JP3633638B2 - Electric compressor - Google Patents

Electric compressor Download PDF

Info

Publication number
JP3633638B2
JP3633638B2 JP13579693A JP13579693A JP3633638B2 JP 3633638 B2 JP3633638 B2 JP 3633638B2 JP 13579693 A JP13579693 A JP 13579693A JP 13579693 A JP13579693 A JP 13579693A JP 3633638 B2 JP3633638 B2 JP 3633638B2
Authority
JP
Japan
Prior art keywords
sealed container
refrigerant gas
compression mechanism
pressure refrigerant
discharge pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13579693A
Other languages
Japanese (ja)
Other versions
JPH06346884A (en
Inventor
学 阪井
澤井  清
修一 山本
能宣 小嶋
定夫 河原
靖 饗場
正浩 坪川
正太郎 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13579693A priority Critical patent/JP3633638B2/en
Publication of JPH06346884A publication Critical patent/JPH06346884A/en
Application granted granted Critical
Publication of JP3633638B2 publication Critical patent/JP3633638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、冷暖房、あるいは冷蔵庫等の冷却装置に用いられる電動圧縮機に関する。
【0002】
【従来の技術】
従来より、冷暖房、あるいは冷蔵庫などの冷却装置にはロータリ圧縮機やスクロール圧縮機などの電動圧縮機が用いられている。
【0003】
この種の圧縮機の従来技術として、特開昭第61−212689号公報に示されるスクロール圧縮機を例にとり、図面とともに説明する。
【0004】
図6に示すように、密閉容器101の内部には、圧縮機構部102、電動機103を構成する固定子104と回転子105、電動機103の回転を圧縮機構部102に伝達するクランク軸106とが配設されている。また、密閉容器101には、低圧冷媒ガスを吸入する吸入管107、圧縮機構部で圧縮された高圧冷媒ガスを吐出する吐出管108が備えられている。
【0005】
上記構成において、電動機103を構成する回転子105が回転すると、この回転力はクランク軸106によって圧縮機構部102に伝達される。圧縮機構部102に回転力が伝達されると圧縮作用が発生する。この結果、吸入管107より吸入された低圧冷媒ガスは、この圧縮機構部102で高圧冷媒ガスに圧縮されて、密閉容器101の内部に吐出される。そして、この高圧冷媒ガスは、電動機103の隙間を通過して、吐出管108より冷凍サイクル(図示せず)へ吐出される。
【0006】
【発明が解決しようとする課題】
従来、上記のような構成の圧縮機においては、通常運転中に、圧縮機構部102の微小隙間をシールして圧縮効率を高めるために、冷媒ガス中に冷凍機油を混入させている。また、密閉容器101の内部には、電動機103の回転子105によって攪伴された前記冷凍機油が、多量の液滴となって飛散している。
【0007】
したがって、圧縮機構部102から密閉容器101の内部に吐出された高圧冷媒ガスは、密閉容器101の内部で、さらに多量の液滴状の冷凍機油と接触して、これを捕獲する。その結果、吐出管108より多量の冷凍機油が、高圧冷媒ガスとともに冷凍サイクルへ吐出されてしまう。特に、圧縮機を高速回転させて、冷媒吐出量を増加させると、吐出される冷媒の重量に対する冷凍機油の重量の比が著しく増加する。
【0008】
圧縮機から冷凍サイクルへの油吐出量が増加するのに伴って、冷凍サイクルでの配管圧力損失が増加する。また、凝縮器、蒸発器などの熱交換器での熱交換効率が低下するので、圧縮機を高速回転させても冷凍能力が増加しない、あるいは、冷凍サイクルの成績係数が低下してしまうという課題を有していた。
【0009】
本発明は上記従来例の課題を解決するもので、圧縮機を高速回転で運転した場合でも、圧縮機から冷凍サイクルへの油吐出量が増加せず、成績係数の高い圧縮機を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
上記課題を解決するために本願発明は、密閉容器に設けられた吐出管の密閉容器内側を覆うように、下方向かって次第に幅が広くなる箱体を配置し、前記箱体には金属製などの網、または多数の孔を設けた薄板を詰め込んだものである。
【0015】
【作用】
上記手段による作用は、以下の通りである。
【0019】
本発明によれば、網もしくは薄板を箱体で覆うことにより、冷媒ガスの通路を制御することができるので、冷凍機油を含有した高圧冷媒ガスの、網もしくは薄板との接触時間をより長くすることが可能となる。この結果、冷凍機油のみが網、もしくは薄板に付着し、高圧冷媒ガスは網の隙間もしくは薄板に設けた多数の孔を通過し、高圧冷媒ガスから冷凍機油が分離される効果がより大きくなる。また、金属製などの網、もしくは多数の孔を設けた薄板の密閉容器内での飛散防止の効果がある。さらに、箱体は下方に向かって幅が広くなっているので箱体内を下方から上方への高圧冷媒ガスの流れにより、箱体下方に向かって次第にその大きさが成長していく冷凍機油の液滴落下の妨げとなり難く、より確実に密閉容器底面に冷凍機油を落下させることができる。
【0021】
【実施例】
以下、本発明の一実施例における密閉型圧縮機について、スクロール圧縮機を例にとり、図面とともに説明する。
【0022】
図1において、密閉容器1の内部には、圧縮機構部4と、この圧縮機構部4を駆動する固定子11と回転子12とから構成される電動機10と、この電動機10の回転力を圧縮機構部4に伝達する軸受け部材8と副軸受け13とで支承されたクランク軸9とが配設されている。
【0023】
吸入管2から吸入された低圧冷媒ガスは、旋回スクロール5、固定スクロール6、自転拘束部品7、および軸受け部材8から構成される圧縮機構部4の吸入口14から吸入され、圧縮された後、高圧冷媒ガスとなり、吐出口15から密閉容器1の吐出空間16側へ吐出される。そして、圧縮機構部4の外周に設けられた前記吐出空間16と電動機空間18とを連通する連通孔17を通り、電動機10の配設された電動機空間18へ吐出される。その後、密閉容器1の吐出管3から、密閉容器1の外部へ吐出される。密閉容器1は、吸入管2、および吐出管3によって冷凍サイクル(図示せず)と接続されており、冷凍サイクルで熱交換を行った後、再び吸入管2より低圧冷媒ガスとなって吸入される。
【0024】
さて、密閉容器1の内部には冷凍機油19が溜められている。この冷凍機油19は、クランク軸9の一端に設置された潤滑ポンプ20によって汲み上げられ、クランク軸9の中心部に設けられた通路を通り、圧縮機構部4の摺動部を潤滑した後、再度密閉容器1内に溜められる。また、前記圧縮機構部4の摺動部を潤滑した冷凍機油19の一部は、圧縮機構部4の隙間をシールして圧縮効率を高めるために圧縮中の冷媒ガスに混入させている。このために、吐出口15から吐出される高圧冷媒ガスは、多量の冷凍機油を含有している。
【0025】
この多量の冷凍機油を含有した高圧冷媒ガスは、吐出口15を覆うように設置された網21に高速で衝突する。このとき、冷凍機油のみが前記網21に表面張力の差によって付着する。付着した冷凍機油は重力によって網21の表面を伝って落下し、密閉容器1の下方に溜まる。また、高圧冷媒ガスは網21の隙間を通過して、吐出空間16に吐出された後、圧縮機構部4の外周部に設けられた連通孔17を通過して、密閉容器1の電動機空間18側へ流入し、その後、吐出空間3より密閉容器1の外部へと吐出される。
【0026】
従って、密閉容器1より冷凍サイクル中へ吐出される高圧冷媒ガスには、冷凍機油がほとんど含まれないことになる。
【0027】
上記実施例においては、吐出口15を覆うように網21を設置しているが、網21の代わりに多数の孔を設けた薄板を設置してもよい。
【0028】
第2の実施例として、図2に示すように、吐出口15を覆うように箱体22を設置し、この箱体22の1箇所に小孔23を設け、その小孔23を密閉容器1の内壁に対向するようにしてもよい。
【0029】
これにより、吐出口15から吐出された高圧冷媒ガスは、一旦、箱体22の内部に吐出され、小孔23を通って吐出空間16へ吐出される。小孔23は密閉容器1の内壁に対向しているので、高圧冷媒ガスは高速で前記内壁に高速で衝突する。高速で前記内壁に衝突した高圧冷媒ガスは、内壁に沿って流れるので、結果として高圧冷媒ガスは比較的長い時間、密閉容器1の内壁と接触することになる。この接触中に高圧冷媒ガスに含まれる冷凍機油が、密閉容器1の内壁に順次付着していき、付着した冷凍機油は前記内壁上で、その表面張力によって、より大きな液滴に成長して、最終的に重力により密閉容器1下方へと流れ落ちる。
【0030】
この結果、高圧冷媒ガスから冷凍機油がほとんど取り除かれることになる。
上記実施例においては、箱体22に設ける小孔23を1箇所としているが、小孔23出口が密閉容器1の内壁に対向していれば2箇所以上でもよい。
【0031】
第3の実施例として、図3に示すように、吐出管3の密閉容器1の内側を覆うように網24を設置してもよい。
【0032】
これにより、圧縮機構部4の吐出口15から吐出された多量の冷凍機油を含有した高圧冷媒ガスが、吐出空間16から連通孔17を通過し、電動機空間18に流入したときに、密閉容器1の電動機空間18に多量の液滴となって飛散している冷凍機油19と接触して、これを捕獲し、さらに多量の冷凍機油を含有したような場合でも、吐出管3の密閉容器1の内側を覆うように網24を設置しているので、ここで前記冷凍機油のみが網24に付着し、高圧冷媒ガスは網24の隙間を通過して、第1の実施例で説明した作用と同様に冷媒ガスから冷凍機油が分離される。
【0033】
この結果、冷凍サイクル中へ吐出される高圧冷媒ガスにはほとんど冷凍機油が含有されないことになる。
【0034】
第4の実施例として、図4(a)および図4(b)に示すように、密閉容器1に設けられた吐出管3の密閉容器1の内側を覆うように、箱体25を設置し、この箱体25の中に網24を詰め込んでもよい。
【0035】
これにより、上記第3の実施例で説明した作用に加えて、網24を箱体25で覆うことにより、冷媒ガスの通路を制御することができるので、冷凍機油を含有した高圧冷媒ガスの、網24との接触時間をより長くすることが可能となる。この結果、より高圧冷媒ガスと冷凍機油との分離作用が向上する。
【0036】
上記第3および第4の実施例においては、吐出管3を覆うように網24を設置しているが、網24の代わりに多数の孔を設けた薄板でもよい。
【0037】
第5の実施例として、図5(a)および図5(b)に示すように、圧縮機構部4によって密閉容器1の内部空間が圧縮機構部4の吐出口15が設けられている吐出空間16側と、電動機10が配設されている電動機空間18側とに仕切られ、前記圧縮機構部4の外周に吐出空間16と電動機空間18とを連通する連通孔17を設けるとともに、この連通孔17の電動機空間18側出口の対向する位置に衝突板27を設置してもよい。
【0038】
これにより、圧縮機構部4の吐出口15から多量の冷凍機油を含有した高圧冷媒ガスが吐出空間16に吐出され、連通孔17を通過して電動機空間18に流入したとき、連通孔17の電動機空間18側出口に衝突板27を設置しているので、連通孔17を通過した高圧冷媒ガスは高速で前記衝突板27に衝突する。この結果、第2の実施例で説明した作用と同様に、高速で前記衝突板27に衝突した高圧冷媒ガスは、衝突板27に沿って流れるので、結果として高圧冷媒ガスは比較的長い時間、衝突板27と接触することになる。この接触中に高圧冷媒ガスに含まれる冷凍機油が、衝突板27に順次付着していき、付着した冷凍機油は衝突板27上で、その表面張力によって、より大きな液滴に成長して、最終的に重力により密閉容器1下方へと流れ落ちる。
【0039】
この結果、高圧冷媒ガスと冷凍機油とを分離することができる。
【0040】
【発明の効果】
本発明は上記説明から明らかなように、圧縮機構部の吐出口から吐出される高圧冷媒ガスに多量の冷凍機油が含有されていても、吐出口を覆うように設置された網によって、高圧冷媒ガスと冷凍機油とがほぼ分離され、その結果、密閉容器外部に吐出される冷凍機油の量は大幅に減少する。
【0041】
また、吐出口を覆うように設置された小孔を設けた箱体により、上記効果に加えて、吐出口から吐出される高圧冷媒ガスの脈動、あるいは吐出口に吐出弁を有する圧縮機においては吐出弁の開閉時に発生する衝撃音を低減することができ、結果として圧縮機から発生する騒音を低減することもできる。
【0042】
また、密閉容器内部に溜められている冷凍機油が電動機の回転子によって攪伴され、多量の液滴となって密閉容器中に飛散し、冷凍機油を含有する高圧冷媒ガスがさらに多量の冷凍機油と接触し、これを捕獲したような場合でも、吐出管の密閉容器内側を覆うように網を設置しているので、密閉容器から冷凍サイクルへ吐出される直前に高圧冷媒ガスと冷凍機油とが分離され、より密閉容器外部に吐出される冷凍機油の量を低減することができる。
【0043】
また、吐出管の密閉容器内側を覆うように設置された網を詰め込んだ箱体によって、上記効果に加えて、冷媒ガスの通路を制御することができるので、冷凍機油を含有した高圧冷媒ガスと網との接触時間をより長くすることが可能となり、この結果、高圧冷媒ガスと冷凍機油との分離作用がより向上する。また、前記網が金属製の場合、網と電動機端子とが接触して短絡事故が発生するのを防止することができる。
【0044】
また、密閉容器内の空間が圧縮機構部によって、吐出空間と電動機空間とに仕切られた構成の圧縮機において、連通孔の電動機空間出口の対向する位置に衝突板を設置することにより、この衝突板で高圧冷媒ガスと冷凍機油とが分離され、この結果、密閉容器外部に吐出される冷凍機油の量を低減することができる。
【0045】
なお、上記効果は、各実施例単独でも得られるが、いくつかの実施例を組み合わせることにより、さらに高圧冷媒ガスと冷凍機油とを分離する効果を向上することができる。
【0046】
以上説明したように、特に圧縮機を高速回転で運転したような場合でも、圧縮機から冷凍サイクルへの油吐出量は増加せず、この結果として成績係数の高い圧縮機が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例におけるスクロール圧縮機の断面図
【図2】本発明の別の実施例におけるスクロール圧縮機の部分断面図
【図3】本発明の別の実施例におけるスクロール圧縮機の部分断面図
【図4】(a)は本発明の別の実施例におけるスクロール圧縮機の部分断面図
(b)は図4(a)に示すスクロール圧縮機のA−A’断面図
【図5】(a)は本発明の別の実施例におけるスクロール圧縮機の部分断面図
(b)は図5(a)に示すスクロール圧縮機のB−B’断面図
【図6】従来からあるスクロール圧縮機の断面図
【符号の説明】
1 密閉容器
4 圧縮機構部
15 吐出口
16 吐出空間
17 連通孔
18 電動機空間
21 吐出口を覆う網
22 吐出口を覆う箱体
23 小孔
24 吐出管の密閉容器内側を覆う網
25 網を覆う箱体
26 電動機端子
27 衝突板
[0001]
[Industrial application fields]
The present invention relates to an electric compressor used in a cooling device such as an air conditioner or a refrigerator.
[0002]
[Prior art]
Conventionally, an electric compressor such as a rotary compressor or a scroll compressor has been used for a cooling device such as an air conditioner or a refrigerator.
[0003]
As a conventional technique of this type of compressor, a scroll compressor disclosed in Japanese Patent Application Laid-Open No. 61-212689 will be described as an example with reference to the drawings.
[0004]
As shown in FIG. 6, in the sealed container 101, there are a compression mechanism portion 102, a stator 104 and a rotor 105 constituting the electric motor 103, and a crankshaft 106 that transmits the rotation of the electric motor 103 to the compression mechanism portion 102. It is arranged. Further, the sealed container 101 is provided with a suction pipe 107 that sucks in the low-pressure refrigerant gas and a discharge pipe 108 that discharges the high-pressure refrigerant gas compressed by the compression mechanism.
[0005]
In the above configuration, when the rotor 105 constituting the electric motor 103 rotates, this rotational force is transmitted to the compression mechanism 102 by the crankshaft 106. When a rotational force is transmitted to the compression mechanism 102, a compression action occurs. As a result, the low-pressure refrigerant gas sucked from the suction pipe 107 is compressed into the high-pressure refrigerant gas by the compression mechanism 102 and discharged into the sealed container 101. The high-pressure refrigerant gas passes through the gap of the electric motor 103 and is discharged from the discharge pipe 108 to the refrigeration cycle (not shown).
[0006]
[Problems to be solved by the invention]
Conventionally, in a compressor having the above-described configuration, refrigerating machine oil is mixed in refrigerant gas in order to seal a minute gap in the compression mechanism 102 and increase compression efficiency during normal operation. Further, the refrigerating machine oil agitated by the rotor 105 of the electric motor 103 is scattered in the airtight container 101 as a large amount of liquid droplets.
[0007]
Therefore, the high-pressure refrigerant gas discharged from the compression mechanism 102 into the sealed container 101 comes into contact with and captures a larger amount of droplet-shaped refrigeration oil inside the sealed container 101. As a result, a large amount of refrigeration oil is discharged from the discharge pipe 108 to the refrigeration cycle together with the high-pressure refrigerant gas. In particular, when the compressor is rotated at a high speed to increase the refrigerant discharge amount, the ratio of the weight of the refrigerating machine oil to the weight of the discharged refrigerant significantly increases.
[0008]
As the amount of oil discharged from the compressor to the refrigeration cycle increases, pipe pressure loss in the refrigeration cycle increases. In addition, since the heat exchange efficiency in heat exchangers such as condensers and evaporators is reduced, the refrigeration capacity does not increase even if the compressor is rotated at a high speed, or the coefficient of performance of the refrigeration cycle is reduced. Had.
[0009]
The present invention solves the above-described problems of the conventional example, and provides a compressor having a high coefficient of performance without increasing the amount of oil discharged from the compressor to the refrigeration cycle even when the compressor is operated at high speed. It is intended.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention arranges a box that gradually widens downward so as to cover the inside of the sealed container of the discharge pipe provided in the sealed container, and the box is made of metal, etc. Or a thin plate provided with a large number of holes.
[0015]
[Action]
The effect | action by the said means is as follows.
[0019]
According to the present invention , since the passage of the refrigerant gas can be controlled by covering the net or the thin plate with the box, the contact time of the high-pressure refrigerant gas containing the refrigerating machine oil with the net or the thin plate is further increased. It becomes possible. As a result, only the refrigerating machine oil adheres to the net or the thin plate, and the high-pressure refrigerant gas passes through a large number of holes provided in the mesh gap or the thin plate, so that the effect of separating the refrigerating machine oil from the high-pressure refrigerant gas becomes greater. In addition, there is an effect of preventing scattering in a metal-made net or a thin sealed container provided with a large number of holes. Further, since the box is wider in the downward direction, the size of the refrigerating machine oil that gradually grows in size toward the lower side of the box due to the flow of the high-pressure refrigerant gas from the lower side to the upper side in the box. Refrigerating machine oil can be more reliably dropped on the bottom surface of the sealed container without being hindered by dropping of drops.
[0021]
【Example】
Hereinafter, a hermetic compressor according to an embodiment of the present invention will be described with reference to the drawings, taking a scroll compressor as an example.
[0022]
In FIG. 1, inside the sealed container 1, a compression mechanism portion 4, an electric motor 10 composed of a stator 11 and a rotor 12 that drive the compression mechanism portion 4, and the rotational force of the electric motor 10 are compressed. A crankshaft 9 supported by a bearing member 8 that transmits to the mechanism portion 4 and a sub-bearing 13 is disposed.
[0023]
After the low-pressure refrigerant gas sucked from the suction pipe 2 is sucked and compressed from the suction port 14 of the compression mechanism unit 4 composed of the orbiting scroll 5, the fixed scroll 6, the rotation restraint component 7, and the bearing member 8, It becomes high-pressure refrigerant gas and is discharged from the discharge port 15 to the discharge space 16 side of the sealed container 1. And it discharges to the motor space 18 with which the electric motor 10 was arrange | positioned through the communicating hole 17 which connects the said discharge space 16 and the motor space 18 provided in the outer periphery of the compression mechanism part 4. FIG. Thereafter, the liquid is discharged from the discharge pipe 3 of the sealed container 1 to the outside of the sealed container 1. The hermetic container 1 is connected to a refrigeration cycle (not shown) by a suction pipe 2 and a discharge pipe 3, and after exchanging heat in the refrigeration cycle, it is sucked again as a low-pressure refrigerant gas from the suction pipe 2. The
[0024]
Now, the refrigerating machine oil 19 is stored inside the sealed container 1. The refrigerating machine oil 19 is pumped up by a lubrication pump 20 installed at one end of the crankshaft 9, passes through a passage provided at the center of the crankshaft 9, lubricates the sliding portion of the compression mechanism portion 4, and then again. It is stored in the sealed container 1. A part of the refrigerating machine oil 19 that lubricates the sliding portion of the compression mechanism portion 4 is mixed with the refrigerant gas being compressed in order to seal the gap of the compression mechanism portion 4 and increase the compression efficiency. For this reason, the high-pressure refrigerant gas discharged from the discharge port 15 contains a large amount of refrigerating machine oil.
[0025]
The high-pressure refrigerant gas containing a large amount of refrigerating machine oil collides at high speed with the net 21 installed so as to cover the discharge port 15. At this time, only the refrigerating machine oil adheres to the net 21 due to the difference in surface tension. The adhering refrigerating machine oil falls along the surface of the net 21 due to gravity and accumulates below the sealed container 1. Further, the high-pressure refrigerant gas passes through the gap of the mesh 21 and is discharged into the discharge space 16, and then passes through the communication hole 17 provided in the outer peripheral portion of the compression mechanism portion 4, so that the motor space 18 of the sealed container 1. Then, it is discharged from the discharge space 3 to the outside of the sealed container 1.
[0026]
Accordingly, the high-pressure refrigerant gas discharged from the sealed container 1 into the refrigeration cycle contains almost no refrigeration oil.
[0027]
In the above embodiment, the net 21 is installed so as to cover the discharge port 15, but a thin plate provided with a large number of holes may be installed instead of the net 21.
[0028]
As a second embodiment, as shown in FIG. 2, a box body 22 is installed so as to cover the discharge port 15, a small hole 23 is provided at one location of the box body 22, and the small hole 23 is formed in the sealed container 1. You may make it oppose the inner wall of.
[0029]
As a result, the high-pressure refrigerant gas discharged from the discharge port 15 is temporarily discharged into the box 22 and discharged to the discharge space 16 through the small hole 23. Since the small hole 23 faces the inner wall of the sealed container 1, the high-pressure refrigerant gas collides with the inner wall at a high speed. The high-pressure refrigerant gas that has collided with the inner wall at high speed flows along the inner wall. As a result, the high-pressure refrigerant gas comes into contact with the inner wall of the sealed container 1 for a relatively long time. During this contact, the refrigerating machine oil contained in the high-pressure refrigerant gas sequentially adheres to the inner wall of the sealed container 1, and the adhering refrigerating machine oil grows into larger droplets on the inner wall due to its surface tension, Finally, it flows down to the bottom of the sealed container 1 due to gravity.
[0030]
As a result, the refrigerating machine oil is almost removed from the high-pressure refrigerant gas.
In the embodiment described above, the small hole 23 provided in the box 22 is provided at one place, but may be provided at two or more places as long as the outlet of the small hole 23 faces the inner wall of the sealed container 1.
[0031]
As a third embodiment, as shown in FIG. 3, a net 24 may be installed so as to cover the inside of the sealed container 1 of the discharge pipe 3.
[0032]
Thereby, when the high-pressure refrigerant gas containing a large amount of refrigerating machine oil discharged from the discharge port 15 of the compression mechanism unit 4 passes through the communication hole 17 from the discharge space 16 and flows into the motor space 18, the sealed container 1. Even when it comes into contact with and captures the refrigerating machine oil 19 scattered as a large amount of liquid droplets in the motor space 18, even when a large quantity of refrigerating machine oil is contained, Since the mesh 24 is installed so as to cover the inside, only the refrigerating machine oil adheres to the mesh 24 here, and the high-pressure refrigerant gas passes through the gaps of the mesh 24, and the operation described in the first embodiment Similarly, refrigeration oil is separated from the refrigerant gas.
[0033]
As a result, the high-pressure refrigerant gas discharged into the refrigeration cycle contains almost no refrigeration oil.
[0034]
As a fourth embodiment, as shown in FIGS. 4 (a) and 4 (b), a box 25 is installed so as to cover the inside of the sealed container 1 of the discharge pipe 3 provided in the sealed container 1. The net 24 may be packed in the box 25.
[0035]
Thereby, in addition to the effect | action demonstrated in the said 3rd Example, since the channel | path of refrigerant | coolant gas can be controlled by covering the net | network 24 with the box 25, the high-pressure refrigerant gas containing refrigerating machine oil, The contact time with the net 24 can be made longer. As a result, the separation effect between the high-pressure refrigerant gas and the refrigerating machine oil is improved.
[0036]
In the third and fourth embodiments, the mesh 24 is installed so as to cover the discharge pipe 3, but a thin plate provided with a large number of holes instead of the mesh 24 may be used.
[0037]
As a fifth embodiment, as shown in FIGS. 5 (a) and 5 (b), the internal space of the sealed container 1 is provided with the discharge port 15 of the compression mechanism portion 4 by the compression mechanism portion 4. A communication hole 17 is provided on the outer periphery of the compression mechanism portion 4 to communicate the discharge space 16 and the motor space 18. The communication hole 17 is partitioned into the motor space 18 side where the motor 10 is disposed. You may install the collision board 27 in the position which the 17 motor space 18 side exit opposes.
[0038]
Thereby, when the high-pressure refrigerant gas containing a large amount of refrigerating machine oil is discharged from the discharge port 15 of the compression mechanism unit 4 to the discharge space 16 and flows into the motor space 18 through the communication hole 17, the motor in the communication hole 17. Since the collision plate 27 is installed at the space 18 side outlet, the high-pressure refrigerant gas that has passed through the communication hole 17 collides with the collision plate 27 at a high speed. As a result, similar to the operation described in the second embodiment, the high-pressure refrigerant gas that has collided with the collision plate 27 at a high speed flows along the collision plate 27. As a result, the high-pressure refrigerant gas has a relatively long time, It comes into contact with the collision plate 27. During this contact, the refrigerating machine oil contained in the high-pressure refrigerant gas sequentially adheres to the collision plate 27, and the adhering refrigerating machine oil grows into larger droplets on the collision plate 27 by its surface tension, and finally Therefore, it flows down to the bottom of the sealed container 1 due to gravity.
[0039]
As a result, the high-pressure refrigerant gas and the refrigerating machine oil can be separated.
[0040]
【The invention's effect】
As is apparent from the above description, the present invention provides a high-pressure refrigerant by a net installed so as to cover the discharge port even when a large amount of refrigerating machine oil is contained in the high-pressure refrigerant gas discharged from the discharge port of the compression mechanism unit. The gas and the refrigerating machine oil are substantially separated, and as a result, the amount of the refrigerating machine oil discharged to the outside of the sealed container is greatly reduced.
[0041]
In addition to the above effects, a compressor having a discharge valve at the discharge port, or a pulsation of high-pressure refrigerant gas discharged from the discharge port, with a box provided with a small hole installed so as to cover the discharge port The impact sound generated when the discharge valve is opened and closed can be reduced, and as a result, the noise generated from the compressor can be reduced.
[0042]
In addition, the refrigerating machine oil stored in the closed container is agitated by the rotor of the electric motor and scattered in the closed container as a large amount of liquid droplets, and the refrigerating machine oil-containing high-pressure refrigerant gas contains a larger amount of refrigerating machine oil. Even when it is in contact with and captured, the net is installed so as to cover the inside of the closed vessel of the discharge pipe, so that the high-pressure refrigerant gas and the refrigerating machine oil are discharged immediately before being discharged from the closed vessel to the refrigeration cycle. The amount of the refrigerating machine oil that is separated and discharged to the outside of the sealed container can be reduced.
[0043]
In addition to the above effect, the box filled with a net installed so as to cover the inside of the closed container of the discharge pipe can control the refrigerant gas passage, so that the high-pressure refrigerant gas containing refrigerating machine oil and The contact time with the net can be made longer, and as a result, the separation action between the high-pressure refrigerant gas and the refrigerating machine oil is further improved. Moreover, when the said net | network is metal, it can prevent that a net | network and an electric motor terminal contact and a short circuit accident generate | occur | produces.
[0044]
Further, in a compressor having a configuration in which the space in the sealed container is partitioned into a discharge space and an electric motor space by the compression mechanism unit, this collision can be achieved by installing a collision plate at a position facing the motor space outlet of the communication hole. The high pressure refrigerant gas and the refrigerating machine oil are separated by the plate, and as a result, the amount of the refrigerating machine oil discharged to the outside of the sealed container can be reduced.
[0045]
In addition, although the said effect is acquired also by each Example independently, the effect which isolate | separates a high pressure refrigerant gas and refrigeration oil can further be improved by combining several Examples.
[0046]
As described above, even when the compressor is operated at a high speed, the amount of oil discharged from the compressor to the refrigeration cycle does not increase, and as a result, a compressor with a high coefficient of performance is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a scroll compressor according to an embodiment of the present invention. FIG. 2 is a partial cross-sectional view of a scroll compressor according to another embodiment of the present invention. FIG. 4A is a partial sectional view of a scroll compressor according to another embodiment of the present invention, and FIG. 4B is a sectional view taken along line AA ′ of the scroll compressor shown in FIG. 5A is a partial cross-sectional view of a scroll compressor according to another embodiment of the present invention, and FIG. 5B is a cross-sectional view of the scroll compressor shown in FIG. 5A. FIG. Cross section of scroll compressor 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Airtight container 4 Compression mechanism part 15 Discharge port 16 Discharge space 17 Communication hole 18 Electric motor space 21 Net | network 22 which covers a discharge port Box body 23 which covers a discharge port Small hole 24 Net | network 25 which covers the inner side of the sealed container of a discharge pipe | tube 25 Body 26 Motor terminal 27 Collision plate

Claims (1)

水平方向の一方の端部に吸入管を設け反対側の端部に吐出管を設けた密閉容器と、前記密閉容器内部吸入管側より吐出管側に向かって圧縮機構部、電動機の順に配置され、前記圧縮機構部は吸入口が前記吸入管に直接接続され、吐出口が前記密閉容器内部で吸入管側端部に向かって開口し、クランク軸にて前記電動機に連結されて駆動される構成であり、前記密閉容器の底部に溜められた潤滑油が潤滑ポンプにより汲み上げられて摺動部を潤滑、シールし、前記圧縮機構部の吐出口から吐出された高圧冷媒ガスが密閉容器内を吸入管側端部から圧縮機構部外周に設けられた連通孔を通って吐出管側端部に向かい、電動機を冷却しながら流れて最終的に吐出管から冷却サイクルに放出される横置き型の電動圧縮機であって、前記吐出管の密閉容器内側開口部を覆うように、前記吐出管密閉容器内側開口部から下方に向かって次第に幅が広くなり、下面が密閉容器内に開口している箱体を配置し、前記箱体には金属製などの網、または多数の孔を設けた薄板を詰め込んだ事を特徴とする電動圧縮機。A sealed container in which a suction pipe is provided at one end in the horizontal direction and a discharge pipe is provided at the opposite end, a compression mechanism section, and an electric motor are arranged in this order from the inside of the sealed container toward the discharge pipe. The compression mechanism is configured such that the suction port is directly connected to the suction pipe, the discharge port is opened toward the suction pipe side end inside the sealed container, and is connected to the electric motor by a crankshaft. The lubricating oil stored at the bottom of the sealed container is pumped up by a lubrication pump to lubricate and seal the sliding part, and the high-pressure refrigerant gas discharged from the discharge port of the compression mechanism part sucks the inside of the sealed container A horizontal type electric motor that flows from the pipe side end to the discharge pipe side end through a communication hole provided on the outer periphery of the compression mechanism, flows while cooling the electric motor, and is finally discharged from the discharge pipe to the cooling cycle. A compressor, wherein the discharge pipe is sealed A box having a width that gradually widens downward from the inner opening of the discharge pipe sealed container and covers the inner opening is disposed in the sealed container, and the box is made of metal. An electric compressor characterized by packing a net such as a thin plate with a large number of holes.
JP13579693A 1993-06-07 1993-06-07 Electric compressor Expired - Fee Related JP3633638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13579693A JP3633638B2 (en) 1993-06-07 1993-06-07 Electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13579693A JP3633638B2 (en) 1993-06-07 1993-06-07 Electric compressor

Publications (2)

Publication Number Publication Date
JPH06346884A JPH06346884A (en) 1994-12-20
JP3633638B2 true JP3633638B2 (en) 2005-03-30

Family

ID=15160031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13579693A Expired - Fee Related JP3633638B2 (en) 1993-06-07 1993-06-07 Electric compressor

Country Status (1)

Country Link
JP (1) JP3633638B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09166096A (en) * 1995-12-13 1997-06-24 Sanden Corp Discharge part structure of oil lubricating system compressor
JPH09170581A (en) * 1995-12-19 1997-06-30 Daikin Ind Ltd Compressor
JP3028473B2 (en) * 1997-06-02 2000-04-04 株式会社ゼクセル Horizontal scroll compressor
JP4730382B2 (en) * 2008-02-18 2011-07-20 株式会社日立製作所 Compressor
JPWO2014115350A1 (en) * 2013-01-22 2017-01-26 三菱電機株式会社 Refrigerator and compressor

Also Published As

Publication number Publication date
JPH06346884A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
KR970003262B1 (en) Motor compressor
US5533875A (en) Scroll compressor having a frame and open sleeve for controlling gas and lubricant flow
JP4286175B2 (en) Compressor
US6499971B2 (en) Compressor utilizing shell with low pressure side motor and high pressure side oil sump
JP4175148B2 (en) Hermetic compressor
US8945265B2 (en) Compressor
JP3633638B2 (en) Electric compressor
JP2003269336A (en) Compressor and oil separator
JP3961189B2 (en) Hermetic compressor and gas-liquid separation and discharge method
JPS6257365B2 (en)
JP4149947B2 (en) Compressor
JP4127108B2 (en) Hermetic compressor
JP3412220B2 (en) Hermetic electric compressor
JP2000009074A (en) Screw compressor
JP2001271749A (en) Closed electrically driven compressor
JP2005330821A (en) Hermetic rotary compressor
JPH0886292A (en) Closed type motor-driven compressor
JP3616123B2 (en) Hermetic electric compressor
JP3470214B2 (en) Hermetic compressor and method for removing lubricating oil from hermetic compressor
JPH109177A (en) Closed type electric compressor
JP4241182B2 (en) Compressor, refrigeration cycle and heat pump water heater
JPS62191677A (en) Motor driven compressor
JP3572959B2 (en) Horizontal rotary compressor
JP4029061B2 (en) Compressor
JP3007746B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees