JP3950681B2 - Transmission line board - Google Patents

Transmission line board Download PDF

Info

Publication number
JP3950681B2
JP3950681B2 JP2001371835A JP2001371835A JP3950681B2 JP 3950681 B2 JP3950681 B2 JP 3950681B2 JP 2001371835 A JP2001371835 A JP 2001371835A JP 2001371835 A JP2001371835 A JP 2001371835A JP 3950681 B2 JP3950681 B2 JP 3950681B2
Authority
JP
Japan
Prior art keywords
transmission line
transmission
transmission lines
insulating layer
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371835A
Other languages
Japanese (ja)
Other versions
JP2003174304A (en
Inventor
哲也 真栄城
均 邊見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR Advanced Telecommunications Research Institute International
Original Assignee
ATR Advanced Telecommunications Research Institute International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR Advanced Telecommunications Research Institute International filed Critical ATR Advanced Telecommunications Research Institute International
Priority to JP2001371835A priority Critical patent/JP3950681B2/en
Publication of JP2003174304A publication Critical patent/JP2003174304A/en
Application granted granted Critical
Publication of JP3950681B2 publication Critical patent/JP3950681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a board for transmission lines whereby the value of the impedance of a transmission line can be made higher than conventional ones and can be set precisely to a desired one. <P>SOLUTION: In the board for transmission lines, a first transmission line 1a having a nearly corrugated pattern is provided on one side of a base 5a, and a second transmission line 2a having a nearly corrugated pattern is so formed on the other side of the base 5a that it is in line symmetry with the first transmission line 1a with respect to a line and it intersects the first transmission line 1a continuously and stereoscopically. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、第1の伝送線路と該第1の伝送線路に対して絶縁された第2の伝送線路とが形成された伝送線路基板に関するものである。
【0002】
【従来の技術】
近年、電子機器の高速化を達成するために電子機器に使用されるプリント基板が小型化され、プリント基板に形成される伝送線路が微細化されるとともに、伝送線路により伝達される信号が高速化される傾向にある。
【0003】
上記のように微細化された伝送線路を用いて信号を高速に伝送する場合、伝送線路のインピーダンスの値を所望の値に設定するインピーダンス制御が重要になってくる。すなわち、インピーダンス制御が正確に行われない場合、高速信号を安定に伝送することができず、電子機器が動作しなくなる場合がある。
【0004】
ここで、伝送線路のインピーダンスは、伝送線路の幅及び高さ、伝送線路とグランド層との間の距離、伝送線路が形成されるプリント基板の絶縁層の誘電率等に依存し、一般的に、伝送線路の断面積(幅×高さ)に反比例するとともに、基板の誘電率にも反比例する。
【0005】
【発明が解決しようとする課題】
しかしながら、実現可能な伝送線路の幅及び高さにはプリント基板の製造技術による限界があり、ある一定値以上のインピーダンスを実現することは困難である。特に、ポリイミド等の誘電率が高い絶縁層を使用しなければならないフレキシブル基板では、インピーダンスの値を高くすることがより困難となっている。
【0006】
また、伝送線路の微細化に伴い、伝送線路等の加工精度のバラツキ等が伝送線路のインピーダンスの値に大きく影響し、伝送線路のインピーダンスの値を所望の値に正確に設定することも困難になってきている。
【0007】
本発明の目的は、伝送線路のインピーダンスの値をより高くすることができるとともに、所望の値に正確に設定することができる伝送線路基板を提供することである。
【0008】
【課題を解決するための手段および発明の効果】
(1)第1の発明
第1の発明に係る伝送線路基板は、第1の伝送線路と第1の伝送線路に対して絶縁された第2の伝送線路とが形成された伝送線路基板であって、第1及び第2の伝送線路が連続して立体的に交差し、伝送線路基板は、第3の伝送線路と第3の伝送線路に対して絶縁された第4の伝送線路とをさらに含み、第1及び第2の伝送線路は、第1の間隔で立体的に交差し、第3及び第4の伝送線路は、第1及び第2の伝送線路に対して並列に配置されるとともに、第1の間隔と異なる第2の間隔で立体的に交差するものである。
【0009】
本発明に係る伝送線路基板においては、第1の伝送線路と第1の伝送線路に対して絶縁された第2の伝送線路とが連続して立体的に交差するように形成されているので、第1の伝送線路と第2の伝送線路との間の間隔及び第1及び第2の伝送線路の交差間隔を増大させることにより、第1及び第2の伝送線路のインピーダンスの値を高くすることができる。したがって、第1及び第2の伝送線路のパターン間隔及び交差間隔を調整することにより、伝送線路のインピーダンスの値をより高くすることができるとともに、所望の値に正確に設定することができる。また、第1及び第2の伝送線路が第1の間隔で立体的に交差し、第3及び第4の伝送線路が第1の間隔と異なる第2の間隔で立体的に交差しているので、第1及び第2の伝送線路により伝送される信号と第3及び第4の伝送線路により伝送される信号との間のクロストークを低減することができる。
【0010】
(2)第2の発明
第2の発明に係る伝送線路基板は、第1の発明に係る伝送線路基板の構成において、第1の伝送線路は、第1の伝送線路と第2の伝送線路とを絶縁するための絶縁層の一方側に形成され、第2の伝送線路は、絶縁層の他方側に形成され、第1及び第2の伝送線路は、所定間隔で立体的に交差する。
【0011】
この場合、第1の伝送線路が絶縁層の一方側に形成され、第2の伝送線路が絶縁層の他方側に形成されるので、所定間隔で立体的に交差する第1及び第2の伝送線路を絶縁層上に容易に形成することができる。
【0012】
(3)第3の発明
第3の発明に係る伝送線路基板は、第1の発明に係る伝送線路基板の構成において、第1の伝送線路は、第1の伝送線路と第2の伝送線路とを絶縁するための絶縁層の一方側に形成された複数の第1の導電部と、絶縁層の他方側に形成された複数の第2の導電部とを含み、第2の伝送線路は、絶縁層の他方側に形成された複数の第3の導電部と、絶縁層の一方側に形成された複数の第4の導電部とを含み、第1及び第2の導電部は、絶縁層を貫通する第1の接続部を介して電気的に順次接続され、第3及び第4の導電部は、絶縁層を貫通する第2の接続部を介して電気的に順次接続され、第1及び第2の伝送線路は、所定間隔で立体的に交差する。
【0013】
この場合、絶縁層の一方側に形成された複数の第1の導電部と絶縁層の他方側に形成された複数の第2の導電部とが絶縁層を貫通する第1の接続部を介して電気的に順次接続されるとともに、絶縁層の他方側に形成された複数の第3の導電部と絶縁層の一方側に形成された複数の第4の導電部とが絶縁層を貫通する第2の接続部を介して電気的に順次接続されるので、立体的に螺旋状に交差した第1及び第2の伝送線路を容易に形成することができる。
【0016】
【発明の実施の形態】
以下、本発明の各実施の形態による伝送線路基板について図面を参照しながら説明する。図1は、本発明の第1の実施の形態による伝送線路基板の構成を模式的に示す平面図であり、図2は、図1に示す伝送線路基板の断面構造を模式的に示すA−A’断面図である。
【0017】
図1及び図2に示す伝送線路基板10aは、フレキシブル基板であり、第1の伝送線路1a、第2の伝送線路2a、第1のカバーレイ3a、第2のカバーレイ4a及びベース5aを備える。なお、図1では、図示を容易にするために、基板となるベース5aの下に配置されている第2の伝送線路2aを実線で示すとともに、第1のカバーレイ3a、第2のカバーレイ4a及びベース5aは外形のみを実線で示している。
【0018】
絶縁層となるベース5aの一方側(図2において上側)に第1の伝送線路1aが形成され、第1の伝送線路1aの上に絶縁層となる第1のカバーレイ3aが形成される。一方、ベース5aの他方側(図2において下側)に第2の伝送線路2aが形成され、第2の伝送線路2aの上に絶縁層となる第2のカバーレイ4aが形成される。例えば、第1及び第2の伝送線路1a,2aは、厚さ約18μmの銅箔から構成され、第1及び第2のカバーレイ3a,4aは、厚さ約35μmの接着層及び厚さ約25μmのポリイミドから構成され、ベース5aは、厚さ約22μmの接着層、厚さ約25μmのポリイミド及び厚さ約22μmの接着層から構成される。
【0019】
なお、伝送線路基板10aの構成は、上記の例に特に限定されず、種々の変更が可能である。また、第1及び第2の伝送線路1a,2aの材質は、上記の例に特に限定されず、他の導電性材料を用いてもよく、第1及び第2のカバーレイ3a,4a及びベース5aの材質及び構造も、上記の例に特に限定されず、他の絶縁性材料を用いてもよい。また、第1及び第2の伝送線路1a,2a、第1及び第2のカバーレイ3a,4a並びにベース5aの厚さも、上記の例に特に限定されず、種々の変更が可能である。
【0020】
第1及び第2の伝送線路1a,2aは、線対称な配線パターンを有し、第1の伝送線路1aは、直線部P1と当該直線部P1に対して約45度屈曲された交差部P2とを順次連結した略波型パターンから構成され、第2の伝送線路2aは、直線部P1と略平行に配置された直線部P3と当該直線部P3に対して約45度屈曲された交差部P4とを順次連結した略波型パターンから構成される。
【0021】
上記の配線パターンにより、パターン幅Wの直線部P1とパターン幅Wの直線部P3とがパターン間隔Sを隔てて平行に配置され、交差部P3と交差部P4とが約90度で交差し、第1及び第2の伝送線路1a,2aは交差間隔Lで立体的に交差する。
【0022】
上記のように構成された伝送線路基板10aでは、例えば、第1及び第2の伝送線路1a,2aの一方により高速信号が伝送され、他方はグランド線として使用される。なお、第1及び第2の伝送線路1a,2aにより伝送される信号は、上記の例に特に限定されず、第1及び第2の伝送線路1a,2aにより差動信号等を伝送するようにしてもよい。
【0023】
次に、第1及び第2の伝送線路1a,2aのインピーダンスZに対するパターン幅W、パターン間隔S及び交差間隔Lの影響について下記表1を用いて説明する。なお、表1において、第1及び第2の伝送線路1a,2aのインピーダンスZの単位は(Ω)であり、パターン幅W、パターン間隔S及び交差間隔Lの単位は(mil)である。
【0024】
【表1】

Figure 0003950681
【0025】
表1は、第1及び第2の伝送線路1a,2aのインピーダンスZとパターン幅W、パターン間隔S及び交差間隔Lとの関係を示し、表1に示す実施例1〜5は、図1及び図2に示す伝送線路基板10aを表1に示すパターン幅W、パターン間隔S及び交差間隔Lで作成したものである。また、比較例1は、ベースの両面にパターン幅W=6(mil)の直線状の伝送線路をそれぞれ形成したものであり、比較例2は、ベースの一方側にパターン幅W=5(mil)の直線状の2本の伝送線路をパターン間隔S=19(mil)で形成したものであり、比較例1,2は、交差部を有しない2本の平行伝送線路である。なお、オーバーレイ等は実施例1〜5及び比較例1,2ともに同一のものを使用している。
【0026】
実施例1〜5のインピーダンスZは、90〜130(Ω)であり、比較例1のインピーダンスZ=60(Ω)の約1.5〜2.17倍になり、比較例2のインピーダンスZ=85(Ω)の約1.06〜1.53倍になった。この結果、実施例1〜5のように第1及び第2の伝送線路1a,2aを所定間隔で互いに交差させることにより、インピーダンスZを向上できることがわかった。
【0027】
また、パターン幅W=10(mil)の実施例5のインピーダンスZは90(Ω)になり、パターン幅W=6(mil)の実施例1〜4のインピーダンスZは98〜130(Ω)になり、パターン幅Wを減少させることによりインピーダンスZを向上できることがわかった。
【0028】
また、パターン間隔S=4(mil)の実施例1のインピーダンスZは100(Ω)になり、パターン間隔S=9(mil)の実施例3のインピーダンスZは110(Ω)になり、パターン間隔S=14(mil)の実施例4のインピーダンスZは130(Ω)になり、パターン間隔Sを増加させることによりインピーダンスZを向上できることがわかった。
【0029】
交差間隔L=45.5(mil)の実施例2のインピーダンスZは98(Ω)になり、交差間隔L=90(mil)の実施例1のインピーダンスZは100(Ω)になり、交差間隔Lを増加させることによりインピーダンスZを向上できることがわかった。
【0030】
次に、伝送線路のインピーダンスに対するパターン幅の影響について説明する。一般の伝送線路のインピーダンスZ0は、近似的に次式により与えられる(STEPHEN H. HALL,et all:High-Speed Digital System Design,A Handbook of Interconnect Theory and Design Practices,pp318を参照)。
【0031】
0=(μ0ε0/εe1/2・(1/Ca) …(1)
a=2πε0/ln(8H/W+W/4H) …(2)
εe=(εr+1)/2+((εr−1)/2)・(1+12H/W)-1/2+F−0.217(εr−1)・(T/(WH)1/2) …(3)
F=0.02(εr−1)・(1−W/H)2 …(4)
ここで、μ0は真空の透磁率であり、ε0は真空の誘電率であり、Hは伝送線路とグランド層との距離であり、Tは伝送線路の高さであり、Wは伝送線路のパターン幅であり、εrは絶縁層となるベースの誘電率である。
【0032】
上記の式(2)及び式(3)では、距離Hの係数(例えば、8,4,12)がパターン幅W及び高さTの係数より大きくなっており、距離Hのバラツキすなわちベースの厚さのバラツキはインピーダンスZ0の値に大きく影響するが、パターン幅Wのバラツキはあまり影響しないことがわかる。
【0033】
したがって、本実施の形態でも、製造バラツキ等によるパターン幅Wのバラツキは第1及び第2の伝送線路1a,2aのインピーダンスZにあまり影響しないので、第1及び第2の伝送線路1a,2aのパターン幅Wを減少させることにより、パターン幅Wのバラツキによる影響をあまり受けることなく、第1及び第2の伝送線路1a,2aのインピーダンスZの値を高くすることができる。この結果、第1及び第2の伝送線路1a,2aのパターン幅Wを調整することにより、第1及び第2の伝送線路1a,2aのインピーダンスZを所望の値に高精度に且つ容易に設定することができる。
【0034】
また、本実施の形態では、第1の伝送線路1aと第2の伝送線路2aとが連続して立体的に交差するように形成されているので、第1及び第2の伝送線路1a,2aのパターン間隔Sを増加させることにより第1及び第2の伝送線路1a,2aのインピーダンスZの値を高くすることができるとともに、第1及び第2の伝送線路1a,2aの交差間隔Lを増加させることによっても第1及び第2の伝送線路1a,2aのインピーダンスZの値を高くすることができる。
【0035】
したがって、第1及び第2の伝送線路1a,2aのパターン間隔S及び交差間隔Lを調整することにより、第1及び第2の伝送線路1a,2aのインピーダンスの値をより高くすることができるとともに、所望の値に正確に設定することができる。この結果、第1及び第2の伝送線路1a,2aにより伝送される信号に発生するノイズを低減することができ、より高速に信号を伝送することができる。
【0036】
さらに、本実施の形態では、第1の伝送線路1aがベース5aの一方側に形成され、第2の伝送線路2aがベース5aの他方側に形成されるので、第1及び第2の伝送線路1a,2aをベース5a上に容易に形成することができる。
【0037】
次に、本発明の第2の実施の形態による伝送線路基板について説明する。図3は、本発明の第2の実施の形態による伝送線路基板の構成を模式的に示す平面図であり、図4は、図3に示す伝送線路基板の断面構造を模式的に示すB−B’断面図である。
【0038】
図3及び図4に示す伝送線路基板10bは、フレキシブル基板であり、第1の伝送線路1b、第2の伝送線路2b、第1のカバーレイ3b、第2のカバーレイ4b及びベース5bを備える。
【0039】
第1の伝送線路1bは、複数の第1及び第2の導電部D1,D2及び複数の第1のバイアホール6aから構成され、第1及び第2の導電部D1,D2は、第1の実施形態と同様に、直線部と当該直線部に対して約45度屈曲された交差部とを有する。第2の伝送線路2aは、複数の第3及び第4の導電部D3,D4及び複数の第2のバイアホール6bから構成され、第3及び第4の導電部D3,D4は、第1の実施形態と同様に、直線部と当該直線部に対して約45度屈曲された交差部とを有する。なお、図3では、図示を容易にするために、基板となるベース5bの下に配置されている第2の導電部D2及び第3及の導電部D3を実線で示すとともに、第1のカバーレイ3b、第2のカバーレイ4b及びベース5bは外形のみを実線で示している。
【0040】
絶縁層となるベース5bの一方側(図4において上側)に複数の第1の導電部D1が形成され、ベース5bの他方側(図4において下側)に複数の第2の導電部D2が形成され、第1及び第2の導電部D1,D2がベース5bを貫通する第1の接続部となるバイアホール6aを介して順次接続され、略螺旋状に第1の伝送線路1bが形成される。
【0041】
一方、ベース5bの他方側に複数の第3の導電部D3が形成され、ベース5bの一方側に複数の第4の導電部D4が形成され、第3及び第4の導電部D3,D4がベース5bを貫通する第2の接続部となるバイアホール6bを介して順次接続され、略螺旋状に第2伝送線路2bが形成される。
【0042】
第1及び第2のバイアホール6a,6bは、例えば、銅からなり、第1のバイアホール6aは第1及び第2の導電部D1,D2を電気的に接続し、第2のバイアホール6bは第3及び第4の導電部D3,D4を電気的に接続する。なお、第1及び第2のバイアホール6a,6bの材質は、上記の例に特に限定されず、他の導電性材料を用いてもよい。
【0043】
また、第1及び第3の導電部D1,D3上に絶縁層となる第1のカバーレイ3bが形成され、第2及び第4の導電部D1,D3の上に絶縁層となる第2のカバーレイ4bが形成される。なお、上記の点以外は、第1の実施の形態と同様である。
【0044】
上記のようにして、第1〜第4の導電部D1〜D4を第1及び第2のバイアホール6a,6bを介して順次接続することにより、螺旋状に立体的に交差した第1及び第2の伝送線路1b,2bが形成され、第1の実施の形態と同様にパターン幅W、パターン間隔S及び交差間隔Lの第1及び第2の伝送線路1b,2bを形成することができる。
【0045】
上記の構成により、本実施の形態でも、第1の実施の形態と同様の効果を得ることができるとともに、螺旋状に立体的に交差した第1及び第2の伝送線路1b,2bを伝送線路基板10bに容易に形成することができる。
【0046】
次に、本発明の第3の実施の形態による伝送線路基板について説明する。図5は、本発明の第3の実施の形態による伝送線路基板の構成を模式的に示す平面図である。
【0047】
図5に示す伝送線路基板10cは、フレキシブル基板であり、第1の伝送線路1c、第2の伝送線路2c、第3の伝送線路1d、第4の伝送線路2d及び第1のカバーレイ3c等を備える。なお、第3の実施の形態でも、第1の実施の形態と同様にベース及び第2のカバーレイを備えているが、図3では、図示を容易にするために、基板となるベースの下に配置されている第2の伝送線路2c及び第4の伝送線路2dを実線で示すとともに、第1のカバーレイ3c、第2のカバーレイ及びベースは外形のみを実線で示している。
【0048】
第1及び第2の伝送線路1c,2cと第3及び第4の伝送線路1d,2dとは、それぞれ第1の実施形態の第1及び第2の伝送線路1a,2aと同様に作成されるとともに、第1及び第2の伝送線路1c,2cの交差間隔はL1に設定され、第3及び第4の伝送線路1d,2dの交差間隔はL2(>L1)に設定されている。
【0049】
上記の構成により、本実施の形態では、第1及び第2の伝送線路1c,2cと第3及び第4の伝送線路1d,2dとでは、それぞれ第1の実施の形態と同様の効果を得ることができるとともに、第1及び第2の伝送線路1c,2cが交差間隔L1で互いに交差し、第3及び第4の伝送線路1d,2dが交差間隔L1と異なる交差間隔L2で互いに交差しているので、第1及び第2の伝送線路1c,2cと第3及び第4の伝送線路1d,2dとにより伝送される信号間のクロストークを低減することができる。
【0050】
なお、交差間隔L1と交差間隔L2との関係は、単に異なるだけでなく、所定の距離L0に対する第1及び第2の伝送線路1c,2cの交差数n(=L0/L1)と第3及び第4の伝送線路1d,2dの交差数m(=L0/L2)との差(=n−m、図5に示す例では、n=10,m=9)が1になることが好ましい。この場合、第1及び第2の伝送線路1c,2cと第3及び第4の伝送線路1d,2dとにより伝送される信号間のクロストークをより低減することができる。
【0051】
なお、上記の説明では、直線部と交差部とを交互に構成することにより伝送線路を立体的に交差させたが、この例に特に限定されず、直線部を省略して交差部のみから三角波状のパターンを形成したり、サイン波等の曲線パターンを形成するようにしてもよい。また、直線部と交差部との角度も、上記の45度に特に限定されず、30度、60度等の他の角度を用いて交差部を形成するようにしてもよい。
【0052】
また、ベースの両側の導体層を用いて一対の伝送線路を形成したが、この例に特に限定されず、種々の変更が可能であり、ベースの両側の導体層を用いてベースの主面方向に一対の伝送線路を3つ以上形成するようにしてもよい。また、導体層を4層以上にして基板の厚み方向に一対の伝送線路を2つ以上形成してもよく、この場合、一対の伝送線路と他の一対の伝送線路との間の絶縁層としては、ポリイミド、ガラスエポキシ樹脂FR4、絶縁処理されたアルミニウム基板等を用いることができる。
【0053】
また、上記の各実施の形態では、本発明をフレキシブル基板に適用した例について説明したが、この例に特に限定されず、硬質プリント基板、フレックスリジッド基板等の他のプリント基板、IC(集積回路)内部の配線等にも本発明を同様に適用することができる。
【0054】
また、上記の各実施の形態では、伝送線路のみを設ける例について説明したが、抵抗、コンデンサ、IC等の電気部品等を伝送線路とともに各基板に設けるようにしてもよいし、本発明の伝送線路以外に通常の直線状の伝送線路を設けるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による伝送線路基板の構成を模式的に示す平面図である。
【図2】図1に示す伝送線路基板の断面構造を模式的に示すA−A’断面図である。
【図3】本発明の第2の実施の形態による伝送線路基板の構成を模式的に示す平面図である。
【図4】図3に示す伝送線路基板の断面構造を模式的に示すB−B’断面図である。
【図5】本発明の第3の実施の形態による伝送線路基板の構成を模式的に示す平面図である。
【符号の説明】
1a〜1c 第1の伝送線路
1d 第3の伝送線路
2a〜2c 第2の伝送線路
2d 第4の伝送線路
3a〜3c 第1のカバーレイ
4a,4b 第2のカバーレイ
5a,5b ベース
6a,6b バイアホール
10a〜10c 伝送線路基板
P1,P3 直線部
P2,P4 交差部
D1 第1の導電部
D2 第2の導電部
D3 第3の導電部
D4 第4の導電部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmission line substrate on which a first transmission line and a second transmission line insulated from the first transmission line are formed.
[0002]
[Prior art]
In recent years, printed circuit boards used in electronic devices have been downsized in order to achieve higher speeds of electronic devices, transmission lines formed on printed circuit boards have been miniaturized, and signals transmitted through transmission lines have been increased in speed. Tend to be.
[0003]
When a signal is transmitted at high speed using the miniaturized transmission line as described above, impedance control for setting the impedance value of the transmission line to a desired value becomes important. That is, if impedance control is not performed accurately, high-speed signals cannot be transmitted stably, and electronic devices may not operate.
[0004]
Here, the impedance of the transmission line depends on the width and height of the transmission line, the distance between the transmission line and the ground layer, the dielectric constant of the insulating layer of the printed circuit board on which the transmission line is formed, etc. In addition to being inversely proportional to the cross-sectional area (width × height) of the transmission line, it is also inversely proportional to the dielectric constant of the substrate.
[0005]
[Problems to be solved by the invention]
However, the width and height of the transmission line that can be realized are limited by the manufacturing technology of the printed circuit board, and it is difficult to realize an impedance that exceeds a certain value. In particular, in a flexible substrate in which an insulating layer having a high dielectric constant such as polyimide must be used, it is more difficult to increase the impedance value.
[0006]
In addition, with the miniaturization of transmission lines, variations in processing accuracy of transmission lines, etc. greatly affect the impedance value of the transmission line, making it difficult to accurately set the transmission line impedance value to a desired value. It has become to.
[0007]
An object of the present invention is to provide a transmission line substrate that can increase the impedance value of the transmission line and set it accurately to a desired value.
[0008]
[Means for Solving the Problems and Effects of the Invention]
(1) 1st invention The transmission line board | substrate which concerns on 1st invention is the transmission line board | substrate with which the 1st transmission line and the 2nd transmission line insulated with respect to the 1st transmission line were formed. The first and second transmission lines continuously cross three-dimensionally, and the transmission line substrate further includes a third transmission line and a fourth transmission line that is insulated from the third transmission line. The first and second transmission lines three-dimensionally intersect at a first interval, and the third and fourth transmission lines are arranged in parallel to the first and second transmission lines. , Three-dimensionally intersect at a second interval different from the first interval .
[0009]
In the transmission line substrate according to the present invention, the first transmission line and the second transmission line insulated from the first transmission line are formed so as to cross three-dimensionally continuously. Increasing the value of the impedance of the first and second transmission lines by increasing the distance between the first transmission line and the second transmission line and the crossing distance of the first and second transmission lines. Can do. Therefore, by adjusting the pattern interval and the crossing interval of the first and second transmission lines, the impedance value of the transmission line can be made higher and can be accurately set to a desired value. In addition, since the first and second transmission lines intersect three-dimensionally at the first interval, and the third and fourth transmission lines intersect three-dimensionally at a second interval different from the first interval. The crosstalk between the signals transmitted through the first and second transmission lines and the signals transmitted through the third and fourth transmission lines can be reduced.
[0010]
(2) Second invention The transmission line substrate according to the second invention is the configuration of the transmission line substrate according to the first invention, wherein the first transmission line includes the first transmission line and the second transmission line. The second transmission line is formed on the other side of the insulating layer, and the first and second transmission lines intersect three-dimensionally at a predetermined interval.
[0011]
In this case, since the first transmission line is formed on one side of the insulating layer and the second transmission line is formed on the other side of the insulating layer, the first and second transmissions crossing three-dimensionally at a predetermined interval. The line can be easily formed on the insulating layer.
[0012]
(3) Third invention The transmission line substrate according to the third invention is the configuration of the transmission line substrate according to the first invention, wherein the first transmission line includes the first transmission line and the second transmission line. Including a plurality of first conductive parts formed on one side of the insulating layer for insulating the plurality of second conductive parts formed on the other side of the insulating layer, and the second transmission line includes: Including a plurality of third conductive portions formed on the other side of the insulating layer and a plurality of fourth conductive portions formed on one side of the insulating layer, wherein the first and second conductive portions are insulating layers The first and second conductive portions are sequentially connected through a first connection portion that passes through the insulating layer, and the third and fourth conductive portions are electrically connected sequentially through a second connection portion that passes through the insulating layer. The second transmission line intersects three-dimensionally at a predetermined interval.
[0013]
In this case, a plurality of first conductive portions formed on one side of the insulating layer and a plurality of second conductive portions formed on the other side of the insulating layer are connected via a first connection portion penetrating the insulating layer. And a plurality of third conductive portions formed on the other side of the insulating layer and a plurality of fourth conductive portions formed on one side of the insulating layer pass through the insulating layer. Since the electrical connection is performed sequentially via the second connection portion, the first and second transmission lines that intersect three-dimensionally in a spiral shape can be easily formed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The transmission line substrate according to each embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view schematically showing the configuration of the transmission line substrate according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing the cross-sectional structure of the transmission line substrate shown in FIG. It is A 'sectional drawing.
[0017]
The transmission line substrate 10a shown in FIGS. 1 and 2 is a flexible substrate and includes a first transmission line 1a, a second transmission line 2a, a first cover lay 3a, a second cover lay 4a, and a base 5a. . In FIG. 1, for ease of illustration, the second transmission line 2 a disposed under the base 5 a serving as a substrate is indicated by a solid line, and the first cover lay 3 a and the second cover lay are also illustrated. Only the outer shape of 4a and the base 5a is shown by a solid line.
[0018]
A first transmission line 1a is formed on one side (upper side in FIG. 2) of the base 5a serving as an insulating layer, and a first cover lay 3a serving as an insulating layer is formed on the first transmission line 1a. On the other hand, a second transmission line 2a is formed on the other side (lower side in FIG. 2) of the base 5a, and a second coverlay 4a serving as an insulating layer is formed on the second transmission line 2a. For example, the first and second transmission lines 1a and 2a are made of copper foil having a thickness of about 18 μm, and the first and second coverlays 3a and 4a are made of an adhesive layer having a thickness of about 35 μm and a thickness of about 35 μm. The base 5a is composed of an adhesive layer having a thickness of approximately 22 μm, a polyimide having a thickness of approximately 25 μm, and an adhesive layer having a thickness of approximately 22 μm.
[0019]
In addition, the structure of the transmission line board | substrate 10a is not specifically limited to said example, A various change is possible. The material of the first and second transmission lines 1a, 2a is not particularly limited to the above example, and other conductive materials may be used. The first and second coverlays 3a, 4a and the base The material and structure of 5a are not particularly limited to the above example, and other insulating materials may be used. Further, the thicknesses of the first and second transmission lines 1a and 2a, the first and second coverlays 3a and 4a, and the base 5a are not particularly limited to the above examples, and various changes can be made.
[0020]
The first and second transmission lines 1a and 2a have a line-symmetric wiring pattern, and the first transmission line 1a has a straight portion P1 and an intersection P2 bent about 45 degrees with respect to the straight portion P1. And the second transmission line 2a includes a straight line portion P3 arranged substantially parallel to the straight line portion P1 and an intersection portion bent about 45 degrees with respect to the straight line portion P3. It is composed of a substantially wave pattern in which P4 is sequentially connected.
[0021]
With the above wiring pattern, the straight line portion P1 having the pattern width W and the straight line portion P3 having the pattern width W are arranged in parallel with the pattern interval S therebetween, and the intersecting portion P3 and the intersecting portion P4 intersect at about 90 degrees. The first and second transmission lines 1a and 2a intersect three-dimensionally at an intersection interval L.
[0022]
In the transmission line substrate 10a configured as described above, for example, a high-speed signal is transmitted through one of the first and second transmission lines 1a and 2a, and the other is used as a ground line. The signals transmitted through the first and second transmission lines 1a and 2a are not particularly limited to the above example, and a differential signal or the like is transmitted through the first and second transmission lines 1a and 2a. May be.
[0023]
Next, the influence of the pattern width W, the pattern interval S, and the crossing interval L on the impedance Z of the first and second transmission lines 1a and 2a will be described using Table 1 below. In Table 1, the unit of impedance Z of the first and second transmission lines 1a, 2a is (Ω), and the unit of pattern width W, pattern interval S, and crossing interval L is (mil).
[0024]
[Table 1]
Figure 0003950681
[0025]
Table 1 shows the relationship between the impedance Z of the first and second transmission lines 1a and 2a, the pattern width W, the pattern interval S, and the crossing interval L. Examples 1 to 5 shown in Table 1 are shown in FIG. The transmission line substrate 10a shown in FIG. 2 is created with the pattern width W, the pattern interval S, and the crossing interval L shown in Table 1. In Comparative Example 1, linear transmission lines having a pattern width W = 6 (mil) are formed on both surfaces of the base, respectively. In Comparative Example 2, the pattern width W = 5 (mil) is provided on one side of the base. ) Are formed with a pattern interval S = 19 (mil), and Comparative Examples 1 and 2 are two parallel transmission lines having no intersection. The same overlay is used for Examples 1 to 5 and Comparative Examples 1 and 2.
[0026]
The impedance Z of Examples 1 to 5 is 90 to 130 (Ω), which is about 1.5 to 2.17 times the impedance Z of Comparative Example 1 = 60 (Ω), and the impedance Z of Comparative Example 2 = It was about 1.06 to 1.53 times that of 85 (Ω). As a result, it was found that the impedance Z can be improved by causing the first and second transmission lines 1a and 2a to cross each other at a predetermined interval as in the first to fifth embodiments.
[0027]
Moreover, the impedance Z of Example 5 with pattern width W = 10 (mil) is 90 (Ω), and the impedance Z of Examples 1 to 4 with pattern width W = 6 (mil) is 98 to 130 (Ω). Thus, it was found that the impedance Z can be improved by reducing the pattern width W.
[0028]
Further, the impedance Z of the first embodiment with the pattern interval S = 4 (mil) is 100 (Ω), and the impedance Z of the third embodiment with the pattern interval S = 9 (mil) is 110 (Ω). The impedance Z of Example 4 with S = 14 (mil) was 130 (Ω), and it was found that the impedance Z can be improved by increasing the pattern interval S.
[0029]
The impedance Z of Example 2 with the crossing interval L = 45.5 (mil) is 98 (Ω), and the impedance Z of Example 1 with the crossing interval L = 90 (mil) is 100 (Ω). It was found that the impedance Z can be improved by increasing L.
[0030]
Next, the influence of the pattern width on the transmission line impedance will be described. The impedance Z 0 of a general transmission line is approximately given by the following equation (see STEPHEN H. HALL, et all: High-Speed Digital System Design, A Handbook of Interconnect Theory and Design Practices, pp318).
[0031]
Z 0 = (μ 0 ε 0 / ε e ) 1/2 · (1 / C a ) (1)
C a = 2πε 0 / ln (8H / W + W / 4H) (2)
ε e = (ε r +1) / 2 + ((ε r −1) / 2) · (1 + 12H / W) −1/2 + F−0.217 (ε r −1) · (T / (WH) 1 / 2 ) ... (3)
F = 0.02 (ε r −1) · (1-W / H) 2 (4)
Here, μ 0 is the vacuum permeability, ε 0 is the vacuum dielectric constant, H is the distance between the transmission line and the ground layer, T is the height of the transmission line, and W is the transmission line. Ε r is the dielectric constant of the base that becomes the insulating layer.
[0032]
In the above formulas (2) and (3), the coefficient of the distance H (for example, 8, 4, 12) is larger than the coefficients of the pattern width W and the height T. It can be seen that the variation in thickness greatly affects the value of the impedance Z 0 , but the variation in the pattern width W does not significantly affect the value.
[0033]
Therefore, also in this embodiment, the variation in the pattern width W due to the manufacturing variation or the like does not significantly affect the impedance Z of the first and second transmission lines 1a and 2a, so that the first and second transmission lines 1a and 2a By reducing the pattern width W, it is possible to increase the value of the impedance Z of the first and second transmission lines 1a and 2a without being significantly affected by variations in the pattern width W. As a result, by adjusting the pattern width W of the first and second transmission lines 1a and 2a, the impedance Z of the first and second transmission lines 1a and 2a can be set to a desired value with high accuracy and easily. can do.
[0034]
In the present embodiment, the first transmission line 1a and the second transmission line 2a are formed so as to intersect three-dimensionally continuously, so that the first and second transmission lines 1a, 2a are formed. By increasing the pattern interval S, the impedance Z of the first and second transmission lines 1a, 2a can be increased, and the intersection interval L between the first and second transmission lines 1a, 2a is increased. By doing so, the value of the impedance Z of the first and second transmission lines 1a, 2a can be increased.
[0035]
Therefore, by adjusting the pattern interval S and the crossing interval L between the first and second transmission lines 1a and 2a, the impedance values of the first and second transmission lines 1a and 2a can be further increased. , Can be accurately set to a desired value. As a result, noise generated in signals transmitted through the first and second transmission lines 1a and 2a can be reduced, and signals can be transmitted at higher speed.
[0036]
Furthermore, in the present embodiment, the first transmission line 1a is formed on one side of the base 5a, and the second transmission line 2a is formed on the other side of the base 5a. Therefore, the first and second transmission lines 1a and 2a can be easily formed on the base 5a.
[0037]
Next, a transmission line substrate according to the second embodiment of the present invention will be described. FIG. 3 is a plan view schematically showing the configuration of the transmission line substrate according to the second embodiment of the present invention, and FIG. 4 is a schematic view showing the cross-sectional structure of the transmission line substrate shown in FIG. It is B 'sectional drawing.
[0038]
The transmission line substrate 10b shown in FIGS. 3 and 4 is a flexible substrate, and includes a first transmission line 1b, a second transmission line 2b, a first cover lay 3b, a second cover lay 4b, and a base 5b. .
[0039]
The first transmission line 1b includes a plurality of first and second conductive portions D1 and D2 and a plurality of first via holes 6a. The first and second conductive portions D1 and D2 Similar to the embodiment, it has a straight portion and an intersecting portion bent about 45 degrees with respect to the straight portion. The second transmission line 2a includes a plurality of third and fourth conductive portions D3 and D4 and a plurality of second via holes 6b, and the third and fourth conductive portions D3 and D4 Similar to the embodiment, it has a straight portion and an intersecting portion bent about 45 degrees with respect to the straight portion. In FIG. 3, for ease of illustration, the second conductive portion D2 and the third conductive portion D3 disposed under the base 5b serving as the substrate are indicated by solid lines, and the first cover Only the outer shape of the lay 3b, the second cover lay 4b, and the base 5b is shown by a solid line.
[0040]
A plurality of first conductive portions D1 are formed on one side (upper side in FIG. 4) of the base 5b serving as an insulating layer, and a plurality of second conductive portions D2 are formed on the other side (lower side in FIG. 4) of the base 5b. The first and second conductive portions D1 and D2 are sequentially connected via the via hole 6a serving as the first connection portion penetrating the base 5b, and the first transmission line 1b is formed in a substantially spiral shape. The
[0041]
On the other hand, a plurality of third conductive portions D3 are formed on the other side of the base 5b, a plurality of fourth conductive portions D4 are formed on one side of the base 5b, and the third and fourth conductive portions D3, D4 are formed. The second transmission lines 2b are formed in a substantially spiral shape by sequentially connecting via via holes 6b serving as second connection portions penetrating the base 5b.
[0042]
The first and second via holes 6a and 6b are made of, for example, copper, and the first via hole 6a electrically connects the first and second conductive portions D1 and D2, and the second via hole 6b. Electrically connects the third and fourth conductive portions D3, D4. The material of the first and second via holes 6a and 6b is not particularly limited to the above example, and other conductive materials may be used.
[0043]
Also, a first cover lay 3b serving as an insulating layer is formed on the first and third conductive portions D1 and D3, and a second layer serving as an insulating layer is formed on the second and fourth conductive portions D1 and D3. A coverlay 4b is formed. Except for the above points, the second embodiment is the same as the first embodiment.
[0044]
As described above, the first and fourth conductive portions D1 to D4 are sequentially connected via the first and second via holes 6a and 6b, so that the first and second three-dimensionally intersecting spirally are formed. Two transmission lines 1b and 2b are formed, and the first and second transmission lines 1b and 2b having a pattern width W, a pattern interval S, and an intersection interval L can be formed as in the first embodiment.
[0045]
With the above configuration, the present embodiment can obtain the same effects as those of the first embodiment, and the first and second transmission lines 1b and 2b that are three-dimensionally crossed in a spiral shape are used as the transmission lines. It can be easily formed on the substrate 10b.
[0046]
Next, a transmission line substrate according to the third embodiment of the present invention will be described. FIG. 5 is a plan view schematically showing the configuration of the transmission line substrate according to the third embodiment of the present invention.
[0047]
A transmission line substrate 10c shown in FIG. 5 is a flexible substrate, and includes a first transmission line 1c, a second transmission line 2c, a third transmission line 1d, a fourth transmission line 2d, a first coverlay 3c, and the like. Is provided. The third embodiment also includes a base and a second coverlay as in the first embodiment, but in FIG. 3, for ease of illustration, the bottom of the base serving as a substrate is provided. The second transmission line 2c and the fourth transmission line 2d arranged in FIG. 2 are indicated by solid lines, and the first cover lay 3c, the second cover lay, and the base are indicated by solid lines only.
[0048]
The first and second transmission lines 1c and 2c and the third and fourth transmission lines 1d and 2d are respectively formed in the same manner as the first and second transmission lines 1a and 2a of the first embodiment. In addition, the crossing interval between the first and second transmission lines 1c and 2c is set to L1, and the crossing interval between the third and fourth transmission lines 1d and 2d is set to L2 (> L1).
[0049]
With the above configuration, in the present embodiment, the first and second transmission lines 1c and 2c and the third and fourth transmission lines 1d and 2d have the same effects as in the first embodiment. The first and second transmission lines 1c and 2c intersect each other at the intersection interval L1, and the third and fourth transmission lines 1d and 2d intersect each other at an intersection interval L2 different from the intersection interval L1. Therefore, crosstalk between signals transmitted through the first and second transmission lines 1c and 2c and the third and fourth transmission lines 1d and 2d can be reduced.
[0050]
Note that the relationship between the crossing interval L1 and the crossing interval L2 is not only different, but the number of crossings n (= L0 / L1) of the first and second transmission lines 1c and 2c with respect to the predetermined distance L0 and the third and It is preferable that the difference (= n−m, in the example shown in FIG. 5, n = 10, m = 9) with respect to the number m of intersections of the fourth transmission lines 1d and 2d (= L0 / L2) is 1. In this case, crosstalk between signals transmitted through the first and second transmission lines 1c and 2c and the third and fourth transmission lines 1d and 2d can be further reduced.
[0051]
In the above description, the transmission line is three-dimensionally intersected by alternately configuring straight portions and intersecting portions. However, the transmission line is not particularly limited to this example, and the straight portions are omitted and only the intersecting portions are triangular. A wavy pattern may be formed, or a curved pattern such as a sine wave may be formed. Further, the angle between the straight line portion and the intersecting portion is not particularly limited to the above 45 degrees, and the intersecting portion may be formed using other angles such as 30 degrees and 60 degrees.
[0052]
Moreover, although a pair of transmission line was formed using the conductor layer of the both sides of a base, it is not specifically limited to this example, A various change is possible and the main surface direction of a base using the conductor layer of the both sides of a base Three or more pairs of transmission lines may be formed. Further, the conductor layer may be four or more layers, and two or more pairs of transmission lines may be formed in the thickness direction of the substrate. In this case, as an insulating layer between a pair of transmission lines and another pair of transmission lines May be polyimide, glass epoxy resin FR4, an insulated aluminum substrate, or the like.
[0053]
In each of the above-described embodiments, the example in which the present invention is applied to a flexible substrate has been described. However, the present invention is not particularly limited to this example, and other printed boards such as a rigid printed board and a flex-rigid board, IC (integrated circuit) The present invention can be similarly applied to the internal wiring and the like.
[0054]
In each of the above-described embodiments, the example in which only the transmission line is provided has been described. However, electrical components such as resistors, capacitors, and ICs may be provided on each substrate together with the transmission line, or the transmission according to the present invention. A normal linear transmission line may be provided in addition to the line.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing a configuration of a transmission line substrate according to a first embodiment of the present invention.
2 is a cross-sectional view taken along line AA ′ schematically showing the cross-sectional structure of the transmission line substrate shown in FIG. 1;
FIG. 3 is a plan view schematically showing a configuration of a transmission line substrate according to a second embodiment of the present invention.
4 is a BB ′ sectional view schematically showing a sectional structure of the transmission line substrate shown in FIG. 3;
FIG. 5 is a plan view schematically showing a configuration of a transmission line substrate according to a third embodiment of the present invention.
[Explanation of symbols]
1a-1c 1st transmission line 1d 3rd transmission line 2a-2c 2nd transmission line 2d 4th transmission line 3a-3c 1st coverlay 4a, 4b 2nd coverlay 5a, 5b Base 6a, 6b Via holes 10a to 10c Transmission line substrates P1, P3 Linear portions P2, P4 Intersection D1 First conductive portion D2 Second conductive portion D3 Third conductive portion D4 Fourth conductive portion

Claims (3)

第1の伝送線路と前記第1の伝送線路に対して絶縁された第2の伝送線路とが形成された伝送線路基板であって、
前記第1及び第2の伝送線路が連続して立体的に交差し、
前記伝送線路基板は、第3の伝送線路と前記第3の伝送線路に対して絶縁された第4の伝送線路とをさらに含み、
前記第1及び第2の伝送線路は、第1の間隔で立体的に交差し、
前記第3及び第4の伝送線路は、前記第1及び第2の伝送線路に対して並列に配置されるとともに、前記第1の間隔と異なる第2の間隔で立体的に交差することを特徴とする伝送線路基板。
A transmission line substrate on which a first transmission line and a second transmission line insulated from the first transmission line are formed,
The first and second transmission lines intersect three-dimensionally in succession ;
The transmission line substrate further includes a third transmission line and a fourth transmission line insulated from the third transmission line,
The first and second transmission lines intersect three-dimensionally at a first interval,
The third and fourth transmission lines are arranged in parallel to the first and second transmission lines and intersect three-dimensionally at a second interval different from the first interval. A transmission line substrate.
前記第1の伝送線路は、前記第1の伝送線路と前記第2の伝送線路とを絶縁するための絶縁層の一方側に形成され、
前記第2の伝送線路は、前記絶縁層の他方側に形成され、
前記第1及び第2の伝送線路は、所定間隔で立体的に交差することを特徴とする請求項1記載の伝送線路基板。
The first transmission line is formed on one side of an insulating layer for insulating the first transmission line and the second transmission line,
The second transmission line is formed on the other side of the insulating layer,
The transmission line substrate according to claim 1, wherein the first and second transmission lines intersect three-dimensionally at a predetermined interval.
前記第1の伝送線路は、前記第1の伝送線路と前記第2の伝送線路とを絶縁するための絶縁層の一方側に形成された複数の第1の導電部と、前記絶縁層の他方側に形成された複数の第2の導電部とを含み、
前記第2の伝送線路は、前記絶縁層の他方側に形成された複数の第3の導電部と、前記絶縁層の一方側に形成された複数の第4の導電部とを含み、
前記第1及び第2の導電部は、前記絶縁層を貫通する第1の接続部を介して電気的に順次接続され、
前記第3及び第4の導電部は、前記絶縁層を貫通する第2の接続部を介して電気的に順次接続され、
前記第1及び第2の伝送線路は、所定間隔で立体的に交差することを特徴とする請求項1記載の伝送線路基板。
The first transmission line includes a plurality of first conductive portions formed on one side of an insulating layer for insulating the first transmission line and the second transmission line, and the other of the insulating layers. A plurality of second conductive parts formed on the side,
The second transmission line includes a plurality of third conductive portions formed on the other side of the insulating layer, and a plurality of fourth conductive portions formed on one side of the insulating layer,
The first and second conductive portions are electrically connected sequentially through a first connection portion that penetrates the insulating layer;
The third and fourth conductive portions are electrically connected sequentially via a second connection portion that penetrates the insulating layer,
The transmission line substrate according to claim 1, wherein the first and second transmission lines intersect three-dimensionally at a predetermined interval.
JP2001371835A 2001-12-05 2001-12-05 Transmission line board Expired - Fee Related JP3950681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371835A JP3950681B2 (en) 2001-12-05 2001-12-05 Transmission line board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371835A JP3950681B2 (en) 2001-12-05 2001-12-05 Transmission line board

Publications (2)

Publication Number Publication Date
JP2003174304A JP2003174304A (en) 2003-06-20
JP3950681B2 true JP3950681B2 (en) 2007-08-01

Family

ID=19180826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371835A Expired - Fee Related JP3950681B2 (en) 2001-12-05 2001-12-05 Transmission line board

Country Status (1)

Country Link
JP (1) JP3950681B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676864B2 (en) * 2005-10-26 2011-04-27 株式会社フジクラ Circuit structure using flexible wiring board
JP4886603B2 (en) * 2007-05-31 2012-02-29 日東電工株式会社 Printed wiring board
KR101383704B1 (en) * 2008-01-18 2014-04-10 삼성디스플레이 주식회사 Circuit board and display device including the same
JP2012506203A (en) * 2008-10-17 2012-03-08 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Transmission line circuit having a plurality of intersecting conductive line pairs
JP6493038B2 (en) * 2015-07-07 2019-04-03 日立金属株式会社 Communication device

Also Published As

Publication number Publication date
JP2003174304A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
KR100283508B1 (en) Non-solid reference plane with bidirectional impedance control
JP2005183949A (en) Printed circuit board of low crosstalk noise and its manufacturing method
US20100163282A1 (en) Printed wiring board, method for manufacturing printed wiring board, and electric device
SE522404C2 (en) directional Couplers
JP5445011B2 (en) Circuit board
JP5323435B2 (en) Multi-layer wiring board for differential transmission
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
JP3950681B2 (en) Transmission line board
JP4660738B2 (en) Printed wiring board and electronic device
US20080296049A1 (en) Printed Circuit Board
JP2007520888A (en) Method for increasing routing density for circuit boards and such circuit boards
JPH11150371A (en) Multilayer circuit board
JP2000151041A (en) Printed wiring board
JP2011023547A (en) Circuit board
JP2003258510A (en) Wired transmission line
US7035082B2 (en) Structure of multi-electrode capacitor and method for manufacturing process of the same
JP2009088063A (en) Semiconductor apparatus and method of designing the same
JP2004032232A (en) Transmission line filter
WO2009119849A1 (en) Composite wiring board
KR100744082B1 (en) Multi layers printed circuit board and the method for producing the same
US20030042044A1 (en) Circuit board plane interleave apparatus and method
JP3408590B2 (en) Wiring structure of multilayer printed circuit board
JP2500155B2 (en) Multilayer circuit board
JP2003218535A (en) Electric wiring board
JPH07142871A (en) Printed board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees