JP3572959B2 - Horizontal rotary compressor - Google Patents

Horizontal rotary compressor Download PDF

Info

Publication number
JP3572959B2
JP3572959B2 JP27691498A JP27691498A JP3572959B2 JP 3572959 B2 JP3572959 B2 JP 3572959B2 JP 27691498 A JP27691498 A JP 27691498A JP 27691498 A JP27691498 A JP 27691498A JP 3572959 B2 JP3572959 B2 JP 3572959B2
Authority
JP
Japan
Prior art keywords
compressed gas
oil
discharge pipe
closed container
compression element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27691498A
Other languages
Japanese (ja)
Other versions
JP2000104693A (en
Inventor
卓仁 宮島
隆史 山本
英明 前山
文彦 石園
睦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27691498A priority Critical patent/JP3572959B2/en
Publication of JP2000104693A publication Critical patent/JP2000104693A/en
Application granted granted Critical
Publication of JP3572959B2 publication Critical patent/JP3572959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は冷凍装置あるいは空調機等の冷媒ガスを圧縮する密閉形の横置形回転式圧縮機に関するものである。
【0002】
【従来の技術】
図6は例えば特開平5−280483号公報に示された従来の横置形回転式圧縮機を示す断面図である。また、図7は圧縮要素部を図6の矢印A方向より見た正面図である。図6、図7において、1は横置形回転式圧縮機の外郭をなす密閉容器で底が潤滑油100の油貯留部となっている。2は密閉容器1内に装着した固定子、3は固定子2の中央空間部に所定の間隔を隔てて位置する回転子、4は固定子2及び回転子3からなる電動要素部である。6は回転子3に圧入した回転軸、7は回転軸6と一体に形成したクランク軸である。8は回転軸6を軸支する主軸受けで、9は回転軸6を軸支する端軸受けである。10は密閉容器1内に装着したシリンダであり、この左右の二面に主軸受け8と端軸受け9が各々固定されている。11は回転軸6のクランク軸7に嵌着したローリングピストンであり、シリンダ10内の中央空間部の内壁面に線接触状態にて可動式に配設されている。また、このローリングピストン11はシリンダ10内に配設されたベーン(図示せず)とも当接状態となっている。12は主軸受け8、端軸受け9、シリンダ10、及びローリングピストン11からなる圧縮要素部である。13はシリンダ10とローリングピストン11との隙間に形成される吸入・圧縮室であり、シリンダ10内に配設されたベーン(図示せず)により高圧の圧縮室と低圧の吸入室に区別されている。そして、ローリングピストン11の偏心回転により、冷媒ガス等の被圧縮媒体を吸入パイプ14より吸入する行程から圧縮する行程へと順次移行する一連の吸入・圧縮行程を連続して繰り返す。
また、高圧の密閉容器1と低圧の吸入・圧縮室13との圧力差によって主軸受け8に設けた潤滑油流路8aから潤滑油100を吸い上げて圧縮要素部12へ給油することにより、圧縮要素部12の摺動部の潤滑性と吸入・圧縮室13の気密性を確保している。
【0003】
圧縮されたガスは圧縮要素部12へ給油された潤滑油100とともに吐出バルブ(図示せず)、仕切板16、吐出マフラー17を通り、再び端軸受け9とシリンダ10に設けられたガス流路10aを通り抜ける。10bは圧縮ガス流路10aの端部に設けた圧縮ガス吹き出し開口部であり、密閉容器1内に水平方向より下方で、密閉容器に対する法線より下方向に圧縮ガスが放出されるように設けてある。圧縮ガスは、ガス流路10aの端部に設けた圧縮ガス吹き出し開口部10bから密閉容器1内へ放出され、吐出パイプ15を流れ、冷凍回路へ送り込まれる。
【0004】
また、図8は特開昭60−219491に示された従来の横置形回転式圧縮機を示す断面図であり、圧縮ガスは圧脈動を抑えるための吐出マフラー17に一時滞留した後、吐出マフラー17に設けられた吐出開口部17aより密閉容器1内へ略垂直方向に放出される。
【0005】
また、図9は実開昭63−138489に示された従来の横置形回転式圧縮機を示す断面図であり、圧縮機運転直後は密閉容器1内の圧力に比べて圧縮ガスの方が圧力が高いため、圧縮要素部12に直接取り付けられたパイプ19から密閉容器1内に圧縮ガスが放出されるが、密閉容器1内が圧縮ガスと同じ圧力となった後には圧縮ガスは密閉容器1内にほとんど放出されずにパイプ19より放出された圧縮ガスが吐出パイプ15を流れて直接冷凍回路へと送り込まれる。
【0006】
【発明が解決しようとする課題】
従来の横置形回転式圧縮機は以上のように構成されているので、図6、図7で示された特願平04−073662の場合は、冷凍装置あるいは空調機の設置場所の傾斜、またはベーン(図示せず)両側面摺動部への給油目的のために油量を増加した結果、さらには密閉容器1の寸法変更等で潤滑油100の油面100aの水準が上昇した場合には、シリンダ10に設けたガス流路10aの端部に設けた圧縮ガス吹き出し開口部10bが、密閉容器1内に水平方向より下方で、密閉容器に対する法線より下方向に圧縮ガスを放出するので、圧縮ガス吹き出し開口部10bから吹き出した圧縮ガスによって潤滑油100の油面100aが巻き上げられてしまい、潤滑油100を含んだ圧縮ガスは、密閉容器1内での十分な油分離が行えずに吐出パイプ15より潤滑油100を含んだ状態で冷凍回路へ送り出され、冷凍回路内の熱交換率を悪化させたり、圧縮機内の必要潤滑油量を満たすことができなくなるほど減少し回転軸6と主軸受け8または端軸受け9が焼きつけを起こすなどの問題があった。
【0007】
また、図8で示された特開昭60−219491では、潤滑油100の油面100aを巻き上げないように圧縮ガスを吐出マフラー17に設けられた吐出開口部17aから略鉛直上向きに放出しているため、密閉容器1内へ圧縮ガスを放出する吐出開口部17aと吐出パイプ15の距離が短く、かつ吐出パイプ15とのヘッド差が十分に確保できなくなり開口部17aより放出された圧縮ガスに含まれている霧状の潤滑油は密閉容器1内で冷媒ガスとの比重の差による油分離も十分にされないまま吐出パイプ15より冷凍回路へ送り出されてしまうという問題があった。
【0008】
また、図9で示された実開昭63−138489では、圧縮機運転開始直後以外には圧縮ガスが密閉容器1内にほとんど放出されずにパイプ19から吐出パイプ15を流れて直接冷凍回路へ送り込まれるため、圧縮ガスに含まれている霧状の潤滑油が分離されないまま冷凍回路内へ送り出されてしまうという問題があった。
【0009】
この発明は上記のような問題点を解決するためになされたもので、横置形回転式圧縮機の密閉容器内で十分な油分離を行うことを目的とする。
【0010】
【課題を解決するための手段】
この発明に係わる請求項1記載の横置形回転式圧縮機は、底が油貯留部となっている密閉容器内に収納された電動要素部及び圧縮要素部と、圧縮要素部によって圧縮された圧縮ガスを密閉容器内に放出する圧縮要素部に設けたガス流路と、密閉容器内の圧縮ガスを密閉容器外へ吐出する吐出パイプとを備えた横置形回転式圧縮機において、圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部と油貯留部に貯留された潤滑油の油面と吐出パイプの圧縮ガス入り口とに関して、前記圧縮ガス吹き出し開口部を油面と前記圧縮ガス入り口の上下方向で略中心に設け、かつ、前記密閉容器内に放出する圧縮ガス吹き出し方向を、回転軸に対して略垂直に放出するとともに油面を巻き上げないように油面と略水平に向けたものである。
【0011】
この発明に係わる請求項2記載の横置形回転式圧縮機は、請求項1記載の横置形回転式圧縮機において、圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部を含み回転軸に垂直な平面と吐出パイプの圧縮ガス入り口を含み回転軸に垂直な平面との間にかかる範囲の油面上に遮板を設けたものである。
【0012】
この発明に係わる請求項3記載の横置形回転式圧縮機は、請求項1または請求項2記載の横置形回転式圧縮機において、吐出パイプの圧縮ガス入り口と前記圧縮要素部からの最短距離を吐出パイプの内径以下としたものである。
【0013】
【発明の実施の形態】
以下、この発明の実施の形態を図面とともに説明する。なお前記従来例の構成部分と同一または相当する構成部品は、従来例と同一番号を付し、説明を省略する。
【0014】
実施の形態1.
以下、実施の形態1について図に基づいて説明する。図1は横置形回転式圧縮機の要部断面を示す断面図である。図2は圧縮要素部12を図1の矢印A方向より見た正面図である。10cはシリンダ10に圧縮ガスを密閉容器1内に回転軸6に対して略垂直に放出するよう設けられた圧縮ガスのガス流路である。10dはガス流路10cの端部に設けた圧縮ガス吹き出し開口部であり、潤滑油100の油面100aと吐出パイプ15の圧縮ガス入り口15aと上下方向で略中心に設けられ、圧縮ガス吹き出し開口部10dから密閉容器1内に放出される圧縮ガスの吹き出し方向は、放出された圧縮ガスが直接油面100aを叩かずに密閉容器1の内側壁面に吹き付けられるように設定してある。図3(a)は圧縮ガス吹きだし方向θと冷凍回路内の油循環量の関係グラフであり、図3(b)は、その説明図であり、図2に相当するものである。
【0015】
この実施例は上記のように構成され、圧縮ガスを密閉容器1内に回転軸6に対して略垂直に放出するようシリンダ10に設けたガス流路10cの端部に設けた圧縮ガス吹き出し開口部10dを油面100aと吐出パイプ15の圧縮ガス入り口15aと上下方向で略中心に設け、圧縮ガス吹き出し方向は、放出された圧縮ガスが直接油面100aを叩かずに密閉容器1の内側壁面に吹き付けられるように設定する。圧縮ガス吹き出し開口部10dから放出された圧縮ガスに含まれている霧状の潤滑油は、密閉容器1内側壁面との衝突による分離作用により分離される。また、圧縮ガス吹き出し方向は、放出された圧縮ガスが直接油面100aを叩かずに密閉容器1の内側壁面に吹き付けられるように設定されされているため、衝突前や衝突時に圧縮ガスによって油面100aを巻き上げることなく、さらに、圧縮ガス吹き出し開口部10dを油面100aと吐出パイプ15の圧縮ガス入り口15aと上下方向で略中心に設けているので、衝突後も吐出パイプ15までのヘッド差が十分確保されているため、吐出パイプ15の設けてある圧縮機上部へ霧状の潤滑油が飛散する量が少なくなり、冷凍回路内へ流出する潤滑油が少なくなる。
【0016】
図3の実験にて求めた圧縮ガス吹き出し方向(吹き出し方向θは図3のように水平方向に対する角度とし、上側にプラス、下側にマイナスとする)と冷凍回路内油循環量の関係からも、圧縮ガスを水平面より下向きに放出すると油面100aを巻き上げてしまうため油循環量は急激に大きくなり、逆に水平面より上向きに放出すると吐出パイプまでの距離が短くなりヘッド差が確保できなくなり密閉容器1内での十分な油分離が行えなくなるために油循環量が緩やかに多くなる。そして油面とほぼ水平となるθがほぼ0゜方向へ圧縮ガスを放出すると冷凍回路内の油循環量が最少となる。
【0017】
尚、ここではシリンダ10にガス流路10cおよび圧縮ガス吹き出し開口部10dが設けられた場合について説明したが、ガス流路および圧縮ガス吹き出し開口部は圧縮要素部12の他の構成要素に設けても良い。
【0018】
実施の形態2.
実施の形態2について説明する。実施の形態2は、前記実施の形態1に下記説明する遮板18を設けたものである。
本実施の形態は、図4のようにシリンダ10に設けたガス流路10cの端部に設けた圧縮ガス吹き出し開口部10dを含み回転軸6に垂直な平面と吐出パイプ15の圧縮ガス入り口15aを含み回転軸6に垂直な平面との間にかかる範囲の油面100a上に遮板18を水平に設ける。密閉容器1内の油面100a全面を遮板で覆うのではなく、圧縮ガス吹き出し開口部10dを含み回転軸6に垂直な平面と吐出パイプ15の圧縮ガス入り口15aを含み回転軸6に垂直な平面との間にかかる範囲の油面100a上にのみ遮板を設けたため複雑な形状とはならず、圧縮ガス吹き出し開口部10dから密閉容器1内に放出された圧縮ガスによる油面100aの巻き上げが効果的に抑えられ、密閉容器1内の圧縮ガスを密閉容器1外へ吐出する吐出パイプ15の設けてある圧縮機上部方向へ潤滑油が飛散する量が少なくなるため、冷凍回路内へ流出する潤滑油が少なくなる。
【0019】
尚、本実施の形態は、ガス流路10c及び圧縮ガス吹き出し開口部10dを実施の形態1に記載のものとし、冷凍回路内へ流出する潤滑油を減らす効果を一層大きくしているが遮板18を設置することにより、ガス流路及び圧縮ガス吹き出し開口部を実施の形態1に記載のようにしなくても潤滑油持ち出し減少の効果は得られる。
また、ここではシリンダ10にガス流路10cおよび圧縮ガス吹き出し開口部10dが設けられた場合について説明したが、ガス流路および圧縮ガス吹き出し開口部は圧縮要素部12の他の構成要素に設けても良い。
【0020】
実施の形態3.
実施の形態3について説明する。本実施の形態は、実施の形態1で、図5のように密閉容器1内の圧縮ガスを密閉容器1外へ吐出する吐出パイプ15の圧縮ガス入り口15aと圧縮要素部12との最短距離を吐出パイプ15の内径以下に設けるものである。圧縮ガスは前記内径以下とした最短距離を通って吐出パイプ15に入るが、吐出パイプ15の圧縮ガス入り口15aと圧縮要素部12との最短距離を吐出パイプ15の内径以下としたため、圧縮ガスの流路に対して圧縮要素部12が障害となり、圧縮ガスに含まれている霧状の潤滑油が分離されるので、冷凍回路内へ流出する潤滑油が少なくなる。
また、別に吐出パイプ15の圧縮ガス入口15aに至る流路に障害物を設けて流路の狭い部分を吐出パイプ15の内径以下としても同様な効果が得られるが、別途障害物を設けるためコストアップとなる。
【0021】
尚、本実施の形態は、ガス流路10c及び圧縮ガス吹き出し開口部10dを実施の形態1に記載のものとし、冷凍回路内へ流出する潤滑油を減らす効果を一層大きくしているが、圧縮ガスの流路に対して圧縮要素部12を障害物とすることにより、ガス流路及び圧縮ガス吹き出し開口部を実施の形態1に記載のようにしなくても潤滑油持ち出し減少の効果は得られる。
【0022】
前記各実施の形態1、2及び3における特徴的構成要素である実施の形態1における圧縮ガス吹き出し開口部10dを油面と吐出パイプ15と上下方向で略中心に設け、その圧縮ガス吹き出し方向を油面と略水平に向けること、実施の形態2の遮板18の設置及び実施の形態3の吐出パイプ15の圧縮ガス入口と圧縮要素部12との最短距離を吐出パイプ15の内径以下とすることは、それぞれ単独でも圧縮機から潤滑油の持ち出しを減少する効果があるが、これらの要素を2個、3個組み合せることにより、効果が一層増加する。
前記特徴的構成要素を組み合わせることにより、圧縮ガス吹き出し開口部からに放出された圧縮ガスに含まれている霧状の潤滑油は、最初に密閉容器内側壁面との衝突によって分離され、その後圧縮ガスは油面を巻き上げることなく吐出パイプの圧縮ガス入り口へと向かい、最後に吐出される直前においても圧縮要素部がガス流路の障害となり霧状の潤滑油が分離されるため、圧縮機内での油分離の効果を向上することができる。
【0023】
【発明の効果】
請求項1に係わる発明では、底が油貯留部となっている密閉容器内に収納された電動要素部及び圧縮要素部と、圧縮要素部によって圧縮された圧縮ガスを密閉容器内に放出する圧縮要素部に設けたガス流路と、密閉容器内の圧縮ガスを密閉容器外へ吐出する吐出パイプとを備えた横置形回転式圧縮機において、圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部と油貯留部に貯留された潤滑油の油面と吐出パイプの圧縮ガス入り口とに関して、前記圧縮ガス吹き出し開口部を油面と前記圧縮ガス入り口の上下方向で略中心に設け、かつ、前記密閉容器内に放出する圧縮ガス吹き出し方向を、回転軸に対して略垂直に放出するとともに油面を巻き上げないように油面と略水平に向けたため、圧縮ガス吹き出し開口部から放出された圧縮ガスに含まれている霧状の潤滑油は、密閉容器内側壁面との衝突による分離作用により分離される。また、圧縮ガスが潤滑油の油面を巻き上げることなく、吐出パイプまでのヘッド差が確保されているために、密閉容器内での油分離が十分に行われて、冷凍回路内へ流出する潤滑油が少なくなる。
【0024】
請求項2に係わる発明では、請求項1の横置形回転式圧縮機において、圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部を含み回転軸に垂直な平面と吐出パイプの圧縮ガス入り口を含み回転軸に垂直な平面との間にかかる範囲の油面上に遮板を設けたため、遮板は複雑な形状とはならずに圧縮ガスによる油面の巻き上げが効果的に抑えられ、密閉容器内を霧状の潤滑油が飛散する量が少なくなるため、冷凍回路内へ流出する潤滑油が少なくなる。
【0025】
請求項3に係わる発明では、請求項1または請求項2の横置形回転式圧縮機において、吐出パイプの圧縮ガス入り口と前記圧縮要素部からの最短距離を吐出パイプの内径以下としたため、圧縮ガスの流路は圧縮要素部が障害となり、圧縮ガスに含まれている霧状の潤滑油が分離されるので、冷凍回路内へ流出する潤滑油が少なくなる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係わる横置形回転式圧縮機の要部断面図である。
【図2】本発明の実施の形態1に係わる横置形回転式圧縮機の圧縮要素部の正面図である。
【図3】本発明の実施の形態1に係わる横置形回転式圧縮機の吐出ガス吹き出し方向角度と油循環量の関係図である。
【図4】本発明の実施の形態2に係わる横置形回転式圧縮機の要部断面図である。
【図5】本発明の実施の形態3に係わる横置形回転式圧縮機の要部断面図である。
【図6】従来の横置形回転式圧縮機の一例を示す要部断面図である。
【図7】従来の横置形回転式圧縮機の一例を示す圧縮要素部の正面図である。
【図8】従来の横置形回転式圧縮機の別の一例を示す断面図である。
【図9】従来の横置形回転式圧縮機のさらに別の一例を示す断面図である。
【符号の説明】
1 密閉容器、 4 電動要素部、 8a 潤滑油流路、 10c ガス流路、 10d 圧縮ガス吹き出し開口部、 12 圧縮要素部、 15 吐出パイプ、 18 遮板、 100 潤滑油、 100a 油面。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetically sealed horizontal rotary compressor for compressing a refrigerant gas in a refrigeration apparatus or an air conditioner.
[0002]
[Prior art]
FIG. 6 is a sectional view showing a conventional horizontal rotary compressor disclosed in, for example, JP-A-5-280483. FIG. 7 is a front view of the compression element viewed from the direction of arrow A in FIG. In FIGS. 6 and 7, reference numeral 1 denotes a closed container forming an outer shell of the horizontal rotary compressor, and the bottom is an oil reservoir for the lubricating oil 100. Reference numeral 2 denotes a stator mounted in the closed casing 1, reference numeral 3 denotes a rotor positioned at a predetermined space in a central space of the stator 2, and reference numeral 4 denotes an electric element unit including the stator 2 and the rotor 3. Reference numeral 6 denotes a rotary shaft press-fitted into the rotor 3, and reference numeral 7 denotes a crankshaft formed integrally with the rotary shaft 6. Reference numeral 8 denotes a main bearing that supports the rotating shaft 6, and 9 denotes an end bearing that supports the rotating shaft 6. Reference numeral 10 denotes a cylinder mounted in the closed container 1, and a main bearing 8 and an end bearing 9 are fixed to the two left and right surfaces, respectively. Reference numeral 11 denotes a rolling piston fitted to the crankshaft 7 of the rotating shaft 6, which is movably disposed on the inner wall surface of the central space in the cylinder 10 in line contact. The rolling piston 11 is also in contact with a vane (not shown) provided in the cylinder 10. Reference numeral 12 denotes a compression element portion including the main bearing 8, the end bearing 9, the cylinder 10, and the rolling piston 11. Reference numeral 13 denotes a suction / compression chamber formed in a gap between the cylinder 10 and the rolling piston 11, which is separated into a high-pressure compression chamber and a low-pressure suction chamber by a vane (not shown) provided in the cylinder 10. I have. The eccentric rotation of the rolling piston 11 continuously repeats a series of suction / compression steps in which the compression medium, such as refrigerant gas, is sequentially shifted from a suction stroke to a compression stroke.
Further, the lubricating oil 100 is sucked up from the lubricating oil passage 8a provided in the main bearing 8 by a pressure difference between the high-pressure closed container 1 and the low-pressure suction / compression chamber 13, and is supplied to the compression element portion 12, so that the compression element is compressed. The lubrication of the sliding part of the part 12 and the airtightness of the suction / compression chamber 13 are ensured.
[0003]
The compressed gas passes through a discharge valve (not shown), a partition plate 16, and a discharge muffler 17 together with the lubricating oil 100 supplied to the compression element portion 12, and again a gas passage 10 a provided in the end bearing 9 and the cylinder 10. Go through. Reference numeral 10b denotes a compressed gas blowing opening provided at an end of the compressed gas flow path 10a, which is provided in the closed container 1 so as to discharge the compressed gas below the horizontal direction and below the normal to the closed container. It is. The compressed gas is discharged into the closed casing 1 from the compressed gas blowout opening 10b provided at the end of the gas flow path 10a, flows through the discharge pipe 15, and is sent into the refrigeration circuit.
[0004]
FIG. 8 is a cross-sectional view showing a conventional horizontal rotary compressor disclosed in Japanese Patent Application Laid-Open No. Sho 60-219491. The compressed gas temporarily stays in a discharge muffler 17 for suppressing pressure pulsation, and then is discharged. The liquid is discharged in a substantially vertical direction into the closed container 1 from a discharge opening 17 a provided in the container 17.
[0005]
FIG. 9 is a cross-sectional view showing a conventional horizontal rotary compressor shown in Japanese Utility Model Laid-Open Publication No. 63-138489, in which the pressure of the compressed gas is higher than the pressure in the closed vessel 1 immediately after the compressor is operated. Therefore, the compressed gas is released from the pipe 19 directly attached to the compression element portion 12 into the closed container 1, but after the inside of the closed container 1 has the same pressure as the compressed gas, the compressed gas is released from the closed container 1. The compressed gas released from the pipe 19 while being hardly released into the inside flows through the discharge pipe 15 and is directly sent to the refrigeration circuit.
[0006]
[Problems to be solved by the invention]
Since the conventional horizontal rotary compressor is configured as described above, in the case of Japanese Patent Application No. 04-073662 shown in FIGS. 6 and 7, the inclination of the installation location of the refrigeration system or the air conditioner, or If the level of the oil level 100a of the lubricating oil 100 rises due to an increase in the amount of oil for the purpose of lubricating the sliding parts on both sides of the vane (not shown), and further due to a change in the dimensions of the closed container 1, etc. Since the compressed gas blowing opening 10b provided at the end of the gas flow path 10a provided in the cylinder 10 discharges the compressed gas into the closed container 1 below the horizontal direction and below the normal to the closed container. The oil level 100a of the lubricating oil 100 is wound up by the compressed gas blown out from the compressed gas blowout opening 10b, and the compressed gas containing the lubricating oil 100 cannot be sufficiently separated from the oil in the closed container 1. Discharge pad The lubricating oil containing the lubricating oil 100 is sent from the pump 15 to the refrigeration circuit, and the heat exchange rate in the refrigeration circuit is deteriorated or the lubricating oil in the compressor cannot be satisfied. There was a problem that the bearing 8 or the end bearing 9 was burned.
[0007]
In Japanese Patent Application Laid-Open No. 60-219491 shown in FIG. 8, compressed gas is discharged substantially vertically upward from a discharge opening 17a provided in a discharge muffler 17 so as not to wind up an oil surface 100a of the lubricating oil 100. Therefore, the distance between the discharge opening 17a for discharging the compressed gas into the closed container 1 and the discharge pipe 15 is short, and the head difference from the discharge pipe 15 cannot be sufficiently secured. There is a problem that the contained mist-like lubricating oil is sent out from the discharge pipe 15 to the refrigeration circuit in the closed vessel 1 without sufficient oil separation due to the difference in specific gravity from the refrigerant gas.
[0008]
In addition, in the actual opening 63-138489 shown in FIG. 9, compressed gas is hardly released into the closed vessel 1 except from immediately after the start of the compressor operation, flows from the pipe 19 through the discharge pipe 15 and directly to the refrigeration circuit. As a result, the mist lubricating oil contained in the compressed gas is sent out into the refrigeration circuit without being separated.
[0009]
The present invention has been made to solve the above problems, and has as its object to perform sufficient oil separation in a closed container of a horizontal rotary compressor.
[0010]
[Means for Solving the Problems]
In the horizontal rotary compressor according to the first aspect of the present invention, the electric element part and the compression element part housed in a closed container having a bottom serving as an oil storage part, and the compression compressed by the compression element part. In a horizontal rotary compressor equipped with a gas flow path provided in a compression element portion that discharges gas into a closed container and a discharge pipe that discharges compressed gas in the closed container to the outside of the closed container, the compression element portion includes: With respect to the compressed gas blowout opening provided at the end of the provided gas flow path, the oil level of the lubricating oil stored in the oil storage section, and the compressed gas inlet of the discharge pipe, the compressed gas blowout opening is defined as an oil level. The compressed gas outlet is provided substantially at the center in the vertical direction of the compressed gas inlet , and the compressed gas blowing direction to be discharged into the closed container is discharged substantially perpendicularly to the rotation axis and substantially horizontally with the oil surface so as not to wind up the oil surface. It is aimed at.
[0011]
A horizontal rotary compressor according to a second aspect of the present invention is the horizontal rotary compressor according to the first aspect, wherein a compressed gas blowout opening provided at an end of a gas flow path provided in a compression element portion. And a shield plate is provided on the oil level in a range between the plane perpendicular to the rotation axis and the plane including the compressed gas inlet of the discharge pipe and perpendicular to the rotation axis.
[0012]
A horizontal rotary compressor according to a third aspect of the present invention is the horizontal rotary compressor according to the first or second aspect , wherein a shortest distance between a compressed gas inlet of a discharge pipe and the compression element portion is set. It is smaller than the inner diameter of the discharge pipe.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Components that are the same as or correspond to the components of the conventional example are given the same reference numerals as those of the conventional example, and description thereof is omitted.
[0014]
Embodiment 1 FIG.
Hereinafter, Embodiment 1 will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a cross section of a main part of a horizontal rotary compressor. FIG. 2 is a front view of the compression element section 12 as viewed from the direction of arrow A in FIG. Reference numeral 10c denotes a gas passage of the compressed gas provided in the cylinder 10 so as to discharge the compressed gas into the closed container 1 substantially perpendicularly to the rotating shaft 6. Reference numeral 10d denotes a compressed gas blowing opening provided at an end of the gas flow path 10c, which is provided substantially at the center in the vertical direction with the oil surface 100a of the lubricating oil 100 and the compressed gas inlet 15a of the discharge pipe 15, and has a compressed gas blowing opening. The blowing direction of the compressed gas released from the portion 10d into the closed container 1 is set such that the released compressed gas is blown onto the inner wall surface of the closed container 1 without directly hitting the oil surface 100a. FIG. 3A is a graph showing the relationship between the compressed gas blowing direction θ and the amount of oil circulation in the refrigeration circuit, and FIG. 3B is an explanatory diagram of the graph, corresponding to FIG.
[0015]
This embodiment is configured as described above, and has a compressed gas blowout opening provided at an end of a gas passage 10c provided in a cylinder 10 so as to discharge a compressed gas into the closed vessel 1 substantially perpendicularly to the rotating shaft 6. The portion 10d is provided substantially at the center in the vertical direction with respect to the oil surface 100a and the compressed gas inlet 15a of the discharge pipe 15, and the compressed gas blowing direction is such that the released compressed gas does not directly hit the oil surface 100a and the inner wall surface of the closed vessel 1 Set so that it can be sprayed. The mist-like lubricating oil contained in the compressed gas discharged from the compressed gas blowing opening 10d is separated by a separating action due to collision with the inner wall surface of the closed container 1. Further, the compressed gas blowing direction is set so that the discharged compressed gas is blown onto the inner wall surface of the sealed container 1 without directly hitting the oil surface 100a. Further, since the compressed gas blowing opening 10d is provided substantially at the center of the oil level 100a and the compressed gas inlet 15a of the discharge pipe 15 in the vertical direction without winding up the discharge pipe 100a, the head difference to the discharge pipe 15 after the collision is reduced. Since it is sufficiently ensured, the amount of mist lubricating oil scattered to the upper part of the compressor provided with the discharge pipe 15 is reduced, and the amount of lubricating oil flowing into the refrigeration circuit is reduced.
[0016]
The compressed gas blowing direction obtained in the experiment of FIG. 3 (the blowing direction θ is an angle with respect to the horizontal direction as shown in FIG. 3, plus on the upper side and minus on the lower side) and the relationship between the oil circulation amount in the refrigeration circuit. When the compressed gas is discharged downward from the horizontal plane, the oil surface 100a is wound up, so that the amount of oil circulation increases rapidly. Since sufficient oil separation in the container 1 cannot be performed, the amount of oil circulation gradually increases. When the compressed gas is released in the direction in which θ becomes substantially horizontal with respect to the oil surface, the amount of oil circulation in the refrigeration circuit is minimized.
[0017]
Here, the case where the cylinder 10 is provided with the gas flow path 10c and the compressed gas blowing opening 10d has been described, but the gas flow path and the compressed gas blowing opening are provided in other components of the compression element section 12. Is also good.
[0018]
Embodiment 2 FIG.
Embodiment 2 will be described. In the second embodiment, the shielding plate 18 described below is provided in the first embodiment.
As shown in FIG. 4, the present embodiment includes a plane including a compressed gas blowing opening 10d provided at an end of a gas passage 10c provided in the cylinder 10 and perpendicular to the rotating shaft 6, and a compressed gas inlet 15a of a discharge pipe 15. And the shield plate 18 is provided horizontally on the oil level 100a in a range between the oil level 100a and a plane perpendicular to the rotation axis 6. Instead of covering the entire surface of the oil surface 100a in the closed container 1 with a shield plate, a plane including the compressed gas blowing opening 10d and perpendicular to the rotating shaft 6 and including a compressed gas inlet 15a of the discharge pipe 15 and perpendicular to the rotating shaft 6 Since the shielding plate is provided only on the oil surface 100a in the range between the flat surface and the oil surface 100a, the oil plate 100 does not have a complicated shape, and the oil surface 100a is wound up by the compressed gas discharged into the closed container 1 from the compressed gas blowing opening 10d. Is effectively suppressed, and the amount of the lubricating oil scattered toward the upper part of the compressor provided with the discharge pipe 15 for discharging the compressed gas in the sealed container 1 to the outside of the sealed container 1 is reduced, so that the lubricating oil flows into the refrigeration circuit. Less lubricating oil.
[0019]
In this embodiment, the gas flow passage 10c and the compressed gas blowing opening 10d are the same as those of the first embodiment, and the effect of reducing the lubricating oil flowing into the refrigeration circuit is further increased. By providing the gas turbine 18, the effect of reducing the lubricating oil take-out can be obtained even if the gas flow path and the compressed gas blowing opening are not described in the first embodiment.
Although the case where the gas flow path 10c and the compressed gas blowing opening 10d are provided in the cylinder 10 has been described here, the gas flow path and the compressed gas blowing opening are provided in other components of the compression element section 12. Is also good.
[0020]
Embodiment 3 FIG.
Embodiment 3 will be described. In the present embodiment, the shortest distance between the compressed gas inlet 15a of the discharge pipe 15 for discharging the compressed gas in the closed container 1 to the outside of the closed container 1 and the compression element portion 12 as shown in FIG. It is provided below the inner diameter of the discharge pipe 15. Although the compressed gas enters the discharge pipe 15 through the shortest distance that is equal to or less than the inner diameter, since the shortest distance between the compressed gas inlet 15a of the discharge pipe 15 and the compression element portion 12 is equal to or less than the inner diameter of the discharge pipe 15, the compressed gas Since the compression element section 12 becomes an obstacle to the flow path and the mist-like lubricating oil contained in the compressed gas is separated, the lubricating oil flowing into the refrigeration circuit is reduced.
The same effect can be obtained by separately providing an obstacle in the flow path leading to the compressed gas inlet 15a of the discharge pipe 15 so that the narrow portion of the flow path is smaller than the inner diameter of the discharge pipe 15. Be up.
[0021]
In this embodiment, the gas flow passage 10c and the compressed gas blowing opening 10d are the same as those described in the first embodiment, and the effect of reducing the lubricating oil flowing into the refrigeration circuit is further increased. By using the compression element portion 12 as an obstacle to the gas flow path, the effect of reducing the lubricating oil take-out can be obtained even if the gas flow path and the compressed gas blowing opening are not described in the first embodiment. .
[0022]
The compressed gas blowing opening 10d according to the first embodiment, which is a characteristic component in each of the first, second, and third embodiments, is provided substantially at the center in the vertical direction with respect to the oil surface and the discharge pipe 15, and the compressed gas blowing direction is changed. It is oriented substantially horizontally with the oil surface, the shield plate 18 of the second embodiment is installed, and the shortest distance between the compressed gas inlet of the discharge pipe 15 and the compression element portion 12 of the third embodiment is equal to or less than the inner diameter of the discharge pipe 15. This has the effect of reducing the amount of lubricating oil taken out of the compressor by itself, but the effect is further increased by combining two or three of these elements.
By combining the characteristic components, the mist-like lubricating oil contained in the compressed gas discharged from the compressed gas blowing opening is first separated by collision with the inner wall surface of the closed container, and then the compressed gas Goes to the compressed gas inlet of the discharge pipe without winding up the oil level, and even immediately before the final discharge, the compression element part obstructs the gas flow path and the mist lubricating oil is separated, so the The effect of oil separation can be improved.
[0023]
【The invention's effect】
In the invention according to the first aspect, the electric element part and the compression element part housed in the closed container having the bottom as the oil storage part, and the compression for releasing the compressed gas compressed by the compression element part into the closed container. In a horizontal rotary compressor provided with a gas flow path provided in the element portion and a discharge pipe for discharging the compressed gas in the closed container to the outside of the closed container, at the end of the gas flow path provided in the compression element portion With respect to the provided compressed gas blowout opening, the oil level of the lubricating oil stored in the oil storage section, and the compressed gas inlet of the discharge pipe, the compressed gas blowout opening is substantially centered in the vertical direction between the oil level and the compressed gas inlet. And the compressed gas blowing direction to be discharged into the closed container is directed substantially horizontally with respect to the oil surface so as to discharge substantially perpendicularly to the rotation axis and not to wind up the oil surface. Released from Misty lubricant contained in the compressed gas is separated by the separation action due to the collision of the compressor housing inner wall surface. In addition, since the compressed gas does not wind up the oil surface of the lubricating oil and the head difference to the discharge pipe is ensured, the oil separation in the closed container is sufficiently performed and the lubrication that flows out into the refrigeration circuit Less oil.
[0024]
According to the second aspect of the present invention, in the horizontal rotary compressor according to the first aspect, a plane including a compressed gas blowout opening provided at an end of a gas flow path provided in the compression element portion and perpendicular to the rotation axis is provided. The shielding plate is provided on the oil surface in the range between the plane including the compressed gas inlet of the pipe and the plane perpendicular to the rotation axis, so that the shielding plate does not have a complicated shape and the oil surface can be wound up by the compressed gas. Since the amount of mist-like lubricating oil scattered in the closed container is reduced, the amount of lubricating oil flowing into the refrigeration circuit is reduced.
[0025]
In the invention according to claim 3, in the horizontal rotary compressor according to claim 1 or 2, the shortest distance between the compressed gas inlet of the discharge pipe and the compression element portion is equal to or less than the inner diameter of the discharge pipe. In the flow path, the compression element portion becomes an obstacle, and the atomized lubricating oil contained in the compressed gas is separated, so that the amount of lubricating oil flowing into the refrigeration circuit is reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a horizontal rotary compressor according to Embodiment 1 of the present invention.
FIG. 2 is a front view of a compression element portion of the horizontal rotary compressor according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a relationship between a discharge gas blowing direction angle and an oil circulation amount of the horizontal rotary compressor according to the first embodiment of the present invention.
FIG. 4 is a cross-sectional view of a main part of a horizontal rotary compressor according to Embodiment 2 of the present invention.
FIG. 5 is a sectional view of a main part of a horizontal rotary compressor according to Embodiment 3 of the present invention.
FIG. 6 is a sectional view of a main part showing an example of a conventional horizontal type rotary compressor.
FIG. 7 is a front view of a compression element portion showing an example of a conventional horizontal rotary compressor.
FIG. 8 is a cross-sectional view showing another example of a conventional horizontal rotary compressor.
FIG. 9 is a sectional view showing still another example of the conventional horizontal type rotary compressor.
[Explanation of symbols]
Reference Signs List 1 sealed container, 4 electric element part, 8a lubricating oil flow path, 10c gas flow path, 10d compressed gas blowing opening, 12 compression element part, 15 discharge pipe, 18 shield plate, 100 lubricating oil, 100a oil level.

Claims (3)

底が油貯留部となっている密閉容器内に収納された電動要素部及び圧縮要素部と、前記圧縮要素部によって圧縮された圧縮ガスを前記密閉容器内に放出する前記圧縮要素部に設けたガス流路と、密閉容器内の圧縮ガスを密閉容器外へ吐出する吐出パイプとを備えた横置形回転式圧縮機において、前記圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部と前記油貯留部に貯留された潤滑油の油面と前記吐出パイプの圧縮ガス入り口とに関して、前記圧縮ガス吹き出し開口部を油面と前記圧縮ガス入り口の上下方向で略中心に設け、かつ、前記密閉容器内に放出する圧縮ガス吹き出し方向を、回転軸に対して略垂直に放出するとともに油面を巻き上げないように油面と略水平に向けたことを特徴とする横置形回転式圧縮機。The electric element part and the compression element part housed in a closed container having a bottom as an oil storage part, and the compression element part discharging the compressed gas compressed by the compression element part into the closed container are provided. In a horizontal rotary compressor including a gas flow path and a discharge pipe that discharges a compressed gas in a closed container to the outside of the closed container, a compressed gas provided at an end of a gas flow path provided in the compression element portion. respect opening and front Symbol oil stored in the storage unit lubricating oil in the oil surface and blowing the compressed gas inlet of the discharge pipe, the compressed gas blowout opening substantially at the center in the vertical direction of the compressed gas inlet and the oil level The horizontal type wherein the compressed gas blowing direction to be discharged into the closed container is discharged substantially perpendicular to the rotation axis and oriented substantially horizontally with the oil surface so as not to wind up the oil surface. Rotary compressor. 記圧縮要素部に設けたガス流路の端部に設けた圧縮ガス吹き出し開口部を含み回転軸に垂直な平面と前記吐出パイプの圧縮ガス入り口を含み回転軸に垂直な平面との間にかかる範囲の油面上に遮板を設けたことを特徴とする請求項1記載の横置形回転式圧縮機。Between the front Symbol a plane perpendicular to the axis of rotation a plane perpendicular to the axis of rotation comprises a compressed gas blow-off opening provided at an end portion of the compression element portion provided with gas flow channel and comprises a compressed gas inlet of the discharge pipe 2. The horizontal rotary compressor according to claim 1 , wherein a shield plate is provided on the oil surface in the range. 記吐出パイプの圧縮ガス入り口と前記圧縮要素部からの最短距離を吐出パイプの内径以下としたことを特徴とする請求項1または請求項2記載の横置形回転式圧縮機。 Before Symbol claim 1 or claim 2 horizontal postfix rotary compressor according to the shortest distance, characterized in that not more than the inner diameter of the discharge pipe from the compression element portion and the compressed gas inlet of the discharge pipe.
JP27691498A 1998-09-30 1998-09-30 Horizontal rotary compressor Expired - Lifetime JP3572959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27691498A JP3572959B2 (en) 1998-09-30 1998-09-30 Horizontal rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27691498A JP3572959B2 (en) 1998-09-30 1998-09-30 Horizontal rotary compressor

Publications (2)

Publication Number Publication Date
JP2000104693A JP2000104693A (en) 2000-04-11
JP3572959B2 true JP3572959B2 (en) 2004-10-06

Family

ID=17576156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27691498A Expired - Lifetime JP3572959B2 (en) 1998-09-30 1998-09-30 Horizontal rotary compressor

Country Status (1)

Country Link
JP (1) JP3572959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113993B (en) * 2018-09-04 2024-06-14 珠海凌达压缩机有限公司 Horizontal compressor

Also Published As

Publication number Publication date
JP2000104693A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
US5391066A (en) Motor compressor with lubricant separation
CN100366913C (en) Horizontal rotary compressor
JP2004270668A (en) Hermetic compressor
JP2003293955A (en) Compressor
CN202789539U (en) Oil return device of scroll compressor
CN202732351U (en) Oil-gas separation device of scroll compressor
JP2003269336A (en) Compressor and oil separator
JP2009180106A (en) Scroll compressor
JP3572959B2 (en) Horizontal rotary compressor
JP2006336481A (en) Hermetic compressor
JP3633638B2 (en) Electric compressor
CN113202754A (en) Full-sealed horizontal scroll compressor with exhaust oil filtering structure
JP4261999B2 (en) Horizontal hermetic compressor
CN112576513A (en) Compressor and air conditioner
JP3007746B2 (en) Rotary compressor
JP2000097185A (en) Rotary compressor
JP2021080906A (en) Rotary compressor
CN114294232B (en) Oil separation device for reducing oil discharge rate and rotary compressor
JP2629178B2 (en) Electric compressor
JP2005264780A (en) Multi-stage rotary compressor
JPH07189964A (en) Closed type motor-driven compressor
JP2641782B2 (en) Rotary compressor
JPS63212794A (en) Rotary type compressor
KR100465736B1 (en) A reduction apparatus of exhaustion noise for rotary compressor
CN115898879A (en) Rolling piston type compressor and vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term