軸4の下端で駆動さ
れるポンプ25によってオイル溜め20内のオイル6を
クランク軸4を通縦しているオイル供給穴26を通じて
圧縮機構2の各部の軸受部66や圧縮機構2の各摺動部
に供給する。供給後のオイル6は供給圧や重力によって
逃げ場を求めるようにして軸受部66を通じ主軸受部材
11の下に流出して滴下し、最終的にオイル溜め20に
回収される。 【0016】しかし、実際には既述したように、圧縮機
構2から吐出される図1に破線矢印で示す冷媒ガス27
には圧縮機構2内で接触したオイル6を随伴させていた
り、上記主軸受部材11の下に滴下してくる供給後のオ
イル6を飛散させて随伴させたりしていて、従来これを
十分に分離できず密閉容器1外に吐出する冷媒ガスとと
もにオイルも吐出されてしまう問題がある。 【0017】図1に示す実施の形態はこのような問題を
解消するために、圧縮機構2から吐出される冷媒ガス2
7が、圧縮機構2の上部の容器内吐出室31、この容器
内吐出室31と圧縮機構2の下部を連通させる圧縮機構
連通路32、この圧縮機構連通路32から回転子上部室
33に続く連絡路34、回転子上部室33と回転子下部
室35を連通させるように回転子3bに設けた回転子通
路36、回転子下部室35、を順次経て電動機3の下に
至り、さらに固定子3aの下部と上部とを連通させるよ
うに固定子3aまたは固定子3aと密閉容器1との間に
設けられた固定子通路37を通って前記連絡路34の外
まわりの固定子上部室38に抜けた後、密閉容器1の固
定子上部室38の位置以上の部分に設けられた外部吐出
パイプ39を通って密閉容器外に吐出されるようにする
容器内ガス通路Aを設けてある。 【0018】このような容器内ガス通路Aの容器内吐出
室31と、圧縮機構連通路32とは、圧縮機構2および
その軸受部66の外回りに位置して、圧縮機構2から吐
出される冷媒ガス27を一括して圧縮機構2の下部の連
絡路34に吐出させる。続いて連絡路34は吐出されて
きた冷媒ガス27を回転子上部室33に導いて回転子3
bおよびバランスウェイト23の回転による影響で緩く
旋回する状態で回転子通路36内に進入させて下方に通
りぬけ回転子下部室35へ回転子3bの回転を受けた強
い旋回流Bを持って吐出させる。 【0019】一方、給油機構7により圧縮機構2に供給
したオイル6は、圧縮機構2の軸受部66や圧縮機構2
の各摺動部を潤滑した後、圧縮機構排出路41から圧縮
機構2の下部に排出される。その後、回転子上部室33
と隔てた空間となる回転子上部オイル連通路42を通
り、続いて回転子通路36と異なる回転子オイル連通路
43を通じて、回転子下部室35に至る。この回転子上
部室33と回転子上部オイル連通路42を隔てるように
バランスウェイト23の形状により構成する場合もあ
る。 【0020】このように圧縮機構2から吐出された冷媒
ガス27を拘束して取り扱うことにより、圧縮機構2か
ら吐出された冷媒ガス27が圧縮機構2内や軸受部66
まわりを経る間にそれらに供給されていたオイル6と接
触してそれを随伴していても、前記強い旋回流Bによっ
て気液分離を行ないオイル6を外方へ追いやって固定子
3aの内周に付着させてオイル溜め20に近いところで
冷媒ガス27から実線矢印で示すように効果的に分離
し、以降分離したオイル6は伝い落ちながら直ぐ下のオ
イル溜めに滴下して、冷媒ガス27に乗じる機会がほと
んどなしに回収されるようにするので、冷媒ガス27に
随伴しているオイル6を効率よく分離し回収することが
できる。 【0021】また、回転子通路36を通る冷媒ガス27
に随伴しているオイル6は回転子3bの回転による遠心
力で回転子通路36の外側面に押し付けられてミスト状
態から凝集しオイル滴に成長するので、前記遠心分離に
よる気液分離効率をより高めるし、遠心分離されるオイ
ル滴は固定子3aの内周に押し付けられて凝集しさらに
大きく成長して下方のオイル溜め20に滴下するので、
気液分離後のオイル6がオイル溜め20に滴下するの
に、回転子下部室35から電動機下部室に至って後、上
向きにユーターンして固定子通路37に向かう冷媒ガス
27の流れCに乗じにくい上、前記ユーターンする冷媒
ガス27の流れCはユーターン時の遠心力により、随伴
しているあるいは随伴しようとするオイル6をその重力
も手伝って下のオイル溜め20に向け振り落とし、また
弾き飛ばす作用をするので、前記遠心分離した、また冷
媒ガス27中になお残っているオイル6の回収率を高め
ることができる。 【0022】また、回転子上部室33から回転子通路3
6に至るガスの通路と、圧縮機構排出路41から、回転
子上部オイル連通路42、回転子オイル連通路43に至
るオイルの通路が分離されているので、前記回転子下部
室35に至った時点で、圧縮機構2から排出され、その
まま凝集したオイル滴の状態で、ガスと混合するため、
前記遠心分離による気液分離効率をより高めることがで
きる。回転子上部室33付近における冷媒ガス27とオ
イル6の混合が抑制されるため、回転子上部室33付近
から直接固定子上部室38に漏れ出す少量の冷媒ガス2
7の流れに含まれるオイル6は主に圧縮室15時点で供
給された微量のオイル6のみとなり、密閉容器1外に吐
出される冷媒ガス27に対する、オイルの分離効率をよ
り高めることができる。 【0023】 【発明の効果】本発明によれば、上記の説明で明らかな
ように、圧縮機構からの吐出ガスおよびそれに乗じて随
伴している圧縮機構およびその軸受部に供給した後のオ
イルをほぼ拘束して取り扱い、回転子通路を通すことで
回転子の回転による強い遠心分離に供して効率のよい遠
心分離を行って後、電動機下部室でのガスのユーターン
とそれによるオイルの遠心分離を伴い固定子通路から固
定子上部室に至らせながら、圧縮機構から回転子通路に
入るオイル分離前のガスとの接触を防止して密閉容器外
に吐出することが主因となって、電動機部に吐出ガスを
回して冷却を図りながらオイルを十分に分離したガスを
密閉容器外に吐出し供給することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic compressor for use in refrigeration and air conditioning for business use, home use, or vehicle use, or a refrigerator. [0002] Conventionally, this type of hermetic compressor is disclosed in
001-280282. This will be described with reference to FIG. The compression mechanism 102 is placed in the sealed container 101.
And a compression mechanism 102 provided below the compression mechanism 102
Through the crankshaft 104, the crankshaft 104 for transmitting the rotational force of the motor 103 to the compression mechanism 102, and the oil 106 in the oil sump 105 provided in the lower part of the sealed container 101. An oil supply mechanism 107 that supplies the bearing portion 166 of the crankshaft 104 and the sliding portion of the compression mechanism 102, and the gas discharged from the compression mechanism 102 is discharged into the container discharge chamber 131 in the upper portion of the compression mechanism 102, Discharge chamber 131 and compression mechanism 102
A compression mechanism communication path 132 for communicating the lower part of the compressor, and a communication path 1 extending from the compression mechanism communication path 132 to the rotor upper chamber 133.
34, the rotor passage 13 provided in the rotor 103b so that the rotor upper chamber 133 and the rotor lower chamber 135 communicate with each other.
6, a stator provided between the stator 103a or the stator 103a and the hermetic container 101 so that the lower part 135 of the stator 103a is communicated with the lower part and the upper part of the stator 103a. After passing through the child passage 137 to the stator upper chamber 138 outside the communication path 134, the sealed container 101 passes through the external discharge pipe 139 provided in a portion of the sealed container 101 at a position higher than the position of the stator upper chamber 138. Gas passage A in the container to be discharged outside
It is characterized by providing. In such a configuration, first, the compression mechanism 10
2 and the in-container discharge chamber 131 and the in-container discharge chamber 1
31 and a compression mechanism communication path 132 that allows the lower part of the compression mechanism 102 to communicate with each other.
The gas discharged from the compression mechanism 102 is collectively discharged to the communication path 134 below the compression mechanism 102, and the gas discharged from the communication path 134 is guided to the rotor upper chamber 133. Rotor passage 136 of rotor 103b
Through the inside, the rotor lower chamber 135 is discharged with a strong swirl flow that receives the rotation of the rotor 103b. By restricting and handling the gas discharged from the compression mechanism 102 in this way, the gas discharged from the compression mechanism 102 is compressed into the compression mechanism 1.
02, even if it is in contact with the oil 106 supplied to the oil 106 while passing through the bearing portion 166 or the bearing portion 166, the gas 1 is separated by the strong swirl flow, and the oil 1
The stator 103a of the electric motor 103 is chased outside 06
It is attached to the inner periphery of the oil and separated from the gas in the vicinity of the oil sump 105, so that there is almost no chance to get on the gas and it is dropped and collected in the oil sump 105 immediately below. The oil 106 that is present can be separated efficiently. The oil 106 accompanying the gas passing through the rotor passage 136 is pressed against the outer surface of the rotor passage 136 by the centrifugal force generated by the rotation of the rotor 103b, and aggregates from the mist state to grow into oil droplets. Therefore, the gas-liquid separation efficiency by the centrifugal separation is further increased, and the oil droplets that are centrifuged are pressed against the inner periphery of the stator 103a, aggregate, grow larger, and drop into the oil reservoir 105 below. Oil 106 after liquid separation is oil reservoir 10
5 to the stator 10 from the rotor lower chamber 135
After reaching the lower part of 3a, it is difficult to take advantage of the gas flow toward the stator passage 137 by making an upward turn, and the flow of the gas to be turned is accompanied by or will be accompanied by the centrifugal force at the time of the turn. 10
6 is also squeezed into the lower oil reservoir 105 with the help of its gravity, so that the recovery rate of the oil that has been centrifuged and still remaining in the gas can be increased. However, in the conventional system, the gas discharged from the compression mechanism is forced to contact after being supplied to them while passing through the compression mechanism or around the bearing portion. When the oil to be mixed is excessively supplied to the compression mechanism, such as high differential pressure or high speed, the relative amount of oil to be mixed with the gas increases. Are limited in separation. An object of the present invention is to achieve sufficient gas-liquid separation by handling the refrigerant gas and oil almost constrained even under conditions where excessive pressure or high speed oil is supplied to the compression mechanism. Another object of the present invention is to provide a hermetic compressor that can discharge the gas. A hermetic compressor according to the present invention includes a compression mechanism in a hermetic container, an electric motor for driving the compression mechanism provided below the compression mechanism, and an electric motor for the electric motor. A crankshaft for transmitting rotational force to the compression mechanism, and an oil supply mechanism for supplying oil in an oil reservoir provided in the lower part of the hermetic container to the crankshaft bearing and compression mechanism sliding portion through the crankshaft. The gas discharged from the compression mechanism is connected to the discharge chamber in the container at the upper part of the compression mechanism, the compression mechanism communication path communicating from the discharge chamber in the container to the lower part of the compression mechanism, and the compression mechanism communication path to the rotor upper chamber. The rotor passage, the rotor lower chamber, and the rotor lower chamber, which are provided in the rotor so as to communicate between the communication passage, the rotor upper chamber and the rotor lower chamber, sequentially reach the motor, and further communicate the lower and upper portions of the stator. As the stator also Is passed through the stator passage provided between the stator and the airtight container, and after passing through the stator upper chamber around the outside of the communication path, the external portion provided above the position of the airtight container upper chamber of the airtight container. A rotor in which an in-container gas passage is provided to be discharged out of the hermetic container through a discharge pipe, and the oil that has lubricated the compression mechanism communicates with the compression mechanism discharge path below the compression mechanism and the compression mechanism discharge path The upper oil communication path, and the rotor upper oil communication path and the rotor lower chamber are communicated with each other through a rotor oil communication path different from the rotor path provided in the rotor. . In such a configuration, first, the discharge chamber in the container at the upper part of the compression mechanism and the compression mechanism communication passage for communicating the discharge chamber in the container and the lower part of the compression mechanism are connected to the outer periphery of the compression mechanism and its bearing portion. The gas discharged from the compression mechanism is collectively discharged into the communication passage at the lower portion of the compressor, and the gas discharged from the communication passage is guided to the rotor upper chamber to pass through the rotor passage of the rotor. It discharges with a strong swirling flow that receives the rotation of the rotor to the lower rotor chamber. By restricting and handling the gas discharged from the compression mechanism in this way, the gas discharged from the compression mechanism comes into contact with the oil supplied to them while passing through the compression mechanism and around the bearing portion. Even if accompanied, gas-liquid separation is performed by the strong swirl flow, the oil is driven outward, attached to the inner periphery of the stator of the motor, separated from the gas near the oil sump, and there is almost an opportunity to ride on the gas The oil accompanying the gas can be efficiently separated because it is dropped and collected in the oil reservoir immediately below. Also, the oil accompanying the gas passing through the rotor passage is pressed against the outer surface of the rotor passage by the centrifugal force due to the rotation of the rotor and aggregates from the mist state and grows into oil droplets. The gas-liquid separation efficiency by separation is further increased, and the oil droplets that are centrifuged are pressed against the inner circumference of the stator and aggregate to grow further and drop into the oil sump below. After dropping from the rotor lower chamber to the motor lower chamber to drop into the oil sump, it is difficult to take advantage of the gas flow toward the stator passage after going up, and the U-turn gas flow is centrifugal force during U-turn. Because of this, the oil that accompanies or intends to accompany it is spun off and blown toward the lower oil sump with the help of its gravity. , And still it is possible to increase the recovery rate of the oil remaining in the gas. Further, the gas passage from the rotor upper chamber to the rotor communication passage and the oil passage from the compression mechanism discharge passage to the rotor upper oil communication passage and the rotor oil communication passage are separated. When the rotor lower chamber is reached,
Since the oil droplets discharged from the compression mechanism and aggregated as they are are mixed with the gas, the gas-liquid separation efficiency by the centrifugal separation can be further increased. DESCRIPTION OF THE PREFERRED EMBODIMENTS A hermetic compressor according to an embodiment of the present invention will be described below with reference to the drawings.
For the understanding of the present invention. The embodiment of the present invention is an example of a closed type compressor for a refrigeration cycle incorporating a vertical scroll-type compression mechanism, and a compression target is a refrigerant gas. But,
The present invention is not limited to this, and various compression mechanisms, such as a rotary compression mechanism, are applied to general hermetic compressors that compress general gas contained in a sealed container together with an electric motor that drives the compression mechanism. It is effective and belongs to the category of the present invention. As shown in FIG. 1, the hermetic compressor according to the present embodiment includes a main bearing member 11 of a crankshaft 4 fixed by welding or shrink fitting in a hermetic container 1 and the main bearing member 1.
The scroll-type compression mechanism 2 is configured by sandwiching the orbiting scroll 13 meshing with the fixed scroll 12 between the fixed scroll 12 bolted to 1, and the orbiting scroll 13 between the orbiting scroll 13 and the main bearing member 11.
Is provided with an anti-rotation mechanism 14 such as an Oldham ring that guides it so as to move in a circular orbit, and an orbiting scroll 1 at an eccentric shaft portion 4 a at the upper end of the crankshaft 4.
3 is driven eccentrically so that the orbiting scroll 13 moves in a circular orbit, so that the compression chamber 15 formed between the fixed scroll 12 and the orbiting scroll 13 becomes smaller while moving from the outer peripheral side to the center. The refrigerant gas that has been used and compressed by sucking and compressing the refrigerant gas from the suction pipe 16 communicating with the outside of the hermetic container 1 and the suction port 17 on the outer peripheral portion of the fixed scroll 12 becomes the center of the fixed scroll 12. The reed valve 19 is pushed open from the discharge port 18 of the unit and discharged into the sealed container 1 is repeated. The lower end of the crankshaft 4 reaches an oil sump 20 at the lower end of the sealed container 1 and is supported by a secondary bearing member 21 fixed by welding or shrink fitting in the sealed container 1 so that it can rotate stably. Can do. The electric motor 3 is a main bearing member 11.
And a sub-bearing member 21, a stator 3 a fixed to the sealed container 1 by welding or shrink fitting, and a rotor 3 b integrally coupled to the outer periphery of the crankshaft 4. The balance weights 23 and 24 are fixed to the outer peripheral portions of the upper and lower end surfaces of the rotor 3b by pins 22.
Thereby providing a rotor 3b and a crankshaft 4
Can rotate stably, and the orbiting scroll 13 can be stably moved in a circular orbit. The oil supply mechanism 7 is driven by a pump 25 driven at the lower end of the crankshaft 4, and the oil 6 in the oil reservoir 20 passes through the oil supply hole 26 passing through the crankshaft 4 and the bearing portions 66 of each part of the compression mechanism 2. Or supplied to each sliding portion of the compression mechanism 2. The supplied oil 6 flows out and drops below the main bearing member 11 through the bearing portion 66 so as to obtain a clearance by supply pressure or gravity, and is finally collected in the oil sump 20. However, actually, as already described, the refrigerant gas 27 shown by the broken line arrow in FIG.
Is accompanied by the oil 6 that has come into contact with the compression mechanism 2 or the supplied oil 6 dripping below the main bearing member 11 is scattered and accompanied. There is a problem that oil cannot be separated and oil is discharged together with the refrigerant gas discharged outside the sealed container 1. In the embodiment shown in FIG. 1, in order to solve such a problem, the refrigerant gas 2 discharged from the compression mechanism 2 is used.
7 is a container discharge chamber 31 in the upper part of the compression mechanism 2, a compression mechanism communication path 32 that connects the discharge chamber 31 in the container and the lower part of the compression mechanism 2, and the compression mechanism communication path 32 to the rotor upper chamber 33. The communication path 34, the rotor upper chamber 33 and the rotor lower chamber 35 are communicated with each other through the rotor passage 36 and the rotor lower chamber 35 provided in the rotor 3b in order to communicate with the rotor 3b. 3a passes through the stator 3a or the stator passage 37 provided between the stator 3a and the hermetic container 1 so that the lower part and the upper part communicate with each other. After that, an in-container gas passage A is provided so as to be discharged out of the sealed container through an external discharge pipe 39 provided in a portion of the sealed container 1 beyond the position of the stator upper chamber 38. The in-container discharge chamber 31 of the in-container gas passage A and the compression mechanism communication passage 32 are located outside the compression mechanism 2 and its bearing portion 66, and are discharged from the compression mechanism 2. The gas 27 is collectively discharged to the communication path 34 below the compression mechanism 2. Subsequently, the communication path 34 guides the discharged refrigerant gas 27 to the rotor upper chamber 33, thereby rotating the rotor 3.
b and the balance weight 23 are rotated under the influence of the rotation of the balance weight 23, enter the rotor passage 36, pass through the lower passage 35, and discharge to the rotor lower chamber 35 with the strong swirl flow B subjected to the rotation of the rotor 3b. Let On the other hand, the oil 6 supplied to the compression mechanism 2 by the oil supply mechanism 7 is the bearing portion 66 of the compression mechanism 2 or the compression mechanism 2.
Each of the sliding portions is lubricated and then discharged from the compression mechanism discharge passage 41 to the lower portion of the compression mechanism 2. Thereafter, the rotor upper chamber 33
It passes through the rotor upper oil communication passage 42 which is a space separated from the rotor passage 36, and then reaches the rotor lower chamber 35 through the rotor oil communication passage 43 different from the rotor passage 36. In some cases, the balance weight 23 may be configured so that the rotor upper chamber 33 and the rotor upper oil communication passage 42 are separated from each other. By restricting and handling the refrigerant gas 27 discharged from the compression mechanism 2 in this way, the refrigerant gas 27 discharged from the compression mechanism 2 is moved into the compression mechanism 2 or the bearing portion 66.
Even if the oil 6 that has been supplied to the oil 6 comes in contact with it and passes through it, gas-liquid separation is performed by the strong swirling flow B, and the oil 6 is driven outward to drive the inner circumference of the stator 3a. The oil 6 is effectively separated from the refrigerant gas 27 near the oil reservoir 20 as indicated by a solid line arrow, and the oil 6 separated thereafter is dropped into the oil reservoir immediately below and is carried on the refrigerant gas 27. Since the recovery is performed with almost no opportunity, the oil 6 accompanying the refrigerant gas 27 can be efficiently separated and recovered. The refrigerant gas 27 passing through the rotor passage 36 is also shown in FIG.
Since the oil 6 accompanying the oil is pressed against the outer surface of the rotor passage 36 by the centrifugal force generated by the rotation of the rotor 3b and aggregates from the mist state to grow into oil droplets, the gas-liquid separation efficiency by the centrifugal separation is further increased. The oil droplets that are to be centrifuged and separated are pressed against the inner circumference of the stator 3a, aggregate, and further grow and drop into the oil reservoir 20 below.
The oil 6 after gas-liquid separation drops into the oil reservoir 20, but after reaching the motor lower chamber from the rotor lower chamber 35, it is difficult to take advantage of the flow C of the refrigerant gas 27 toward the stator passage 37 after making an upward turn. In addition, the flow C of the refrigerant gas 27 that makes a U-turn is caused to act by causing the centrifugal force at the time of U-turn to shake the oil 6 that is or is going to accompany it toward the lower oil reservoir 20 with the help of its gravity, and also to blow it off. As a result, the recovery rate of the oil 6 that has been centrifuged and that still remains in the refrigerant gas 27 can be increased. Further, the rotor passage 3 extends from the rotor upper chamber 33.
6 and the oil passage from the compression mechanism discharge passage 41 to the rotor upper oil communication passage 42 and the rotor oil communication passage 43 are separated from each other, so that the rotor lower chamber 35 is reached. At that time, in order to mix with gas in the state of oil droplets discharged from the compression mechanism 2 and agglomerated as they are,
Gas-liquid separation efficiency by the centrifugal separation can be further increased. Since mixing of the refrigerant gas 27 and the oil 6 in the vicinity of the rotor upper chamber 33 is suppressed, a small amount of refrigerant gas 2 leaks directly from the vicinity of the rotor upper chamber 33 to the stator upper chamber 38.
The oil 6 contained in the flow 7 is mainly only a small amount of the oil 6 supplied at the time of the compression chamber 15, and the oil separation efficiency with respect to the refrigerant gas 27 discharged to the outside of the sealed container 1 can be further increased. As is apparent from the above description, according to the present invention, the gas discharged from the compression mechanism, the accompanying compression mechanism and the oil after being supplied to the bearing portion are supplied. Handle it almost constrained, and after passing through the rotor passage, it is subjected to strong centrifugal separation by rotating the rotor to perform efficient centrifugation, and then the gas u-turn in the lower chamber of the motor and the resulting oil centrifugation As a result, the main part of the motor part is to prevent the oil from entering the rotor passage from the compression mechanism and contact with the gas before oil separation while discharging from the stator passage to the stator upper chamber. A gas sufficiently separated from oil can be discharged and supplied outside the sealed container while cooling the discharge gas.

【図面の簡単な説明】 【図1】本発明の実施の形態に係る密閉型圧縮機を示す
断面図 【図2】従来の密閉型圧縮機を示す断面図 【符号の説明】 1 密閉容器 2 圧縮機構 3 電動機 3a 固定子 3b 回転子 4 クランク軸 6 オイル 7 給油機構 17 吸入口 18 吐出口 20 オイル溜め 23、24 バランスウェイト 27 冷媒ガス 31 容器内吐出室 32 圧縮機構連通路 33 回転子上部室 34 連絡路 35 回転子下部室 36 回転子通路 37 固定子通路 38 固定子上部室 39 外部吐出パイプ 41 圧縮機構排出路 42 回転子上部オイル連通路 43 回転子オイル連通路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a hermetic compressor according to an embodiment of the present invention. FIG. 2 is a sectional view showing a conventional hermetic compressor. Compression mechanism 3 Electric motor 3a Stator 3b Rotor 4 Crankshaft 6 Oil 7 Oil supply mechanism 17 Suction port 18 Discharge port 20 Oil reservoir 23, 24 Balance weight 27 Refrigerant gas 31 In-container discharge chamber 32 Compression mechanism communication passage 33 Rotor upper chamber 34 Communication path 35 Rotor lower chamber 36 Rotor passage 37 Stator passage 38 Stator upper chamber 39 External discharge pipe 41 Compression mechanism discharge passage 42 Rotor upper oil communication passage 43 Rotor oil communication passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 博之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 ▲よし▼田 裕文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3H029 AA02 AA14 AB03 BB05 BB35 CC07 CC16 CC44 3H039 AA12 BB16 CC12 CC27 CC32   ──────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Kono             1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric             Within Sangyo Co., Ltd. (72) Inventor ▲ Yoshi ▼ Hirofumi Ta             1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric             Within Sangyo Co., Ltd. F-term (reference) 3H029 AA02 AA14 AB03 BB05 BB35                       CC07 CC16 CC44                 3H039 AA12 BB16 CC12 CC27 CC32

Claims (1)

【特許請求の範囲】 【請求項1】 密閉容器内に圧縮機構と、この圧縮機構
の下方に設けた圧縮機構を駆動するための電動機と、こ
の電動機の回転力を圧縮機構部に伝達するためのクラン
ク軸と、密閉容器内の下部に設けたオイル溜めのオイル
をクランク軸を通じてクランク軸の軸受部や圧縮機構摺
動部に供給する給油機構とを備え、 圧縮機構から吐出されるガスが、圧縮機構の上部の容器
内吐出室、この容器内吐出室から圧縮機構の下部に連通
させる圧縮機構連通路、この圧縮機構連通路から回転子
上部室に続く連通路、回転子上部室と回転子下部室を連
通させるように回転子に設けた回転子通路、回転子下部
室、を順次経て電動機下に至り、さらに固定子の下部と
上部とを連通させるように固定子または固定子と密閉容
器との間に設けられた固定子通路を通って前記連絡路外
まわりの固定子上部室に抜けた後、密閉容器の固定子上
部室の位置以上の部分に設けられた外部吐出パイプを通
って密閉容器外に吐出されるようにする容器内ガス通路
を設け、 圧縮機構を潤滑したオイルが、圧縮機構の下部の圧縮機
構排出路、この圧縮機構排出路に連通する回転子上部オ
イル連通路、この回転子上部オイル連通路と前記回転子
下部室とを連通させるように回転子に設けた前記回転子
通路と異なる回転子オイル連通路を通じるようにしたこ
とを特徴とする密閉型圧縮機。
What is claimed is: 1. A compression mechanism in a sealed container; an electric motor for driving a compression mechanism provided below the compression mechanism; and a rotational force of the electric motor for transmitting to the compression mechanism section. And an oil supply mechanism that supplies oil in an oil sump provided in the lower part of the sealed container to the crankshaft bearing portion and the compression mechanism sliding portion through the crankshaft, and the gas discharged from the compression mechanism is Discharge chamber in the container at the upper part of the compression mechanism, a compression mechanism communication path communicating from the discharge chamber in the container to the lower part of the compression mechanism, a communication path extending from the compression mechanism communication path to the rotor upper chamber, the rotor upper chamber and the rotor Stator or stator and hermetic container so that the lower passage and the upper portion of the stator communicate with each other through the rotor passage provided in the rotor so as to communicate with the lower chamber and the lower chamber of the rotor. Established between After passing through the stator passage and into the stator upper chamber around the outside of the communication path, it is discharged out of the sealed container through an external discharge pipe provided in a portion of the sealed container above the position of the stator upper chamber. A gas passage in the container is provided, and oil that has lubricated the compression mechanism is a compression mechanism discharge passage at the bottom of the compression mechanism, a rotor upper oil communication passage that communicates with the compression mechanism discharge passage, and this rotor upper oil communication passage. And a rotor oil communication passage that is different from the rotor passage provided in the rotor so as to communicate with the rotor lower chamber.
JP2002073612A 2002-03-18 2002-03-18 Hermetic compressor Expired - Fee Related JP3894009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073612A JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073612A JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Publications (2)

Publication Number Publication Date
JP2003269355A true JP2003269355A (en) 2003-09-25
JP3894009B2 JP3894009B2 (en) 2007-03-14

Family

ID=29203230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073612A Expired - Fee Related JP3894009B2 (en) 2002-03-18 2002-03-18 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP3894009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052429A (en) * 2007-08-24 2009-03-12 Panasonic Corp Scroll compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052429A (en) * 2007-08-24 2009-03-12 Panasonic Corp Scroll compressor

Also Published As

Publication number Publication date
JP3894009B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP2013137030A (en) Compressor
US6315536B1 (en) Suction inlet screen and funnel for a compressor
JP4979503B2 (en) Scroll compressor
JP2006342722A (en) Compressor
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JP5709544B2 (en) Compressor
JP2003042080A (en) Hermetic scroll compressor
JP4127108B2 (en) Hermetic compressor
JP2003269355A (en) Sealed compressor
JP2006241994A (en) Scroll compressor
JP2001099080A (en) Closed scroll compressor
JP2001271749A (en) Closed electrically driven compressor
JP2004308623A (en) Hermetic compressor
JP2006336599A (en) Sealed compressor
JP2004332628A (en) Hermetic compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JP2009030464A (en) Hermetic compressor
JP2004316590A (en) Sealed type compressor
JP2003003973A (en) Scroll compressor
JP2005344537A (en) Scroll compressor
WO2006129617A1 (en) Scroll compressor
JP2008031880A (en) Hermetic compressor
JP2008002417A (en) Hermetic compressor
JP2557120Y2 (en) Scroll compressor
JP2009062839A (en) Hermetic compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3894009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees