CN108253413B - Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed - Google Patents

Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed Download PDF

Info

Publication number
CN108253413B
CN108253413B CN201810009760.7A CN201810009760A CN108253413B CN 108253413 B CN108253413 B CN 108253413B CN 201810009760 A CN201810009760 A CN 201810009760A CN 108253413 B CN108253413 B CN 108253413B
Authority
CN
China
Prior art keywords
fluidized bed
circulating fluidized
biomass
steam pressure
main steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810009760.7A
Other languages
Chinese (zh)
Other versions
CN108253413A (en
Inventor
何德峰
宋秀兰
余世明
李廉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daqing Qingxiang Thermal Power Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201810009760.7A priority Critical patent/CN108253413B/en
Publication of CN108253413A publication Critical patent/CN108253413A/en
Application granted granted Critical
Publication of CN108253413B publication Critical patent/CN108253413B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

一种生物质热电联产循环流化床主蒸汽压跟踪控制方法,该方法针对生物质热电联产循环流化床主蒸汽压跟踪目标值的控制问题,建立生物质热电联产循环流化床的主蒸汽压、主蒸汽压跟踪偏差累计量与秸秆燃烧量的联立微分方程,在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,设计一个生物质热电联产循环流化床主蒸汽压自动跟踪控制器,实时计算进入循环流化床燃烧的生物质数量,实现生物质热电联产循环流化床主蒸汽压对压力目标值的自动跟踪控制。本发明提供一种理解直观、设计简单、易于实现的生物质热电联产循环流化床主蒸汽压跟踪控制方法。

A main steam pressure tracking control method for a biomass cogeneration circulating fluidized bed is provided. The method aims at the control problem of the main steam pressure tracking target value of the biomass cogeneration circulating fluidized bed. The method establishes the simultaneous differential equations of the main steam pressure of the biomass cogeneration circulating fluidized bed, the main steam pressure tracking deviation cumulative amount and the straw combustion amount, and online measures and reads the actual value and tracking target value of the main steam pressure of the biomass cogeneration circulating fluidized bed. An automatic main steam pressure tracking controller for the biomass cogeneration circulating fluidized bed is designed, and the amount of biomass entering the circulating fluidized bed for combustion is calculated in real time, so as to realize the automatic tracking control of the main steam pressure of the biomass cogeneration circulating fluidized bed to the pressure target value. The present invention provides a main steam pressure tracking control method for a biomass cogeneration circulating fluidized bed that is intuitive to understand, simple in design and easy to implement.

Description

一种生物质热电联产循环流化床主蒸汽压跟踪控制方法A kind of biomass cogeneration circulating fluidized bed main steam pressure tracking control method

技术领域technical field

本发明属于生物质热电联产循环流化床自动控制领域,涉及一种生物质热电联产循环流化床主蒸汽压跟踪控制方法。The invention belongs to the field of automatic control of a circulating fluidized bed of biomass heat and power co-production, and relates to a main vapor pressure tracking control method of a circulating fluidized bed of biomass heat and power co-production.

背景技术Background technique

生物质是一种高效可利用的可再生清洁燃料,可以替代煤炭、石油和天然气等矿物质燃料产生电力,不仅减少人类对矿物能源的依赖,保护国家能源资源,而且严格实施生物质的高效燃烧是降低我国PM2.5浓度的重要手段,减轻能源消费给环境造成的污染。目前欧美国家建立了较为完善的生物质热电联产工厂,证明生物质发电和供热一体化的热电联产具有显著的能源效益和环境效益,而且回收废弃的如秸秆等生物质燃料增加了农民收入。不同于煤炭、石油和天然气等矿物质燃料,不同品种和产地的生物质燃料具有不同固定碳、挥发份、水分、灰分等成分比例,加上回收时预处理手段和当地气候的影响,造成了生物质燃料品质的差异很大。由于循环流化床锅炉对燃料品质的适应性较好,目前循环流化床生物质热电联产技术在我国发展十分迅速。在循环流化床生物质热电联产过程中,流化床锅炉的主蒸汽压力的变化表示锅炉的蒸汽产量和负荷的耗汽量波动特性。当负荷耗汽量需求发生变化时,必须相应地改变生物质燃料的供应量,使得循环流化床锅炉的主蒸汽压力的变化能满足流化床锅炉的蒸汽产量能及时跟踪负荷耗汽量的变化。在生物质热电联产单元机组中,循环流化床锅炉燃烧蒸汽压力控制与汽机负荷控制是相互关联的,锅炉的主蒸汽压力控制系统的任务就是及时调整生物质燃料量,使生物质热电联产循环流化床锅炉的蒸汽量输出与汽轮机对外界负荷需求而需要的能量输入相适应,其标志是生物质热电联产循环流化床锅炉主蒸汽压力的平稳、快速跟踪耗汽量的需求变化。通过对现有生物质热电联产循环流化床主蒸汽压跟踪控制方法的文献的检索发现,目前生物质热电联产循环流化床主蒸汽压跟踪控制方法主要有:基于常规PID技术的生物质热电联产循环流化床主蒸汽压跟踪控制方法、基于模糊控制技术的生物质热电联产循环流化床主蒸汽压跟踪控制方法和基于神经网络控制技术的生物质热电联产循环流化床主蒸汽压跟踪控制方法,但主蒸汽压力的常规PID跟踪控制由于控制器参数是离线确定,不会随生物质燃料品质和负荷耗汽量变化而改变,因此不能很好的跟踪由于负荷耗汽量改变的对应的蒸汽压力目标值;同样由于生物质燃料品质的差异大,需要采用大量的模糊度函数,使得环流化床主蒸汽压的跟踪控制方法的计算量较大;而基于神经网络控制技术的生物质热电联产循环流化床主蒸汽压跟踪控制方法则需要大量的工业数据样本用于离线训练生物质热电联产过程模型参数,以保证得到较为准确的主蒸汽压力与生物质燃料量之间的动态关系,这些生物质热电联产循环流化床主蒸汽压力跟踪控制方法对于生物质燃料频繁波动的品质的蒸汽调节效果的收敛速度缓慢,理解抽象,而且应用过程复杂。因为生物质燃料品质的频繁波动以及用户需求的周期变化,但循环流化床主蒸汽压力跟踪控制的实时性、快速性和准确性要求高,因此,尽管生物质热电联产循环流化床主蒸汽压跟踪控制方法研究取得了一些成果,但近年来相关学者对于这个具有挑战性的重要难题仍然进行了大量地研究和探讨,以满足生物质热电联产过程对高品质的循环流化床自动控制技术的迫切需要。Biomass is an efficient and renewable clean fuel that can replace coal, oil and natural gas and other mineral fuels to generate electricity. It not only reduces human dependence on fossil energy, protects national energy resources, but also strictly implements efficient combustion of biomass. It is an important means to reduce the concentration of PM2.5 in my country and reduce the pollution caused by energy consumption to the environment. At present, European and American countries have established relatively complete biomass cogeneration plants, which proves that the cogeneration of biomass power generation and heat supply has significant energy and environmental benefits, and the recycling of waste biomass fuels such as straw has increased the number of farmers. income. Different from mineral fuels such as coal, oil and natural gas, biomass fuels of different varieties and origins have different proportions of fixed carbon, volatile matter, moisture, ash and other components, plus the pretreatment methods during recycling and the impact of local climate, resulting in Biomass fuel quality varies widely. Due to the good adaptability of circulating fluidized bed boilers to fuel quality, the current circulating fluidized bed biomass cogeneration technology has developed rapidly in my country. In the process of circulating fluidized bed biomass cogeneration, the change of the main steam pressure of the fluidized bed boiler represents the fluctuation characteristics of the steam output of the boiler and the steam consumption of the load. When the demand for load steam consumption changes, the supply of biomass fuel must be changed accordingly, so that the change of the main steam pressure of the circulating fluidized bed boiler can meet the steam production of the fluidized bed boiler and the steam consumption of the load can be tracked in time. Variety. In the biomass cogeneration unit, the combustion steam pressure control of the circulating fluidized bed boiler and the steam turbine load control are interrelated. The task of the boiler's main steam pressure control system is to adjust the biomass fuel amount in time, so that the biomass cogeneration The steam output of the circulating fluidized bed boiler is compatible with the energy input required by the steam turbine for the external load demand. Variety. Through the retrieval of the existing literature on the main steam pressure tracking control method of the biomass cogeneration circulating fluidized bed, it is found that the current biomass cogeneration circulating fluidized bed main steam pressure tracking control methods mainly include: Main steam pressure tracking control method of biomass cogeneration circulating fluidized bed, biomass cogeneration circulating fluidized bed tracking control method based on fuzzy control technology, and biomass cogeneration circulating fluidized bed based on neural network control technology The main steam pressure tracking control method of the bed, but the conventional PID tracking control of the main steam pressure, because the controller parameters are determined off-line, and will not change with the biomass fuel quality and load steam consumption, so it cannot track well due to the load consumption. The corresponding steam pressure target value of the change of steam volume; also due to the large difference in the quality of biomass fuel, a large number of ambiguity functions need to be used, which makes the tracking control method of the main steam pressure of the circulating fluidized bed large in calculation amount; The main steam pressure tracking control method of biomass cogeneration circulating fluidized bed based on network control technology requires a large number of industrial data samples for offline training of biomass cogeneration process model parameters to ensure more accurate main steam pressure and production. The dynamic relationship between biomass fuel quantity, the main steam pressure tracking control method of biomass cogeneration circulating fluidized bed, the convergence speed of the steam regulation effect of biomass fuel frequently fluctuating quality is slow, the understanding is abstract, and the application process is complicated. Because of the frequent fluctuation of biomass fuel quality and the periodic change of user demand, the real-time, rapidity and accuracy of the main steam pressure tracking control of the circulating fluidized bed are required. Therefore, although the biomass cogeneration circulating fluidized bed main Some achievements have been made in the research of vapor pressure tracking control method, but in recent years, related scholars have still carried out a lot of research and discussion on this challenging and important problem, in order to meet the requirements of biomass cogeneration process for high-quality circulating fluidized bed automatic The urgent need for control technology.

发明内容SUMMARY OF THE INVENTION

为了克服现有生物质热电联产循环流化床主蒸汽压跟踪控制方法的理解抽象、在线计算复杂和应用过程复杂的不足,本发明提供一种理解直观、设计简单、易于实现的生物质热电联产循环流化床主蒸汽压跟踪控制方法。In order to overcome the shortcomings of abstract understanding, complicated online calculation and complicated application process of the existing biomass cogeneration circulating fluidized bed main vapor pressure tracking control method, the present invention provides a biomass thermoelectricity with intuitive understanding, simple design and easy implementation. Cogeneration circulating fluidized bed main steam pressure tracking control method.

本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:

一种生物质热电联产循环流化床主蒸汽压跟踪控制方法,所述方法包括如下步骤:A method for tracking main vapor pressure of a circulating fluidized bed of biomass cogeneration, comprising the following steps:

1)、考虑生物质热电联产循环流化床主蒸汽压与生物质燃料量的三阶微分方程,参见式(1):1), consider the third-order differential equation of the main vapor pressure of the biomass cogeneration circulating fluidized bed and the biomass fuel amount, see formula (1):

其中,t表示时间变量;P表示循环流化床主蒸汽压变量,MPa;u表示用于燃烧的生物质燃料量,t/h;“·”、“··”和“···”分别表示主蒸汽压的一阶导数、二阶导数和三阶导数;常数G表示循环流化床主蒸汽压的稳态增益;常数T1、T2和τ分别表示循环流化床锅炉汽包压力时间常数、主蒸汽压时间常数和时滞常数,s;Among them, t represents the time variable; P represents the main vapor pressure variable of the circulating fluidized bed, MPa; u represents the amount of biomass fuel used for combustion, t/h; "·", "··" and "..." respectively Represents the first derivative, second derivative and third derivative of the main steam pressure; the constant G represents the steady-state gain of the main steam pressure of the circulating fluidized bed; the constants T 1 , T 2 and τ represent the drum pressure of the circulating fluidized bed boiler, respectively time constant, main vapor pressure time constant and time delay constant, s;

2)、定义生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量e的一阶微分方程,参见式(2):2), define the first-order differential equation of the cumulative amount e of the tracking deviation of the main vapor pressure of the biomass cogeneration circulating fluidized bed, see formula (2):

其中,Pr表示生物质热电联产循环流化床主蒸汽压的目标值;e表示生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量;Among them, P r represents the target value of the main vapor pressure of the circulating fluidized bed of biomass cogeneration; e represents the cumulative amount of tracking deviation of the main vapor pressure of the circulating fluidized bed of biomass combined heat and power;

3)、结合式(1)和式(2),建立关于生物质热电联产循环流化床主蒸汽压、主蒸汽压跟踪偏差累积量与生物质燃料量的联立微分方程,参见式(3):3) Combining equations (1) and (2), establish a simultaneous differential equation about the main vapor pressure of the biomass cogeneration circulating fluidized bed, the accumulated amount of the main vapor pressure tracking deviation and the biomass fuel amount, see equation ( 3):

4)、根据控制系统主导极点的概念,给定循环流化床主蒸汽压跟踪控制系统的一组期望闭环极点(λ1234),参见式(4):4) According to the concept of the dominant pole of the control system, a set of expected closed-loop poles (λ 1 , λ 2 , λ 3 , λ 4 ) of the main vapor pressure tracking control system of the circulating fluidized bed are given, see equation (4):

其中,j表示虚数符号,a>0表示跟踪控制系统的特征参数;Among them, j represents the imaginary number symbol, and a>0 represents the characteristic parameter of the tracking control system;

5)、定义用于计算生物质热电联产循环流化床主蒸汽压跟踪控制系统在t时刻的生物质燃烧量的跟踪控制律,参见式(5):5), define the tracking control law used to calculate the biomass burning amount of biomass cogeneration circulating fluidized bed main steam pressure tracking control system at time t, see formula (5):

其中,符号“T”表示向量的转置;系数k1,k2,k 3和k 4由式(6)计算确定:Among them, the symbol "T" represents the transposition of the vector; the coefficients k 1 , k 2 , k 3 and k 4 are determined by formula (6):

6)、在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质的燃烧量,循环流化床锅炉燃烧自动控制系统根据生物质燃烧量的计算结果实时调整进入循环流化床锅炉内的生物质数量。6), online measurement and reading of the actual value and tracking target value of the main steam pressure of the biomass cogeneration circulating fluidized bed, according to the formula (5) to calculate the biomass combustion amount of the circulating fluidized bed boiler in real time, the circulating fluidized bed The boiler combustion automatic control system adjusts the biomass quantity entering the circulating fluidized bed boiler in real time according to the calculation result of biomass combustion quantity.

进一步,所述步骤6)中,在下一个控制周期时,重新测量读取循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质的燃烧量,循环流化床锅炉燃烧自动控制系统根据生物质燃烧量的计算结果实时调整进入循环流化床锅炉内的生物质数量,如此周而复始,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。Further, in the step 6), in the next control cycle, the actual value and the tracking target value of the main steam pressure of the circulating fluidized bed are measured and read again, and the biomass of the circulating fluidized bed boiler is calculated in real time according to formula (5). Combustion amount, the automatic control system for the combustion of the circulating fluidized bed boiler adjusts the amount of biomass entering the circulating fluidized bed boiler in real time according to the calculation result of the biomass combustion amount. Automatic tracking control of target value.

本发明的技术构思是:针对生物质热电联产循环流化床主蒸汽压跟踪目标值的控制问题,建立生物质热电联产循环流化床的主蒸汽压、主蒸汽压跟踪偏差累计量与秸秆燃烧量的联立微分方程,在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,设计一个生物质热电联产循环流化床主蒸汽压自动跟踪控制器,实时计算进入循环流化床燃烧的生物质数量,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。The technical idea of the present invention is: aiming at the control problem of the main steam pressure tracking target value of the biomass cogeneration circulating fluidized bed, establish the main steam pressure of the biomass cogeneration circulating fluidized bed, the main steam pressure tracking deviation cumulative amount and the Simultaneous differential equation of straw combustion, online measurement and reading of the actual value and tracking target value of the main steam pressure of the biomass cogeneration circulating fluidized bed, and designing an automatic tracking control of the main steam pressure of the biomass cogeneration circulating fluidized bed It can calculate the biomass quantity entering into the circulating fluidized bed combustion in real time, and realize the automatic tracking control of the main steam pressure of the circulating fluidized bed of biomass cogeneration to the target value.

本发明主要执行部分在循环流化床锅炉控制计算机上运行实施。本方法应用过程可以大致分为3个阶段:The main execution part of the present invention is implemented on the circulating fluidized bed boiler control computer. The application process of this method can be roughly divided into three stages:

1、参数设置:包括模型参数和跟踪控制器参数:在模型导入界面中,输入模型式(1)中常数G、T1、T2和τ的值;在跟踪控制器参数设置界面中,输入跟踪控制系统特征参数a>0;输入参数确认后,由控制计算机将设置数据送入计算机存储单元RAM中保存;1. Parameter setting: including model parameters and tracking controller parameters: in the model import interface, enter the values of the constants G, T 1 , T 2 and τ in the model formula (1); in the tracking controller parameter setting interface, enter The characteristic parameter a>0 of the tracking control system; after the input parameters are confirmed, the control computer will send the setting data to the computer storage unit RAM for saving;

2、离线调试:点击组态界面中的“调试”按钮,控制系统进入跟踪控制器调试阶段,以生物质热电联产循环流化床主蒸汽压的单位阶跃响应作为测试实验,调整组态界面中的参数a,观察生物质热电联产循环流化床主蒸汽压和生物质燃烧量的跟踪控制效果,由此确定一个能良好实现生物质热电联产循环流化床主蒸汽压跟踪控制的参数;参数a的取值规则:a为正实数;参数a的调整规则:增大a的值将缩短生物质热电联产循环流化床主蒸汽压的跟踪调整时间,但增大生物质的燃烧量;相反,减小a的值将减缓生物质热电联产循环流化床主蒸汽压的跟踪速度和生物质燃烧量,但延长了循环流化床主蒸汽压的跟踪时间,因此,实际调试参数a时,应权衡生物质热电联产循环流化床主蒸汽压的超调量、跟踪时间和生物质燃烧量之间的综合性能;2. Off-line debugging: Click the "Debug" button in the configuration interface, the control system enters the tracking controller debugging stage, and the unit step response of the main vapor pressure of the biomass cogeneration circulating fluidized bed is used as a test experiment to adjust the configuration. Parameter a in the interface, observe the tracking control effect of the main steam pressure of the biomass cogeneration circulating fluidized bed and the biomass combustion amount, and determine a good tracking control of the main steam pressure of the biomass cogeneration circulating fluidized bed. The value rule of parameter a: a is a positive real number; the adjustment rule of parameter a: increasing the value of a will shorten the tracking adjustment time of the main vapor pressure of the biomass cogeneration circulating fluidized bed, but increase the biomass On the contrary, reducing the value of a will slow down the tracking speed of the main vapor pressure of the biomass cogeneration circulating fluidized bed and the biomass burning amount, but prolong the tracking time of the main vapor pressure of the circulating fluidized bed. Therefore, the actual When debugging parameter a, the comprehensive performance between the overshoot of the main steam pressure of the biomass cogeneration circulating fluidized bed, the tracking time and the biomass burning amount should be weighed;

3、在线运行:点击组态界面“运行”按钮,启动生物质热电联产循环流化床控制计算机的CPU读取循环流化床主蒸汽压模型参数和控制器参数,并执行“生物质热电联产循环流化床主蒸汽压跟踪控制程序”,通过在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,实时计算循环流化床锅炉的生物质的燃烧量,循环流化床锅炉燃烧自动控制系统根据生物质燃烧量的计算结果实时调整进入循环流化床锅炉内的生物质数量,如此周而复始,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。3. Online operation: Click the "Run" button on the configuration interface to start the CPU of the biomass cogeneration circulating fluidized bed control computer to read the main vapor pressure model parameters and controller parameters of the circulating fluidized bed, and execute "biomass thermoelectricity". Cogeneration CFB main steam pressure tracking control program", through online measurement to read the actual value and tracking target value of the main steam pressure of the biomass cogeneration CFB, and calculate the biomass pressure of the CFB boiler in real time. Combustion amount, the automatic control system for the combustion of the circulating fluidized bed boiler adjusts the amount of biomass entering the circulating fluidized bed boiler in real time according to the calculation result of the biomass combustion amount. Automatic tracking control of target value.

本发明的有益效果主要表现在:1、生物质热电联产循环流化床主蒸汽压跟踪控制方法仅有一个设计参数,设计简单、容易理解、在线实施简便、实用性强;2、生物质热电联产循环流化床在主蒸汽压偏离目标值时能自动实现生物质燃烧量的计算和调整控制,从而可以适用更复杂多样的变负荷工况,满足生物质热电联产循环流化床锅炉对快速负荷耗汽量需求的拱给,提高生物质热电联产循环流化床燃烧系统运行的控制水平。The beneficial effects of the present invention are mainly manifested in: 1. The main vapor pressure tracking control method of the circulating fluidized bed of biomass cogeneration has only one design parameter, which is simple in design, easy to understand, simple in online implementation, and strong in practicability; 2. Biomass When the main steam pressure deviates from the target value, the cogeneration circulating fluidized bed can automatically realize the calculation and adjustment control of biomass combustion, so that it can be applied to more complex and varied load conditions and meet the requirements of the biomass cogeneration circulating fluidized bed. Boiler's subordination to the demand of fast load steam consumption improves the control level of the operation of the circulating fluidized bed combustion system of biomass cogeneration.

附图说明Description of drawings

图1为生物质热电联产循环流化床主蒸汽压跟踪实时曲线,其中,虚线为生物质热电联产循环流化床主蒸汽压目标值实时曲线,实线为生物质热电联产循环流化床主蒸汽压实时跟踪曲线;Figure 1 is the real-time curve of the main steam pressure tracking of the biomass cogeneration circulating fluidized bed, wherein the dotted line is the real-time curve of the target value of the main steam pressure of the biomass cogeneration circulating fluidized bed, and the solid line is the biomass cogeneration circulating flow Real-time tracking curve of main steam pressure of chemical bed;

图2为生物质热电联产循环流化床的生物质燃烧量实时曲线。Figure 2 is a real-time curve of biomass combustion in a circulating fluidized bed of biomass cogeneration.

具体实施方式Detailed ways

下面结合附图对本发明的方法作进一步详细说明。The method of the present invention will be described in further detail below in conjunction with the accompanying drawings.

参照图1和图2,一种生物质热电联产循环流化床主蒸汽压跟踪控制方法,所述方法包括如下步骤:1 and 2, a method for tracking the main vapor pressure of a circulating fluidized bed of biomass cogeneration, the method includes the following steps:

1)、考虑生物质热电联产循环流化床主蒸汽压与生物质燃料量的三阶微分方程,参见式(1):1), consider the third-order differential equation of the main vapor pressure of the biomass cogeneration circulating fluidized bed and the biomass fuel amount, see formula (1):

其中,t表示时间变量;P表示循环流化床主蒸汽压变量,MPa;u表示用于燃烧的生物质燃料量,t/h;“·”、“··”和“···”分别表示主蒸汽压的一阶导数、二阶导数和三阶导数;常数G表示循环流化床主蒸汽压的稳态增益;常数T1、T2和τ分别表示循环流化床锅炉汽包压力时间常数、主蒸汽压时间常数和时滞常数,s;Among them, t represents the time variable; P represents the main vapor pressure variable of the circulating fluidized bed, MPa; u represents the amount of biomass fuel used for combustion, t/h; "·", "··" and "..." respectively Represents the first derivative, second derivative and third derivative of the main steam pressure; the constant G represents the steady-state gain of the main steam pressure of the circulating fluidized bed; the constants T 1 , T 2 and τ represent the drum pressure of the circulating fluidized bed boiler, respectively time constant, main vapor pressure time constant and time delay constant, s;

2)、定义生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量e的一阶微分方程,参见式(2):2), define the first-order differential equation of the cumulative amount e of the tracking deviation of the main vapor pressure of the biomass cogeneration circulating fluidized bed, see formula (2):

其中,Pr表示生物质热电联产循环流化床主蒸汽压的目标值;e表示生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量;Among them, P r represents the target value of the main vapor pressure of the circulating fluidized bed of biomass cogeneration; e represents the cumulative amount of tracking deviation of the main vapor pressure of the circulating fluidized bed of biomass combined heat and power;

3)、结合式(1)和式(2),建立关于生物质热电联产循环流化床主蒸汽压、主蒸汽压跟踪偏差累积量与生物质燃料量的联立微分方程,参见式(3):3) Combining equations (1) and (2), establish a simultaneous differential equation about the main vapor pressure of the biomass cogeneration circulating fluidized bed, the accumulated amount of the main vapor pressure tracking deviation and the biomass fuel amount, see equation ( 3):

4)、根据控制系统主导极点的概念,给定循环流化床主蒸汽压跟踪控制系统的一组期望闭环极点(λ1234),参见式(4):4) According to the concept of the dominant pole of the control system, a set of expected closed-loop poles (λ 1 , λ 2 , λ 3 , λ 4 ) of the main vapor pressure tracking control system of the circulating fluidized bed are given, see equation (4):

其中,j表示虚数符号,a>0表示跟踪控制系统的特征参数;Among them, j represents the imaginary number symbol, and a>0 represents the characteristic parameter of the tracking control system;

5)、定义用于计算生物质热电联产循环流化床主蒸汽压跟踪控制系统在t时刻的生物质燃烧量的跟踪控制律,参见式(5):5), define the tracking control law used to calculate the biomass burning amount of biomass cogeneration circulating fluidized bed main steam pressure tracking control system at time t, see formula (5):

其中,符号“T”表示向量的转置;系数k1,k2,k 3和k 4由式(6)计算确定:Among them, the symbol "T" represents the transposition of the vector; the coefficients k 1 , k 2 , k 3 and k 4 are determined by formula (6):

6)、在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质的燃烧量,循环流化床锅炉燃烧自动控制系统根据生物质燃烧量的计算结果实时调整进入循环流化床锅炉内的生物质数量。6), online measurement and reading of the actual value and tracking target value of the main steam pressure of the biomass cogeneration circulating fluidized bed, according to the formula (5) to calculate the biomass combustion amount of the circulating fluidized bed boiler in real time, the circulating fluidized bed The boiler combustion automatic control system adjusts the biomass quantity entering the circulating fluidized bed boiler in real time according to the calculation result of biomass combustion quantity.

进一步,所述步骤6)中,在下一个控制周期时,重新测量读取循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质的燃烧量,循环流化床锅炉燃烧自动控制系统根据生物质燃烧量的计算结果实时调整进入循环流化床锅炉内的生物质数量,如此周而复始,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。Further, in the step 6), in the next control cycle, the actual value and the tracking target value of the main steam pressure of the circulating fluidized bed are measured and read again, and the biomass of the circulating fluidized bed boiler is calculated in real time according to formula (5). Combustion amount, the automatic control system for the combustion of the circulating fluidized bed boiler adjusts the amount of biomass entering the circulating fluidized bed boiler in real time according to the calculation result of the biomass combustion amount. Automatic tracking control of target value.

本实施例为生物质热电联产循环流化床主蒸汽压跟踪控制过程,具体操作如下:This embodiment is the main steam pressure tracking control process of the biomass cogeneration circulating fluidized bed, and the specific operations are as follows:

1、在参数设置界面中,输入生物质热电联产循环流化床主蒸汽压跟踪控制过程的常数值G=8、T1=3、T2=90和τ=30;输入控制器参数a;1. In the parameter setting interface, input the constant values G=8, T1 = 3 , T2=90 and τ=30 of the main steam pressure tracking control process of the biomass cogeneration circulating fluidized bed; input the controller parameter a ;

2、在组态界面上点击“调试”按钮进入调试界面,启动主控计算机的CPU调用事先编制好的“跟踪控制程序”调试确定控制器参数a,具体过程如下:根据参数a的取值与调整规则,综合考虑生物质热电联产循环流化床主蒸汽压跟踪响应的超调量、跟踪时间和生物质燃烧量之间的综合性能,调试参数得到a=-0.1,将调试结果保存到计算机存储单元RAM中;2. Click the "Debug" button on the configuration interface to enter the debugging interface, and start the CPU of the main control computer to call the pre-programmed "trace control program" to debug and determine the controller parameter a. The specific process is as follows: According to the value of parameter a and the Adjust the rules, comprehensively consider the overall performance between the overshoot of the tracking response of the main steam pressure of the biomass cogeneration circulating fluidized bed, the tracking time and the biomass burning amount, the debugging parameters are obtained a=-0.1, and the debugging results are saved to In the computer storage unit RAM;

3、点击组态界面“运行”按钮,启动生物质热电联产循环流化床控制计算机的CPU读取生物质热电联产循环流化床主蒸汽压跟踪控制过程模型参数和控制器参数,执行“生物质热电联产循环流化床主蒸汽压跟踪控制程序”,通过在线测量读取循环流化床主蒸汽压的实际值和目标值,计算并控制进入循环流化床锅炉内的生物质燃烧量,实现生物质热电联产循环流化床对蒸汽压目标值的自动跟踪控制;在下一个控制周期到达时,在线测量读取循环流化床主蒸汽压的实际值和目标值,之后重复整个执行过程,如此周而复始,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。3. Click the "Run" button on the configuration interface to start the CPU of the biomass cogeneration circulating fluidized bed control computer to read the main steam pressure tracking control process model parameters and controller parameters of the biomass cogeneration circulating fluidized bed, and execute "Biomass cogeneration circulating fluidized bed main steam pressure tracking control program", through online measurement to read the actual value and target value of the circulating fluidized bed main steam pressure, calculate and control the biomass entering the circulating fluidized bed boiler Combustion amount, realize the automatic tracking control of the target vapor pressure value of the biomass cogeneration circulating fluidized bed; when the next control cycle arrives, the actual value and target value of the main vapor pressure of the circulating fluidized bed are measured and read online, and then repeat The whole execution process, so repeated, realizes the automatic tracking control of the main steam pressure of the biomass cogeneration circulating fluidized bed to the target value.

实际跟踪控制效果如图1和图2所示,图1为生物质热电联产循环流化床主蒸汽压跟踪实时曲线,其中,虚线为生物质热电联产循环流化床主蒸汽压目标值实时曲线,实线为生物质热电联产循环流化床主蒸汽压实时跟踪曲线;图2为生物质热电联产循环流化床的生物质燃烧量实时曲线。The actual tracking control effect is shown in Figures 1 and 2. Figure 1 is the real-time tracking curve of the main steam pressure of the biomass cogeneration circulating fluidized bed, where the dotted line is the target value of the main steam pressure of the biomass cogeneration circulating fluidized bed. The real-time curve, the solid line is the real-time tracking curve of the main steam pressure of the circulating fluidized bed of biomass cogeneration; Figure 2 is the real-time curve of biomass combustion of the circulating fluidized bed of biomass cogeneration.

以上阐述的是本发明给出的一个实施例所表现出优良控制性能的生物质热电联产循环流化床主蒸汽压自动跟踪控制效果。需要指出,上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改,都落入本发明的保护范围。What is described above is the automatic tracking control effect of the main steam pressure of the circulating fluidized bed of the biomass cogeneration circulating fluidized bed with excellent control performance shown by an embodiment of the present invention. It should be pointed out that the above-mentioned embodiments are used to illustrate the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications made to the present invention fall into the protection scope of the present invention.

Claims (2)

1.一种生物质热电联产循环流化床主蒸汽压跟踪控制方法,其特征在于:所述方法包括如下步骤:1. a biomass cogeneration circulating fluidized bed main vapor pressure tracking control method, is characterized in that: described method comprises the steps: 1)、考虑生物质热电联产循环流化床主蒸汽压与生物质燃料量的三阶微分方程,参见式(1):1), consider the third-order differential equation of the main vapor pressure of the biomass cogeneration circulating fluidized bed and the biomass fuel amount, see formula (1): 其中,t表示时间变量;P表示循环流化床主蒸汽压变量,MPa;u表示用于燃烧的生物质燃料量,t/h;“·”、“··”和“···”分别表示主蒸汽压的一阶导数、二阶导数和三阶导数;常数G表示循环流化床主蒸汽压的稳态增益;常数T1、T2和τ分别表示循环流化床锅炉汽包压力时间常数、主蒸汽压时间常数和时滞常数,s;Among them, t represents the time variable; P represents the main vapor pressure variable of the circulating fluidized bed, MPa; u represents the amount of biomass fuel used for combustion, t/h; "·", "··" and "..." respectively Represents the first derivative, second derivative and third derivative of the main steam pressure; the constant G represents the steady-state gain of the main steam pressure of the circulating fluidized bed; the constants T 1 , T 2 and τ represent the drum pressure of the circulating fluidized bed boiler, respectively time constant, main vapor pressure time constant and time delay constant, s; 2)、定义生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量e的一阶微分方程,参见式(2):2), define the first-order differential equation of the cumulative amount e of the tracking deviation of the main vapor pressure of the biomass cogeneration circulating fluidized bed, see formula (2): 其中,Pr表示生物质热电联产循环流化床主蒸汽压的目标值;e表示生物质热电联产循环流化床主蒸汽压跟踪偏差的累积量;Among them, P r represents the target value of the main vapor pressure of the circulating fluidized bed of biomass cogeneration; e represents the cumulative amount of tracking deviation of the main vapor pressure of the circulating fluidized bed of biomass combined heat and power; 3)、结合式(1)和式(2),建立关于生物质热电联产循环流化床主蒸汽压、主蒸汽压跟踪偏差累积量与生物质燃料量的联立微分方程,参见式(3):3) Combining equations (1) and (2), establish a simultaneous differential equation about the main vapor pressure of the biomass cogeneration circulating fluidized bed, the accumulated amount of the main vapor pressure tracking deviation and the biomass fuel amount, see equation ( 3): 4)、根据控制系统主导极点的概念,给定循环流化床主蒸汽压跟踪控制系统的一组期望闭环极点(λ1234),参见式(4):4) According to the concept of the dominant pole of the control system, a set of expected closed-loop poles (λ 1 , λ 2 , λ 3 , λ 4 ) of the main vapor pressure tracking control system of the circulating fluidized bed are given, see equation (4): 其中,j表示虚数符号,a表示跟踪控制系统的特征参数,a>0;Among them, j represents the imaginary number symbol, a represents the characteristic parameter of the tracking control system, a>0; 5)、定义用于计算生物质热电联产循环流化床主蒸汽压跟踪控制系统在t时刻的生物质燃料量的跟踪控制律,参见式(5):5), define the tracking control law used to calculate the biomass fuel amount of the biomass cogeneration circulating fluidized bed main vapor pressure tracking control system at time t, see formula (5): 其中,符号“T”表示向量的转置;系数k1,k2,k3和k4由式(6)计算确定:Among them, the symbol "T" represents the transposition of the vector; the coefficients k 1 , k 2 , k 3 and k 4 are determined by formula (6): 6)、在线测量读取生物质热电联产循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质燃料量,循环流化床锅炉燃烧自动控制系统根据生物质燃料量的计算结果实时调整进入循环流化床锅炉内的生物质数量。6), online measurement and reading of the actual value and tracking target value of the main steam pressure of the biomass cogeneration circulating fluidized bed, according to the formula (5) to calculate the biomass fuel amount of the circulating fluidized bed boiler in real time, the circulating fluidized bed boiler The combustion automatic control system adjusts the biomass quantity entering the circulating fluidized bed boiler in real time according to the calculation result of the biomass fuel quantity. 2.如权利要求1所述的一种生物质热电联产循环流化床主蒸汽压跟踪控制方法,其特征在于:所述步骤6)中,在下一个控制周期时,重新测量读取循环流化床主蒸汽压的实际值和跟踪目标值,根据式(5)实时计算循环流化床锅炉的生物质燃料量,循环流化床锅炉燃烧自动控制系统根据生物质燃料量的计算结果实时调整进入循环流化床锅炉内的生物质数量,如此周而复始,实现生物质热电联产循环流化床主蒸汽压对目标值的自动跟踪控制。2. The method for tracking and controlling the main vapor pressure of a circulating fluidized bed of a biomass cogeneration circulating fluidized bed as claimed in claim 1, characterized in that: in the step 6), during the next control cycle, re-measure and read the circulating flow The actual value and tracking target value of the main steam pressure of the fluidized bed, the biomass fuel amount of the circulating fluidized bed boiler is calculated in real time according to the formula (5), and the circulating fluidized bed boiler combustion automatic control system is adjusted in real time according to the calculation result of the biomass fuel amount The quantity of biomass entering the circulating fluidized bed boiler is repeated in this way to realize the automatic tracking control of the main steam pressure of the circulating fluidized bed of biomass cogeneration to the target value.
CN201810009760.7A 2018-01-05 2018-01-05 Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed Active CN108253413B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810009760.7A CN108253413B (en) 2018-01-05 2018-01-05 Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810009760.7A CN108253413B (en) 2018-01-05 2018-01-05 Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed

Publications (2)

Publication Number Publication Date
CN108253413A CN108253413A (en) 2018-07-06
CN108253413B true CN108253413B (en) 2019-07-05

Family

ID=62725556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810009760.7A Active CN108253413B (en) 2018-01-05 2018-01-05 Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed

Country Status (1)

Country Link
CN (1) CN108253413B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900348A (en) * 2009-06-01 2010-12-01 上海捷控软件技术有限公司 Method for predicting, controlling and improving efficiency of thermal power unit steam turbine by using steam pressure
JP2013083226A (en) * 2011-10-12 2013-05-09 Kawasaki Heavy Ind Ltd Control method and control device for waste heat boiler system
CN105202571A (en) * 2015-10-20 2015-12-30 国家电网公司 Thermal generator set main steam pressure optimization control method
CN105757711A (en) * 2016-03-18 2016-07-13 国家电投集团河南电力有限公司技术信息中心 Wide-load main steam pressure control method for cogeneration unit
CN105759864A (en) * 2016-04-27 2016-07-13 华北电力大学(保定) Compensation adjusting method for main steam pressure of thermal power generating unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900348A (en) * 2009-06-01 2010-12-01 上海捷控软件技术有限公司 Method for predicting, controlling and improving efficiency of thermal power unit steam turbine by using steam pressure
JP2013083226A (en) * 2011-10-12 2013-05-09 Kawasaki Heavy Ind Ltd Control method and control device for waste heat boiler system
CN105202571A (en) * 2015-10-20 2015-12-30 国家电网公司 Thermal generator set main steam pressure optimization control method
CN105757711A (en) * 2016-03-18 2016-07-13 国家电投集团河南电力有限公司技术信息中心 Wide-load main steam pressure control method for cogeneration unit
CN105759864A (en) * 2016-04-27 2016-07-13 华北电力大学(保定) Compensation adjusting method for main steam pressure of thermal power generating unit

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于输出延时观测器的燃料–汽压系统锅炉蒸汽压力滑模控制;崔志强等;《中国电机工程学报》;20111231;201-203 *
燃料-汽压系统锅炉蒸汽压力动态面控制;崔志强等;《中国电机工程学报》;20120915;104-106 *
锅炉燃烧系统改造优化的应用研究;董实现等;《电站系统工程》;20040525;15-16 *

Also Published As

Publication number Publication date
CN108253413A (en) 2018-07-06

Similar Documents

Publication Publication Date Title
CN103148472B (en) Control system and control method for biomass boiler combustion
CN101556038B (en) Optimization control system for stable operation and economical combustion of circulating fluidized-bed boiler
CN101799170A (en) Method for correcting fuel calorific capacity of coal-fired boiler in real time
CN104238494A (en) Thermal power generating unit coal feed amount control method based on frequency modulation and peak regulation of power grid
CN112664975B (en) Air volume control method suitable for pulverized coal fired boiler
CN110207098B (en) Steam temperature control method for double reheat unit considering boiler metal heat storage
CN111523730A (en) Method for predicting coal consumption of cogeneration unit
CN103728071B (en) A method for measuring the maximum output of a thermal power unit
CN111881554A (en) An Optimal Control Method of Boiler with Temperature Change
Chen et al. Performance analysis of a novel biomass gasification system coupled to a coal-fired power plant based on heat and water recovery
CN113177352A (en) Boiler combustion optimization system and method based on numerical simulation and artificial intelligence
CN116401948A (en) Online prediction method and system for generating amount of power station boiler ash based on LSTM
CN108253413B (en) Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed
CN108119909B (en) Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler
CN112418664B (en) Particle swarm optimization-based binning combination blending method and system
CN116992289B (en) A method for predicting thermal characteristics of materials blended in incinerators based on model fine-tuning
CN108253414B (en) Main steam pressure adjusting and controlling method for circulating fluidized bed boiler in biomass cogeneration process
CN108105764B (en) Method for configuring and adjusting steam pressure pole of straw combustion circulating fluidized bed boiler
CN102661974B (en) Thermal-operating-parameters-based pulverized coal heat value on-line identification method
CN111428906B (en) Industrial boiler steam volume prediction method based on image transformation
CN113280508B (en) Determining system and method for optimal air temperature entering the furnace for thermal power units equipped with air heaters
Kortela et al. Improvement of load-following capacity of grate boilers based on the combustion power soft-sensor
CN112163383B (en) Coal-fired boiler minimum deep regulation load evaluation method considering coal type and environmental parameter correction
Yuan et al. Prediction of carbon content in fly ash in ultra supercritical generation unit with long short-term memory neural network
Pavel et al. Laboratory Equipment for" Hot Air Generator with Forced Draft Fan Based on the TLUD Principle"

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180706

Assignee: Shandong and Yangxin energy Polytron Technologies Inc.

Assignor: JIANG University OF TECHNOLOGY

Contract record no.: X2023980042382

Denomination of invention: A tracking control method for main steam pressure in biomass cogeneration circulating fluidized bed

Granted publication date: 20190705

License type: Common License

Record date: 20230925

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250409

Address after: No. 19 Madian East Road, 4th Floor, Haidian District, Beijing 100080

Patentee after: Beijing Shuoming Technology Co.,Ltd.

Country or region after: China

Address before: 310014 science and technology office, Zhejiang University of Technology, No. 18 Chao Wang Road, Xiacheng District, Hangzhou, Zhejiang

Patentee before: JIANG University OF TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250421

Address after: 166500 within the Zhaoyuan Daguang Industrial Concentration Zone in Daqing City, Heilongjiang Province

Patentee after: Daqing Qingxiang Thermal Power Co.,Ltd.

Country or region after: China

Address before: No. 19 Madian East Road, 4th Floor, Haidian District, Beijing 100080

Patentee before: Beijing Shuoming Technology Co.,Ltd.

Country or region before: China