JP3957116B2 - Method of converting carbon dioxide with methane - Google Patents

Method of converting carbon dioxide with methane Download PDF

Info

Publication number
JP3957116B2
JP3957116B2 JP36022798A JP36022798A JP3957116B2 JP 3957116 B2 JP3957116 B2 JP 3957116B2 JP 36022798 A JP36022798 A JP 36022798A JP 36022798 A JP36022798 A JP 36022798A JP 3957116 B2 JP3957116 B2 JP 3957116B2
Authority
JP
Japan
Prior art keywords
mass
catalyst
molar ratio
earth metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36022798A
Other languages
Japanese (ja)
Other versions
JP2000178005A5 (en
JP2000178005A (en
Inventor
行徳 畑谷
豊 宮田
金次郎 斉藤
知博 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP36022798A priority Critical patent/JP3957116B2/en
Publication of JP2000178005A publication Critical patent/JP2000178005A/en
Publication of JP2000178005A5 publication Critical patent/JP2000178005A5/ja
Application granted granted Critical
Publication of JP3957116B2 publication Critical patent/JP3957116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、天然ガスの主成分であるメタンと、地球温暖化の主要な原因物質となっている二酸化炭素を用いて、工業的に有用な一酸化炭素と水素(以下、合成ガスと記す)を製造する方法に関する。
【0002】
【技術背景】
近年、炭酸ガスは、地球温暖化の主要原因物質の1つであることから、排出の削減、有効利用が緊急の課題とされている。
このため、炭酸ガスを有効利用する化学的変換方法が種々検討されている。これらのうち、メタンと二酸化炭素から、オレフィン類のヒドロホルミル化反応により、各種有機化合物を合成する際の原料やFT合成油の原料として有用な、合成ガスを製造する方法についても試みられている。この方法に用いられる触媒として、通常、VIII族金属が挙げられる。
【0003】
しかし、この種の触媒は、担体や活性成分である金属のシンタリングや、析出する炭素等により、安定した活性保持が困難という問題がある。
長時間活性を持続させるために高価な貴金属を多量に担持した触媒(特開平9−75728号公報)は、経済的に不利である。
【0004】
また、貴金属と同様にメタンによる二酸化炭素の変換に対する活性を有する安価なVIII族遷移金属、中でも高活性なニッケルを担持した触媒は、炭素析出傾向が強いため、活性低下や反応管の閉塞が起こり易いという問題がある。
このため、アルカリ土類金属等を添加する方法(特開平5−170403号公報、特開平9−25101号公報)が示されているが、メタン及び二酸化炭素転化活性が低下する。
【0005】
更に、効率的な合成ガスへの変換を達成するためには、高温度条件で使用することが有効とされているため、シンタリングにより触媒寿命が短くなることが懸念され、耐熱安定性にも優れる触媒開発が望まれる。
【0006】
【発明の目的】
そこで、本発明は、高価な金属の使用量が少ないにも拘らず、高い耐熱安定性を有し、かつ炭素析出が少なく、長時間安定して高い変換性能を持続できる触媒を用いて、メタン及び二酸化炭素を含有するガスから、効率的に一酸化炭素と水素を製造する方法を提供することを目的とする。
【0007】
【発明の概要】
上記目的を達成するために、本発明の二酸化炭素の変換方法は、メタン及び二酸化炭素を含有するガスを触媒に接触させて合成ガス(一酸化炭素と水素)を製造する方法であって、担体に希土類金属酸化物、アルカリ土類金属酸化物、ニッケル、及び微量のロジウムを所定量で担持し、希土類金属担持後に1000〜1100℃で焼成してなる触媒を用いることを特徴とする。
本発明の方法によれば、経済的な不利益を与えることなく、長期間効率良く、一酸化炭素及び水素を製造できる。
【0008】
本発明で用いるメタンは、メタン単独、メタン含有ガスのいずれでもよい。メタン含有ガスは、例えば、天然ガス、代替天然ガスが挙げられ、メタンの他に、エタン、プロパン等の飽和炭化水素;エチレン、プロピレン、ブテン等の不飽和炭化水素;二酸化炭素、微量の硫化水素、水素、1〜20モル%の一酸化炭素、窒素、空気、水蒸気等を含んでいてもよい。
二酸化炭素は、どのようなものでもよく、例えば、COを含有する天然ガス、火力発電排ガスが挙げられ、COの他に、メタン、エタン、プロパン等の飽和炭化水素;エチレン、プロピレン、ブテン等の不飽和炭化水素;微量の硫化水素、水素、一酸化炭素、空気、水蒸気等を含んでいてもよい。
【0009】
本発明の原料ガスであるメタン及び二酸化炭素を含有するガスは、上記のようなメタン又はメタン含有ガスと、二酸化炭素又は二酸化炭素含有ガスとの混合ガス、あるいはメタン含有ガスや二酸化炭素含有ガス中に、二酸化炭素やメタンが所定量で含まれている場合は、そのままで使用することができる。
これらのメタン及び二酸化炭素を含有するガスにおけるメタン/二酸化炭素のモル比は、0.05〜25、好ましくは0.1〜20、より好ましくは0.2〜10が適している。
0.05未満では二酸化炭素量が多くなって水素の生成量が減少し、25を越えると十分な一酸化炭素生成速度が得られないばかりか、炭素析出も多くなる。
【0010】
また、広範囲の水素/一酸化炭素比を有する合成ガスを得るために、原料ガスと共に、水蒸気を同時に供給することもできる。
すなわち、本発明の方法において、反応系内に、二酸化炭素及びメタンと共に水蒸気が存在していると、メタンに加え、水蒸気も水素源として作用することができるため、水蒸気濃度を調整することにより、各種用途に応じた組成を持つ合成ガスを得ることができる。
水蒸気の供給量は、S/C(水蒸気/メタンモル比)で、0.1〜3、好ましくは0.5〜1.5が好適である。
0.1未満では水素の生成量が減少し、3を超えると二酸化炭素の転化率の低下や生産効率の低下が生じる。
【0011】
本発明で用いる触媒の担体は、γ−アルミナやη−アルミナ等の高表面積のアルミナが好適である。
このアルミナとしては、アルミナ単独のほか、シリカ、ジルコニア、チタニア、ニオビア、結晶性アルミナシリケート等の金属酸化物を含むものであってもよい。
【0012】
上記担体に担持させる成分(以下、「担持成分」「活性成分」「活性金属」等と記すこともある)のうち希土類金属酸化物は、酸化イットリウム、酸化ランタン等が好ましい。
ニッケルに対する希土類金属酸化物のモル比(希土類金属酸化物/Ni)は、0.01〜1、好ましくは0.03〜0.3であり、全触媒中の希土類金属酸化物の担持量は、1〜5質量%、好ましくは2〜4.5である。
希土類金属酸化物/Niモル比が0.01未満であったり、全触媒中の希土類金属酸化物担持量が1質量%未満では、希土類金属酸化物の担持効果が不十分となり、希土類金属酸化物/Niモル比が1を超えたり、全触媒中の希土類金属酸化物担持量が5質量%を超えても、その担持効果は飽和する。
【0013】
希土類金属酸化物を添加する方法は、特に制限されず、例えば、含浸法、共沈法、ゾル・ゲル法等公知の担持方法を用いることができる。
例えば、アルミナ成型物を希土類金属塩を含む水溶液に浸漬し、乾燥、焼成する方法;アルミニウム及び希土類金属塩を含む水溶液にアンモニウムを加えて沈殿を形成させ、得られたゲルを乾燥、焼成する方法;アルミニウムアルコキシドを希土類金属塩水溶液を用いて加水分解し、沈殿を得、乾燥、焼成する方法等が挙げられる。
このときの焼成温度は、触媒に高い耐熱安定性を保持させるため、1000〜1100℃とする。
【0014】
担持成分のうちのアルカリ土類金属酸化物は、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウムが好ましい。
ニッケルに対するアルカリ土類金属酸化物のモル比(アルカリ土類金属酸化物/Ni)は、0.3〜20、好ましくは0.3〜3、より好ましくは0.3〜1とする。
0.3未満ではアルカリ土類金属の担持効果が不十分となり、20を超えると触媒活性が却って低下する。
【0015】
アルカリ土類金属酸化物を担持する方法は、特に制限されず、例えば、含浸法、共沈法、ゾル・ゲル法等公知の担持方法を用いることができる。
例えば、前記の方法で希土類金属酸化物を担持したアルミナ成型物を、アルカリ土類金属塩を含む水溶液に浸漬し、乾燥、焼成する方法;アルミニウム、希土類金属塩及びアルカリ土類金属塩を含む水溶液にアンモニウムを加えて沈殿を形成させ、得られたゲルを乾燥、焼成する方法;アルミニウムアルコキシドを希土類金属塩及びアルカリ土類金属塩を含む水溶液を用いて加水分解し、沈殿を得、乾燥、焼成する方法等が挙げられる。
【0016】
活性成分のうちニッケルとロジウムは、ニッケルに対するロジウムのモル比(Rh/Ni)が0.005〜0.4、好ましくは0.005〜0.1、より好ましくは0.01〜0.1となるように担持させる。
0.005未満ではRhの担持効果が小さく、0.4を超えてもRhの担持効果が飽和して経済的に不利となる。
ニッケルとロジウムを担持させる方法は、特に制限されず、例えば、含浸法、共沈法、ゾル・ゲル法等公知の方法を用いることができる。
例えば、前記の方法で希土類金属酸化物及びアルカリ土類金属酸化物を担持したアルミナ成型物を、ニッケル塩及びロジウム塩等を含む水溶液に浸漬し、乾燥、焼成する方法;アルミニウム(担体)、希土類金属塩、ニッケル及びロジウム塩を含む水溶液に、アルカリ土類金属水溶液を加えて沈殿を形成させ、得られたゲルを乾燥、焼成する方法等が挙げられる。
【0017】
最終的に、触媒中の希土類金属酸化物、アルカリ土類金属酸化物、ニッケル酸化物、及びロジウム金属又はロジウム酸化物の総担持量が5〜30質量%とする。5質量%未満では十分な触媒性能が得られず、30質量%を超えても期待されるほどの担持効果が得られない。
【0018】
本発明の方法では、触媒は還元して用い、この還元は、還元ガスにより行えばよく、前記のような触媒の調製工程で(具体的には、焼成工程後に)行ってもよいし、還元前の触媒を本発明の方法を実施する反応器内に固定し、乾燥後に、反応器内で行ってもよい。
還元ガスとしては、純水素、一酸化炭素、これらを含む混合ガスを用いることができ、特に水素ガスを用いるのが好ましい。
還元は、メタン及び二酸化炭素を触媒に接触させるときの反応温度で行うことができるが、担持させる活性金属が凝集しないよう100〜180℃程度の低温で行うこともできる。
【0019】
本発明の方法は、以上説明した触媒に、メタン及び二酸化炭素を含有するガスを接触させることにより行われる。
このときの反応温度は、下限値が300〜400℃の範囲、上限値が1000〜900℃の範囲が好ましい(言い換えれば、300〜1000℃、好ましくは400〜900℃が好ましい)。300℃未満ではメタン及び二酸化炭素の十分な転化率が得られず、1000℃を超えると、触媒のシンタリングによる活性の低下が懸念される。
反応圧力は、特に制限されず、下限値は常圧程度、上限値は40〜20気圧程度が適している(言い換えれば、常圧〜40気圧、好ましくは常圧〜40気圧が適している)。
原料ガスの供給速度は、GHSVで、下限値が500〜5,000h−1の範囲、上限値が500,000〜300,000h−1の範囲が適している(言い換えれば、500〜500,000h−1、好ましくは5,000〜300,000h−1が適している)。500h−1未満では一酸化炭素の生成速度が小さく、500,000h−1を超えると原料の転化率が低下する。
反応方式は、触媒と原料が効率的に接触できれば特に制限されず、例えば、固定床、流動床、移動床が採用できる。
【0020】
【実施例】
実施例1
16〜28メッシュに整粒したアルミナ(水沢化学社製商品名“GB−45”)20gを、純水15mlに硝酸ランタン6水和物2.8gを溶解した水溶液に60℃で30分間浸漬後、ロータリエバポレータで蒸発乾固し、その後110℃で11時間乾燥し、1000℃で3時間焼成して、酸化ランタンを担持したアルミナ担体を得た。
次いで、この酸化ランタン添加アルミナ担体の全量を、純水10mlに硝酸マグネシウム6水和物6.7gを溶解した水溶液に60℃で30分間浸漬後、ロータリエバポレータで蒸発乾固し、その後110℃で11時間乾燥し、900℃で3時間焼成して、酸化マグネシウムを担持した。
続いて、この酸化ランタン及び酸化マグネシウム担持アルミナ担体の全量を、純水10mlに硝酸ニッケル6水和物12.5gと酢酸ロジウム0.35gとを溶解した水溶液に60℃で30分浸漬後、ロータリエバポレータで蒸発乾固し、その後110℃で11時間乾燥し、900℃で3時間焼成して、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Aを得た。
触媒AのRh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0.1である。
【0021】
約1gの触媒Aを蒸発皿に量り取り、大気圧下、空気中、1100℃で24時間の耐熱性試験を実施した。
試験前後の触媒A約0.3gを用いて、比表面積を窒素吸着法により測定した。結果を表1に示す。
【0022】
実施例2
硝酸ランタン担持後の焼成処理を1100℃で1時間とした以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Bを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0.1である。
1gの触媒Bを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0023】
実施例3
硝酸ランタン6水和物に代えて、硝酸イットリウム6水和物を5.7g用いた以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、酸化イットリウム4.2質量%、及びアルミナ80.8質量%からなる触媒Cを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、Y/Niモル比は0.14である。
1gの触媒Cを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0024】
実施例4
硝酸マグネシウム6水和物に代えて、硝酸カルシウム4水和物を4.4g用いた以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化カルシウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Dを得た。
Rh/Niモル比は0.04、CaO/Niモル比は0.6、La/Niモル比は0.1である。
1gの触媒Dを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0025】
実施例5
硝酸マグネシウム6水和物に代えて、無水硝酸ストロンチウムを2.2g用いた以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化ストロンチウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Eを得た。
Rh/Niモル比は0.04、SrO/Niモル比は0.3、La/Niモル比は0.1である。
1gの触媒Eを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0026】
比較例1
担体アルミナを1000℃で3時間焼成し、硝酸ランタンを使用しなかった以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、アルミナ85.0質量%からなる触媒Fを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0である。
1gの触媒Fを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0027】
比較例2
硝酸ランタンを使用せず、マグネシウム担持後の焼成温度を1000℃とした以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、アルミナ85.0質量%からなる触媒Gを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0である。
1gの触媒Gを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0028】
比較例3
ランタン担持後の焼成温度を900℃とした以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Hを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0.1である。
1gの触媒Hを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0029】
比較例4
ランタン、マグネシウム、ニッケル及びロジウムそれぞれの担持後の焼成温度をそれぞれ700℃とした以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化マグネシウム4.5質量%、酸化ランタン4.2質量%、及びアルミナ80.8質量%からなる触媒Iを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0.8、La/Niモル比は0.1である。
1gの触媒Iを用い、実施例1と同様にして耐熱性試験を実施した。結果を表1に示す。
【0030】
実施例6〜10
15mgの触媒A(実施例6)、B(実施例7)、C(実施例8)、D(実施例9)、E(実施例10)を熱天秤に秤取り、先ず、常圧・水素雰囲気下、900℃で1時間還元処理を行った。
次いで、ヘリウム雰囲気に切り換え850℃、10気圧の条件とした後、ヘリウム供給を停止し、メタン/二酸化炭素モル比=1/0.5及び、水蒸気/メタンモル比=0.5/1となるように、純水を気化・混合した原料ガス(120ml/min)を導入し、3時間反応試験を行った。
触媒重量の増加量から炭素析出量を評価すると共に、水素及び一酸化炭素の生成量を四重極型質量分析計により評価した。
水素及び一酸化炭素の生成量は、下記の比較例5の各ガスの生成量を基準として、相対的に評価した。結果を表2に示す。
【0031】
比較例5
酢酸ロジウムを使用しなかった以外は実施例1と同様にして、酸化ニッケル10質量%、酸化マグネシウム4.5質量%、酸化ランタン4.2質量%、アルミナ81.3質量%からなる触媒Jを得た。
Rh/Niモル比は0、MgO/Niモル比は0.8、La/Niモル比は0.1である。
15mgの触媒Jを用い、実施例6と同様の評価試験を実施した。結果を表2に示す。
【0032】
比較例6
硝酸マグネシウムを使用しなかった以外は実施例1と同様にして、酸化ニッケル10質量%、ロジウム0.5質量%、酸化ランタン4.2質量%、アルミナ85.3質量%からなる触媒Kを得た。
Rh/Niモル比は0.04、MgO/Niモル比は0、La/Niモル比は0.1である。
15mgの触媒Kを用い、実施例6と同様にして評価試験を実施した。結果を表2に示す。
【0033】
比較例7、8
15mgの触媒F(比較例7)、I(比較例8)を用い、実施例6と同様にして評価試験を実施した。結果を表2に示す。
【0034】
実施例11〜13
1.5gの触媒A(実施例11)、D(実施例12)、E(実施例13)をそれぞれ、内径19mmのインコネル製反応管に、層高20mmになるように触媒と同じ粒度の石英片で希釈して充填し、水素雰囲気下、900℃で2時間還元処理を行った。
次いで、メタン/二酸化炭素モル比=1/1及び、水蒸気/メタンモル比=1/1となるように、純水を気化・混合してGHSV210,000h−1の条件で反応管に導入した。
反応温度850℃、反応圧力10気圧にて、性能評価を実施した。
このときの反応生成ガスを、その中に含まれる水分を除去した後、ガスクロマトグラフで分析した。結果を表3に示す。
【0035】
比較例9〜11
1.5gの触媒F(比較例9)、H(比較例10)、J(比較例11)を用い、実施例11と同様にして評価試験を実施した。結果を表3に示す。
【0036】
【表1】

Figure 0003957116
1)比表面積保持率(%)
=〔(試験後比表面積)/(試験前比表面積)〕×100
【0037】
【表2】
Figure 0003957116
【0038】
【表3】
Figure 0003957116
【0039】
表1から、本発明の方法に係る触媒A、B、C、D、Eは、比較触媒F、G、H、Iに比べ、耐熱安定性が高いことが判る。
また、表2、3から、本発明の方法に係る耐熱安定性の高い触媒は、比較触媒に比べ、メタンによる二酸化炭素の、一酸化炭素及び水素への高い転化活性を長時間持続でき、更に炭素も析出し難いことが判る。
【0040】
【発明の効果】
本発明の方法によれば、用いる触媒が、耐熱安定性が高く、かつ炭素が析出し難いばかりか、メタンによる二酸化炭素の転化活性が高く、一酸化炭素及び水素を長期間効率良く得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention uses industrially useful carbon monoxide and hydrogen (hereinafter referred to as synthesis gas) using methane, which is the main component of natural gas, and carbon dioxide, which is a major cause of global warming. It relates to a method of manufacturing.
[0002]
[Technical background]
In recent years, since carbon dioxide is one of the main causative substances of global warming, reduction of emission and effective use are regarded as urgent issues.
For this reason, various chemical conversion methods that effectively utilize carbon dioxide gas have been studied. Of these, attempts have also been made to produce synthesis gas, which is useful as a raw material for synthesizing various organic compounds or a raw material for FT synthetic oil, from methane and carbon dioxide by hydroformylation of olefins. As the catalyst used in this method, a Group VIII metal is usually mentioned.
[0003]
However, this type of catalyst has a problem that it is difficult to maintain a stable activity due to sintering of a carrier or a metal as an active component, precipitated carbon, and the like.
A catalyst (Japanese Patent Laid-Open No. 9-75728) carrying a large amount of an expensive noble metal in order to maintain the activity for a long time is economically disadvantageous.
[0004]
In addition, as in the case of noble metals, inexpensive group VIII transition metals having activity for the conversion of carbon dioxide by methane, especially catalysts carrying highly active nickel, have a strong tendency to deposit carbon, resulting in decreased activity and clogging of reaction tubes. There is a problem that it is easy.
For this reason, a method of adding an alkaline earth metal or the like (JP-A-5-170403, JP-A-9-25101) is shown, but the methane and carbon dioxide conversion activity is lowered.
[0005]
Furthermore, in order to achieve efficient conversion to synthesis gas, it is effective to use at high temperature conditions, so there is a concern that the catalyst life may be shortened by sintering, and heat stability is also improved. An excellent catalyst development is desired.
[0006]
OBJECT OF THE INVENTION
Therefore, the present invention uses a catalyst that has high heat stability, low carbon deposition, and can maintain high conversion performance for a long period of time despite the small amount of expensive metal used. Another object is to provide a method for efficiently producing carbon monoxide and hydrogen from a gas containing carbon dioxide.
[0007]
SUMMARY OF THE INVENTION
In order to achieve the above object, the carbon dioxide conversion method of the present invention is a method for producing synthesis gas (carbon monoxide and hydrogen) by bringing a gas containing methane and carbon dioxide into contact with a catalyst. The catalyst is characterized in that a rare earth metal oxide, an alkaline earth metal oxide, nickel, and a small amount of rhodium are supported in a predetermined amount and calcined at 1000 to 1100 ° C. after the rare earth metal is supported.
According to the method of the present invention, carbon monoxide and hydrogen can be produced efficiently for a long period of time without causing an economic disadvantage.
[0008]
The methane used in the present invention may be either methane alone or a methane-containing gas. Examples of the methane-containing gas include natural gas and alternative natural gas. In addition to methane, saturated hydrocarbons such as ethane and propane; unsaturated hydrocarbons such as ethylene, propylene and butene; carbon dioxide and trace amounts of hydrogen sulfide , Hydrogen, 1 to 20 mol% carbon monoxide, nitrogen, air, water vapor and the like.
Any carbon dioxide may be used, and examples thereof include natural gas containing CO 2 and thermal power generation exhaust gas. In addition to CO 2 , saturated hydrocarbons such as methane, ethane, and propane; ethylene, propylene, butene Unsaturated hydrocarbons such as hydrogen sulfide, hydrogen, carbon monoxide, air, water vapor and the like.
[0009]
The gas containing methane and carbon dioxide, which is the raw material gas of the present invention, is a mixed gas of methane or methane-containing gas as described above and carbon dioxide or carbon dioxide-containing gas, or methane-containing gas or carbon dioxide-containing gas. In addition, when carbon dioxide or methane is contained in a predetermined amount, it can be used as it is.
The molar ratio of methane / carbon dioxide in the gas containing methane and carbon dioxide is suitably 0.05 to 25, preferably 0.1 to 20, and more preferably 0.2 to 10.
If it is less than 0.05, the amount of carbon dioxide increases and the amount of hydrogen produced decreases, and if it exceeds 25, a sufficient carbon monoxide production rate cannot be obtained, and carbon deposition also increases.
[0010]
Further, in order to obtain a synthesis gas having a wide range of hydrogen / carbon monoxide ratio, water vapor can be supplied simultaneously with the raw material gas.
That is, in the method of the present invention, if water vapor is present together with carbon dioxide and methane in the reaction system, in addition to methane, water vapor can also act as a hydrogen source, so by adjusting the water vapor concentration, A synthesis gas having a composition corresponding to various uses can be obtained.
The supply amount of water vapor is S / C (water vapor / methane molar ratio), 0.1 to 3, preferably 0.5 to 1.5.
If it is less than 0.1, the amount of hydrogen produced decreases, and if it exceeds 3, the conversion rate of carbon dioxide decreases and the production efficiency decreases.
[0011]
The catalyst carrier used in the present invention is preferably alumina with a high surface area such as γ-alumina or η-alumina.
As the alumina, in addition to alumina alone, a metal oxide such as silica, zirconia, titania, niobia, crystalline alumina silicate and the like may be included.
[0012]
Of the components supported on the carrier (hereinafter sometimes referred to as “supported component”, “active component”, “active metal”, etc.), the rare earth metal oxide is preferably yttrium oxide or lanthanum oxide.
The molar ratio of the rare earth metal oxide to nickel (rare earth metal oxide / Ni) is 0.01 to 1, preferably 0.03 to 0.3, and the supported amount of the rare earth metal oxide in the entire catalyst is: 1-5 mass%, Preferably it is 2-4.5.
If the rare earth metal oxide / Ni molar ratio is less than 0.01 or the amount of the rare earth metal oxide supported in the total catalyst is less than 1% by mass, the effect of supporting the rare earth metal oxide becomes insufficient, and the rare earth metal oxide Even when the / Ni molar ratio exceeds 1 or the supported amount of rare earth metal oxide in all the catalysts exceeds 5% by mass, the supporting effect is saturated.
[0013]
The method for adding the rare earth metal oxide is not particularly limited, and for example, a known supporting method such as an impregnation method, a coprecipitation method, or a sol / gel method can be used.
For example, a method in which an alumina molding is immersed in an aqueous solution containing a rare earth metal salt, dried and fired; a method in which ammonium is added to an aqueous solution containing aluminum and a rare earth metal salt to form a precipitate, and the resulting gel is dried and fired A method of hydrolyzing aluminum alkoxide using a rare earth metal salt aqueous solution to obtain a precipitate, drying and baking, and the like.
The firing temperature at this time is set to 1000 to 1100 ° C. in order to keep the catalyst having high heat stability.
[0014]
Of the supported components, the alkaline earth metal oxide is preferably magnesium oxide, calcium oxide, strontium oxide, or barium oxide.
The molar ratio of alkaline earth metal oxide to nickel (alkaline earth metal oxide / Ni) is 0.3 to 20, preferably 0.3 to 3, and more preferably 0.3 to 1.
If it is less than 0.3, the effect of supporting alkaline earth metal is insufficient, and if it exceeds 20, the catalytic activity is decreased.
[0015]
The method for supporting the alkaline earth metal oxide is not particularly limited, and known supporting methods such as an impregnation method, a coprecipitation method, and a sol / gel method can be used.
For example, a method in which an alumina molded article supporting a rare earth metal oxide by the above method is dipped in an aqueous solution containing an alkaline earth metal salt, dried and fired; an aqueous solution containing aluminum, a rare earth metal salt and an alkaline earth metal salt A method in which ammonium is added to form a precipitate, and the resulting gel is dried and fired; aluminum alkoxide is hydrolyzed using an aqueous solution containing a rare earth metal salt and an alkaline earth metal salt to obtain a precipitate, and then dried and fired. And the like.
[0016]
Among the active ingredients, nickel and rhodium have a molar ratio of rhodium to nickel (Rh / Ni) of 0.005 to 0.4, preferably 0.005 to 0.1, more preferably 0.01 to 0.1. It is made to carry so that it may become.
If it is less than 0.005, the effect of carrying Rh is small, and if it exceeds 0.4, the effect of carrying Rh is saturated, which is economically disadvantageous.
The method for supporting nickel and rhodium is not particularly limited, and known methods such as an impregnation method, a coprecipitation method, and a sol-gel method can be used.
For example, a method in which an alumina molded product supporting a rare earth metal oxide and an alkaline earth metal oxide by the above method is immersed in an aqueous solution containing a nickel salt, a rhodium salt, etc., dried and fired; aluminum (support), rare earth Examples include a method in which an alkaline earth metal aqueous solution is added to an aqueous solution containing a metal salt, nickel and rhodium salt to form a precipitate, and the resulting gel is dried and fired.
[0017]
Finally, the total supported amount of the rare earth metal oxide, alkaline earth metal oxide, nickel oxide, and rhodium metal or rhodium oxide in the catalyst is 5 to 30% by mass. If it is less than 5% by mass, sufficient catalyst performance cannot be obtained, and if it exceeds 30% by mass, the expected loading effect cannot be obtained.
[0018]
In the method of the present invention, the catalyst is used after being reduced, and this reduction may be performed with a reducing gas, and may be performed in the catalyst preparation step as described above (specifically, after the calcination step). The previous catalyst may be fixed in a reactor for carrying out the process of the present invention, and may be carried out in the reactor after drying.
As the reducing gas, pure hydrogen, carbon monoxide, or a mixed gas containing these can be used, and hydrogen gas is particularly preferable.
The reduction can be performed at a reaction temperature when methane and carbon dioxide are brought into contact with the catalyst, but can also be performed at a low temperature of about 100 to 180 ° C. so that the active metal to be supported does not aggregate.
[0019]
The method of the present invention is carried out by bringing a gas containing methane and carbon dioxide into contact with the catalyst described above.
The reaction temperature at this time is preferably in the range of 300 to 400 ° C. for the lower limit and 1000 to 900 ° C. for the upper limit (in other words, 300 to 1000 ° C., preferably 400 to 900 ° C.). If the temperature is lower than 300 ° C., sufficient conversion rates of methane and carbon dioxide cannot be obtained, and if it exceeds 1000 ° C., there is a concern that the activity may be reduced due to sintering of the catalyst.
The reaction pressure is not particularly limited, and the lower limit is about normal pressure, and the upper limit is about 40 to 20 atmospheres (in other words, normal pressure to 40 atmospheres, preferably normal pressure to 40 atmospheres). .
The feed rate of the source gas is GHSV, and the lower limit value is in the range of 500 to 5,000 h −1 and the upper limit value is in the range of 500,000 to 300,000 h −1 (in other words, 500 to 500,000 h. -1 , preferably 5,000 to 300,000 h -1 ). Small production rate of carbon monoxide is less than 500h -1, feed conversion ratio decreases exceeds 500,000 -1.
The reaction method is not particularly limited as long as the catalyst and the raw material can be efficiently contacted, and for example, a fixed bed, a fluidized bed, or a moving bed can be adopted.
[0020]
【Example】
Example 1
After immersing 20 g of alumina (trade name “GB-45” manufactured by Mizusawa Chemical Co., Ltd.) adjusted to 16 to 28 mesh in an aqueous solution of 2.8 g of lanthanum nitrate hexahydrate dissolved in 15 ml of pure water at 60 ° C. for 30 minutes. The mixture was evaporated to dryness with a rotary evaporator, then dried at 110 ° C. for 11 hours, and calcined at 1000 ° C. for 3 hours to obtain an alumina support carrying lanthanum oxide.
Next, the entire amount of the lanthanum oxide-added alumina carrier was immersed in an aqueous solution in which 6.7 g of magnesium nitrate hexahydrate was dissolved in 10 ml of pure water at 60 ° C. for 30 minutes, and then evaporated to dryness with a rotary evaporator. It was dried for 11 hours and calcined at 900 ° C. for 3 hours to carry magnesium oxide.
Subsequently, the entire amount of the lanthanum oxide and magnesium oxide-supported alumina carrier was immersed in an aqueous solution in which 12.5 g of nickel nitrate hexahydrate and 0.35 g of rhodium acetate were dissolved in 10 ml of pure water at 60 ° C. for 30 minutes. 3. Evaporate to dryness with an evaporator, then dry at 110 ° C. for 11 hours, and calcined at 900 ° C. for 3 hours to obtain nickel oxide 10% by mass, rhodium 0.5% by mass, magnesium oxide 4.5% by mass, lanthanum oxide. Catalyst A comprising 2% by mass and 80.8% by mass of alumina was obtained.
Catalyst A has a Rh / Ni molar ratio of 0.04, a MgO / Ni molar ratio of 0.8, and a La 2 O 3 / Ni molar ratio of 0.1.
[0021]
About 1 g of Catalyst A was weighed into an evaporating dish and subjected to a heat resistance test for 24 hours at 1100 ° C. in air under atmospheric pressure.
Using about 0.3 g of catalyst A before and after the test, the specific surface area was measured by the nitrogen adsorption method. The results are shown in Table 1.
[0022]
Example 2
3. Nickel oxide 10% by mass, rhodium 0.5% by mass, magnesium oxide 4.5% by mass, lanthanum oxide 4. The calcination treatment after supporting lanthanum nitrate was changed to 1100 ° C. for 1 hour. Catalyst B consisting of 2% by mass and 80.8% by mass of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.1.
Using 1 g of Catalyst B, the heat resistance test was performed in the same manner as in Example 1. The results are shown in Table 1.
[0023]
Example 3
Instead of lanthanum nitrate hexahydrate, nickel oxide 10% by mass, rhodium 0.5% by mass, magnesium oxide 4.5% in the same manner as in Example 1 except that 5.7 g of yttrium nitrate hexahydrate was used. Catalyst C consisting of 4% by mass, 4.2% by mass of yttrium oxide, and 80.8% by mass of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the Y 2 O 3 / Ni molar ratio is 0.14.
A heat resistance test was conducted in the same manner as in Example 1 using 1 g of Catalyst C. The results are shown in Table 1.
[0024]
Example 4
10% by mass of nickel oxide, 0.5% by mass of rhodium, 4.5% of calcium oxide were used in the same manner as in Example 1 except that 4.4 g of calcium nitrate tetrahydrate was used instead of magnesium nitrate hexahydrate. A catalyst D consisting of 4% by mass, 4.2% by mass of lanthanum oxide, and 80.8% by mass of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the CaO / Ni molar ratio is 0.6, and the La 2 O 3 / Ni molar ratio is 0.1.
A heat resistance test was conducted in the same manner as in Example 1 using 1 g of the catalyst D. The results are shown in Table 1.
[0025]
Example 5
Instead of magnesium nitrate hexahydrate, nickel oxide 10% by mass, rhodium 0.5% by mass, strontium oxide 4.5% by mass, except that 2.2 g of anhydrous strontium nitrate was used. A catalyst E composed of 4.2% by mass of lanthanum oxide and 80.8% by mass of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the SrO / Ni molar ratio is 0.3, and the La 2 O 3 / Ni molar ratio is 0.1.
A heat resistance test was conducted in the same manner as in Example 1 using 1 g of Catalyst E. The results are shown in Table 1.
[0026]
Comparative Example 1
The carrier alumina was calcined at 1000 ° C. for 3 hours and the same procedure as in Example 1 except that lanthanum nitrate was not used. Nickel oxide 10% by mass, rhodium 0.5% by mass, magnesium oxide 4.5% by mass, alumina Catalyst F consisting of 85.0% by mass was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.
A heat resistance test was conducted in the same manner as in Example 1 using 1 g of Catalyst F. The results are shown in Table 1.
[0027]
Comparative Example 2
10% by mass of nickel oxide, 0.5% by mass of rhodium, 4.5% by mass of magnesium oxide, alumina, except that lanthanum nitrate was not used and the firing temperature after supporting magnesium was 1000 ° C. A catalyst G consisting of 85.0% by mass was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.
Using 1 g of catalyst G, a heat resistance test was performed in the same manner as in Example 1. The results are shown in Table 1.
[0028]
Comparative Example 3
Except for setting the calcination temperature after supporting lanthanum to 900 ° C., in the same manner as in Example 1, nickel oxide 10% by mass, rhodium 0.5% by mass, magnesium oxide 4.5% by mass, lanthanum oxide 4.2% by mass, And the catalyst H which consists of 80.8 mass% of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.1.
Using 1 g of catalyst H, the heat resistance test was performed in the same manner as in Example 1. The results are shown in Table 1.
[0029]
Comparative Example 4
10% by mass of nickel oxide, 0.5% by mass of rhodium, 4.5% by mass of magnesium oxide in the same manner as in Example 1 except that the firing temperature after supporting each of lanthanum, magnesium, nickel and rhodium was 700 ° C. Then, Catalyst I consisting of 4.2% by mass of lanthanum oxide and 80.8% by mass of alumina was obtained.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.1.
A heat resistance test was conducted in the same manner as in Example 1 using 1 g of Catalyst I. The results are shown in Table 1.
[0030]
Examples 6-10
15 mg of catalyst A (Example 6), B (Example 7), C (Example 8), D (Example 9), and E (Example 10) were weighed on a thermobalance. Reduction treatment was performed at 900 ° C. for 1 hour in an atmosphere.
Next, after switching to a helium atmosphere and setting the conditions to 850 ° C. and 10 atm, the helium supply is stopped, so that the methane / carbon dioxide molar ratio = 1 / 0.5 and the water vapor / methane molar ratio = 0.5 / 1. A raw material gas (120 ml / min) in which pure water was vaporized and mixed was introduced, and a reaction test was conducted for 3 hours.
The amount of carbon deposition was evaluated from the amount of increase in the catalyst weight, and the production amounts of hydrogen and carbon monoxide were evaluated by a quadrupole mass spectrometer.
The production amounts of hydrogen and carbon monoxide were relatively evaluated based on the production amounts of each gas of Comparative Example 5 below. The results are shown in Table 2.
[0031]
Comparative Example 5
Except that rhodium acetate was not used, in the same manner as in Example 1, a catalyst J comprising 10% by mass of nickel oxide, 4.5% by mass of magnesium oxide, 4.2% by mass of lanthanum oxide, and 81.3% by mass of alumina was obtained. Obtained.
The Rh / Ni molar ratio is 0, the MgO / Ni molar ratio is 0.8, and the La 2 O 3 / Ni molar ratio is 0.1.
The same evaluation test as in Example 6 was performed using 15 mg of Catalyst J. The results are shown in Table 2.
[0032]
Comparative Example 6
Except not using magnesium nitrate, the catalyst K which consists of nickel oxide 10 mass%, rhodium 0.5 mass%, lanthanum oxide 4.2 mass%, and alumina 85.3 mass% was obtained in the same manner as in Example 1. It was.
The Rh / Ni molar ratio is 0.04, the MgO / Ni molar ratio is 0, and the La 2 O 3 / Ni molar ratio is 0.1.
An evaluation test was carried out in the same manner as in Example 6 using 15 mg of Catalyst K. The results are shown in Table 2.
[0033]
Comparative Examples 7 and 8
An evaluation test was carried out in the same manner as in Example 6 using 15 mg of Catalyst F (Comparative Example 7) and I (Comparative Example 8). The results are shown in Table 2.
[0034]
Examples 11-13
1.5 g of catalyst A (Example 11), D (Example 12), and E (Example 13) were each placed in an Inconel reaction tube having an inner diameter of 19 mm and quartz having the same particle size as the catalyst so as to have a layer height of 20 mm. Diluted and filled with a piece, a reduction treatment was performed at 900 ° C. for 2 hours in a hydrogen atmosphere.
Subsequently, pure water was vaporized and mixed so that the methane / carbon dioxide molar ratio = 1/1 and the water vapor / methane molar ratio = 1/1, and introduced into the reaction tube under the condition of GHSV 210,000 h −1 .
Performance evaluation was performed at a reaction temperature of 850 ° C. and a reaction pressure of 10 atm.
The reaction product gas at this time was analyzed with a gas chromatograph after removing moisture contained therein. The results are shown in Table 3.
[0035]
Comparative Examples 9-11
An evaluation test was conducted in the same manner as in Example 11 using 1.5 g of Catalyst F (Comparative Example 9), H (Comparative Example 10), and J (Comparative Example 11). The results are shown in Table 3.
[0036]
[Table 1]
Figure 0003957116
1) Specific surface area retention rate (%)
= [(Specific surface area after test) / (Specific surface area before test)] x 100
[0037]
[Table 2]
Figure 0003957116
[0038]
[Table 3]
Figure 0003957116
[0039]
From Table 1, it can be seen that the catalysts A, B, C, D and E according to the method of the present invention have higher heat stability than the comparative catalysts F, G, H and I.
In addition, from Tables 2 and 3, the heat-resistant and stable catalyst according to the method of the present invention can maintain a high conversion activity of carbon dioxide by methane to carbon monoxide and hydrogen for a long time as compared with the comparative catalyst. It can be seen that carbon is difficult to deposit.
[0040]
【The invention's effect】
According to the method of the present invention, the catalyst used has high heat stability and is difficult to precipitate carbon, and also has high carbon dioxide conversion activity by methane, and can efficiently obtain carbon monoxide and hydrogen for a long period of time. it can.

Claims (1)

担体に、希土類金属酸化物、アルカリ土類金属酸化物、ニッケル、及びロジウムを、ニッケルに対するロジウムのモル比0.005〜0.4、ニッケルに対する希土類金属酸化物のモル比0.01〜1、ニッケルに対するアルカリ土類金属酸化物のモル比0.3〜20で担持させ、
触媒中の希土類金属酸化物、アルカリ土類金属酸化物、ニッケル酸化物、及びロジウム金属又はロジウム酸化物の総担持量が5〜30質量%であり、
希土類金属担持後に1000〜1100℃で焼成してなる触媒に、二酸化炭素とメタンを含有するガスを接触させることを特徴とするメタンによる二酸化炭素の変換方法。
For the support, rare earth metal oxide, alkaline earth metal oxide, nickel, and rhodium, a molar ratio of rhodium to nickel of 0.005 to 0.4, a molar ratio of rare earth metal oxide to nickel of 0.01 to 1, Supported at a molar ratio of alkaline earth metal oxide to nickel of 0.3-20,
The total supported amount of rare earth metal oxide, alkaline earth metal oxide, nickel oxide, and rhodium metal or rhodium oxide in the catalyst is 5 to 30% by mass,
A method for converting carbon dioxide with methane, comprising bringing a gas containing carbon dioxide and methane into contact with a catalyst obtained by calcining at 1000 to 1100 ° C. after supporting the rare earth metal.
JP36022798A 1998-12-18 1998-12-18 Method of converting carbon dioxide with methane Expired - Fee Related JP3957116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36022798A JP3957116B2 (en) 1998-12-18 1998-12-18 Method of converting carbon dioxide with methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36022798A JP3957116B2 (en) 1998-12-18 1998-12-18 Method of converting carbon dioxide with methane

Publications (3)

Publication Number Publication Date
JP2000178005A JP2000178005A (en) 2000-06-27
JP2000178005A5 JP2000178005A5 (en) 2005-06-02
JP3957116B2 true JP3957116B2 (en) 2007-08-15

Family

ID=18468467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36022798A Expired - Fee Related JP3957116B2 (en) 1998-12-18 1998-12-18 Method of converting carbon dioxide with methane

Country Status (1)

Country Link
JP (1) JP3957116B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464134A (en) * 2013-09-03 2013-12-25 中国科学院山西煤炭化学研究所 Catalyst for preparing carbon monoxide by decomposing carbon dioxide, as well as preparation method and application thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284513A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Method for manufacturing carbon
JP4724830B2 (en) * 2004-06-11 2011-07-13 国立大学法人山口大学 Carbon dioxide reduction method
KR101068995B1 (en) * 2008-12-08 2011-09-30 현대중공업 주식회사 Preparation method of methanol through synthesis gas derived from the combined reforming of methane gas with mixture of steam and carbon dioxide
JP7156113B2 (en) * 2018-03-19 2022-10-19 日本製鉄株式会社 Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, and method for reforming tar-containing gas using catalyst for reforming tar-containing gas
JP7161664B2 (en) * 2019-04-24 2022-10-27 国立大学法人京都大学 Method for producing catalyst for hydrogen production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464134A (en) * 2013-09-03 2013-12-25 中国科学院山西煤炭化学研究所 Catalyst for preparing carbon monoxide by decomposing carbon dioxide, as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP2000178005A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP6795804B2 (en) Ammonia oxidative decomposition-hydrogen production catalyst and hydrogen production equipment
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2013255911A (en) Catalyst for producing synthesis gas and production method of synthesis gas
JPS58174237A (en) Reforming catalyst of methanol
JP2001149780A (en) Method for manufacturing ammonia and ammonia synthesizing gas
JP5607131B2 (en) Exhaust gas purification catalyst
JP2017186225A (en) Core-shell type oxide material, method for producing the same, catalyst for exhaust purification prepared therewith, and exhaust purifying method using the same
JP4022615B2 (en) Catalyst for water gas shift reaction and methanol steam reforming reaction
JP4738024B2 (en) Method and system for reforming methane with carbon dioxide and steam, catalyst for reforming, and method for producing the catalyst
JP3957116B2 (en) Method of converting carbon dioxide with methane
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
CN1093433C (en) Catalyst for self-heating oxidation and reforming of natural gas to produce synthetic gas and its preparation process
JP6187770B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP2019188353A (en) Methanation catalyst and production method of methane therewith
JP3638358B2 (en) Carbon dioxide reforming catalyst and reforming method using the same
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
JP2002224570A (en) Catalyst for co shift reaction
JPH1080633A (en) Nitrous oxide decomposing catalyst and removing method of nitrous oxide
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2006088058A (en) Catalyst carrier, method for producing catalyst carrier, catalyst, method for producing ammonia and reactor
JP3849007B2 (en) Method for producing hydrogen
JP2003010646A (en) Apparatus and method for cleaning diesel exhaust

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees