JP5400850B2 - Method and apparatus for controlling exhaust heat boiler system - Google Patents

Method and apparatus for controlling exhaust heat boiler system Download PDF

Info

Publication number
JP5400850B2
JP5400850B2 JP2011224852A JP2011224852A JP5400850B2 JP 5400850 B2 JP5400850 B2 JP 5400850B2 JP 2011224852 A JP2011224852 A JP 2011224852A JP 2011224852 A JP2011224852 A JP 2011224852A JP 5400850 B2 JP5400850 B2 JP 5400850B2
Authority
JP
Japan
Prior art keywords
exhaust
heat
heat boiler
bypass valve
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011224852A
Other languages
Japanese (ja)
Other versions
JP2013083226A (en
Inventor
充 千田
和憲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2011224852A priority Critical patent/JP5400850B2/en
Publication of JP2013083226A publication Critical patent/JP2013083226A/en
Application granted granted Critical
Publication of JP5400850B2 publication Critical patent/JP5400850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Turbines (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、複数の熱源から熱エネルギを受ける排熱ボイラシステムの運転を制御する方法および装置に関する。   The present invention relates to a method and apparatus for controlling the operation of an exhaust heat boiler system that receives thermal energy from a plurality of heat sources.

近年、発電装置におけるガスタービンエンジンのような各種熱機関からの排熱をボイラの加熱に利用する、コジェネレーションシステム(排熱ボイラシステム)が普及してきている。このような排熱ボイラシステムとして、排熱ボイラの出力を増加させるために、2つの熱源を設けること、例えば、熱機関のほかに、この熱機関からの高温の排気ガスを排熱ボイラに供給する排気ガス通路の中途にダクトバーナを設けることが提案されている。   In recent years, cogeneration systems (exhaust heat boiler systems) that use exhaust heat from various heat engines such as gas turbine engines in power generation apparatuses to heat boilers have become widespread. As such an exhaust heat boiler system, in order to increase the output of the exhaust heat boiler, two heat sources are provided, for example, in addition to the heat engine, hot exhaust gas from this heat engine is supplied to the exhaust heat boiler. It has been proposed to provide a duct burner in the middle of the exhaust gas passage.

また、このように排気ガス通路の中途にダクトバーナを設ける場合、熱機関が何等かの理由により停止しても排熱ボイラを停止せずに継続して運転するために、ダクトバーナの上流側に、排気ガス通路と並列に、ダクトバーナに送風を行う送風装置を設けることが知られている。この場合、熱機関からの排気ガス通路の途中に、排気ガスを排熱ボイラから迂回させるための排気バイパス弁を設け、この排気バイパス弁の開度を調節することにより、熱機関の作動中に熱機関から排熱ボイラに供給される排気ガス量、すなわち熱量を調節する。   Also, when a duct burner is provided in the middle of the exhaust gas passage in this way, in order to continue operation without stopping the exhaust heat boiler even if the heat engine stops for any reason, on the upstream side of the duct burner, It is known to provide a blower that blows air to the duct burner in parallel with the exhaust gas passage. In this case, an exhaust bypass valve for bypassing the exhaust gas from the exhaust heat boiler is provided in the middle of the exhaust gas passage from the heat engine, and the opening degree of the exhaust bypass valve is adjusted so that the heat engine is in operation. The amount of exhaust gas supplied from the heat engine to the exhaust heat boiler, that is, the amount of heat is adjusted.

特開2004−225966号公報JP 2004-225966 A

しかし、このように、複数の熱源を設けて排熱ボイラの蒸気圧力を制御する場合、一方の熱源(例えば、ここでは熱機関)が作動状態にあるのか停止状態にあるのかによって、また、熱機関が作動状態にある場合の排気バイパス弁の開度によって、他方の熱源(例えば、ダクトバーナ)の制御量が、制御対象であるボイラの蒸気圧に及ぼす影響の大きさが変動する。すなわち、このような運転状態の変動によって、ダクトバーナの制御定数の最適性が失われ、排熱ボイラの蒸気圧力を安定的に制御することが困難となる。   However, in this way, when a plurality of heat sources are provided to control the steam pressure of the exhaust heat boiler, depending on whether one of the heat sources (for example, the heat engine here) is in an operating state or in a stopped state, The magnitude of the influence of the control amount of the other heat source (for example, duct burner) on the steam pressure of the boiler to be controlled varies depending on the opening degree of the exhaust bypass valve when the engine is in an operating state. That is, due to such fluctuations in the operating state, the optimality of the control constant of the duct burner is lost, and it becomes difficult to stably control the steam pressure of the exhaust heat boiler.

そこで、本発明の目的は、上記の課題を解決するために、複数の熱源を備える排熱ボイラシステムを安定的に運転するための制御方法および制御装置を提供することにある。   Accordingly, an object of the present invention is to provide a control method and a control device for stably operating an exhaust heat boiler system including a plurality of heat sources in order to solve the above-described problems.

上記目的を達成するために、本発明に係る排熱ボイラシステムの制御方法または制御装置は、負荷を駆動して排熱を放出する熱機関と、他の一つ以上の熱源と、前記熱機関および熱源から熱エネルギを受ける排熱ボイラとを備えた排熱ボイラシステムの運転を制御するためのものであって、前記熱源の燃料制御定数を、前記熱機関の作動および不作動に応じて変更することにより、前記排熱ボイラの蒸気圧力に関連した物理量を所定値に維持する。前記熱機関は、例えばガスタービンエンジンであり、前記熱源は、例えばダクトバーナである。また、前記物理量は、例えばダクトバーナの燃料流量や排熱ボイラの蒸気圧である。   In order to achieve the above object, a control method or control apparatus for an exhaust heat boiler system according to the present invention includes a heat engine that drives a load to release exhaust heat, one or more other heat sources, and the heat engine. And an operation of a waste heat boiler system including a waste heat boiler that receives heat energy from a heat source, wherein a fuel control constant of the heat source is changed according to the operation and non-operation of the heat engine By doing so, the physical quantity related to the steam pressure of the exhaust heat boiler is maintained at a predetermined value. The heat engine is, for example, a gas turbine engine, and the heat source is, for example, a duct burner. The physical quantity is, for example, the fuel flow rate of the duct burner or the vapor pressure of the exhaust heat boiler.

この構成によれば、熱源の制御感度に大きな影響を与える熱機関の作動および不作動に応じて燃料制御定数を変更するので、排熱ボイラシステムの運転状況に応じた適切な燃料制御定数を設定することができ、当該システムを安定的に運転することが可能となる。   According to this configuration, the fuel control constant is changed according to the operation and non-operation of the heat engine that greatly affects the control sensitivity of the heat source, so an appropriate fuel control constant is set according to the operation status of the exhaust heat boiler system. Therefore, the system can be stably operated.

本発明の一実施形態において、さらに、前記熱機関からの排ガスの少なくとも一部を前記排熱ボイラに供給しないようにバイパスさせる、回動式の排気バイパス弁を当該システムに設け、前記排気バイパス弁の回動角度を制御する開度制御定数を、前記回動角度の増大に応じて小さい値に補正することにより、前記物理量を所定値に維持することが好ましい。さらには、前記開度制御定数に遅延時間を付加して前記排気バイパス弁を制御することが好ましい。これらの構成によれば、排熱ボイラの圧力制御が不安定になり易い、排気バイパス弁の開度による制御において、排気バイパス弁の開度をより安定的に制御することにより、当該システムを一層安定的に運転することが可能となる。   In an embodiment of the present invention, the exhaust bypass valve is further provided with a rotary exhaust bypass valve that bypasses at least a part of the exhaust gas from the heat engine so as not to be supplied to the exhaust heat boiler. It is preferable to maintain the physical quantity at a predetermined value by correcting an opening degree control constant for controlling the rotation angle to a small value as the rotation angle increases. Furthermore, it is preferable to control the exhaust bypass valve by adding a delay time to the opening degree control constant. According to these configurations, in the control based on the opening degree of the exhaust bypass valve, in which the pressure control of the exhaust heat boiler is likely to be unstable, the opening degree of the exhaust bypass valve is more stably controlled, thereby further increasing the system. It becomes possible to drive stably.

本発明に係る制御方法または制御装置によれば、以上のように、複数の熱源を備える排熱ボイラシステムをきわめて安定的に運転することが可能となる。   According to the control method or the control device according to the present invention, as described above, the exhaust heat boiler system including a plurality of heat sources can be operated extremely stably.

本発明の一実施形態に係る制御装置を備えた排熱ボイラシステムの概略構成を示すブロック図である。It is a block diagram showing a schematic structure of an exhaust heat boiler system provided with a control device concerning one embodiment of the present invention. 図1の制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus of FIG. 図1の排熱ボイラシステムの運転状態の例を示すブロック図である。It is a block diagram which shows the example of the driving | running state of the waste heat boiler system of FIG. 図1の排熱ボイラシステムの制御特性を示すグラフである。It is a graph which shows the control characteristic of the waste heat boiler system of FIG. 図1の排熱ボイラシステムの運転状態の例を示すブロック図である。It is a block diagram which shows the example of the driving | running state of the waste heat boiler system of FIG. 図1の排熱ボイラシステムの運転状態の例を示すブロック図である。 Ru block view showing an example of operating conditions of the waste heat boiler system of Figure 1.

以下,本発明の好ましい実施形態を図面に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1に、本発明の一実施形態に係る制御方法を実行する制御装置1が設けられた排熱ボイラシステムBSの概略構成を示す。排熱ボイラシステムBSは、負荷Lを駆動して排熱を放出する熱機関(この例ではガスタービンGT)と、この熱機関とは別に設けられた熱源(この例ではダクトバーナ3)と、前記熱機関および熱源から前記排熱を含む熱エネルギを受けて蒸気を発生させる排熱ボイラ5とを主要な構成要素として備えている。本実施形態では、負荷Lとして発電機を使用している。   FIG. 1 shows a schematic configuration of an exhaust heat boiler system BS provided with a control device 1 that executes a control method according to an embodiment of the present invention. The exhaust heat boiler system BS includes a heat engine (in this example, a gas turbine GT) that drives the load L to release exhaust heat, a heat source (in this example, the duct burner 3) provided separately from the heat engine, An exhaust heat boiler 5 that receives heat energy including the exhaust heat from a heat engine and a heat source to generate steam is provided as a main component. In the present embodiment, a generator is used as the load L.

ガスタービンエンジンGTは、空気を圧縮する圧縮機11と、圧縮機11からの圧縮空気に燃料を供給して燃焼させる燃焼器13と、圧縮機11に回転軸15を介して連結され、燃焼器13からの燃焼ガスによって駆動され、かつ高温の排気ガスを排出するタービン17とを備えており、回転軸15に連結された発電機のような負荷Lを駆動する。   The gas turbine engine GT is connected to a compressor 11 that compresses air, a combustor 13 that supplies fuel to the compressed air from the compressor 11 to burn, and a compressor 11 that is connected to the compressor 11 via a rotary shaft 15. And a turbine 17 that is driven by the combustion gas from 13 and exhausts high-temperature exhaust gas, and drives a load L such as a generator connected to the rotating shaft 15.

排熱ボイラ5に熱エネルギを与えるための高温ガスを供給する高温ガス供給路21は、上流側で二又に分岐しており、その一方の端部にガスタービンエンジンGTのタービン17が接続されており、他方の端部に送風装置23、例えば送風ファンが設置されている。以下の説明では、高温ガス供給路21の二又に分岐したうちの一方の、ガスタービンエンジンGTに接続されている側をタービン排気路25、二又に分岐した他方の、送風装置23が設置された側を送風路27、分岐部29(つまりタービン排気路25と送風路27との合流部)よりも下流側の部分をボイラ供給路31と呼ぶ。ダクトバーナ3は、ボイラ供給路31の分岐部29よりもやや下流側の部分に設けられており、必要に応じてガスタービンエンジンGTからの排気ガスをさらに加熱する。   A high temperature gas supply path 21 for supplying a high temperature gas for supplying heat energy to the exhaust heat boiler 5 is bifurcated on the upstream side, and a turbine 17 of the gas turbine engine GT is connected to one end thereof. A blower 23, for example, a blower fan is installed at the other end. In the following explanation, one side of the bifurcated branch of the hot gas supply path 21 is connected to the gas turbine engine GT, the turbine exhaust path 25, and the other bifurcated branch blower 23 is installed. The portion on the downstream side of the blower passage 27 and the branching portion 29 (that is, the joining portion of the turbine exhaust passage 25 and the blower passage 27) is referred to as a boiler supply passage 31. The duct burner 3 is provided in a portion slightly downstream of the branch portion 29 of the boiler supply path 31, and further heats the exhaust gas from the gas turbine engine GT as necessary.

ボイラ供給路31の下流端は、排熱ボイラシステムBSの給水系統の加熱に利用された後の排気ガスを排出する第1のガス排出路33に接続している。また、タービン排気路25の中途には、タービン排気を排熱ボイラ5から迂回させて、排熱ボイラ5に供給される高温ガス量を調整するための排ガスバイパス路35が接続している。タービン排気路25を形成するタービン排気ダクト37と排ガスバイパス路35を形成する排ガスバイパスダクト39との連結部分には、回動式の排気バイパス弁41が設けられている。排気バイパス弁41は、排ガスバイパス路35への導入口が完全に閉じられてタービン排気の全量がボイラ供給路31に送られる状態(全閉状態)から、タービン排気路25が完全に塞がれてタービン排気の全量が排ガスバイパス路35に送られる状態(全開状態)までの間の任意の開度、つまり回動角度αに設定することができる。   The downstream end of the boiler supply path 31 is connected to a first gas discharge path 33 that discharges the exhaust gas after being used for heating the water supply system of the exhaust heat boiler system BS. Further, in the middle of the turbine exhaust passage 25, an exhaust gas bypass passage 35 is connected to bypass the turbine exhaust from the exhaust heat boiler 5 and adjust the amount of high-temperature gas supplied to the exhaust heat boiler 5. A rotating exhaust bypass valve 41 is provided at a connection portion between the turbine exhaust duct 37 forming the turbine exhaust path 25 and the exhaust gas bypass duct 39 forming the exhaust gas bypass path 35. In the exhaust bypass valve 41, the turbine exhaust passage 25 is completely blocked from the state where the inlet to the exhaust gas bypass passage 35 is completely closed and the entire amount of turbine exhaust is sent to the boiler supply passage 31 (fully closed state). Thus, it is possible to set an arbitrary opening, that is, a rotation angle α until a state where the entire amount of turbine exhaust is sent to the exhaust gas bypass passage 35 (fully opened state).

一方、送風路27を形成する送風ダクト43の中途には、回動式の送風弁45が設けられており、送風装置23が動作しない場合には、送風弁45によって送風路27が完全に閉塞され、送風装置23の動作時には、送風弁45が全開の状態となる。   On the other hand, in the middle of the air duct 43 forming the air passage 27, a rotary air valve 45 is provided. When the air blower 23 does not operate, the air passage 27 is completely blocked by the air valve 45. When the blower 23 is in operation, the blower valve 45 is fully opened.

排熱ボイラ5は、給水路47からの水が供給されるボイラドラム51と、ボイラドラム51に供給された水を、ボイラ供給路31を通過する排ガスの熱エネルギを受けて蒸気を発生させる蒸気発生器53とからなる。給水路47の中途には、排熱ボイラ5に供給される水を予備的に加熱する節炭器55が設けられている。一方、排熱ボイラ5で発生した蒸気を出力する出力路57の中途には、出力蒸気をさらに加熱する過熱器59が設けられている。蒸気発生器53、節炭器55および過熱器59は、いずれもボイラ供給路31内に配置されており、ボイラ供給路31を通過する排気ガスの熱を利用して加熱が行われる。   The exhaust heat boiler 5 is a steam that generates steam by receiving the heat energy of the exhaust gas that passes through the boiler supply passage 31 from the boiler drum 51 to which water from the water supply passage 47 is supplied and the water supplied to the boiler drum 51. Generator 53. In the middle of the water supply path 47, a economizer 55 for preliminarily heating the water supplied to the exhaust heat boiler 5 is provided. On the other hand, a superheater 59 for further heating the output steam is provided in the middle of the output path 57 for outputting the steam generated in the exhaust heat boiler 5. The steam generator 53, the economizer 55, and the superheater 59 are all disposed in the boiler supply path 31, and are heated using the heat of the exhaust gas that passes through the boiler supply path 31.

図2に示すように、制御装置1は、ボイラドラム51内の蒸気圧を監視する圧力監視器61によって検出された検出蒸気圧力値と、予め設定された蒸気圧力指令値とを比較して、ダクトバーナ3への燃料供給量を制御することにより、ボイラドラム51内の蒸気圧力を所定値、つまり蒸気圧力指令値に維持する。より具体的には、制御装置1は、ダクトバーナ3に供給する燃料の量を制御するための燃料制御定数を設定する燃料制御定数設定部65、および熱機関であるガスタービンエンジンGTの作動および不作動に応じて燃料制御定数を変更する変更回路67を有している。   As shown in FIG. 2, the control device 1 compares the detected steam pressure value detected by the pressure monitor 61 that monitors the steam pressure in the boiler drum 51 with a preset steam pressure command value, By controlling the fuel supply amount to the duct burner 3, the steam pressure in the boiler drum 51 is maintained at a predetermined value, that is, a steam pressure command value. More specifically, the control device 1 operates and disables the fuel control constant setting unit 65 that sets a fuel control constant for controlling the amount of fuel supplied to the duct burner 3 and the gas turbine engine GT that is a heat engine. A change circuit 67 for changing the fuel control constant according to the operation is provided.

制御装置1において、蒸気圧力指令値設定部69が蒸気圧力指令値を設定し、蒸気圧力指令値と検出蒸気圧力値との偏差、および燃料制御定数設定部の燃料制御定数に基づいて燃料制御弁71を制御することにより、ダクトバーナ3に供給する燃料の量が制御される。燃料制御定数設定部65の燃料制御定数は、後に詳述するように、ガスタービンエンジンGTが作動状態にあるか、不作動(停止)状態にあるかに応じて、変更回路67によって変更される。   In the control device 1, the steam pressure command value setting unit 69 sets the steam pressure command value, and the fuel control valve is based on the deviation between the steam pressure command value and the detected steam pressure value and the fuel control constant of the fuel control constant setting unit. By controlling 71, the amount of fuel supplied to the duct burner 3 is controlled. The fuel control constant of the fuel control constant setting unit 65 is changed by the change circuit 67 according to whether the gas turbine engine GT is in an operating state or an inactive (stopped) state, as will be described in detail later. .

さらに、制御装置1は、排気バイパス弁41の回動角度αを制御するための開度制御定数を設定する開度制御定数設定部75が設けられており、また、開度制御定数を回動角度αの増大に応じて小さい値に補正する補正回路77が設けられている。   Further, the control device 1 is provided with an opening degree control constant setting unit 75 for setting an opening degree control constant for controlling the turning angle α of the exhaust bypass valve 41, and the opening degree control constant is turned. A correction circuit 77 is provided for correcting the value to a smaller value as the angle α increases.

以下、排熱ボイラシステムBSの運転状況、特に熱機関であるガスタービンエンジンGTの作動状況に応じた制御装置1の動作を説明する。   Hereinafter, the operation of the control device 1 according to the operation status of the exhaust heat boiler system BS, particularly the operation status of the gas turbine engine GT which is a heat engine will be described.

(1)ガスタービンエンジンGTが停止している場合
ガスタービンエンジンGTが停止している間、図3に示すように、排気バイパス弁41は全開状態にあり、タービン排気路25は排気バイパス弁41によって閉塞されている。この場合のボイラの圧力制御は、送風装置23によって送られる燃焼用空気量とダクトバーナ3の燃料流量によって制御されるが、ダクトバーナ3で制御すべき範囲が広いため、燃料制御定数を大きめの値に設定することが好ましい。ガスタービンエンジンGTの停止中におけるダクトバーナ3の燃料流量と排熱ボイラ5の蒸気発生量とは、図4に示すとおり、ほぼ比例する関係にあり、ダクトバーナ3の燃料制御が、そのまま排熱ボイラ5の圧力制御となる。
(1) When Gas Turbine Engine GT is Stopped While the gas turbine engine GT is stopped, as shown in FIG. 3, the exhaust bypass valve 41 is in a fully opened state, and the turbine exhaust passage 25 is connected to the exhaust bypass valve 41. It is blocked by The pressure control of the boiler in this case is controlled by the amount of combustion air sent by the blower 23 and the fuel flow rate of the duct burner 3, but since the range to be controlled by the duct burner 3 is wide, the fuel control constant is set to a larger value. It is preferable to set. As shown in FIG. 4, the fuel flow rate of the duct burner 3 and the steam generation amount of the exhaust heat boiler 5 during the stop of the gas turbine engine GT are in a substantially proportional relationship, and the fuel control of the duct burner 3 is performed as it is. Pressure control.

(2)ガスタービンエンジンGTが作動している場合
ガスタービンエンジンGTが作動している状態において、排熱ボイラ5の蒸気負荷が小さく、ガスタービンエンジンGTからのタービン排気の熱量のみで排熱ボイラ5に要求される蒸気圧力を達成できる場合は、ダクトバーナ3を使用しない。この場合、図5に示すように、タービン排気路25の排気バイパス弁41は全閉状態または部分閉状態となり、排気バイパス弁41の回動角度αを制御することにより、排熱ボイラ5に供給されるタービン排気の量、すなわち排熱ボイラ5に与えられる熱量が制御される。排熱ボイラ5に与えられる熱量を制御することによって排熱ボイラ5の圧力が変動するので、結果的に、排気バイパス弁41の回動角度αを制御することにより、排熱ボイラ5圧力が制御される。
(2) When the gas turbine engine GT is operating In the state where the gas turbine engine GT is operating, the steam load of the exhaust heat boiler 5 is small, and the exhaust heat boiler is obtained only by the amount of heat of the turbine exhaust from the gas turbine engine GT. When the steam pressure required for 5 can be achieved, the duct burner 3 is not used. In this case, as shown in FIG. 5, the exhaust bypass valve 41 of the turbine exhaust passage 25 is fully closed or partially closed, and is supplied to the exhaust heat boiler 5 by controlling the rotation angle α of the exhaust bypass valve 41. The amount of turbine exhaust, that is, the amount of heat given to the exhaust heat boiler 5 is controlled. Since the pressure of the exhaust heat boiler 5 varies by controlling the amount of heat given to the exhaust heat boiler 5, as a result, the pressure of the exhaust heat boiler 5 is controlled by controlling the rotation angle α of the exhaust bypass valve 41. Is done.

一方、蒸気負荷が大きく、タービン排気の熱量のみでは必要な蒸気圧力を出力できない場合、図6に示すように、排気バイパス弁41を全閉状態として、排気ガスの全量が排熱ボイラ5に供給される状態にしたうえで、ダクトバーナ3も使用する。ガスタービンエンジンGT側の排気ガス熱量に調整代がなくほぼ固定されている場合、蒸気負荷の変化への追従は、主としてダクトバーナ3の制御によることとなり、上記(1)において全熱量をダクトバーナ3で制御する場合とは異なった燃料制御定数が必要となる。すなわち、ガスタービンエンジンGTの作動の有無によって燃料制御定数の変更が必要であり、図2の変更回路67によって、上記(1)のガスタービンエンジンGT停止時における燃料制御定数よりも小さい値に設定する。   On the other hand, when the steam load is large and the required steam pressure cannot be output only by the heat quantity of the turbine exhaust, the exhaust bypass valve 41 is fully closed and the exhaust gas is supplied to the exhaust heat boiler 5 as shown in FIG. In addition, the duct burner 3 is also used. When the exhaust gas calorific value on the gas turbine engine GT side is almost fixed with no adjustment allowance, the change in the steam load is mainly controlled by the duct burner 3. A fuel control constant different from that for control is required. That is, the fuel control constant needs to be changed depending on whether or not the gas turbine engine GT is operated, and is set to a value smaller than the fuel control constant when the gas turbine engine GT is stopped by the change circuit 67 of FIG. To do.

(3)ガスタービンエンジンGTの停止状態から作動状態への移行
ガスタービンエンジンGTが停止している場合の排熱ボイラ5の運転時には、図3に示すように、排気バイパス弁41は開いている。ガスタービンエンジンGTが動作状態に入って蒸気負荷が増加した場合は、図3の状態からガスタービンエンジンGT側の排気バイパス弁41を徐々に閉じていき、最終的には図6に示すようにタービン排気の全量が排熱ボイラ5に送出される状態になる。このとき、ダクトバーナ3の制御感度は低下していくので、ダクトバーナ3の燃料制御定数を大きくする必要がある。ただし、排気バイパス弁41の全閉状態または全開状態の何れかにおいて燃料制御定数を瞬時に変更すると、排気バイパス弁41の全閉状態から全開状態への移行中における制御が極めて不安定な状態となる。そこで、燃料制御定数の変更は、排気バイパス弁41の開度に合わせて徐々に行う必要がある。その場合、図2の補正回路77を用いて、回動角度αが増大するにつれて開度制御定数を小さくしながら排気バイパス弁41の回動角度αの制御を行うことにより、燃料制御定数の変更を安定的に行うことが可能となる。
(3) Transition from Stopped State of Gas Turbine Engine GT to Operating State During operation of exhaust heat boiler 5 when gas turbine engine GT is stopped, exhaust bypass valve 41 is open as shown in FIG. . When the gas turbine engine GT enters the operating state and the steam load increases, the exhaust bypass valve 41 on the gas turbine engine GT side is gradually closed from the state of FIG. 3, and finally, as shown in FIG. The entire amount of turbine exhaust is sent to the exhaust heat boiler 5. At this time, since the control sensitivity of the duct burner 3 decreases, it is necessary to increase the fuel control constant of the duct burner 3. However, if the fuel control constant is instantaneously changed in either the fully closed state or the fully open state of the exhaust bypass valve 41, the control during the transition from the fully closed state to the fully open state of the exhaust bypass valve 41 is extremely unstable. Become. Therefore, it is necessary to change the fuel control constant gradually in accordance with the opening degree of the exhaust bypass valve 41. In this case, the fuel control constant is changed by controlling the rotation angle α of the exhaust bypass valve 41 while decreasing the opening degree control constant as the rotation angle α increases using the correction circuit 77 of FIG. Can be performed stably.

(4)ガスタービンエンジンGT作動状態から停止状態への移行
ガスタービンエンジンGTが動作状態、かつダクトバーナ3も動作状態にある場合、図6に示すように、排気バイパス弁41は閉じている。ガスタービンエンジンGTの停止時には、排気バイパス弁41を全閉状態から徐々に図3の全開状態へと移行させ、タービン排気の全量を排ガスバイパス路35側に送出する。このとき、ダクトバーナ3の制御感度は上昇するので、燃料制御定数を低く設定する必要がある。ただし、排気バイパス弁41の全開状態または全閉の状態のいずれかにおいて制御定数を瞬時に変更した場合は、排気バイパス弁41の全閉状態から全開状態への移行途中の制御が不安定となる。そこで、制御定数の変更は、排気バイパス弁41の開度に合わせて行うことが望ましい。その場合、上記(3)と同様、図2の補正回路77を用いて、回動角度αが増大するにつれて開度制御定数を小さくしながら排気バイパス弁41の回動角度αの制御を行うことにより、燃料制御定数の変更を安定的に行うことが可能となる。
(4) Transition from Gas Turbine Engine GT Operating State to Stopped State When the gas turbine engine GT is in an operating state and the duct burner 3 is also in an operating state, the exhaust bypass valve 41 is closed as shown in FIG. When the gas turbine engine GT is stopped, the exhaust bypass valve 41 is gradually shifted from the fully closed state to the fully opened state in FIG. 3, and the entire amount of turbine exhaust is sent to the exhaust gas bypass passage 35 side. At this time, since the control sensitivity of the duct burner 3 increases, the fuel control constant needs to be set low. However, when the control constant is changed instantaneously in either the fully open state or the fully closed state of the exhaust bypass valve 41, the control during the transition from the fully closed state to the fully open state of the exhaust bypass valve 41 becomes unstable. . Therefore, it is desirable to change the control constant in accordance with the opening degree of the exhaust bypass valve 41. In this case, similarly to the above (3), the rotation angle α of the exhaust bypass valve 41 is controlled using the correction circuit 77 of FIG. 2 while decreasing the opening degree control constant as the rotation angle α increases. Thus, the fuel control constant can be changed stably.

なお、排気バイパス弁41によって蒸気圧力を調整する場合の制御特性は、通常、非線形特性を有するので、開度制御定数は開度に対して2次関数特性を持たせる。また、排気バイパス弁41による圧力制御において、排気バイパス弁41の開度に対する熱量変化には時間遅延が大きいので、開度制御定数の値は小さめに設定し、バーナ側の燃料制御定数を高めの設定とするのが好ましい。この場合、図2に示すように遅延回路79を設けて開度制御定数に遅延時間を付加して排気バイパス弁41を制御すれば、排気バイパス弁41の開度をより安定的に制御することができる。 Note that the control characteristic when the steam pressure is adjusted by the exhaust bypass valve 41 usually has a non-linear characteristic, so that the opening degree control constant has a quadratic function characteristic with respect to the opening degree. Further, in the pressure control by the exhaust bypass valve 41, since the time delay is large for the heat amount change with respect to the opening of the exhaust bypass valve 41, the value of the opening control constant is set small, and the fuel control constant on the burner side is increased. Setting is preferable. In this case, as shown in FIG. 2, if the delay circuit 79 is provided to add a delay time to the opening degree control constant and the exhaust bypass valve 41 is controlled, the opening degree of the exhaust bypass valve 41 can be controlled more stably. Can do.

このように、本実施形態に係る制御方法または制御装置1によれば、熱源の制御感度に大きな影響を与える熱機関(ガスタービンエンジンGT)の作動および不作動に応じて燃料制御定数を変更するので、排熱ボイラシステムBSの運転状況に応じた適切な燃料制御定数を設定することができ、当該システムをきわめて安定的に運転することが可能となる。   Thus, according to the control method or the control device 1 according to the present embodiment, the fuel control constant is changed according to the operation and non-operation of the heat engine (gas turbine engine GT) that greatly affects the control sensitivity of the heat source. Therefore, it is possible to set an appropriate fuel control constant according to the operation status of the exhaust heat boiler system BS, and it is possible to operate the system extremely stably.

なお、上記の実施形態において、制御装置1の制御対象として排熱ボイラの蒸気圧力を例として説明したが、制御装置1の制御対象は、蒸気圧力に関連した物理量であれば、蒸気圧力に限らず、例えば、ボイラドラム内の水位としてもよい。   In the above embodiment, the steam pressure of the exhaust heat boiler has been described as an example of the control target of the control device 1. However, the control target of the control device 1 is limited to the steam pressure as long as it is a physical quantity related to the steam pressure. For example, it is good also as the water level in a boiler drum.

以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。   As described above, the preferred embodiments of the present invention have been described with reference to the drawings, but various additions, modifications, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.

1 制御装置
3 ダクトバーナ(熱源)
5 排熱ボイラ
11 圧縮機
13 燃焼器
17 タービン
41 排気バイパス弁
61 圧力監視器
65 燃料制御定数設定部
67 変更回路
69 蒸気圧力指令値設定部
75 開度制御定数設定部
77 補正回路
79 遅延回路
α 排気バイパス弁の回動角度(開度)
BS 排熱ボイラシステム
GT ガスタービンエンジン(熱機関)
1 Control device 3 Duct burner (heat source)
5 Waste Heat Boiler 11 Compressor 13 Combustor 17 Turbine 41 Exhaust Bypass Valve 61 Pressure Monitor 65 Fuel Control Constant Setting Unit 67 Change Circuit 69 Steam Pressure Command Value Setting Unit 75 Opening Control Constant Setting Unit 77 Correction Circuit 79 Delay Circuit α Rotation angle of exhaust bypass valve (opening)
BS Waste heat boiler system GT Gas turbine engine (heat engine)

Claims (4)

負荷を駆動して排熱を放出する熱機関と、他の一つ以上の熱源と、前記熱機関および熱源から熱エネルギを受ける排熱ボイラとを備えた排熱ボイラシステムの運転を制御する方法であって、
前記熱機関の運転中に前記熱源に供給する燃料量を制御するための燃料制御定数を、前記熱機関の作動および不作動に応じて変更することにより、前記排熱ボイラの蒸気圧力を所定値に維持し、
前記熱機関からの排ガスの少なくとも一部を前記排熱ボイラに供給しないようにバイパスさせる、回動式の排気バイパス弁を当該システムに設け、前記排気バイパス弁の回動角度を制御する開度制御定数を、前記回動角度が排ガスをバイパスさせる側に増大するのに応じて小さい値に補正し、かつ前記燃料制御定数を前記排気バイパス弁の前記回動角度に応じて変更することにより前記蒸気圧力を所定値に維持し、
前記開度制御定数に、前記排熱ボイラに与えられる熱量が前記排気バイパス弁の開度に対して変化するときの時間遅延に合うように遅延時間を付加して、前記排気バイパス弁を制御する排熱ボイラシステムの制御方法。
Method for controlling operation of an exhaust heat boiler system comprising a heat engine that drives a load to release exhaust heat, one or more other heat sources, and an exhaust heat boiler that receives thermal energy from the heat engine and the heat source Because
By changing a fuel control constant for controlling the amount of fuel supplied to the heat source during operation of the heat engine according to the operation and non-operation of the heat engine, the steam pressure of the exhaust heat boiler is set to a predetermined value. To maintain
Opening control for controlling the rotation angle of the exhaust bypass valve by providing a rotary exhaust bypass valve in the system for bypassing at least part of the exhaust gas from the heat engine so as not to be supplied to the exhaust heat boiler The steam is corrected by correcting the constant to a smaller value as the rotation angle increases toward the side of bypassing the exhaust gas, and changing the fuel control constant according to the rotation angle of the exhaust bypass valve. Maintaining the pressure at a predetermined value,
A delay time is added to the opening degree control constant so as to match a time delay when the amount of heat given to the exhaust heat boiler changes with respect to the opening degree of the exhaust bypass valve to control the exhaust bypass valve. Control method of exhaust heat boiler system.
請求項1において、前記負荷が発電機であり、前記熱機関がガスタービンエンジンであり、前記熱源がダクトバーナである排熱ボイラシステムにおける前記排熱ボイラシステムの制御方法。   The method for controlling the exhaust heat boiler system according to claim 1, wherein the load is a generator, the heat engine is a gas turbine engine, and the heat source is a duct burner. 負荷を駆動して排熱を放出する熱機関と、他の一つ以上の熱源と、前記熱機関および熱源から熱エネルギを受ける排熱ボイラ5とを備えた排熱ボイラシステムの運転を制御する装置であって、
前記熱機関の運転中に前記熱源に供給する燃料量を制御するための燃料制御定数を設定する燃料制御定数設定部と、
前記燃料制御定数を前記熱機関の作動および不作動に応じて変更することにより、前記排熱ボイラの蒸気圧力を所定値に維持する変更回路と、
前記熱機関からの排ガスの少なくとも一部を前記排熱ボイラに供給しないようにバイパスさせる、回動式の排気バイパス弁を備え、前記排気バイパス弁の回動角度を制御する開度制御定数を設定する開度制御定数設定部と、
前記回動角度が排ガスをバイパスさせる側に増大するのに応じて前記開度制御定数を小さい値に補正することにより前記蒸気圧力を所定値に維持する補正回路と、
前記燃料制御定数を前記排気バイパス弁の前記回動角度に応じて変更することにより前記蒸気圧力を所定値に維持する変更回路と、
前記開度制御定数に、前記排熱ボイラに与えられる熱量が前記排気バイパス弁の開度に対して変化するときの時間遅延に合うように遅延時間を付加して、前記排気バイパス弁を制御する遅延回路とを有する排熱ボイラシステム制御装置。
Controlling the operation of an exhaust heat boiler system including a heat engine that drives a load to release exhaust heat, one or more other heat sources, and an exhaust heat boiler 5 that receives thermal energy from the heat engine and the heat source. A device,
A fuel control constant setting unit for setting a fuel control constant for controlling the amount of fuel supplied to the heat source during operation of the heat engine;
A change circuit for maintaining the steam pressure of the exhaust heat boiler at a predetermined value by changing the fuel control constant according to the operation and non-operation of the heat engine;
A rotary exhaust bypass valve that bypasses at least a part of the exhaust gas from the heat engine so as not to be supplied to the exhaust heat boiler is set, and an opening degree control constant that controls the rotation angle of the exhaust bypass valve is set. An opening control constant setting unit to perform,
A correction circuit for maintaining the steam pressure at a predetermined value by correcting the opening degree control constant to a small value as the rotation angle increases toward the side of bypassing exhaust gas;
A change circuit for maintaining the steam pressure at a predetermined value by changing the fuel control constant according to the rotation angle of the exhaust bypass valve;
A delay time is added to the opening degree control constant so as to match a time delay when the amount of heat given to the exhaust heat boiler changes with respect to the opening degree of the exhaust bypass valve to control the exhaust bypass valve. An exhaust heat boiler system control device having a delay circuit.
請求項3において、前記排熱ボイラシステムの負荷が発電機であり、前記熱機関がガスタービンエンジンであり、前記熱源がダクトバーナである排熱ボイラシステム制御装置。   4. The exhaust heat boiler system control device according to claim 3, wherein a load of the exhaust heat boiler system is a generator, the heat engine is a gas turbine engine, and the heat source is a duct burner.
JP2011224852A 2011-10-12 2011-10-12 Method and apparatus for controlling exhaust heat boiler system Active JP5400850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224852A JP5400850B2 (en) 2011-10-12 2011-10-12 Method and apparatus for controlling exhaust heat boiler system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224852A JP5400850B2 (en) 2011-10-12 2011-10-12 Method and apparatus for controlling exhaust heat boiler system

Publications (2)

Publication Number Publication Date
JP2013083226A JP2013083226A (en) 2013-05-09
JP5400850B2 true JP5400850B2 (en) 2014-01-29

Family

ID=48528646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224852A Active JP5400850B2 (en) 2011-10-12 2011-10-12 Method and apparatus for controlling exhaust heat boiler system

Country Status (1)

Country Link
JP (1) JP5400850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119909A (en) * 2017-12-13 2018-06-05 浙江工业大学 Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108253414B (en) * 2018-01-05 2019-07-05 浙江工业大学 Main steam pressure adjusting and controlling method for circulating fluidized bed boiler in biomass cogeneration process
CN108253413B (en) * 2018-01-05 2019-07-05 浙江工业大学 Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed
EP3879083A1 (en) * 2020-03-10 2021-09-15 Alfa Laval Corporate AB Boiler and method of operating a boiler
CN114856815A (en) * 2022-05-05 2022-08-05 克兰茨(海南)科技有限公司 Novel cogeneration system and working method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60206909A (en) * 1984-03-30 1985-10-18 Hitachi Zosen Corp Exhaust heat recovery gas turbine power generating facility
JPS60206910A (en) * 1984-03-30 1985-10-18 Hitachi Zosen Corp Exhaust heat recovery gas turbine power generating facility
JP2004019562A (en) * 2002-06-17 2004-01-22 Toho Gas Co Ltd Exhaust heat recovery system
JP2006029739A (en) * 2004-07-21 2006-02-02 Kawasaki Thermal Engineering Co Ltd Exhaust heat boiler with re-heating controller for co-generation
JP2007232262A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Cogeneration plant and its operating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108119909A (en) * 2017-12-13 2018-06-05 浙江工业大学 Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler
CN108119909B (en) * 2017-12-13 2019-03-05 浙江工业大学 Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler
WO2019114402A1 (en) * 2017-12-13 2019-06-20 浙江工业大学 Variable load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler

Also Published As

Publication number Publication date
JP2013083226A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5442274B2 (en) System and method for pumping steam into a turbine
KR101530807B1 (en) Exhaust heat recovery boiler and electricity generation plant
US20140150438A1 (en) System and method for operating a gas turbine in a turndown mode
JP2007138949A (en) Method and device for operating gas turbine engine system
JP5400850B2 (en) Method and apparatus for controlling exhaust heat boiler system
US10196942B2 (en) Multi-shaft combined cycle plant, and control device and operation method thereof
JP5665621B2 (en) Waste heat recovery boiler and power plant
JP4885199B2 (en) Gas turbine operation control apparatus and method
JP2007211705A (en) Air pressure control device in integrated gasification combined cycle system
KR101120326B1 (en) Intake air heating control device for gas turbine
JP2011027036A (en) Combined power generation plant and method for controlling the same
JP7185507B2 (en) Steam turbine equipment, method for starting steam turbine equipment, and combined cycle plant
JP2007332817A (en) Steam injection gas turbine and control method
JP3500710B2 (en) Fuel heating gas turbine plant
JP4865269B2 (en) Combined boiler system and operation method thereof
KR101500895B1 (en) Exhaust heat recovery boiler, and power generation plant
JP7253403B2 (en) power generation system
JP2003254011A (en) Operating method for multi-shaft type combined cycle power generating plant
JP2007285220A (en) Combined cycle power generation facility
JP6590650B2 (en) Combined cycle plant, control device therefor, and operation method
JP2006057580A (en) Combined cycle power system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250