JP3955145B2 - Steam injection gas turbine power generation equipment - Google Patents

Steam injection gas turbine power generation equipment Download PDF

Info

Publication number
JP3955145B2
JP3955145B2 JP07635598A JP7635598A JP3955145B2 JP 3955145 B2 JP3955145 B2 JP 3955145B2 JP 07635598 A JP07635598 A JP 07635598A JP 7635598 A JP7635598 A JP 7635598A JP 3955145 B2 JP3955145 B2 JP 3955145B2
Authority
JP
Japan
Prior art keywords
steam
valve
boiler
shut
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07635598A
Other languages
Japanese (ja)
Other versions
JPH11270349A (en
Inventor
忍 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP07635598A priority Critical patent/JP3955145B2/en
Publication of JPH11270349A publication Critical patent/JPH11270349A/en
Application granted granted Critical
Publication of JP3955145B2 publication Critical patent/JP3955145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気注入式ガスタービン発電設備に関するものである。
【0002】
【従来の技術】
従来の蒸気注入式ガスタービン発電設備の構成の一例を図3に基づいて説明する。
【0003】
図3において、1はドラム形排熱回収ボイラであり、給水ポンプ(図示せず)から供給された水はドラム2へ注入され、ドラム2から蒸発器3の蒸発管4へ送り出され、加熱され蒸気と水の混合体となってドラム2へ戻る。このドラム2で発生する蒸気は、蒸気遮断弁5と蒸気制御弁6を介して過熱器7の過熱管8へ送られ、過熱器7においてさらに過熱されて蒸気注入管9を通って燃焼器10へ供給される。11はボイラ1の煙突である。
【0004】
また燃焼器10には、燃料制御弁14を介してガスタービン燃料が供給され、さらに圧縮機15より圧縮空気が供給されており、燃焼器10において圧縮空気内でガスタービン燃料が燃焼されることにより、ボイラ1より蒸気注入管9を通って供給された蒸気はさらに過熱されて燃焼ガスとともにガスタービン16へ供給され、ガスタービン16が回転される。上記圧縮機15はガスタービン16と連結されている。圧縮機15(ガスタービン16)の排気ガスはボイラ1へ導かれ、その熱エネルギーにより蒸気が発生される。
【0005】
またガスタービン16は減速機17を介して発電機18に連結され、ガスタービン16が回転することにより、発電機18が回転し、発電される。
また上記蒸気遮断弁5は、空気駆動式であり、この蒸気遮断弁5に駆動用空気を供給する、電磁弁からなる空気供給弁19が設けられている。この空気供給弁19と蒸気制御弁6は、注入蒸気制御装置20により制御され、また燃料制御弁14は燃料制御装置22により制御される。
【0006】
上記注入蒸気制御装置20と燃料制御装置22による、発電機18に接続された負荷の遮断時の制御について説明する。
重負荷(ガスタービン16の能力の80%以上)の遮断時;
ガスタービン16および発電機18を停止させて過速度を防止する。すなわち、注入蒸気制御装置20により空気供給弁19を介して蒸気遮断弁5を全閉とし、さらに蒸気制御弁6を全閉とし、燃料制御装置22により燃料制御弁14を最小に絞って燃焼器10の火炎を最小とする。
【0007】
軽負荷(ガスタービン16の能力の80%未満)の遮断時;
注入蒸気制御装置20により蒸気制御弁6を絞り、燃料制御装置22により燃料制御弁14を絞って、燃焼器10へ流入する蒸気量とガスタービン燃料量を制御して過速度を防止する。
【0008】
また図3に示すように、ガスタービン16内に水滴が入らないようにするために、過熱器7の過熱管8に電磁弁からなる第1蒸気ドレン弁23が設けられ、蒸気注入管9に電磁弁からなる第2蒸気ドレン弁24が設けられている。
【0009】
【発明が解決しようとする課題】
しかし、上記重負荷(ガスタービン16の能力の80%以上)の遮断時には、過熱器7の過熱管8と蒸気注入管9に残る蒸気量が多いことから、燃焼器10へ注入される蒸気量は急に減らないため、速度抑制が充分にできず、過速度となってしまう恐れがあった。また燃焼器10へ注入された蒸気により最小となった火炎が消されてしまう恐れがあった。さらに上記過速度が発生すると、あるいは火炎が消えてしまうと、ガスタービン16はトリップされるため、運転員は、負荷遮断が発生しトリップされると、ガスタービン16を再起動させなければならなかった。
【0010】
そこで、本発明は、負荷遮断時のガスタービンの過速度を防止でき、かつ燃焼器の火炎の消失を防止できる蒸気注入式ガスタービン発電設備を提供することを目的としたものである。
【0011】
【課題を解決するための手段】
前述した目的を達成するために、本発明のうち請求項1記載の発明は、ボイラと、発電機に連結されたガスタービンと、供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し、前記ガスタービンへ供給する燃焼器を備え、前記燃焼器の前記ボイラから供給される蒸気の入口に、蒸気遮断弁を設け、前記発電機の負荷遮断時に、この蒸気遮断弁を全閉することを特徴とするものである。
【0012】
上記構成によれば、発電機の負荷遮断時に、燃焼器入口の蒸気遮断弁を全閉とすることにより、燃焼器に注入される蒸気はほぼ遮断される。よって、ガスタービンの過速度が防止され、かつ燃焼器の火炎の消失が防止される。
【0013】
また請求項2記載の発明は、過熱器を有するドラム形ボイラと、発電機に連結されたガスタービンと、供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し、前記ガスタービンへ供給する燃焼器を備え、
前記ボイラのドラムとボイラの過熱器の間の蒸気配管に、1次蒸気遮断弁と蒸気制御弁を介装し、前記ボイラの過熱器と燃焼器の間の蒸気配管に2次蒸気遮断弁を介装し、前記ボイラの過熱器の過熱管に第1蒸気ドレン弁を接続し、前記ボイラの過熱器と2次蒸気遮断弁の間の蒸気配管に第2蒸気ドレン弁を接続し、前記発電機の負荷遮断時に、前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁と第1蒸気ドレン弁と第2蒸気ドレン弁を組み合わせて駆動し、無負荷運転に移行することを特徴とするものである。
【0014】
上記構成によれば、発電機の負荷遮断時に、1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁と第1蒸気ドレン弁と第2蒸気ドレン弁が組み合わせて駆動されることにより、無負荷運転に移行されることによって、ガスタービンのトリップが防止され、負荷運転までの時間が短縮される。
また請求項3記載の発明は、過熱器を有するドラム形ボイラと、発電機に連結されたガスタービンと、供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し前記ガスタービンへ供給する燃焼器を備え、前記ボイラのドラムとボイラの過熱器の間の蒸気配管に、1次蒸気遮断弁と蒸気制御弁を介装し、前記ボイラの過熱器と燃焼器の間の蒸気配管に2次蒸気遮断弁を介装し、前記ボイラの過熱器の過熱管に第1蒸気ドレン弁を接続し、前記ボイラの過熱器と2次蒸気遮断弁の間の蒸気配管に第2蒸気ドレン弁を接続し、前記発電機の負荷遮断時に、前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を閉、前記第1蒸気ドレン弁と第2蒸気ドレン弁を開とし、前記負荷遮断時より規定時間の経過に従い前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を開、前記第1蒸気ドレン弁と第2蒸気ドレン弁を閉として、前記発電機の無負荷運転に必要な回転数を維持する蒸気を前記燃焼器へ注入し、無負荷運転に移行することを特徴とするものである。
上記構成によれば、発電機の負荷遮断時に、1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を閉、第1蒸気ドレン弁と第2蒸気ドレン弁を開とし、負荷遮断時より規定時間の経過に従い1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を開、第1蒸気ドレン弁と第2蒸気ドレン弁を閉として、発電機の無負荷運転に必要な回転数を維持する蒸気を燃焼器へ注入し、無負荷運転に移行される。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。なお、従来例の図3と同一の構成には同一の符号を付して説明を省略する。
【0016】
図1は本発明の実施の形態における蒸気注入式ガスタービン発電設備の構成図である。
本発明の蒸気注入式ガスタービン発電設備は、蒸気注入管9の燃焼器10の入口位置に、空気式の2次蒸気遮断弁31を設けている。この2次蒸気遮断弁31には、駆動用空気を供給する電磁弁からなる2次空気供給弁34が設けられている。この2次蒸気遮断弁31の2次空気供給弁34と(1次)蒸気遮断弁5の空気供給弁19と蒸気制御弁31と第1蒸気ドレン弁23と第2蒸気ドレン弁24は、注入蒸気制御装置20’により制御される。
【0017】
この注入蒸気制御装置20’による負荷遮断時の制御を図2を参照しながら説明する。
1.負荷遮断発生と同時に、2次蒸気遮断弁31の2次空気供給弁34と1次蒸気遮断弁5の空気供給弁19を駆動して、2次蒸気遮断弁31と1次蒸気遮断弁5を全閉とし、蒸気制御弁6を強制閉とし、燃焼器10へ注入される蒸気を遮断する。(また負荷遮断発生と同時に、燃料制御装置22により燃料制御弁14を最小に絞って燃焼器10の火炎を最小とする。)これにより、燃焼器10に注入される蒸気はほぼ遮断され、燃料制御による速度制御が優先されることにより、ガスタービン6の過速度が防止され、かつ燃焼器10の火炎が最小となっても燃焼器10の火炎の消失が防止され、無負荷運転に移行する。
2.また負荷遮断発生と同時に、第1蒸気ドレン弁23と第2蒸気ドレン弁24を開とする。これにより、過熱器7の過熱管8と、蒸気注入管9が放圧され、異常昇圧が防止される。
3.次に、負荷遮断より規定時間(たとえば30秒)が経過すると、2次蒸気遮断弁31を徐々に開ける。これにより、残圧による燃焼器10の火炎の消失が防止される。
4.次に負荷遮断より規定時間(たとえば50秒)が経過すると、1次蒸気遮断弁5を開け、蒸気制御弁6を開度5%程度開ける。これにボイラ1からの蒸気の供給が開始される。
5.次に負荷遮断より規定時間(たとえば60秒)が経過すると、第1蒸気ドレン弁23と第2蒸気ドレン弁24は閉とされる。これにより、蒸気制御弁6の開度5%相当の蒸気が燃焼器10へ注入され、発電機18の無負荷運転に必要な回転数が維持される。
6.次に負荷遮断より規定時間(たとえば90秒)が経過し、発電機18が負荷に再び接続されると、蒸気制御弁6を徐々に開ける。これにより燃焼器10へ供給される蒸気量が徐々に増加する。
7.次に蒸気制御弁6を自動に投入し、自動負荷運転に移行する。
【0018】
このように、蒸気注入管9に2次蒸気遮断弁31を介装し、負荷遮断時にこの2次蒸気遮断弁31を全閉することにより、燃焼器10に注入される蒸気をほぼ遮断でき、よってガスタービン16の過速度を防止でき、かつ燃焼器10の火炎が最小となっても火炎の消失を防止でき、ガスタービン16のトリップを防止できる。またガスタービン16がトリップすることなく、確実に無負荷運転に移行することができることにより、負荷運転となるまでの時間を短縮できる。
【0019】
また負荷遮断の後、各弁をプログラム的に動作させることにより、無負荷運転を維持し、負荷運転を再開することができる。
【0020】
【発明の効果】
以上述べたように本発明によれば、負荷遮断時に燃焼器に注入される蒸気をほぼ遮断でき、よってガスタービンの過速度と燃焼器の火炎の消失を防止でき、ガスタービンのトリップを防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における蒸気注入式ガスタービン発電設備の構成図である。
【図2】同蒸気注入式ガスタービン発電設備における各弁の動作を示す特性図である。
【図3】従来の蒸気注入式ガスタービン発電設備の構成図である。
【符号の説明】
1 ボイラ
2 ドラム
3 蒸発器
4 蒸発管
5 1次蒸気遮断弁
6 蒸気制御弁
7 過熱器
8 過熱管
9 蒸気注入管
10 燃焼器
15 圧縮機
16 ガスタービン
17 減速機
18 発電機
20’ 注入蒸気制御装置
21 燃料制御装置
23 第1蒸気ドレン弁
24 第2蒸気ドレン弁
31 2次蒸気遮断弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam injection type gas turbine power generation facility.
[0002]
[Prior art]
An example of the configuration of a conventional steam injection type gas turbine power generation facility will be described with reference to FIG.
[0003]
In FIG. 3, reference numeral 1 denotes a drum-type exhaust heat recovery boiler. Water supplied from a feed water pump (not shown) is injected into the drum 2, sent from the drum 2 to the evaporation pipe 4 of the evaporator 3, and heated. Return to drum 2 as a mixture of steam and water. The steam generated in the drum 2 is sent to the superheater pipe 8 of the superheater 7 through the steam cutoff valve 5 and the steam control valve 6, further superheated in the superheater 7, passed through the steam injection pipe 9, and the combustor 10. Supplied to. 11 is the chimney of boiler 1.
[0004]
In addition, gas turbine fuel is supplied to the combustor 10 through the fuel control valve 14, and further compressed air is supplied from the compressor 15. The combustor 10 burns the gas turbine fuel in the compressed air. Thus, the steam supplied from the boiler 1 through the steam injection pipe 9 is further superheated and supplied to the gas turbine 16 together with the combustion gas, and the gas turbine 16 is rotated. The compressor 15 is connected to a gas turbine 16. Exhaust gas from the compressor 15 (gas turbine 16) is guided to the boiler 1, and steam is generated by the heat energy.
[0005]
Further, the gas turbine 16 is connected to the generator 18 via the speed reducer 17, and the generator 18 rotates to generate electric power when the gas turbine 16 rotates.
The steam shut-off valve 5 is of an air drive type, and an air supply valve 19 composed of an electromagnetic valve for supplying driving air to the steam shut-off valve 5 is provided. The air supply valve 19 and the steam control valve 6 are controlled by an injection steam control device 20, and the fuel control valve 14 is controlled by a fuel control device 22.
[0006]
The control when the load connected to the generator 18 is shut off by the injection steam control device 20 and the fuel control device 22 will be described.
When shutting off heavy loads (over 80% of the capacity of the gas turbine 16);
The gas turbine 16 and the generator 18 are stopped to prevent overspeed. That is, the steam control valve 20 is fully closed by the injection steam control device 20 via the air supply valve 19, the steam control valve 6 is fully closed, and the fuel control device 22 is throttled to the minimum by the fuel control device 22, so that the combustor. Minimize 10 flames.
[0007]
When light loads (less than 80% of the capacity of the gas turbine 16) are interrupted;
The steam control valve 6 is throttled by the injection steam control device 20 and the fuel control valve 14 is throttled by the fuel control device 22 to control the amount of steam flowing into the combustor 10 and the amount of gas turbine fuel to prevent overspeed.
[0008]
As shown in FIG. 3, in order to prevent water droplets from entering the gas turbine 16, the superheater tube 8 of the superheater 7 is provided with a first steam drain valve 23 made of an electromagnetic valve. A second steam drain valve 24 comprising an electromagnetic valve is provided.
[0009]
[Problems to be solved by the invention]
However, when the heavy load (80% or more of the capacity of the gas turbine 16) is interrupted, the amount of steam remaining in the superheater tube 8 and the steam injection tube 9 of the superheater 7 is large, so the amount of steam injected into the combustor 10 Since the speed does not decrease suddenly, the speed cannot be sufficiently controlled and there is a risk of overspeed. In addition, the flame that has been minimized by the steam injected into the combustor 10 may be extinguished. Further, if the overspeed occurs or the flame disappears, the gas turbine 16 is tripped, so the operator must restart the gas turbine 16 when the load is interrupted and tripped. It was.
[0010]
Therefore, an object of the present invention is to provide a steam injection type gas turbine power generation facility that can prevent an overspeed of the gas turbine at the time of load interruption and can prevent a flame of a combustor from disappearing.
[0011]
[Means for Solving the Problems]
In order to achieve the above-described object, the invention according to claim 1 of the present invention includes a boiler, a gas turbine connected to a generator, and steam supplied from the boiler by burning supplied fuel. A combustor for heating and supplying to the gas turbine is provided, and a steam shut-off valve is provided at an inlet of steam supplied from the boiler of the combustor, and the steam shut-off valve is fully closed when the load of the generator is shut off. It is characterized by doing.
[0012]
According to the above configuration, the steam injected into the combustor is substantially shut off by fully closing the steam shut-off valve at the combustor inlet when the load of the generator is shut off. Therefore, the overspeed of the gas turbine is prevented and the disappearance of the flame of the combustor is prevented.
[0013]
According to a second aspect of the present invention, there is provided a drum-type boiler having a superheater, a gas turbine connected to a generator, combustion of supplied fuel and heating steam supplied from the boiler, and the gas turbine Equipped with a combustor to supply
A steam pipe between the boiler drum and the boiler superheater is provided with a primary steam cutoff valve and a steam control valve, and a secondary steam cutoff valve is provided in the steam pipe between the boiler superheater and the combustor. A first steam drain valve is connected to a superheat pipe of the boiler superheater, a second steam drain valve is connected to a steam pipe between the boiler superheater and a secondary steam cutoff valve, and the power generation When the load of the machine is shut off, the primary steam shut-off valve, the steam control valve, the secondary steam shut-off valve, the first steam drain valve, and the second steam drain valve are driven in combination to shift to no-load operation. To do.
[0014]
According to the above configuration, when the generator load is shut off, the primary steam shut-off valve, the steam control valve, the secondary steam shut-off valve, the first steam drain valve, and the second steam drain valve are driven in combination. By shifting to the load operation, the trip of the gas turbine is prevented and the time until the load operation is shortened.
According to a third aspect of the present invention, there is provided a drum boiler having a superheater, a gas turbine connected to a generator, combustion of supplied fuel and heating of steam supplied from the boiler to the gas turbine. A steam pipe provided between the boiler superheater and the combustor, wherein the steam pipe between the boiler drum and the boiler superheater includes a primary steam cutoff valve and a steam control valve. A secondary steam shut-off valve, a first steam drain valve connected to the superheater pipe of the boiler superheater, and a second steam drain connected to the steam pipe between the boiler superheater and the secondary steam shutoff valve. A valve is connected, and when the load of the generator is shut off, the primary steam shutoff valve, the steam control valve, and the secondary steam shutoff valve are closed, the first steam drain valve and the second steam drain valve are opened, and the load The primary steam shut-off valve and steam control as the specified time elapses from shut-off A valve and a secondary steam shut-off valve are opened, the first steam drain valve and the second steam drain valve are closed, and steam for maintaining the number of revolutions necessary for no-load operation of the generator is injected into the combustor, It is characterized by shifting to no-load operation.
According to the above configuration, when the load on the generator is shut off, the primary steam shutoff valve, the steam control valve, and the secondary steam shutoff valve are closed, and the first steam drain valve and the second steam drain valve are opened. As the specified time elapses, the primary steam shutoff valve, steam control valve, and secondary steam shutoff valve are opened, the first steam drain valve and the second steam drain valve are closed, and the number of revolutions required for no-load operation of the generator is set. The steam to be maintained is injected into the combustor and shifted to no-load operation.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the structure same as FIG. 3 of a prior art example, and description is abbreviate | omitted.
[0016]
FIG. 1 is a configuration diagram of a steam injection type gas turbine power generation facility according to an embodiment of the present invention.
The steam injection type gas turbine power generation facility of the present invention is provided with a pneumatic secondary steam cutoff valve 31 at the inlet position of the combustor 10 of the steam injection pipe 9. The secondary steam cutoff valve 31 is provided with a secondary air supply valve 34 composed of an electromagnetic valve for supplying driving air. The secondary air supply valve 34 of the secondary steam cutoff valve 31, the air supply valve 19, the steam control valve 31, the first steam drain valve 23, and the second steam drain valve 24 of the (primary) steam cutoff valve 5 are injected. It is controlled by the steam control device 20 ′.
[0017]
The control at the time of load interruption by the injected steam control device 20 ′ will be described with reference to FIG.
1. Simultaneously with the occurrence of load shutoff, the secondary air shutoff valve 31 and the primary steam shutoff valve 5 are driven by driving the secondary air shutoff valve 31 of the secondary steam shutoff valve 31 and the air supply valve 19 of the primary steam shutoff valve 5. The steam control valve 6 is forcibly closed and the steam injected into the combustor 10 is shut off. (At the same time as the occurrence of load shut-off, the fuel control device 22 minimizes the fuel control valve 14 to minimize the flame of the combustor 10.) As a result, the steam injected into the combustor 10 is substantially shut off and the fuel By giving priority to the speed control by the control, the overspeed of the gas turbine 6 is prevented, and even if the flame of the combustor 10 is minimized, the disappearance of the flame of the combustor 10 is prevented, and the operation shifts to the no-load operation. .
2. Simultaneously with the occurrence of load interruption, the first steam drain valve 23 and the second steam drain valve 24 are opened. Thereby, the superheater tube 8 and the steam injection tube 9 of the superheater 7 are released, and abnormal pressure increase is prevented.
3. Next, when a predetermined time (for example, 30 seconds) elapses from the load cutoff, the secondary steam cutoff valve 31 is gradually opened. Thereby, the disappearance of the flame of the combustor 10 due to the residual pressure is prevented.
4). Next, when a specified time (for example, 50 seconds) elapses from the load cutoff, the primary steam cutoff valve 5 is opened and the steam control valve 6 is opened about 5%. The supply of steam from the boiler 1 is started.
5). Next, when a predetermined time (for example, 60 seconds) elapses after the load is cut off, the first steam drain valve 23 and the second steam drain valve 24 are closed. As a result, steam corresponding to an opening degree of 5% of the steam control valve 6 is injected into the combustor 10 and the rotational speed necessary for the no-load operation of the generator 18 is maintained.
6). Next, when a specified time (for example, 90 seconds) elapses from the load interruption and the generator 18 is connected to the load again, the steam control valve 6 is gradually opened. As a result, the amount of steam supplied to the combustor 10 gradually increases.
7). Next, the steam control valve 6 is automatically turned on to shift to automatic load operation.
[0018]
In this way, the steam injected into the combustor 10 can be substantially shut off by interposing the secondary steam shut-off valve 31 in the steam injection pipe 9 and fully closing the secondary steam shut-off valve 31 when the load is shut off. Therefore, the overspeed of the gas turbine 16 can be prevented, and even when the flame of the combustor 10 is minimized, the disappearance of the flame can be prevented and the trip of the gas turbine 16 can be prevented. In addition, since the gas turbine 16 can reliably shift to the no-load operation without tripping, the time until the load operation is started can be shortened.
[0019]
In addition, after the load is cut off, each valve is operated in a program manner, so that no-load operation can be maintained and the load operation can be resumed.
[0020]
【The invention's effect】
As described above, according to the present invention, the steam injected into the combustor when the load is interrupted can be substantially interrupted, so that the overspeed of the gas turbine and the disappearance of the flame of the combustor can be prevented, and the trip of the gas turbine can be prevented. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a steam injection gas turbine power generation facility according to an embodiment of the present invention.
FIG. 2 is a characteristic diagram showing the operation of each valve in the steam injection type gas turbine power generation facility.
FIG. 3 is a configuration diagram of a conventional steam injection gas turbine power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 Drum 3 Evaporator 4 Evaporation pipe 5 Primary steam cutoff valve 6 Steam control valve 7 Superheater 8 Superheat pipe 9 Steam injection pipe
10 Combustor
15 Compressor
16 Gas turbine
17 Reducer
18 Generator
20 'Injection steam control device
21 Fuel control system
23 First steam drain valve
24 Second steam drain valve
31 Secondary steam shutoff valve

Claims (3)

ボイラと、
発電機に連結されたガスタービンと、
供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し前記ガスタービンへ供給する燃焼器を備え、
前記燃焼器の前記ボイラから供給される蒸気の入口に、蒸気遮断弁を設け、前記発電機の負荷遮断時に、この蒸気遮断弁を全閉すること
を特徴とする蒸気注入式ガスタービン発電設備。
With a boiler,
A gas turbine coupled to a generator;
A combustor for combusting the supplied fuel to heat the steam supplied from the boiler and supplying the steam to the gas turbine;
A steam injection type gas turbine power generation facility characterized in that a steam cutoff valve is provided at an inlet of steam supplied from the boiler of the combustor, and the steam cutoff valve is fully closed when the load of the generator is shut off.
過熱器を有するドラム形ボイラと、
発電機に連結されたガスタービンと、
供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し、前記ガスタービンへ供給する燃焼器を備え、
前記ボイラのドラムとボイラの過熱器の間の蒸気配管に、1次蒸気遮断弁と蒸気制御弁を介装し、
前記ボイラの過熱器と燃焼器の間の蒸気配管に2次蒸気遮断弁を介装し、
前記ボイラの過熱器の過熱管に第1蒸気ドレン弁を接続し、
前記ボイラの過熱器と2次蒸気遮断弁の間の蒸気配管に第2蒸気ドレン弁を接続し、
前記発電機の負荷遮断時に、前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁と第1蒸気ドレン弁と第2蒸気ドレン弁を組み合わせて駆動し、無負荷運転に移行すること
を特徴とする蒸気注入式ガスタービン発電設備。
A drum boiler having a superheater;
A gas turbine coupled to a generator;
Combusting the supplied fuel, heating the steam supplied from the boiler, and providing a combustor for supplying to the gas turbine,
A steam pipe between the boiler drum and the boiler superheater is provided with a primary steam cutoff valve and a steam control valve,
A secondary steam shut-off valve is installed in the steam pipe between the boiler superheater and the combustor;
A first steam drain valve is connected to the superheater tube of the boiler superheater;
A second steam drain valve is connected to the steam pipe between the boiler superheater and the secondary steam shut-off valve;
When the load of the generator is shut off, the primary steam shut-off valve, the steam control valve, the secondary steam shut-off valve, the first steam drain valve, and the second steam drain valve are driven in combination to shift to no-load operation. A steam injection type gas turbine power generation facility.
過熱器を有するドラム形ボイラと、
発電機に連結されたガスタービンと、
供給される燃料を燃焼して前記ボイラから供給される蒸気を加熱し前記ガスタービンへ供給する燃焼器を備え、
前記ボイラのドラムとボイラの過熱器の間の蒸気配管に、1次蒸気遮断弁と蒸気制御弁を介装し、
前記ボイラの過熱器と燃焼器の間の蒸気配管に2次蒸気遮断弁を介装し、
前記ボイラの過熱器の過熱管に第1蒸気ドレン弁を接続し、
前記ボイラの過熱器と2次蒸気遮断弁の間の蒸気配管に第2蒸気ドレン弁を接続し、
前記発電機の負荷遮断時に、前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を閉、前記第1蒸気ドレン弁と第2蒸気ドレン弁を開とし、前記負荷遮断時より規定時間の経過に従い前記1次蒸気遮断弁と蒸気制御弁と2次蒸気遮断弁を開、前記第1蒸気ドレン弁と第2蒸気ドレン弁を閉として、前記発電機の無負荷運転に必要な回転数を維持する蒸気を前記燃焼器へ注入し、無負荷運転に移行すること
を特徴とする蒸気注入式ガスタービン発電設備。
A drum boiler having a superheater;
A gas turbine coupled to a generator;
A combustor for combusting the supplied fuel to heat the steam supplied from the boiler and supplying the steam to the gas turbine;
A steam pipe between the boiler drum and the boiler superheater is provided with a primary steam cutoff valve and a steam control valve,
A secondary steam shut-off valve is installed in the steam pipe between the boiler superheater and the combustor;
A first steam drain valve is connected to the superheater tube of the boiler superheater;
A second steam drain valve is connected to the steam pipe between the boiler superheater and the secondary steam shut-off valve;
When the load of the generator is shut off, the primary steam shut-off valve, the steam control valve, and the secondary steam shut-off valve are closed, the first steam drain valve and the second steam drain valve are opened, and a predetermined time from when the load is shut off. The primary steam shut-off valve, the steam control valve, and the secondary steam shut-off valve are opened as the time elapses, and the first steam drain valve and the second steam drain valve are closed. Inject steam to maintain the above into the combustor and shift to no-load operation
A steam-injection type gas turbine power generation facility.
JP07635598A 1998-03-25 1998-03-25 Steam injection gas turbine power generation equipment Expired - Fee Related JP3955145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07635598A JP3955145B2 (en) 1998-03-25 1998-03-25 Steam injection gas turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07635598A JP3955145B2 (en) 1998-03-25 1998-03-25 Steam injection gas turbine power generation equipment

Publications (2)

Publication Number Publication Date
JPH11270349A JPH11270349A (en) 1999-10-05
JP3955145B2 true JP3955145B2 (en) 2007-08-08

Family

ID=13603065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07635598A Expired - Fee Related JP3955145B2 (en) 1998-03-25 1998-03-25 Steam injection gas turbine power generation equipment

Country Status (1)

Country Link
JP (1) JP3955145B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888095B2 (en) 2001-07-26 2007-02-28 株式会社日立製作所 Gas turbine equipment
JP2021191951A (en) 2020-06-05 2021-12-16 東芝エネルギーシステムズ株式会社 CO2 turbine power generation system

Also Published As

Publication number Publication date
JPH11270349A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
CN106089341B (en) Method for enhancing cold steam turbine startup in a multi-gas turbine combined cycle plant
JP2005534883A (en) Waste heat steam generator
US20230094065A1 (en) Gas turbine facility
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP5694112B2 (en) Uniaxial combined cycle power plant and operation method thereof
JPH1037713A (en) Combined cycle power plant
JP3955145B2 (en) Steam injection gas turbine power generation equipment
CA2242073C (en) Combined cycle power generation plant
JP5400850B2 (en) Method and apparatus for controlling exhaust heat boiler system
JP3660727B2 (en) Operation method of single-shaft combined cycle plant
JP2000248962A (en) Operating method for combined cycle generating plant
JP2023051720A (en) Gas turbine facility
JPH04148035A (en) Vapor cooled gas turbine system
JPH0416612B2 (en)
JP7185507B2 (en) Steam turbine equipment, method for starting steam turbine equipment, and combined cycle plant
US4151712A (en) Protective shutdown system for combined cycle plant having a dual liquid fuel system
JPS6239253B2 (en)
JP2004068652A (en) Combined cycle power generation plant and its starting method
JP4208993B2 (en) Single axis combined plant startup system
JP4637699B2 (en) Fuel system in steam power plant and operation method thereof
JP5537475B2 (en) Waste heat recovery boiler and power plant
JP3769385B2 (en) Plant control apparatus and method
JP2667699B2 (en) Single-shaft combined plant and start-up method thereof
JP2007285220A (en) Combined cycle power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees