JP3950741B2 - Non-instantaneous switching method - Google Patents
Non-instantaneous switching method Download PDFInfo
- Publication number
- JP3950741B2 JP3950741B2 JP2002151656A JP2002151656A JP3950741B2 JP 3950741 B2 JP3950741 B2 JP 3950741B2 JP 2002151656 A JP2002151656 A JP 2002151656A JP 2002151656 A JP2002151656 A JP 2002151656A JP 3950741 B2 JP3950741 B2 JP 3950741B2
- Authority
- JP
- Japan
- Prior art keywords
- delay
- delay amount
- difference
- transmission
- switching method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Time-Division Multiplex Systems (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、SDH伝送装置における1+1の冗長構成を持つ、ポイント−ツ−ポイント伝送装置もしくは、リング構成の伝送装置における運用系、予備系の伝送遅延を検出し、支障移転時に無瞬断で切り替えることを目的とする無瞬断切替方式に関する。
【0002】
【従来の技術】
受端局と送端局の間が運用系、予備系の2つの伝送路により接続されている1+1冗長構成のSDH伝送システムは、通常はどちらか一方の伝送路を主伝送路として信号を伝送しているが、常に同時にもう一方の伝送路にも同じ信号を伝送している。このような構成にすることによって、主伝送路において何らかの障害が発生した場合には、もう一方の伝送路を主伝送路として切り替え、伝送を継続することができる。
【0003】
このような1+1冗長構成は、伝送路障害に対して頑健であり、高い信頼性を要求されるSDH伝送システムの一般的な構成となっている。しかし、上記1+1冗長構成のSDH伝送システムでは、信号を送端局から同時に運用系、予備系伝送路に送信した場合、両系の伝送路の経路長の差などによって、両系の伝送路を伝送されてきた信号が受端局に到着する時刻に差(遅延時間差)が生じる。このため、受端局において受信される両系の信号間には位相差が生じ、受信中に伝送路の切換が行われた時に、送端局から送信された信号の一部が消失したり、途切れたりするなどの現象が発生する。
【0004】
【発明が解決しようとする課題】
従来は運用予備間無瞬断切替を実現するために、図3に示すように位相あわせをH/Wで行っていた。しかしながら、J1の64フレームを用いた位相差判定のみでは、32フレーム分の位相差が位相合わせ範囲の上限になるという問題がある。これは、すべてをH/Wで検出していたため、早い遅いの判定が行えず、メモリを64フレームでの同期を行った場合では、伝送遅延差が32フレーム以内で有ることを条件とすることで、早い、遅いの判定を行っているからである。また、32フレーム以上の位相差を持って冗長構成の信号が入力された場合、早い遅いの判定を誤る可能性がある。
【0005】
上記問題の解決手段としてメモリにスタッフ出来る最大遅延量をあらかじめ挿入する方法もあるが、この場合、データの遅延量は最大となり、過多の伝送遅延を生じるという問題がある。
【0006】
【課題を解決するための手段】
本発明の無瞬断切替方式は、受端局と送端局の間が運用系、予備系の2つの伝送路により接続されている1+1冗長構成のSDH伝送システムにおける前記運用系と前記予備系の無瞬断切替を行う無瞬断切替方式であって、前記運用系予備系伝送路間の遅延差を予測し、前記予測した遅延差を最適遅延量として内部メモリに吸収させて冗長間の遅延差をなくす無瞬断切替方式において、実際の遅延量と前記予測した遅延量との差分が一定値以上だった際に前記最適遅延量を前記実際の遅延量におきかえることを特徴とする。
【0007】
【発明の実施の形態】
本発明の実施の形態の動作を図面を参照して説明を行う。図1において、遅延差検出部1では、運用系/予備系間の実際の遅延量の差を検出し、オペレーション2への通知を行う。また、書き込み読み出しカウンタメモリ3,4は、フレーム単位でオペレーションからの設定に基づき、読み出し位相はオペレーション側から最適値を設定されることで、無駄な遅延量を挿入しないだけではなく、装置内のあらゆる遅延量の変化を伴う経路変更に対しても、位相合わせを再度行うことなく、運用予備間の切替を無瞬断で行うことを可能としている。
【0008】
これは、特に、リング構成の1+1冗長構成を持つ伝送装置で有った場合、伝送経路は図1のような場合が考えられる。この中で、運用系、予備系の経路がどの様な経路を通るかをオペレーションは判断し、どこまでの無瞬断機能を満足する必要が有るかをユーザーからの設定に委ねる。ユーザーはその回線の優先度、および、高速伝送の重要性から判断し、どの経路まで、無瞬断で切替可能とするかを判断後、オペレーションを介して設定を行う。
【0009】
装置構成をオペレーション側でシミュレートし、終端点A,Bに対して、経路a、経路bの場合の伝送遅延量を予測する動作を述べる。経路aの場合J1挿入後の分岐点(0点)からa1点までは装置固有の値(数マイクロ)があり、これは装置固有の値となる。a1-a2間の遅延量はファイバ長に依存し、リングが構成さらた状況では一意的に決定される(遅延量n)。さらに、a2-a3間の遅延量は0-a1間同様に、Dropする装置内遅延であるため装置固有の値となる。これに対し、経路bでは0-a1同様に装置固有値(遅延量m)とb1-b2間のファイバ長に依存する遅延量b2-b3間の装置固有の装置内Through時の遅延量q、b3-b4間のファイバの遅延(r)、b4-b5間のThrough遅延(q)、b5-b6間の遅延(s)、b6-b7間の遅延(o)と装置内の遅延は構成が決定されることで、予測が可能となる。経路a,b間でAdd,Dropの装置固有の遅延量が同じと仮定すると、経路間の遅延差は、“遅延差=ファイバの合計の差×ファイバでの単位遅延+Throughで通過する数の差×遅延量P”で予測できる。
【0010】
これを算出後の終端点Bの書き込み読み出しカウンタメモリ3,4に対して、予測した遅延差を設定する。仮に経路aと経路bで経路bの方が装置内伝送遅延が大きいと判断された場合は、bの書き込み値に遅延量変動を加味したマージンを持って、B点での読み出し位相を決定する。a,bが予測誤差の範囲内で遅延量が等しい場合には、どちらの書き込み値から読み出し位相を決定してもかまわない。
【0011】
実際に回線が運用された場合には、実際の遅延量と上記予測した遅延量の差がないことを確認し、差がある場合は予測値を実測値に置き換え、これを新たに遅延量の予測値とする。この回線に予備回線を構築する場合、すでに最適な予測値となっており、予備系は運用系の読み出しタイミングを抽出するため、運用系においては、遅延量の再設定は発生せず、運用系に対しての主信号の瞬断は発生しない。
【0012】
さらに、図2に示すようなリング形態であった場合に、リング構成時の複雑な運用予備間の伝送遅延差をあらかじめオペレーション側で算出し、付加する遅延量を最適に設定することで、不要な再位相合わせを行わずに無瞬断切替を行うことができる。
【0013】
また、今回の発明は端点A.B間の遅延量吸収の手段を述べているが、この方式を装置の枠を越えて、ネットワーク全体を通して実現することも可能である。この場合、ネットワーク全体の端点A’でマルチフレーム同期用のJ1バイトを挿入し、この回線を割り付けた装置毎の遅延量を装置のオペレーションで管理したのち、ネットワーク全体を管理する上流オペレーションに渡し、ネットワーク全体の遅延量を管理することで、端点B’での支障移転時の無瞬断切替を実現することも可能となる。
【0014】
【発明の効果】
以上説明したように本発明は、遅延量をオペレーション等の管理下に置くことにより、位相差吸収のための遅延量を最小限にすることができる。また、遅延量を最小限にすることで、吸収可能な遅延量を従来と比して2倍にし、メモリを従来の1/2にすることができる。また、従来無瞬断切替可能な伝送遅延差が32フレームであったものを64フレームにすることができる。さらに、オペレーション側であらかじめ、経路変更等による伝送位相量を加味した遅延量を設定することにより、経路変更等が発生しても再位相合わせを行わずに支障移転の無瞬断機能を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態を示すブロック図である。
【図2】複雑なネットワークに本発明を適用した図である。
【図3】従来技術を示すブロック図である。
【符号の説明】
1 遅延差検出部
2 オペレーション
3、4 書き込み読み出しカウンタメモリ[0001]
BACKGROUND OF THE INVENTION
The present invention detects a transmission delay of an operation system and a standby system in a point-to-point transmission apparatus having a 1 + 1 redundancy configuration in an SDH transmission apparatus or a ring configuration transmission apparatus, and switches without interruption when a trouble is transferred. The present invention relates to an uninterruptible switching method.
[0002]
[Prior art]
A 1 + 1 redundant SDH transmission system in which the receiving and sending stations are connected by two transmission lines, the active and standby, normally transmits signals using either transmission line as the main transmission line. However, the same signal is always transmitted to the other transmission line at the same time. By adopting such a configuration, when any failure occurs in the main transmission line, the other transmission line can be switched as the main transmission line and the transmission can be continued.
[0003]
Such a 1 + 1 redundant configuration is robust against a transmission path failure, and is a general configuration of an SDH transmission system that requires high reliability. However, in the SDH transmission system having the 1 + 1 redundancy configuration, when a signal is simultaneously transmitted from the transmitting terminal station to the active system and the standby system transmission path, the transmission path of both systems is changed due to a difference in path length between the transmission paths of both systems. There is a difference (delay time difference) in the time when the transmitted signal arrives at the receiving station. For this reason, a phase difference occurs between the signals of both systems received at the receiving terminal station, and when the transmission path is switched during reception, a part of the signal transmitted from the transmitting terminal station is lost. , Phenomenon such as interruption.
[0004]
[Problems to be solved by the invention]
Conventionally, in order to realize non-instantaneous switching between operation backups, phase adjustment is performed with H / W as shown in FIG. However, only the phase difference determination using 64 frames of J1 has a problem that the phase difference for 32 frames becomes the upper limit of the phase matching range. This is based on the condition that the difference between the transmission delays is within 32 frames when the memory is synchronized with 64 frames, because all of them are detected by H / W, so that it is not possible to determine whether it is late or early. This is because the judgment is made early or late. In addition, when a redundant signal is input with a phase difference of 32 frames or more, there is a possibility that the early / late determination is erroneous.
[0005]
As a means for solving the above problem, there is a method of inserting a maximum delay amount that can be stuffed into the memory in advance, but in this case, there is a problem that the data delay amount becomes the maximum and an excessive transmission delay occurs.
[0006]
[Means for Solving the Problems]
According to the uninterruptible switching system of the present invention, the active system and the standby system in an SDH transmission system having a 1 + 1 redundancy configuration in which a receiving terminal station and a transmitting terminal station are connected by two transmission paths of an active system and a standby system. A non-instantaneous switching method for predicting a delay difference between the active standby transmission lines, and absorbing the predicted delay difference in an internal memory as an optimal delay amount. In the non-instantaneous switching method that eliminates the delay difference, the optimum delay amount is replaced with the actual delay amount when the difference between the actual delay amount and the predicted delay amount is a certain value or more .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The operation of the embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the delay difference detection unit 1 detects an actual delay amount difference between the active system and the standby system and notifies the operation 2. The write / read counter memories 3 and 4 not only insert a useless delay amount by setting an optimum value for the read phase from the operation side based on the setting from the operation in units of frames. It is possible to perform switching between operation backups without instantaneous interruption without performing phase alignment again for path changes involving any delay amount change.
[0008]
In particular, in the case of a transmission apparatus having a 1 + 1 redundant configuration with a ring configuration, the transmission path may be as shown in FIG . In this, the operation determines what route the active and standby routes take, and leaves up to the user setting up to what uninterruptible function needs to be satisfied. The user determines from the priority of the line and the importance of high-speed transmission, determines which route can be switched without interruption, and then performs settings through the operation.
[0009]
The operation of simulating the apparatus configuration on the operation side and predicting the transmission delay amount in the case of the route a and the route b for the terminal points A and B will be described. In the case of the route a, there is a device-specific value (several micros) from the branch point (0 point) after insertion of J1 to the point a1, which is a device-specific value. The delay amount between a1 and a2 depends on the fiber length, and is uniquely determined in a situation where the ring is configured (delay amount n). Further, since the delay amount between a2 and a3 is the in-device delay to be dropped, similarly to the time between 0 and a1, the value is unique to the device. On the other hand, in the path b, similarly to 0-a1, the delay amount q, b3 during the device-specific through-throw between the device-specific value (delay amount m) and the delay amount b2-b3 depending on the fiber length between b1-b2 Fiber delay (r) between b4 and b4, Through delay between b4 and b5 (q), Delay between b5 and b6 (s), Delay between b6 and b7 (o) and delay in the device are determined As a result, prediction becomes possible. Assuming that the device-specific delay amounts of Add and Drop are the same between paths a and b, the delay difference between the paths is “delay difference = total difference of fiber × unit delay in fiber + difference in number passing through X It can be predicted by the delay amount P ″.
[0010]
The predicted delay difference is set for the write / read counter memories 3 and 4 at the end point B after the calculation. If it is determined that the transmission delay in path b is greater in path a and path b than in path b, the read phase at point B is determined with a margin that takes into account the delay amount variation in the write value of b. . When a and b are within the prediction error range and the delay amount is the same, the read phase may be determined from either write value.
[0011]
When the line is actually operated, it is confirmed that there is no difference between the actual delay amount and the predicted delay amount. If there is a difference, the predicted value is replaced with an actual measurement value, and this is replaced with a new delay amount. Predicted value. When constructing a protection line on this line, the predicted value is already optimal, and the standby system extracts the read timing of the operation system, so there is no reset of the delay amount in the operation system, and the operation system There is no instantaneous interruption of the main signal.
[0012]
Furthermore, in the case of a ring configuration as shown in FIG. 2, it is unnecessary by calculating in advance the transmission delay difference between the complicated operation reserves at the time of the ring configuration, and optimally setting the added delay amount. Can be switched without instantaneous rephasing.
[0013]
In addition, the present invention is an endpoint A. Although a means for absorbing the delay amount between B is described, this method can be realized throughout the network beyond the frame of the apparatus. In this case, the J1 byte for multi-frame synchronization is inserted at the end point A ′ of the entire network, the delay amount for each device to which this line is allocated is managed by the device operation, and then passed to the upstream operation for managing the entire network. By managing the delay amount of the entire network, it is also possible to realize non-instantaneous switching at the time of failure transfer at the end point B ′.
[0014]
【The invention's effect】
As described above, according to the present invention, the amount of delay for phase difference absorption can be minimized by placing the amount of delay under the management of operations and the like. Further, by minimizing the delay amount, the absorbable delay amount can be doubled compared to the conventional case, and the memory can be halved compared to the conventional case. In addition, a transmission delay difference that can be switched without instantaneous interruption of 32 frames can be changed to 64 frames. In addition, by setting a delay amount that takes into account the transmission phase amount due to route change etc. in advance on the operation side, even if a route change etc. occurs, an uninterruptible function of trouble transfer is realized without performing rephase alignment. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a diagram in which the present invention is applied to a complex network.
FIG. 3 is a block diagram showing a conventional technique.
[Explanation of symbols]
1 Delay Difference Detection Unit 2 Operation 3, 4 Write / Read Counter Memory
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002151656A JP3950741B2 (en) | 2002-05-27 | 2002-05-27 | Non-instantaneous switching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002151656A JP3950741B2 (en) | 2002-05-27 | 2002-05-27 | Non-instantaneous switching method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003348061A JP2003348061A (en) | 2003-12-05 |
JP3950741B2 true JP3950741B2 (en) | 2007-08-01 |
Family
ID=29769166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002151656A Expired - Fee Related JP3950741B2 (en) | 2002-05-27 | 2002-05-27 | Non-instantaneous switching method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3950741B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009005107A (en) * | 2007-06-21 | 2009-01-08 | Nec Corp | Method and system for confirming fixed delay route |
WO2022239136A1 (en) * | 2021-05-12 | 2022-11-17 | 日本電信電話株式会社 | Network management device, network management method, and program |
-
2002
- 2002-05-27 JP JP2002151656A patent/JP3950741B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003348061A (en) | 2003-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2078394B1 (en) | Synchronization recovery for multiple-link communications using inverse multiplexing | |
WO2001061937A1 (en) | Optically bidirectional ring switching method and system therefor | |
JP3950741B2 (en) | Non-instantaneous switching method | |
JPH04286242A (en) | Device and method for hit-free switching | |
US6754172B1 (en) | Non-interruptive protection switching device and network system using the same | |
JP4412068B2 (en) | Uninterruptible switching system, uninterruptible switching method, and communication station used therefor | |
JP4045415B2 (en) | Ethernet communication device | |
JP4679090B2 (en) | Transmission end switching method and set spare terminal equipment | |
JP6852909B2 (en) | Instantaneous interruption switching device, instant interruption switching method and program | |
JP3389062B2 (en) | Instantaneous interruption switching method | |
JP4423402B2 (en) | Redundant transmission device | |
US11996932B2 (en) | Active-active TDM PW with asymmetry control | |
JP3250778B2 (en) | Short instantaneous interruption switching circuit and instantaneous interruption switching circuit | |
JPH07321810A (en) | Route switching system | |
JP3161955B2 (en) | Active / standby transmission line signal selection method and apparatus | |
JPH08186575A (en) | No-hit switching system | |
JPH10154972A (en) | Uninterruptible switching system | |
JPH06209327A (en) | Loop network system | |
JP4314145B2 (en) | Receiver | |
JP2000324072A (en) | Pointer termination part and uninterruptive switching system | |
JP2002140315A (en) | Dual multi-protocol switch | |
JP2000013346A (en) | Uninterruptible switch circuit and method therefor | |
JPH05176017A (en) | Redundant system switching system in digital transmission system | |
JP2611285B2 (en) | Line switching device | |
JPH01126042A (en) | Transmission line monitoring system in ring communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050330 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20070124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070403 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070423 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120427 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |