CN108119909B - Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler - Google Patents
Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler Download PDFInfo
- Publication number
- CN108119909B CN108119909B CN201711323880.6A CN201711323880A CN108119909B CN 108119909 B CN108119909 B CN 108119909B CN 201711323880 A CN201711323880 A CN 201711323880A CN 108119909 B CN108119909 B CN 108119909B
- Authority
- CN
- China
- Prior art keywords
- fluidized bed
- circulating fluidized
- bed boiler
- straw
- steam pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010902 straw Substances 0.000 title claims abstract description 144
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000002485 combustion reaction Methods 0.000 claims abstract description 76
- 238000004364 calculation method Methods 0.000 claims abstract description 13
- 239000000446 fuel Substances 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 description 10
- 230000004044 response Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000005702 Galium aparine Species 0.000 description 1
- 235000014820 Galium aparine Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/002—Regulating fuel supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/10—Correlation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/34—Signal processing; Details thereof with feedforward processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2241/00—Applications
- F23N2241/10—Generating vapour
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
一种秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法,针对秸秆直燃循环流化床锅炉变负荷中的实际蒸汽压跟踪目标值的控制问题,建立秸秆直燃循环流化床锅炉的蒸汽压与秸秆燃烧量的连续时间动态模型,根据蒸汽压目标值定义跟踪偏差的积分量,进而建立秸秆直燃循环流化床锅炉蒸汽压与秸秆燃烧量连续时间扩展动态模型,并利用MatLab函数care的计算结果,设计一个秸秆直燃循环流化床锅炉变负荷蒸汽压自动跟踪控制器,实现秸秆直燃循环流化床锅炉变负荷蒸汽压对目标值的自动跟踪控制。本发明设计简单、实施简便、实用性强,提高秸秆直燃循环流化床锅炉燃烧系统运行的控制水平。
A variable load steam pressure tracking control method for a straw direct-fired circulating fluidized bed boiler aims at the control problem of the actual steam pressure tracking target value in the variable load of the straw direct-fired circulating fluidized bed boiler, establishes a continuous time dynamic model of the steam pressure and straw combustion amount of the straw direct-fired circulating fluidized bed boiler, defines the integral of the tracking deviation according to the steam pressure target value, and then establishes a continuous time extended dynamic model of the steam pressure and straw combustion amount of the straw direct-fired circulating fluidized bed boiler, and uses the calculation result of the MatLab function care to design a variable load steam pressure automatic tracking controller for the straw direct-fired circulating fluidized bed boiler, so as to realize the automatic tracking control of the variable load steam pressure of the straw direct-fired circulating fluidized bed boiler to the target value. The invention is simple in design, simple in implementation, and highly practical, and improves the control level of the operation of the combustion system of the straw direct-fired circulating fluidized bed boiler.
Description
技术领域technical field
本发明属于秸秆直燃循环流化床锅炉自动控制领域,涉及一种秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法。The invention belongs to the field of automatic control of straw direct combustion circulating fluidized bed boilers, and relates to a variable load steam pressure tracking control method for straw direct combustion circulating fluidized bed boilers.
背景技术Background technique
秸秆是一种高效可利用的可再生清洁燃料,可以替代煤炭、石油和天然气等矿物质燃料产生电力,不仅减少人类对矿物能源的依赖,保护国家能源资源,而且严格实现秸秆的高效燃烧是降低我国PM2.5浓度的重要手段,减轻能源消费给环境造成的污染。目前欧美国家建立了较为完善的秸秆类农业废弃物燃烧发电厂,证明秸秆直燃发电、供热具有显著的能源效益和环境效益,而且回收废弃秸秆增加了农民收入,从经济上保证农民不再乱烧秸秆。不同于煤炭、石油和天然气等矿物质燃料,不同品种和产地的秸秆具有不同固定碳、挥发份、水分、灰分等成分比例,加上回收时预处理手段和当地气候的影响,造成了秸秆燃料品质的差异很大。由于循环流化床锅炉对燃料品质的适应性较好,目前循环流化床秸秆燃烧技术在我国发展十分迅速。在循环流化床秸秆燃烧过程中,流化床锅炉蒸汽压力的变化表示锅炉的蒸汽产量和负荷的耗汽量波动特性。当负荷耗汽量需求发生变化时,必须相应地改变秸秆燃料的供应量,使得循环流化床锅炉蒸汽压力的变化能满足流化床锅炉的蒸汽产量能及时跟踪负荷耗汽量的变化。在秸秆直燃发电单元机组中,循环流化床锅炉燃烧蒸汽压力控制与汽机负荷控制是相互关联的,锅炉的蒸汽压力控制系统的任务就是及时调整锅炉燃料量,使秸秆直燃循环流化床锅炉的蒸汽量输出与汽轮机对外界负荷需求而需要的能量输入相适应,其标志是秸秆直燃循环流化床锅炉蒸汽压力的平稳、快速跟踪变负荷耗汽量的需求变化。通过对现有秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法的文献的检索发现,目前秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法主要有:基于常规 PID技术的秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法、基于模糊控制技术的秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法和基于神经网络控制技术的秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法,但蒸汽压力的常规PID跟踪控制由于控制器参数是离线确定,不会随秸秆燃料品质和负荷耗汽量变化而改变,因此不能很好的跟踪由于负荷耗汽量改变的对应的蒸汽压力目标值;同样由于秸秆燃料品质的差异大,需要采用大量的模糊度函数,使得环流化床锅炉变负荷蒸汽压的跟踪控制方法的计算量较大;而基于神经网络控制技术的秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法则需要大量的工业数据样本用于离线训练秸秆直燃过程模型参数,以保证得到较为准确的蒸汽压力与秸秆燃料量之间的动态关系,这些秸秆直燃循环流化床锅炉变负荷蒸汽压力跟踪控制方法对于秸秆燃料频繁波动的品质的蒸汽调节效果的收敛速度缓慢,理解抽象,而且应用过程复杂。因为秸秆燃料品质的频繁波动以及用户需求的周期变化,但循环流化床锅炉蒸汽压力跟踪控制的实时性、快速性和准确性要求高,因此,尽管秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法研究取得了一些成果,但近年来相关学者对于这个具有挑战性的重要难题仍然进行了大量地研究和探讨,以满足秸秆直燃发电、供热过程对高品质的循环流化床秸秆直燃控制技术的迫切需要。Straw is an efficient and available renewable clean fuel, which can replace fossil fuels such as coal, oil and natural gas to generate electricity. It not only reduces human dependence on fossil energy and protects national energy resources, but also strictly realizes the efficient combustion of straw. my country's PM2.5 concentration is an important means to reduce the pollution caused by energy consumption to the environment. At present, European and American countries have established relatively complete straw-based agricultural waste-burning power plants, which proves that straw direct combustion for power generation and heating has significant energy and environmental benefits, and recycling waste straw increases farmers' income, which economically ensures farmers no longer Burn the straw. Different from mineral fuels such as coal, oil and natural gas, straws of different varieties and origins have different proportions of fixed carbon, volatile matter, moisture, ash and other components, plus the pretreatment methods during recycling and the influence of local climate, resulting in straw fuels. Quality varies greatly. Due to the good adaptability of circulating fluidized bed boilers to fuel quality, the current circulating fluidized bed straw combustion technology is developing rapidly in my country. In the process of straw combustion in the circulating fluidized bed, the change of the steam pressure of the fluidized bed boiler represents the fluctuation characteristics of the steam output and the steam consumption of the boiler. When the demand for load steam consumption changes, the supply of straw fuel must be changed accordingly, so that the change of the steam pressure of the circulating fluidized bed boiler can meet the steam output of the fluidized bed boiler and the change of the steam consumption of the load can be tracked in time. In the straw direct combustion power generation unit, the combustion steam pressure control of the circulating fluidized bed boiler and the steam turbine load control are interrelated. The task of the boiler steam pressure control system is to adjust the boiler fuel amount in time to make the straw direct combustion circulating fluidized bed The steam output of the boiler is adapted to the energy input required by the steam turbine for the external load demand. Through the retrieval of the existing literature on the variable load steam pressure tracking control method of the straw direct-fired CFB boiler, it is found that the current straw direct-fired CFB boiler variable load steam pressure tracking control methods mainly include: straw based on conventional PID technology. Direct-fired circulating fluidized bed boiler variable-load steam pressure tracking control method, straw direct-fired circulating fluidized bed boiler variable-load vapor pressure tracking control method based on fuzzy control technology, and straw direct-fired circulating fluidized bed boiler based on neural network control technology The variable load steam pressure tracking control method, but the conventional PID tracking control of steam pressure, because the controller parameters are determined off-line, and will not change with the changes of straw fuel quality and load steam consumption, so it cannot well track the steam consumption due to load. The corresponding steam pressure target value changed; also due to the large difference in the quality of straw fuel, a large number of ambiguity functions need to be used, which makes the tracking control method of the variable load steam pressure of the circulating fluidized bed boiler large; and the neural network-based tracking control method The control technology of straw direct combustion circulating fluidized bed boiler variable load steam pressure tracking control method requires a large number of industrial data samples for offline training of straw direct combustion process model parameters to ensure a more accurate relationship between steam pressure and straw fuel amount. The dynamic relationship of these straw direct-fired circulating fluidized bed boilers with variable load steam pressure tracking control methods is slow in the convergence speed of the steam regulation effect of the frequently fluctuating quality of straw fuel, the understanding is abstract, and the application process is complicated. Due to the frequent fluctuation of straw fuel quality and the periodic change of user demand, the real-time, rapidity and accuracy of steam pressure tracking control of circulating fluidized bed boilers are required. Therefore, although straw direct combustion circulating fluidized bed boilers change steam load Some achievements have been made in the research of pressure tracking control method, but in recent years, related scholars have still carried out a lot of research and discussion on this challenging and important problem, in order to meet the requirements of high-quality circulating fluidized bed in the process of straw direct combustion power generation and heating. The urgent need of straw direct combustion control technology.
发明内容SUMMARY OF THE INVENTION
为了克服现有秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法的理解抽象、在线计算复杂和应用过程复杂的不足,本发明提供一种理解直观、设计简单、易于实现的秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法。In order to overcome the shortcomings of abstract understanding, complicated online calculation and complicated application process of the existing straw direct combustion circulating fluidized bed boiler variable load steam pressure tracking control method, the present invention provides a straw direct combustion with intuitive understanding, simple design and easy implementation. Variable load steam pressure tracking control method of circulating fluidized bed boiler.
本发明解决其技术问题所采用的技术方案是:The technical scheme adopted by the present invention to solve its technical problems is:
一种秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法,所述方法包括如下步骤:A method for tracking and controlling the steam pressure of a straw direct-fired circulating fluidized bed boiler with variable load, the method comprises the following steps:
1)、考虑秸秆直燃循环流化床锅炉变负荷蒸汽压与秸秆燃料量的三阶连续时间动态模型,参见式(1):1) The third-order continuous time dynamic model considering the variable load steam pressure and straw fuel amount of the straw direct-fired circulating fluidized bed boiler, see equation (1):
其中,t表示时间变量;x1表示循环流化床锅炉的蒸汽压,MPa;x2表示循环流化床锅炉蒸汽压的变化速度;x3表示循环流化床锅炉蒸汽压的变化加速度;“·”表示对应变量的一阶导数;M表示用于燃烧的秸秆燃料量,t/h;常数G表示循环流化床锅炉蒸汽压的稳态增益;常数T1、T2和τ分别表示循环流化床锅炉汽包压力时间常数、蒸汽压时间常数和时滞,s;Among them, t represents the time variable; x 1 represents the vapor pressure of the circulating fluidized bed boiler, MPa; x 2 represents the change rate of the vapor pressure of the circulating fluidized bed boiler; x 3 represents the change acceleration of the vapor pressure of the circulating fluidized bed boiler; " ” represents the first derivative of the corresponding variable; M represents the amount of straw fuel used for combustion, t/h; the constant G represents the steady-state gain of the steam pressure of the circulating fluidized bed boiler; the constants T 1 , T 2 and τ represent the circulation, respectively Fluidized bed boiler drum pressure time constant, steam pressure time constant and time delay, s;
2)、定义秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪偏差的积分量q(t),参见式(2):2), define the integral amount q(t) of the tracking deviation of the variable load steam pressure of the straw direct-fired circulating fluidized bed boiler, see formula (2):
其中,符号s表示积分器内的积分时间变量;Pr表示秸秆直燃循环流化床锅炉蒸汽压的目标值;求积分量q(t)的一阶导数,参见式(3):Among them, the symbol s represents the integral time variable in the integrator; P r represents the target value of the steam pressure of the straw direct-fired circulating fluidized bed boiler; to find the first derivative of the integral q(t), see equation (3):
其中,表示蒸汽压跟踪偏差积分量对时间变量的一阶导数;in, Represents the first derivative of the vapor pressure tracking deviation integral to the time variable;
3)、结合式(1)和式(3),建立秸秆直燃循环流化床锅炉变负荷蒸汽压与秸秆燃料量的连续时间扩展状态空间模型,参见式(4):3) Combined with Equation (1) and Equation (3), establish a continuous time-expanded state space model of variable load steam pressure and straw fuel amount of straw direct-fired CFB boiler, see Equation (4):
其中,列向量z=[x1,x2,x3,q]T,上标T表示向量转置;矩阵A、B和C分别为Among them, the column vector z=[x 1 , x 2 , x 3 , q] T , the superscript T represents the vector transposition; the matrices A, B and C are respectively
4)、给定一个参数μ>0,设计用于计算秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制系统在t时刻的秸秆燃烧量的跟踪控制律,参见式(5):4) Given a parameter μ>0, it is designed to calculate the tracking control law of the straw combustion amount of the straw burning circulating fluidized bed boiler variable load steam pressure tracking control system at time t, see equation (5):
M(t)=-μBWz(t) (5)M(t)=-μBWz(t) (5)
其中,矩阵W为正定对称矩阵,通过MatLab函数care计算,参见式(6):Among them, the matrix W is a positive definite symmetric matrix, calculated by the MatLab function care, see formula (6):
其中,矩阵I4为4阶单位矩阵;Wherein, the matrix I 4 is a fourth-order unit matrix;
5)、在线测量读取秸秆直燃循环流化床锅炉蒸汽压的实际值和目标值,根据式(5)实时计算循环流化床锅炉的秸秆燃烧量,循环流化床锅炉燃烧自动控制系统根据秸秆燃烧量的计算结果实时调整进入循环流化床锅炉内的秸秆燃烧量;在下一个控制周期时,重新测量读取循环流化床锅炉蒸汽压的实际值和目标值,根据式(5)实时计算循环流化床锅炉的秸秆燃烧量,循环流化床锅炉燃烧自动控制系统根据秸秆燃烧量的计算结果实时调整进入循环流化床锅炉内的秸秆燃烧量,如此周而复始,实现秸秆直燃循环流化床锅炉变负荷蒸汽压对目标值Pr的自动跟踪控制。5) Measure and read the actual value and target value of the steam pressure of the straw direct-fired circulating fluidized bed boiler on-line, and calculate the straw combustion amount of the circulating fluidized bed boiler in real time according to formula (5), and the circulating fluidized bed boiler combustion automatic control system According to the calculation result of the straw combustion amount, adjust the straw combustion amount entering the circulating fluidized bed boiler in real time; in the next control cycle, re-measure and read the actual value and target value of the steam pressure of the circulating fluidized bed boiler, according to formula (5) Real-time calculation of the amount of straw combustion in the circulating fluidized bed boiler, and the automatic control system for the combustion of the circulating fluidized bed boiler adjusts the amount of straw combustion entering the circulating fluidized bed boiler in real time according to the calculation results of the straw combustion amount. The automatic tracking control of the target value Pr for the variable load steam pressure of the fluidized bed boiler.
本发明的技术构思是:针对秸秆直燃循环流化床锅炉变负荷中的实际蒸汽压跟踪目标值的控制问题,建立秸秆直燃循环流化床锅炉的蒸汽压与秸秆燃烧量的连续时间动态模型,根据蒸汽压目标值定义跟踪偏差的积分量,进而建立秸秆直燃循环流化床锅炉蒸汽压与秸秆燃烧量连续时间扩展动态模型,并利用MatLab 函数care的计算结果,设计一个秸秆直燃循环流化床锅炉变负荷蒸汽压自动跟踪控制器,实现秸秆直燃循环流化床锅炉变负荷蒸汽压对目标值的自动跟踪控制。The technical idea of the present invention is: aiming at the control problem of the actual steam pressure tracking target value in the variable load of the straw direct combustion circulating fluidized bed boiler, the continuous time dynamic relationship between the steam pressure and the straw combustion amount of the straw direct combustion circulating fluidized bed boiler is established. model, the integral amount of tracking deviation is defined according to the target value of steam pressure, and then a continuous time-expanded dynamic model of steam pressure and straw combustion amount of straw direct combustion circulating fluidized bed boiler is established, and the calculation result of MatLab function care is used to design a straw direct combustion The automatic tracking controller of the variable load steam pressure of the circulating fluidized bed boiler realizes the automatic tracking control of the target value of the variable load steam pressure of the straw direct combustion circulating fluidized bed boiler.
本发明主要执行部分在循环流化床锅炉控制计算机上运行实施。本方法应用过程可以大致分为3个阶段:The main execution part of the present invention is implemented on the circulating fluidized bed boiler control computer. The application process of this method can be roughly divided into three stages:
1、参数设置:包括模型参数和跟踪控制器参数:在模型导入界面中,输入模型式(1)中常数G、T1、T2和τ的值;在跟踪控制器参数设置界面中,输入控制器参数μ>0;输入参数确认后,由控制计算机将设置数据送入计算机存储单元 RAM中保存;1. Parameter setting: including model parameters and tracking controller parameters: in the model import interface, enter the values of the constants G, T 1 , T 2 and τ in the model formula (1); in the tracking controller parameter setting interface, enter The controller parameter μ>0; after the input parameter is confirmed, the control computer will send the setting data to the computer storage unit RAM for saving;
2、离线调试:点击组态界面中的“调试”按钮,控制系统进入跟踪控制器调试阶段,以秸秆直燃循环流化床锅炉蒸汽压的单位阶跃响应作为测试实验,调整组态界面中的参数μ,观察秸秆直燃循环流化床锅炉蒸汽压和秸秆燃烧量的控制效果,由此确定一个能良好实现秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制的参数;参数μ的取值规则:μ为正实数;参数μ的调整规则:增大μ的值将缩短秸秆直燃循环流化床锅炉蒸汽压响应的跟踪调整时间,但增大秸秆燃烧量;相反,减小μ的值将平缓秸秆直燃循环流化床锅炉蒸汽压响应和秸秆燃烧量,但延长循环流化床锅炉蒸汽压响应的跟踪调整时间,因此,实际调试参数μ时,应权衡秸秆直燃循环流化床锅炉蒸汽压响应的超调量、跟踪调整时间、阻尼效应和秸秆燃烧量之间的综合性能;2. Off-line debugging: Click the "Debug" button in the configuration interface, the control system enters the debugging stage of the tracking controller, and the unit step response of the steam pressure of the straw direct-fired circulating fluidized bed boiler is used as the test experiment to adjust the configuration interface. The parameter μ is observed, and the control effect of the steam pressure and straw combustion amount of the straw direct-fired circulating fluidized bed boiler is observed, thereby determining a parameter that can well realize the variable load steam pressure tracking control of the straw direct-firing circulating fluidized bed boiler; the parameter μ is Value rule: μ is a positive real number; adjustment rule of parameter μ: increasing the value of μ will shorten the tracking adjustment time of the steam pressure response of the straw direct-fired circulating fluidized bed boiler, but increase the amount of straw combustion; on the contrary, reduce μ The value of , will moderate the steam pressure response and straw combustion amount of the straw direct combustion circulating fluidized bed boiler, but prolong the tracking adjustment time of the steam pressure response of the circulating fluidized bed boiler. Therefore, when the actual debugging parameter μ, the circulating flow of straw direct combustion should be weighed The comprehensive performance among the overshoot, tracking adjustment time, damping effect and straw combustion of the vapor pressure response of the chemical bed boiler;
3、在线运行:点击组态界面“运行”按钮,启动秸秆直燃循环流化床锅炉燃烧控制计算机的CPU读取循环流化床锅炉蒸汽压模型参数和控制器参数,并执行“秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制程序”,通过在线测量读取秸秆直燃循环流化床锅炉蒸汽压的实际值和目标值,实时计算循环流化床锅炉的秸秆燃烧量,循环流化床锅炉燃烧自动跟踪控制系统根据秸秆燃烧量的计算结果实时调整进入流化床锅炉内的秸秆燃烧量,如此周而复始,实现秸秆直燃循环流化床锅炉变负荷蒸汽压对目标值Pr的自动跟踪控制。3. Online operation: Click the "Run" button on the configuration interface to start the CPU of the combustion control computer of the straw direct combustion circulating fluidized bed boiler to read the steam pressure model parameters and controller parameters of the circulating fluidized bed boiler, and execute the "Straw Direct Combustion". Circulating fluidized bed boiler variable load steam pressure tracking control program”, through online measurement to read the actual value and target value of the steam pressure of the straw direct combustion circulating fluidized bed boiler, real-time calculation of the straw combustion amount of the circulating fluidized bed boiler, circulating flow The combustion automatic tracking control system of the fluidized bed boiler adjusts the amount of straw combustion entering the fluidized bed boiler in real time according to the calculation result of the straw combustion amount, and so on, so as to realize the difference between the variable load steam pressure of the straw direct combustion circulating fluidized bed boiler and the target value P r . Automatic tracking control.
本发明的有益效果主要表现在:1、秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法仅有一个设计参数,设计简单、容易理解、在线实施简便、实用性强;2、秸秆直燃循环流化床锅炉在变负荷下蒸汽压偏离目标值时能自动实现秸秆燃烧量的计算和调整控制,从而可以适用更复杂多样的变负荷工况,满足秸秆直燃循环流化床锅炉对快速负荷耗汽量需求的拱给,提高秸秆直燃循环流化床锅炉燃烧系统运行的控制水平。The beneficial effects of the present invention are mainly manifested in: 1. The variable load steam pressure tracking control method of the straw direct-fired circulating fluidized bed boiler has only one design parameter, which is simple in design, easy to understand, simple in online implementation, and strong in practicability; 2. When the steam pressure of the fired circulating fluidized bed boiler deviates from the target value under variable load, it can automatically realize the calculation and adjustment and control of straw combustion, so that it can be applied to more complex and diverse variable load conditions and meet the requirements of straw direct fired circulating fluidized bed boilers. The demand for fast load steam consumption is given, and the control level of the combustion system of the straw direct-fired circulating fluidized bed boiler is improved.
附图说明Description of drawings
图1为秸秆直燃循环流化床锅炉蒸汽压跟踪实时曲线,其中,虚线为秸秆直燃循环流化床锅炉蒸汽压目标值实时曲线,实线为秸秆直燃循环流化床锅炉蒸汽压实时响应曲线。Figure 1 is the real-time curve of steam pressure tracking of straw direct-fired CFB boiler, in which the dotted line is the real-time curve of the target value of steam pressure of straw direct-fired CFB boiler, and the solid line is the real-time steam pressure of straw direct-fired CFB boiler response curve.
图2为秸秆直燃循环流化床锅炉的秸秆燃烧量实时曲线。Figure 2 is the real-time curve of straw combustion of the straw direct-fired circulating fluidized bed boiler.
具体实施方式Detailed ways
下面结合附图对本发明的方法作进一步详细说明。The method of the present invention will be described in further detail below in conjunction with the accompanying drawings.
参照图1和图2,一种秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制方法,所述方法包括如下步骤:Referring to Figure 1 and Figure 2, a method for tracking variable load steam pressure of a straw direct-fired circulating fluidized bed boiler, the method includes the following steps:
1)、考虑秸秆直燃循环流化床锅炉变负荷蒸汽压与秸秆燃料量的三阶连续时间动态模型,参见式(1):1) The third-order continuous time dynamic model considering the variable load steam pressure and straw fuel amount of the straw direct-fired circulating fluidized bed boiler, see equation (1):
其中,t表示时间变量;x1表示循环流化床锅炉的蒸汽压,MPa;x2表示循环流化床锅炉蒸汽压的变化速度;x3表示循环流化床锅炉蒸汽压的变化加速度;“·”表示对应变量的一阶导数;M表示用于燃烧的秸秆燃料量,t/h;常数G表示循环流化床锅炉蒸汽压的稳态增益;常数T1、T2和τ分别表示循环流化床锅炉汽包压力时间常数、蒸汽压时间常数和时滞,s;Among them, t represents the time variable; x 1 represents the vapor pressure of the circulating fluidized bed boiler, MPa; x 2 represents the change rate of the vapor pressure of the circulating fluidized bed boiler; x 3 represents the change acceleration of the vapor pressure of the circulating fluidized bed boiler; " ” represents the first derivative of the corresponding variable; M represents the amount of straw fuel used for combustion, t/h; the constant G represents the steady-state gain of the steam pressure of the circulating fluidized bed boiler; the constants T 1 , T 2 and τ represent the circulation, respectively Fluidized bed boiler drum pressure time constant, steam pressure time constant and time delay, s;
2)、定义秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪偏差的积分量q(t),参见式(2):2), define the integral amount q(t) of the tracking deviation of the variable load steam pressure of the straw direct-fired circulating fluidized bed boiler, see formula (2):
其中,符号s表示积分器内的积分时间变量;Pr表示秸秆直燃循环流化床锅炉蒸汽压的目标值;求积分量q(t)的一阶导数,参见式(3):Among them, the symbol s represents the integral time variable in the integrator; P r represents the target value of the steam pressure of the straw direct-fired circulating fluidized bed boiler; to find the first derivative of the integral q(t), see equation (3):
其中,表示蒸汽压跟踪偏差积分量对时间变量的一阶导数;in, Represents the first derivative of the vapor pressure tracking deviation integral to the time variable;
3)、结合式(1)和式(3),建立秸秆直燃循环流化床锅炉变负荷蒸汽压与秸秆燃料量的连续时间扩展状态空间模型,参见式(4):3) Combined with Equation (1) and Equation (3), establish a continuous time-expanded state space model of variable load steam pressure and straw fuel amount of straw direct-fired CFB boiler, see Equation (4):
其中,列向量z=[x1,x2,x3,q]T,上标T表示向量转置;矩阵A、B和C分别为Among them, the column vector z=[x 1 , x 2 , x 3 , q] T , the superscript T represents the vector transposition; the matrices A, B and C are respectively
4)、给定一个参数μ>0,设计用于计算秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制系统在t时刻的秸秆燃烧量的跟踪控制律,参见式(5):4) Given a parameter μ>0, it is designed to calculate the tracking control law of the straw combustion amount of the straw burning circulating fluidized bed boiler variable load steam pressure tracking control system at time t, see equation (5):
M(t)=-μBWz(t) (5)M(t)=-μBWz(t) (5)
其中,矩阵W为正定对称矩阵,通过MatLab函数care计算,参见式(6):Among them, the matrix W is a positive definite symmetric matrix, calculated by the MatLab function care, see formula (6):
其中,矩阵I4为4阶单位矩阵;Wherein, the matrix I 4 is a fourth-order unit matrix;
5)、在线测量读取秸秆直燃循环流化床锅炉蒸汽压的实际值和目标值,根据式(5)实时计算循环流化床锅炉的秸秆燃烧量,循环流化床锅炉燃烧自动控制系统根据秸秆燃烧量的计算结果实时调整进入循环流化床锅炉内的秸秆燃烧量;5) Measure and read the actual value and target value of the steam pressure of the straw direct-fired circulating fluidized bed boiler on-line, and calculate the straw combustion amount of the circulating fluidized bed boiler in real time according to formula (5), and the circulating fluidized bed boiler combustion automatic control system According to the calculation result of straw burning amount, adjust the straw burning amount entering the circulating fluidized bed boiler in real time;
在下一个控制周期时,重新测量读取循环流化床锅炉蒸汽压的实际值和目标值,根据式(5)实时计算循环流化床锅炉的秸秆燃烧量,循环流化床锅炉燃烧自动控制系统根据秸秆燃烧量的计算结果实时调整进入循环流化床锅炉内的秸秆燃烧量,如此周而复始,实现秸秆直燃循环流化床锅炉变负荷蒸汽压对目标值Pr的自动跟踪控制。In the next control cycle, re-measure and read the actual value and target value of the steam pressure of the circulating fluidized bed boiler, calculate the straw combustion amount of the circulating fluidized bed boiler in real time according to the formula (5), and the automatic control system of the circulating fluidized bed boiler combustion According to the calculation result of the straw combustion amount, the straw combustion amount entering the circulating fluidized bed boiler is adjusted in real time, and so on, so as to realize the automatic tracking control of the target value P r of the variable load steam pressure of the straw direct combustion circulating fluidized bed boiler.
本实施例为秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制过程,具体操作如下:This embodiment is a tracking control process of the variable load steam pressure of a straw direct-fired circulating fluidized bed boiler, and the specific operations are as follows:
1、在参数设置界面中,输入秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制 过程的常数值G=5、T1=5、T2=90和τ=20;输入控制器参数μ;1. In the parameter setting interface, input the constant values G=5, T1 = 5 , T2=90 and τ=20 for the variable load steam pressure tracking control process of the straw direct-fired CFB boiler; input the controller parameter μ ;
2、在组态界面上点击“调试”按钮进入调试界面,启动主控计算机的CPU调用事先编制好的“跟踪控制程序”调试确定控制器参数μ,具体过程如下:根据参数μ的取值与调整规则,综合考虑秸秆直燃循环流化床锅炉蒸汽压响应的超调量、跟踪调整时间、阻尼效应和秸秆燃烧量之间的综合性能,调试参数得到μ=0.0015,将调试结果保存到计算机存储单元RAM中;2. Click the "Debug" button on the configuration interface to enter the debugging interface, and start the CPU of the main control computer to call the pre-programmed "trace control program" to debug and determine the controller parameter μ. The specific process is as follows: According to the value of the parameter μ and the Adjust the rules, comprehensively consider the overshoot of the steam pressure response of the straw direct-fired circulating fluidized bed boiler, the tracking adjustment time, the damping effect and the overall performance of the straw combustion, the debugging parameters are μ = 0.0015, and the debugging results are saved to the computer storage unit RAM;
3、点击组态界面“运行”按钮,启动秸秆直燃循环流化床锅炉控制计算机的 CPU读取秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制过程模型参数和控制器参数,执行“秸秆直燃循环流化床锅炉变负荷蒸汽压跟踪控制程序”,通过在线测量读取循环流化床锅炉蒸汽压的实际值和目标值,计算并控制进入循环流化床锅炉内的秸秆燃烧量,实现秸秆直燃循环流化床锅炉对蒸汽压目标值Pr的自动跟踪控制。在下一个控制周期到达时,在线测量读取循环流化床锅炉蒸汽压的实际值和目标值,之后重复整个执行过程,如此周而复始,实现秸秆直燃循环流化床锅炉对蒸汽压目标值Pr的自动跟踪控制。3. Click the "Run" button on the configuration interface to start the CPU of the straw direct-fired circulating fluidized bed boiler control computer to read the model parameters and controller parameters of the variable-load steam pressure tracking control process of the straw direct-fired circulating fluidized bed boiler, and execute " Straw direct-fired circulating fluidized bed boiler variable load steam pressure tracking control program", through online measurement to read the actual value and target value of the circulating fluidized bed boiler steam pressure, calculate and control the straw combustion amount entering the circulating fluidized bed boiler , to realize the automatic tracking control of the steam pressure target value P r of the straw direct-fired circulating fluidized bed boiler. When the next control cycle arrives, the actual value and target value of the steam pressure of the circulating fluidized bed boiler are measured and read online, and then the entire execution process is repeated, and so on and so forth, to achieve the target value P r of the steam pressure of the straw direct-fired circulating fluidized bed boiler. automatic tracking control.
实际跟踪控制效果如图1和图2所示,图1为秸秆直燃循环流化床锅炉蒸汽压跟踪实时曲线,其中,虚线为秸秆直燃循环流化床锅炉蒸汽压目标值实时曲线,实线为秸秆直燃循环流化床锅炉蒸汽压实时响应曲线;图2为秸秆直燃循环流化床锅炉的秸秆燃烧量实时曲线。The actual tracking control effect is shown in Figures 1 and 2. Figure 1 is the real-time curve of the steam pressure tracking of the straw direct-fired CFB boiler. The dotted line is the real-time curve of the steam pressure target value of the straw direct-fired CFB boiler. The line is the real-time response curve of the steam pressure of the straw direct-fired CFB boiler; Figure 2 is the real-time straw combustion curve of the straw direct-fired CFB boiler.
以上阐述的是本发明给出的一个实施例所表现出优良控制性能的秸秆直燃循环流化床锅炉变负荷蒸汽压自动跟踪控制效果。需要指出,上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改,都落入本发明的保护范围。What is described above is the automatic tracking control effect of the variable load steam pressure of the straw direct-fired circulating fluidized bed boiler with excellent control performance shown by an embodiment of the present invention. It should be pointed out that the above-mentioned embodiments are used to illustrate the present invention, rather than to limit the present invention. Within the spirit of the present invention and the protection scope of the claims, any modifications made to the present invention fall into the protection scope of the present invention.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711323880.6A CN108119909B (en) | 2017-12-13 | 2017-12-13 | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
PCT/CN2018/110347 WO2019114402A1 (en) | 2017-12-13 | 2018-10-16 | Variable load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711323880.6A CN108119909B (en) | 2017-12-13 | 2017-12-13 | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108119909A CN108119909A (en) | 2018-06-05 |
CN108119909B true CN108119909B (en) | 2019-03-05 |
Family
ID=62229846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711323880.6A Active CN108119909B (en) | 2017-12-13 | 2017-12-13 | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108119909B (en) |
WO (1) | WO2019114402A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108119909B (en) * | 2017-12-13 | 2019-03-05 | 浙江工业大学 | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900348A (en) * | 2009-06-01 | 2010-12-01 | 上海捷控软件技术有限公司 | Method for predicting, controlling and improving efficiency of thermal power unit steam turbine by using steam pressure |
JP5400850B2 (en) * | 2011-10-12 | 2014-01-29 | 川崎重工業株式会社 | Method and apparatus for controlling exhaust heat boiler system |
CN105202571A (en) * | 2015-10-20 | 2015-12-30 | 国家电网公司 | Thermal generator set main steam pressure optimization control method |
CN105757711A (en) * | 2016-03-18 | 2016-07-13 | 国家电投集团河南电力有限公司技术信息中心 | Wide-load main steam pressure control method for cogeneration unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105588122B (en) * | 2015-12-22 | 2018-02-13 | 山东中实易通集团有限公司 | A kind of fuel control method and system applied to CFBB |
CN108119909B (en) * | 2017-12-13 | 2019-03-05 | 浙江工业大学 | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler |
-
2017
- 2017-12-13 CN CN201711323880.6A patent/CN108119909B/en active Active
-
2018
- 2018-10-16 WO PCT/CN2018/110347 patent/WO2019114402A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101900348A (en) * | 2009-06-01 | 2010-12-01 | 上海捷控软件技术有限公司 | Method for predicting, controlling and improving efficiency of thermal power unit steam turbine by using steam pressure |
JP5400850B2 (en) * | 2011-10-12 | 2014-01-29 | 川崎重工業株式会社 | Method and apparatus for controlling exhaust heat boiler system |
CN105202571A (en) * | 2015-10-20 | 2015-12-30 | 国家电网公司 | Thermal generator set main steam pressure optimization control method |
CN105757711A (en) * | 2016-03-18 | 2016-07-13 | 国家电投集团河南电力有限公司技术信息中心 | Wide-load main steam pressure control method for cogeneration unit |
Non-Patent Citations (2)
Title |
---|
基于微分器的燃料-汽压系统直接神经网络控制;崔志强;《动力工程学报》;20160630;445-449 * |
燃料-汽压系统锅炉蒸汽压力动态面控制;崔志强;《中国电机工程学报》;20161230;103-106 * |
Also Published As
Publication number | Publication date |
---|---|
CN108119909A (en) | 2018-06-05 |
WO2019114402A1 (en) | 2019-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103148472B (en) | Control system and control method for biomass boiler combustion | |
CN101509656B (en) | Supercritical DC furnace synthesis type coordinating control method | |
CN105627356B (en) | A kind of metallurgical gas fired-boiler combustion control system | |
CN101799170A (en) | Method for correcting fuel calorific capacity of coal-fired boiler in real time | |
CN111523730A (en) | Method for predicting coal consumption of cogeneration unit | |
CN106527176A (en) | A Modeling of Boiler Thermal Efficiency and NOX Based on MFOA‑SVM | |
CN113283121A (en) | Flow and capacity design method and system for molten salt heat storage industrial steam supply system | |
Behbahaninia et al. | Markov and monte carlo simulation of waste-to-energy power plants considering variable fuel analysis and failure rates | |
CN103678915A (en) | Thermal power plant generator set varying duty energy consumption analysis method based on approach method | |
CN109668139B (en) | Engine-boiler coordination control method for supercritical thermal power generating unit | |
CN106765520B (en) | Automatic control method for realizing optimal initial pressure operation of heat supply unit | |
CN108119909B (en) | Variable-load steam pressure tracking control method for straw direct-fired circulating fluidized bed boiler | |
Ghorbani et al. | Constrained model predictive control implementation for a heavy-duty gas turbine power plant | |
CN207539925U (en) | Station boiler secondary air register adjusts wind control system automatically | |
CN106705034A (en) | Quick load change control method of super-critical circulating fluidized bed boiler unit | |
CN108253413B (en) | Tracking control method for main steam pressure of biomass cogeneration circulating fluidized bed | |
CN118068707A (en) | Direct energy balance-based thermal power unit furnace machine coordination control system and method | |
CN108253414B (en) | Main steam pressure adjusting and controlling method for circulating fluidized bed boiler in biomass cogeneration process | |
CN108105764B (en) | Method for configuring and adjusting steam pressure pole of straw combustion circulating fluidized bed boiler | |
CN110939928A (en) | A method for controlling the water level of a drum boiler of a coal-fired unit with strong robustness | |
Dong et al. | Selecting the approach for dynamic modelling of CO2 capture in biomass/waste fired CHP plants | |
Kortela et al. | Improvement of load-following capacity of grate boilers based on the combustion power soft-sensor | |
Xi et al. | Robust Nonlinear Adaptive Backstepping Coordinated Control for Boiler-Turbine Units | |
CN115018093B (en) | A method, device and electronic equipment for determining the maintenance cycle of a coal-fired unit | |
CN112146887B (en) | Method and system for calculating minimum stable combustion load of coal-fired unit in real time |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |