JP3955188B2 - Heat-resistant film for substrate and printed wiring board using the same - Google Patents

Heat-resistant film for substrate and printed wiring board using the same Download PDF

Info

Publication number
JP3955188B2
JP3955188B2 JP2001150483A JP2001150483A JP3955188B2 JP 3955188 B2 JP3955188 B2 JP 3955188B2 JP 2001150483 A JP2001150483 A JP 2001150483A JP 2001150483 A JP2001150483 A JP 2001150483A JP 3955188 B2 JP3955188 B2 JP 3955188B2
Authority
JP
Japan
Prior art keywords
weight
film
resin
heat
resistant film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001150483A
Other languages
Japanese (ja)
Other versions
JP2002338823A (en
Inventor
紳月 山田
浩一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Mitsubishi Plastics Inc
Original Assignee
Otsuka Chemical Co Ltd
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Mitsubishi Plastics Inc filed Critical Otsuka Chemical Co Ltd
Priority to JP2001150483A priority Critical patent/JP3955188B2/en
Publication of JP2002338823A publication Critical patent/JP2002338823A/en
Application granted granted Critical
Publication of JP3955188B2 publication Critical patent/JP3955188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にプリント配線基板の絶縁材料として用いられる基板用耐熱フィルムおよびこれを用いたプリント配線基板に関する。
【0002】
【従来の技術】
電子機器の小型化、多機能化は、年々加速度的に進行している。それを支える主要技術が、半導体パッケージであり、電子部品を実装したプリント配線基板である。これに伴いプリント配線基板にも高密度化とそれに伴なう高性能化が要求されることになり、配線基板の絶縁材料に関して高度の耐熱性、耐燃性が求められ、また、昨今の環境意識の高まりに対して、低環境負荷性(リサイクル性、ハロゲン元素の未含有、鉛フリー半田の使用)の付与も求められている。また、高密度化に対応するためにガラスクロスを用いない絶縁材料の要求も極めて高い。これは、ガラスクロスを用いると基板材料の内部に連続して樹脂/ガラス界面が発生しイオンマイグレーションが起こり絶縁抵抗の低下を招くためである。このため現状のガラスエポキシ樹脂を用いる場合は穴間ピッチを350μm以下に小さくすることが出来ず高密度化への対応は不可能である。また、近未来のプリント基板の技術予測によると、半導体パッケージに用いられるプリント基板は、L/S(導体幅/導体間隔)が15μm/15μm以下に狭ピッチ化することが予測されており、従来の銅箔をサブトラクティブ法でエッチングして回路を形成するという方法では対応が難かしくなり、樹脂シートまたはフィルムの上にめっきやスパッタで回路を形成することが主流になると予測されている。
【0003】
この場合も狭L/S化を達成するためには、樹脂シートやフィルムの表面は、表面平滑性が要求されることとなり、この点でも表面の平滑性に劣るガラスクロス入り材料は用いることが出来ない。また、表面が平滑になる場合は、めっき銅やスパッタ銅の付着強度の改善も必要となる。
従来のプリント配線基板用絶縁材料は、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂と、紙、ガラス繊維などの補強材とを複合せしめて成形されてなるものが長年広く用いられてきたが、これらの従来基板は上述した要求にはもはや十分に応えうるものではない。また、従来からフレキはシブル基板の用途にポリイミドが使われているが、リサイクル性や多層化という点ではやはり十分に要求に応えうるものではない。
これに対して、従来より、高耐熱性、耐燃性の熱可塑性樹脂、例えば、ポリフェニレンサルファイド、ポリエチレンサルファイド、ポリエーテルイミド、ポリエーテルエーテルケトンなどに、アスペクト比(平均直径/平均厚み)が大きいマイカなどの鱗片状の無機充填材を充填した組成物を、プリント配線基板用の絶縁材料にするという考え方が、特開昭61−41542号、特開平4−348095号、特開平4−356991号、特開平4−348096号等に記載されているが、上述したような高性能化の要求に対しては、従来の技術では、以下に述べるような問題点が解決されず、全く実用化の域には達していなかった。
【0004】
(a)鉛フリー半田まで想定した部品実装工程の温度領域(220〜300℃)における剛性の確保が出来ずに部品を実装した基板が大きくたわむ。
(b)基板材料としての寸法安定性を満足させるために用いる金属箔と同等の線膨張係数を達成することが出来ず、高精度の無機充填材の仕様確立(構造、寸法、形状、特性など)や、高充填化とその均一分散化が出来ない。
(c)無機充填材の充填量が増加すると機械強度が大幅に低下して、基板材料としての実用強度の領域に達しない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、鱗片状の無機充填材を充填した熱可塑性樹脂組成物をプリント配線基板用の絶縁材料として用いる場合の上記のこれまでの問題点を克服し、高耐熱、耐燃性、寸法安定性に低環境負荷性も兼ね備えたプリント配線基板用の絶縁材料として、新規な基板用耐熱フィルムおよびこれを用いたプリント配線基板を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上記問題点を解消できる基板用耐熱フィルムおよびこれを用いたプリント配線基板を見出したものであって、その要旨とするところは、結晶性ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%の混合物からなる熱可塑性樹脂100重量部に対し、溶融法で合成されたフッ素金雲母を20重量部以上50重量部未満混合してなるフィルムであって、前記溶融法で合成されたフッ素金雲母が下記特性を有することを特徴とする基板用耐熱フィルムにある。
(1) レーザー回折粒度分布法を用いて測定した90%平均粒子径が15μm未満(2)アスペクト比(平均粒径/平均厚み)が35以上(3)熱天秤法で室温から400℃まで昇温した時に測定される重量減少が0.5重量%未満。
本発明では上記の鱗片状無機充填材が、溶融法で合成されたフッ素金雲母であることを特徴とする基板用耐熱フィルムを含み、また、上記の熱可塑性樹脂が、結晶融解温度260℃以上であるポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%の混合物からなること、さらには上記基板用耐熱フィルムに導体層を形成したことを特徴とするプリント配線基板を含んでいる。
【0007】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明の基板用耐熱フィルムおよびこれを用いたプリント配線基板に適用する熱可塑性樹脂に混合する鱗片状無機充填材は、(1)レーザー回折粒度分布法を用いて測定した90%平均粒子径が15μm未満、(2)アスペクト比(平均粒径/平均厚み)が35以上、(3)熱天秤法で室温から400℃まで昇温した時に測定される重量減少が0.5重量%未満の特性を有するものであり、この鱗片状無機充填材を、熱可塑性樹脂100重量部に対し20重量部以上50重量部未満で混合する必要がある。
上記(1)の90%平均粒子径が15μm以上であると、フィルムを例えば厚み50μm以下に薄膜化していった場合に、フィルム表面の平滑性が極端に悪くなり、前述したようなアディティブめっき法によるL/S=15μm/15μm以下の達成が困難となる。また、90%平均粒子径が15μm未満で、(2)アスペクト比(平均粒径/平均厚み)が35以上の無機充填材が、平面方向の線膨張係数を低く抑えることができ、基板のそりを低減することが出来る。
【0008】
また、上述した無機充填材の混合量は、樹脂組成物100重量部に対して50重量部を超えるとフィルムの端裂強度が大きく低下し、また20重量部未満では、線膨張係数を低下させて寸法安定性を向上させる効果が小さく、部品搭載工程であるリフロー工程やフロー工程において、線膨張係数差に起因した内部応力が発生し、基板のそりやねじれが発生する。このことから好適な無機充填材の混合量は、上述した樹脂組成物100重量部に対して20〜50重量部である。
【0009】
また、本発明で使用する鱗片状の無機充填材は、無機充填材の構造中に結晶水を持たないことが有効であり、(3)熱天秤法で室温から400℃まで昇温した時に測定される重量減少が0.5%未満のものを使用する。これは、高耐熱性の熱可塑性樹脂をフィルム化する場合には300℃から450℃の高温で樹脂を溶融させるため、この温度で無機充填材の脱水が起こると、樹脂の劣化やフィルムの発泡を誘発し、フィルムの機械強度が大幅に低下するためである。構造中に結晶水を持つ無機充填材の結晶水を取り除く手段としては、熱可塑性樹脂と混合する前に無機充填剤を焼成処理することが最も有効である。
【0010】
以上のように、90%平均粒子径が15μm未満でアスペクト比が35以上で、かつ構造中に結晶水を持たない鱗片状の無機充填材として、溶融法で合成されたマイカの一種であるフッ素金雲母(例えばトピー工業(株)製「PDM−5B」)が好適に使用できる。天然の金雲母(例えば(株)レプコ製「W−40」)には280℃に結晶水の脱水開始温度があり、また、水熱法で合成された金フッ素雲母(例えばコープケミカル(株)製「MK−200」)はタルクを出発原料とするためアスペクト比が30以上のものを得ることが出来ない。また、溶融法で合成されるフッ素金雲母の他にも、カリ四ケイ素雲母やカリウムテニオライトなども、目的とする樹脂組成物の用途、機能に応じて適宜選択すれば良い。
【0011】
また、本発明に適用する樹脂は、部品実装時の温度(220℃〜300℃)において十分な耐熱性と剛性を確保していれば特に制限はなく種々の熱可塑性樹脂混合物を用いることが出来る。本発明では、結晶性ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%とからなる樹脂組成物が好適に使用できる。ここで、結晶性ポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合およびケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等がある。ポリエーテルエーテルケトンは、ビクトレックスエムシー(株)製の商品名「PEEK151G」、「PEEK381G」、「PEEK450G」等として市販されている。
【0012】
また、非晶性ポリエーテルイミド樹脂は、その構造単位に芳香核結合、エーテル結合およびイミド結合を含む非晶性熱可塑性樹脂であり、特に制限されるものでない。ポリエーテルイミドは、ゼネラルエレクトリック(株)製の商品名「Ultem CRS5001−1000」、「Ultem 1000−1000」等として市販されている。
上記樹脂組成物において、結晶性ポリアリールケトン樹脂が70重量%を越えたり、非晶性ポリエーテルイミド樹脂が30重量%未満では、組成物全体としての結晶性が高く、結晶化速度が速くなり、銅箔との熱融着による接着の際にビール強度が低下する傾向にある。また、結晶性ポリアリールケトン樹脂が25重量%未満であったり、非晶性ポリエーテルイミド樹脂が75重量%を越えると組成物全体としての結晶性自体が低く、結晶融解温度が260℃以上であっても、はんだ耐熱性が低下する。以上より、本発明においては、上記ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%とからなる混合組成物が好適に用いられる。
【0013】
本発明を構成する樹脂組成物には、その特性を損なわない程度に、他の樹脂や無機充填材以外の各種添加剤、例えば、熱安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜配合してもかまわない。また無機充填材を含めた各種添加剤の混合方法は、公知の方法を用いることができる。例えば、(a)各種添加剤をポリアリールケトン樹脂及び/または非晶性ポリエーテルイミド樹脂などの適当なベース樹脂に高濃度(代表的な含有量としては10〜60重量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合し、ニーダーや押出機等を用いて機械的にブレンドする方法、(b)使用する樹脂に直接各種添加剤をニーダーや押出機等を用いて機械的にブレンドする方法などが挙げられる。上記混合方法の中では、(a)のマスターバッチを作製し、混合する方法が分散性や作業性の点から好ましい。さらに、フィルムの表面にはハンドリング性の改良等のために、エンボス加工やコロナ処理等を適宜施しても良い。
【0014】
本発明の基板用耐熱フィルムおよびこれを用いたプリント配線基板を構成する組成物は、フィルムまたはシート状で提供される。成形方法としては、公知の方法、例えばTダイを用いる押出キャスト法やカレンダー法等を採用することができ、特に限定されるものではないが、シートの製膜性や安定生産性等の面から、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、組成物の流動特性や製膜性等によって適宜調整されるが、概ね融点以上、430℃以下である。また、該フィルムの厚みは、通常25〜200μmである。
【0015】
次に、本発明の基板用耐熱フィルムを用いたプリント配線基板を作製する方法であるが、以下に示す公知のいかなる方法も採用することができ、特に限定されるものではない。
1)フィルムの少なくとも片面に接着層を介することなく導体箔を熱融着・結晶化処理し、この導体箔にサブトラクティブエッチングにより導電性回路を形成する方法。ここで、フィルムと導体箔とを接着層を介することなく熱融着させる方法としては、加熱、加圧できる方法であれば公知の方法を採用することができ、特に限定されない。例えば、熱プレス法や熱ラミネートロール法、又はこれらを組み合わせた方法も好適に採用することができる。導体箔としては、例えば銅、金、銀、アルミニウム、ニッケル、錫等の、厚さ5〜70μm程度の金属箔が挙げられる。金属箔としては、通常銅箔が使用され、導体箔は、接着効果を高めるために、フィルムとの接触面(重ねる面)側を予め化学的または機械的に粗化したものを用いることが好ましい。表面粗化処理された導体箔の具体例としては、電解銅箔を製造する際に電気化学的に処理された粗化銅箔などが挙げられる。
【0016】
2)フィルムの表面に機械的または化学的な方法により表面粗化処理を施し、この上にめっき法により導電性回路を形成する方法。フィルムの表面粗化処理は銅めっきの付着強度を高めるために実施し、化学的な粗化処理の方法としては過マンガン酸カリウム溶液による酸化処理などが挙げられる。
【0017】
3)フィルムの表面に導電性ペーストをスクリーン印刷法によりパターン印刷し導電性回路を形成する方法。
4)フィルムの表面に金属のスパッタリングにより導電性回路を設ける方法。
【0018】
【実施例】
以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中の種々の測定値および評価試験は以下のようにして実施した。
【0019】
(1)90%平均粒子径
(株)セイシン企業製レーザー回折粒度分布計「LMS―30」(波長680nm)を用いて鱗片状無機充填剤の90%平均粒子径を求めた。
【0020】
(2)アスペクト比
(株)セイシン企業製レーザー回折粒度分布計「LMS―30」を用いて求めた鱗片状無機充填材の50%平均粒子径を、電子顕微鏡を用い実際に観察し求めた鱗片状無機充填材の平均厚みで除してアスペクト比とした。
【0021】
(3)400℃重量減少
リガク(株)製熱天秤「TAS−200」を用い、一度120℃で十分に乾燥させた鱗片状無機充填材を室温から400℃まで昇温した時の重量減少%を求めた。
【0022】
(4)フィルムの表面平滑性
厚さ50μmのフィルムを用いて、2次元表面粗さ計により断面曲線を求め、この断面曲線より基準長さ10mmをとり、この基準長さにおける高い方から5番目までの凸部の高さの平均値と低い方から5番目までの凹部の平均値の差より十点平均粗さ(Rz)を求めた。このRzが5μm以上のものを(×)、5μm未満を(○)とした。
【0023】
(5)フィルムの端裂強度
JISC2151の端裂抵抗試験に準拠して、厚さ50μmのフィルム から幅15mm、長さ300mmの試験片を切り出し、試験金具Bを用いて、引張り速度50mm/分の条件で縦方向および横方向を測定し、測定値が39N/mm以上を(○)、39N/mm未満を(×)とした。
【0024】
(6)銅箔のピール強度
フィルムの片側に銅箔(厚さ:18μm、表面粗面化)を重ね、熱プレスにより片面銅張板を作製し、JISC6481に準拠して銅箔のピール強度を求めた。ピール強度が7.8N/cm以上を(○)、5.9N/cm以上を(△)、5.9N/cm未満を(×)とした。
【0025】
(7)半田耐熱性
片面銅張板を用い、JISC6481に準拠して、260℃の半田浴に20秒間浮かべ、目視で膨れや変形の有無を調査した。膨れや変形がないものを(○)、変形が僅かに認められるものを(△)、膨れや変形が認められるものを(×)とした。
【0026】
(8)基板のそり
片面銅張板を作製し、100mm×100mmの正方形に切り出し、凸面を下側にして定盤の上にのせて、一箇所の角を抑えた時に、その角の対角部の浮き上がり量を測定して基板のそり量とした。そりの高さが2mm未満を(○)、2mm以上を(×)とした。
【0027】
(実施例1)
表1に示すようにポリエーテルエーテルケトン樹脂[ビクトレックスエムシー(株)製、PEEK450G、Tg:147.6℃、Tm:334℃](以下、単にPEEKと略記する)50重量部と、ポリエーテルイミド樹脂[ゼネラルエレクトリック(株)製、Ultem-1000、Tg:216℃](以下、単にPEIと略記する)50重量部およびトピー工業(株)製の溶融合成法で合成されたフッ素金雲母「PDM―5B」(90%平均粒子径:13.6μm、アスペクト比:50)30重量部とからなる混合組成物を、Tダイを備えた押出機を用いて設定温度380℃で、厚さ75μmのフィルムに押出した後、必要によっては、その片側に銅箔(厚さ:18μm、表面粗面化)を重ね、250℃×30分で熱プレスすることにより結晶化処理済銅箔積層板を得た。
得られたフィルムまたは片面銅張基板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0028】
(実施例2)
表1に示すように、実施例1においてPEEKとPEIの混合重量比を65/35重量部に変更した以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0029】
(実施例3)
表1に示すように、実施例1においてPEEKとPEIの混合重量比を30/70重量部に変更した以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0030】
(実施例4)
表1に示すように、実施例1においてPEEKとPEIの混合重量比を 70/30重量部に変更した以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0031】
(実施例5)
表1に示すように、実施例1においてPEEKとPEIの混合重量比を 25/75重量部に変更した以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験のなどの評価結果を表1に示した。
【0032】
(比較例1)
表1に示すように、実施例1において無機充填材として(株)レプコ製の金雲母「W−40」を用いた以外は実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0033】
(比較例2)
表1に示すように、実施例1において無機充填材として(株)レプコ製の金雲母「W−40」を用い、分級条件を変更することにより90%平均粒径を13μmに調整した以外は実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0034】
(比較例3)
表1に示すように、実施例1において無機充填材としてコープケミカル(株)製の固相反応法を用いたフッ素金雲母「MK−200」を用いた以外は、 実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られ たフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験のなどの評価結果を表1に示した。
【0035】
(比較例4)
表1に示すように、実施例1において無機充填材を分級条件の変更により90%平均粒子径を21μmに調整したフッ素金雲母「PDM−5B」を用いた以外は実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0036】
(比較例5)
表1に示すように、実施例1において無機充填材の充填量を15重量部 にしたこと以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0037】
(比較例6)
表1に示すように、実施例1において無機充填材の充填量を55重量部 にしたこと以外は、実施例1と同様に目的とするフィルムまたは片面銅張板を得た。得られたフィルムまたは片面銅張板を用いて、評価した熱特性や信頼性試験等の評価結果を表1に示した。
【0038】
【表1】

Figure 0003955188
【0039】
【発明の効果】
本発明によれば、添加する鱗片状フィラーを最適化することにより、鱗片状の無機充填材を充填した熱可塑性樹脂組成物をプリント配線基板用の絶縁材料として用いる場合の従来の問題点を解消し、高耐熱、耐燃性、寸法安定性、低環境負荷性に加え、従来のプリント基板用絶縁材料が達し得なかった高密度対応を兼ね備えたプリント配線基板用の絶縁材料およびこれを用いたプリント配線基板を提供することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant film for substrates mainly used as an insulating material for printed wiring boards and a printed wiring board using the same.
[0002]
[Prior art]
The downsizing and multi-functionalization of electronic devices are progressing at an accelerated pace year by year. The main technology that supports this is a semiconductor package, which is a printed wiring board on which electronic components are mounted. Along with this, printed wiring boards are also required to have higher density and higher performance, resulting in higher heat and flame resistance requirements for wiring board insulation materials, and the recent environmental awareness. In response to this increase, there is a demand for imparting low environmental impact (recyclability, halogen-free content, use of lead-free solder). In addition, there is an extremely high demand for an insulating material that does not use glass cloth in order to cope with higher density. This is because when glass cloth is used, a resin / glass interface is continuously generated inside the substrate material, ion migration occurs, and the insulation resistance is lowered. For this reason, when using the current glass epoxy resin, the pitch between holes cannot be reduced to 350 μm or less, and it is impossible to cope with higher density. Also, according to the technology prediction of the near future printed circuit board, it is predicted that the printed circuit board used for the semiconductor package will have a narrow pitch of L / S (conductor width / conductor spacing) of 15 μm / 15 μm or less. The method of forming a circuit by etching the copper foil by subtractive method is difficult to cope with, and it is predicted that forming a circuit by plating or sputtering on a resin sheet or film will become the mainstream.
[0003]
In this case as well, in order to achieve a narrow L / S, the surface of the resin sheet or film is required to have surface smoothness, and in this respect as well, a glass cloth-containing material having inferior surface smoothness should be used. I can't. Further, when the surface becomes smooth, it is necessary to improve the adhesion strength of the plated copper or sputtered copper.
Conventional insulation materials for printed wiring boards have been widely used for many years, which are formed by combining thermosetting resins such as epoxy resins and phenolic resins and reinforcing materials such as paper and glass fiber. These conventional substrates can no longer adequately meet the above requirements. Conventionally, polyimide has been used for flexible substrates as a flexible substrate, but it still cannot fully meet the requirements in terms of recyclability and multilayering.
In contrast to this, mica having a large aspect ratio (average diameter / average thickness) has been conventionally used in thermoplastic resins having high heat resistance and flame resistance, such as polyphenylene sulfide, polyethylene sulfide, polyether imide, and polyether ether ketone. The idea of using a composition filled with a scaly inorganic filler as an insulating material for a printed wiring board is disclosed in JP-A-61-41542, JP-A-4-348095, JP-A-4-356911, Although described in Japanese Patent Application Laid-Open No. 4-34896, etc., the conventional technology does not solve the problems described below in response to the demand for higher performance as described above. Was not reached.
[0004]
(A) The substrate on which the component is mounted largely bends without securing rigidity in the temperature region (220 to 300 ° C.) of the component mounting process assuming lead-free solder.
(B) Establishing high-precision inorganic filler specifications (structure, dimensions, shape, characteristics, etc.) that cannot achieve the same linear expansion coefficient as metal foil used to satisfy dimensional stability as a substrate material ), And high filling and uniform dispersion cannot be achieved.
(C) When the filling amount of the inorganic filler is increased, the mechanical strength is significantly lowered and does not reach the range of practical strength as a substrate material.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to overcome the above-mentioned problems in the case of using a thermoplastic resin composition filled with a scaly inorganic filler as an insulating material for a printed wiring board, and to achieve high heat resistance, flame resistance, and dimensions. An object of the present invention is to provide a novel heat-resistant film for a printed circuit board and a printed circuit board using the same as an insulating material for a printed circuit board having both stability and low environmental load.
[0006]
[Means for Solving the Problems]
The present invention has found a heat-resistant film for substrates that can solve the above-mentioned problems and a printed wiring board using the same, and the gist thereof is that the crystalline polyaryl ketone resin is 70 to 25% by weight and amorphous. It is a film formed by mixing 20 parts by weight or more and less than 50 parts by weight of fluorine phlogopite synthesized by a melting method with respect to 100 parts by weight of a thermoplastic resin comprising a mixture of 30 to 75% by weight of a porous polyetherimide resin, The fluorine phlogopite synthesized by the melting method has the following characteristics.
(1) 90% average particle size measured using laser diffraction particle size distribution method is less than 15 μm (2) Aspect ratio (average particle size / average thickness) is 35 or more (3) Rise from room temperature to 400 ° C. by thermobalance Less than 0.5% weight loss measured when warmed.
In the present invention, the scale-like inorganic filler includes a heat-resistant film for substrates characterized in that it is a fluorine phlogopite synthesized by a melting method, and the thermoplastic resin has a crystal melting temperature of 260 ° C. or higher. A printed wiring characterized by comprising a mixture of 70 to 25% by weight of a polyaryl ketone resin and 30 to 75% by weight of an amorphous polyetherimide resin, and further forming a conductor layer on the heat-resistant film for a substrate Includes a substrate.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The scale-like inorganic filler mixed with the heat-resistant film for substrates of the present invention and the thermoplastic resin applied to a printed wiring board using the same has (1) a 90% average particle diameter measured using a laser diffraction particle size distribution method. Less than 15 μm, (2) Aspect ratio (average particle size / average thickness) of 35 or more, (3) Weight loss measured when the temperature is raised from room temperature to 400 ° C. by thermobalance is less than 0.5% by weight It is necessary to mix this scaly inorganic filler in an amount of 20 parts by weight or more and less than 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin.
When the 90% average particle diameter of (1) is 15 μm or more, when the film is thinned to a thickness of 50 μm or less, for example, the smoothness of the film surface is extremely deteriorated, and the additive plating method as described above. L / S = 15 μm / 15 μm or less is difficult to achieve. In addition, an inorganic filler having a 90% average particle diameter of less than 15 μm and (2) an aspect ratio (average particle diameter / average thickness) of 35 or more can keep the linear expansion coefficient in the plane direction low, and warp the substrate. Can be reduced.
[0008]
Further, if the amount of the inorganic filler mentioned above exceeds 50 parts by weight with respect to 100 parts by weight of the resin composition, the end tear strength of the film is greatly reduced, and if it is less than 20 parts by weight, the linear expansion coefficient is reduced. Therefore, the effect of improving the dimensional stability is small, and in the reflow process and the flow process, which are component mounting processes, internal stress due to the difference in coefficient of linear expansion is generated, and the board is warped and twisted. Therefore, the preferred mixing amount of the inorganic filler is 20 to 50 parts by weight with respect to 100 parts by weight of the resin composition described above.
[0009]
Moreover, it is effective that the scale-like inorganic filler used in the present invention does not have crystal water in the structure of the inorganic filler, and (3) measured when the temperature is raised from room temperature to 400 ° C. by a thermobalance method. Use a weight loss of less than 0.5%. This is because when a highly heat-resistant thermoplastic resin is made into a film, the resin is melted at a high temperature of 300 ° C. to 450 ° C. If dehydration of the inorganic filler occurs at this temperature, the resin deteriorates or the film foams. This is because the mechanical strength of the film is greatly reduced. As a means for removing the crystal water of the inorganic filler having crystal water in the structure, it is most effective to calcinate the inorganic filler before mixing with the thermoplastic resin.
[0010]
As described above, fluorine, which is a kind of mica synthesized by the melting method, as a scale-like inorganic filler having a 90% average particle diameter of less than 15 μm, an aspect ratio of 35 or more, and no crystal water in the structure. A phlogopite (for example, “PDM-5B” manufactured by Topy Industries Co., Ltd.) can be suitably used. Natural phlogopite (for example, “W-40” manufactured by Lepco) has a dehydration start temperature of crystal water at 280 ° C., and fluorinated mica synthesized by hydrothermal method (for example, Corp Chemical Co., Ltd.) Since “MK-200” manufactured by using talc as a starting material, it is not possible to obtain a product having an aspect ratio of 30 or more. In addition to fluorine phlogopite mica synthesized by the melting method, potassium tetrasilicon mica, potassium teniolite, and the like may be appropriately selected according to the intended use and function of the resin composition.
[0011]
In addition, the resin applied to the present invention is not particularly limited as long as sufficient heat resistance and rigidity are secured at the temperature (220 ° C. to 300 ° C.) at the time of component mounting, and various thermoplastic resin mixtures can be used. . In the present invention, a resin composition comprising 70 to 25% by weight of a crystalline polyaryl ketone resin and 30 to 75% by weight of an amorphous polyetherimide resin can be suitably used. Here, the crystalline polyaryl ketone resin is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and representative examples thereof include polyether ketone, polyether ether ketone, and polyether ketone. There are ketones. Polyether ether ketone is commercially available as trade names “PEEK151G”, “PEEK381G”, “PEEK450G”, etc., manufactured by Victorex MC Corporation.
[0012]
The amorphous polyetherimide resin is an amorphous thermoplastic resin containing an aromatic nucleus bond, an ether bond and an imide bond in the structural unit, and is not particularly limited. Polyetherimide is commercially available as trade names “Ultem CRS5001-1000”, “Ultem 1000-1000”, etc., manufactured by General Electric Co., Ltd.
In the above resin composition, if the crystalline polyaryl ketone resin exceeds 70% by weight or the amorphous polyetherimide resin is less than 30% by weight, the crystallinity of the composition as a whole is high and the crystallization speed increases. The beer strength tends to decrease during the adhesion by thermal fusion with the copper foil. When the crystalline polyaryl ketone resin is less than 25% by weight or the amorphous polyetherimide resin exceeds 75% by weight, the crystallinity of the composition as a whole is low, and the crystal melting temperature is 260 ° C. or higher. Even if it exists, solder heat resistance falls. As mentioned above, in this invention, the mixed composition which consists of 70-25 weight% of said polyaryl ketone resin and 30-75 weight% of amorphous polyetherimide resin is used suitably.
[0013]
In the resin composition constituting the present invention, various additives other than other resins and inorganic fillers, such as heat stabilizers, ultraviolet absorbers, light stabilizers, nucleating agents, coloring, to the extent that the properties are not impaired. You may mix | blend an agent, a lubricant, a flame retardant, etc. suitably. Moreover, a well-known method can be used for the mixing method of various additives including an inorganic filler. For example, (a) various additives are mixed at a high concentration (typically about 10 to 60% by weight) into an appropriate base resin such as a polyaryl ketone resin and / or an amorphous polyetherimide resin. Prepare a master batch separately, adjust the concentration to the resin to be used, mix it, and mechanically blend it using a kneader or extruder, etc. (b) Add various additives directly to the resin to be used Examples of the method include mechanical blending using a kneader or an extruder. Among the above mixing methods, the method of preparing and mixing the master batch (a) is preferable from the viewpoint of dispersibility and workability. Furthermore, the surface of the film may be appropriately subjected to embossing, corona treatment or the like for improving handling properties.
[0014]
The heat-resistant film for substrates of the present invention and the composition constituting the printed wiring board using the same are provided in the form of a film or a sheet. As a forming method, a known method, for example, an extrusion casting method using a T-die or a calendering method can be adopted, and it is not particularly limited, but from the viewpoint of sheet forming properties and stable productivity. An extrusion casting method using a T die is preferred. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the composition, but is generally about the melting point or higher and 430 ° C. or lower. Moreover, the thickness of this film is 25-200 micrometers normally.
[0015]
Next, although it is a method of producing the printed wiring board using the heat resistant film for substrates of the present invention, any known method shown below can be adopted and is not particularly limited.
1) A method in which a conductive foil is thermally fused and crystallized on at least one surface of the film without an adhesive layer, and a conductive circuit is formed on the conductive foil by subtractive etching. Here, as a method of thermally fusing the film and the conductor foil without interposing an adhesive layer, a known method can be adopted as long as it can be heated and pressurized, and is not particularly limited. For example, a hot pressing method, a hot laminating roll method, or a combination of these methods can also be suitably employed. As conductor foil, metal foil with a thickness of about 5-70 micrometers, such as copper, gold | metal | money, silver, aluminum, nickel, tin, is mentioned, for example. As the metal foil, a copper foil is usually used, and it is preferable to use a conductor foil that has been chemically or mechanically roughened in advance on the contact surface (surface to be overlapped) side with the film in order to enhance the adhesion effect. . Specific examples of the conductor foil that has been subjected to surface roughening treatment include a roughened copper foil that has been electrochemically treated when an electrolytic copper foil is produced.
[0016]
2) A method in which the surface of the film is subjected to surface roughening by a mechanical or chemical method, and a conductive circuit is formed thereon by plating. The surface roughening treatment of the film is carried out in order to increase the adhesion strength of the copper plating, and the chemical roughening treatment method includes oxidation treatment with a potassium permanganate solution.
[0017]
3) A method of forming a conductive circuit by pattern-printing a conductive paste on the surface of a film by a screen printing method.
4) A method of providing a conductive circuit on the film surface by sputtering of metal.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In addition, the various measured values and evaluation tests in this specification were implemented as follows.
[0019]
(1) 90% average particle diameter The 90% average particle diameter of the scaly inorganic filler was calculated | required using the laser diffraction particle size distribution analyzer "LMS-30" (wavelength 680nm) by a Seishin company.
[0020]
(2) Aspect ratio Scale obtained by actually observing the 50% average particle diameter of a scale-like inorganic filler obtained using a laser diffraction particle size distribution analyzer “LMS-30” manufactured by Seishin Enterprise Co., Ltd. using an electron microscope The aspect ratio was obtained by dividing by the average thickness of the fibrous inorganic filler.
[0021]
(3) Weight reduction at 400 ° C. Weight reduction% when the scale-like inorganic filler once sufficiently dried at 120 ° C. is heated from room temperature to 400 ° C. using a thermobalance “TAS-200” manufactured by Rigaku Corporation. Asked.
[0022]
(4) Surface smoothness of film Using a film having a thickness of 50 μm, a cross-sectional curve is obtained with a two-dimensional surface roughness meter, and a reference length of 10 mm is taken from this cross-sectional curve. The ten-point average roughness (Rz) was determined from the difference between the average value of the heights of the convex portions up to and the average value of the fifth concave portion from the lowest. When this Rz was 5 μm or more, (×) and less than 5 μm were defined as (◯).
[0023]
(5) End tear strength of film In accordance with the end tear resistance test of JISC2151, a test piece having a width of 15 mm and a length of 300 mm was cut out from a film having a thickness of 50 μm, and using a test fitting B, a tensile rate of 50 mm / min. The vertical direction and the horizontal direction were measured under the conditions, and the measured value was 39 N / mm 2 or more as (◯) and less than 39 N / mm 2 as (x).
[0024]
(6) Peel strength of copper foil Copper foil (thickness: 18 μm, surface roughening) is laminated on one side of the film, a single-sided copper-clad plate is produced by hot pressing, and the peel strength of the copper foil is increased in accordance with JISC6481 Asked. When the peel strength was 7.8 N / cm or more, (◯), 5.9 N / cm or more was (Δ), and less than 5.9 N / cm was (x).
[0025]
(7) A solder heat-resistant single-sided copper-clad plate was used and floated in a solder bath at 260 ° C. for 20 seconds in accordance with JIS C6481, and the presence or absence of swelling or deformation was visually examined. Those with no swelling or deformation were marked with (◯), those with slight deformation (△), and those with swelling or deformation (×).
[0026]
(8) Prepare a single-sided copper-clad board with a sledge of the substrate, cut it into a square of 100 mm x 100 mm, place it on the surface plate with the convex surface down, and suppress the corner at one location, the diagonal of that corner The amount of substrate lift was measured and used as the amount of substrate warpage. The height of the warp was less than 2 mm (O), and 2 mm or more was taken as (X).
[0027]
Example 1
As shown in Table 1, 50 parts by weight of polyetheretherketone resin (manufactured by Victorex MC Ltd., PEEK450G, Tg: 147.6 ° C., Tm: 334 ° C.) (hereinafter simply referred to as PEEK), and polyether Imide resin [General Electric Co., Ltd., Ultem-1000, Tg: 216 ° C.] (hereinafter simply abbreviated as PEI) 50 parts by weight and Fluorophlogopite synthesized by Topy Industries, Ltd. melt synthesis method PDM-5B ”(90% average particle size: 13.6 μm, aspect ratio: 50) was mixed with 30 parts by weight using a extruder equipped with a T die at a set temperature of 380 ° C. and a thickness of 75 μm. After extruding into a film, if necessary, a copper foil (thickness: 18 μm, surface roughening) is stacked on one side and hot pressed at 250 ° C. for 30 minutes. A crystallized copper foil laminate was obtained.
Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad substrate.
[0028]
(Example 2)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI in Example 1 was changed to 65/35 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0029]
(Example 3)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI in Example 1 was changed to 30/70 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0030]
Example 4
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI in Example 1 was changed to 70/30 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0031]
(Example 5)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI in Example 1 was changed to 25/75 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0032]
(Comparative Example 1)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that Lepco's phlogopite "W-40" was used as the inorganic filler in Example 1. It was. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0033]
(Comparative Example 2)
As shown in Table 1, except that the phlogopite manufactured by Repco Co., Ltd. “W-40” was used as the inorganic filler in Example 1, and the 90% average particle size was adjusted to 13 μm by changing the classification conditions. The target film or single-sided copper-clad plate was obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0034]
(Comparative Example 3)
As shown in Table 1, the same purpose as in Example 1 was used except that fluorine phlogopite “MK-200” using a solid phase reaction method manufactured by Coop Chemical Co., Ltd. was used as the inorganic filler in Example 1. A film or a single-sided copper-clad plate was obtained. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0035]
(Comparative Example 4)
As shown in Table 1, the same purpose as in Example 1 was used except that the fluorophlogopite “PDM-5B” in which 90% average particle size was adjusted to 21 μm by changing the classification condition of the inorganic filler in Example 1 was used. A film or a single-sided copper-clad plate was obtained. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0036]
(Comparative Example 5)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the amount of inorganic filler in Example 1 was 15 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0037]
(Comparative Example 6)
As shown in Table 1, the target film or single-sided copper-clad plate was obtained in the same manner as in Example 1 except that the amount of inorganic filler in Example 1 was 55 parts by weight. Table 1 shows the evaluation results of the thermal characteristics and reliability tests evaluated using the obtained film or single-sided copper-clad plate.
[0038]
[Table 1]
Figure 0003955188
[0039]
【The invention's effect】
According to the present invention, by optimizing the scale-like filler to be added, the conventional problems in the case of using a thermoplastic resin composition filled with a scale-like inorganic filler as an insulating material for a printed wiring board are eliminated. In addition to high heat resistance, flame resistance, dimensional stability and low environmental impact, printed circuit board insulation materials that have high density support that cannot be achieved by conventional printed circuit board insulation materials, and prints using the same It became possible to provide a wiring board.

Claims (3)

結晶性ポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%の混合物からなる熱可塑性樹脂100重量部に対し、溶融法で合成されたフッ素金雲母を20重量部以上50重量部未満混合してなるフィルムであって、前記溶融法で合成されたフッ素金雲母が下記特性を有することを特徴とする基板用耐熱フィルム。
(1) レーザー回折粒度分布法を用いて測定した90%平均粒子径が15μm未満(2)アスペクト比(平均粒径/平均厚み)が35以上(3) 熱天秤法で室温から400℃まで昇温した時に測定される重量減少が0.5重量%未満
20 parts by weight of fluorine phlogopite synthesized by a melting method with respect to 100 parts by weight of a thermoplastic resin composed of a mixture of 70 to 25% by weight of crystalline polyaryl ketone resin and 30 to 75% by weight of amorphous polyetherimide resin A heat-resistant film for substrates, wherein the fluorine phlogopite synthesized by the melting method has the following characteristics.
(1) 90% average particle diameter measured using laser diffraction particle size distribution method is less than 15 μm (2) Aspect ratio (average particle diameter / average thickness) is 35 or more (3) Rise from room temperature to 400 ° C. by thermobalance Less than 0.5% weight loss measured when warmed
熱可塑性樹脂が、結晶融解温度260℃以上であるポリアリールケトン樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂30〜75重量%の混合物からなることを特徴とする請求項1記載の基板用耐熱フィルム。2. The substrate according to claim 1, wherein the thermoplastic resin comprises a mixture of 70 to 25% by weight of a polyaryl ketone resin having a crystal melting temperature of 260 ° C. or higher and 30 to 75% by weight of an amorphous polyetherimide resin. Heat resistant film. 請求項1又は2記載の基板用耐熱フィルムに導体層を形成したことを特徴とするプリント配線基板。 A printed wiring board, wherein a conductor layer is formed on the heat-resistant film for substrates according to claim 1 or 2.
JP2001150483A 2001-05-21 2001-05-21 Heat-resistant film for substrate and printed wiring board using the same Expired - Fee Related JP3955188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150483A JP3955188B2 (en) 2001-05-21 2001-05-21 Heat-resistant film for substrate and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150483A JP3955188B2 (en) 2001-05-21 2001-05-21 Heat-resistant film for substrate and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2002338823A JP2002338823A (en) 2002-11-27
JP3955188B2 true JP3955188B2 (en) 2007-08-08

Family

ID=18995484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150483A Expired - Fee Related JP3955188B2 (en) 2001-05-21 2001-05-21 Heat-resistant film for substrate and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP3955188B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005054345A1 (en) * 2003-12-05 2007-06-28 住友ベークライト株式会社 Film circuit board production process tape
CN1894342A (en) * 2003-12-15 2007-01-10 积水化学工业株式会社 Thermoplastic resin composition, material for substrate and film for substrate
JP2006008986A (en) * 2004-03-31 2006-01-12 Mitsubishi Plastics Ind Ltd Thermoplastic resin film and its production method
JP2009060124A (en) * 2008-10-20 2009-03-19 Mitsubishi Plastics Inc Film for spacer base of chip carrier
JP2009060123A (en) * 2008-10-20 2009-03-19 Mitsubishi Plastics Inc Film for spacer base of chip carrier
JP5230532B2 (en) * 2009-05-29 2013-07-10 三菱樹脂株式会社 White film, metal laminate, LED mounting substrate and light source device
JP7515961B2 (en) 2019-04-19 2024-07-16 信越ポリマー株式会社 Manufacturing method of resin film

Also Published As

Publication number Publication date
JP2002338823A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
KR100823403B1 (en) Polyaryl ketone resin film and laminates thereof with metal
EP1245379B1 (en) Laminate and process for producing the same
JP4934334B2 (en) Double-sided copper-clad board
KR100747402B1 (en) Heat resistant resin composition, a heat resistant film or sheet thereof and a laminate comprising the film or the sheet as a substrate
JPH09234831A (en) Laminate
JP3955188B2 (en) Heat-resistant film for substrate and printed wiring board using the same
EP1241208B1 (en) Process for manufacturing prepreg
EP3816124A1 (en) Glass resin laminate, composite laminate, and manufacturing method thereof
KR100728150B1 (en) Bonding sheet and one-side metal-clad laminate
JP5245253B2 (en) Resin composition, insulating resin sheet with film or metal foil, multilayer printed wiring board, and semiconductor device
JP3806593B2 (en) Build-up insulation material and build-up multilayer printed wiring board
JP3819701B2 (en) Core substrate for build-up multilayer printed wiring boards
JP4806279B2 (en) Insulating substrate containing glass cloth
JP2005209489A (en) Insulation sheet
JP4094211B2 (en) Method for producing metal foil laminate
JPH0320354A (en) Film for metallic substrate
JPH0732544A (en) Coppered laminate with paper base and its manufacture
WO2023189794A1 (en) Metal-clad laminated board and method for producing same
US20060035093A1 (en) Heat resistant film and metal laminate thereof
JP5255496B2 (en) Metal-clad laminate and method for producing metal-clad laminate
JPH09254331A (en) Laminated sheet
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same
JPH09232757A (en) Manufacture of multilayered circuit board
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees