JP3949583B2 - Method and apparatus for manufacturing transmission plate of continuously variable transmission mechanism - Google Patents

Method and apparatus for manufacturing transmission plate of continuously variable transmission mechanism Download PDF

Info

Publication number
JP3949583B2
JP3949583B2 JP2002579170A JP2002579170A JP3949583B2 JP 3949583 B2 JP3949583 B2 JP 3949583B2 JP 2002579170 A JP2002579170 A JP 2002579170A JP 2002579170 A JP2002579170 A JP 2002579170A JP 3949583 B2 JP3949583 B2 JP 3949583B2
Authority
JP
Japan
Prior art keywords
transmission
grinding
plate
spindle
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002579170A
Other languages
Japanese (ja)
Other versions
JP2004532134A (en
Inventor
ユンカー,エルビン
Original Assignee
エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical エルビン・ユンカー・マシーネンファブリーク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JP2004532134A publication Critical patent/JP2004532134A/en
Application granted granted Critical
Publication of JP3949583B2 publication Critical patent/JP3949583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/14Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding conical surfaces, e.g. of centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B35/00Machines or devices designed for superfinishing surfaces on work, i.e. by means of abrading blocks reciprocating with high frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/16Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding peculiarly surfaces, e.g. bulged
    • B24B5/162Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding peculiarly surfaces, e.g. bulged controlled by a template

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Pulleys (AREA)

Description

本発明は無段可変伝動機構、たとえば巻付き伝動機構などにおける伝動板を製造するための方法および装置に関する。   The present invention relates to a method and apparatus for manufacturing a transmission plate in a continuously variable transmission mechanism such as a winding transmission mechanism.

このような無段可変伝動機構はCVT伝動機構(連続可変トランスミッション(Continuously Variable Transmission))とも呼ばれ、たとえば本質的に円錐形または球形、すなわち撓められたトランスミッション表面を各々が有する少なくとも1対の伝動板を備える。ここでトランスミッション表面とは、動力伝達に用いられる表面のことと理解する。トランスミッション表面の形状は、伝動板の径方向で撓められた、または真っ直ぐのものであり得る。対となり互いに対し配置された伝動板は互いへの間隔について調整可能であり、ここでこれらの間で、たとえば節の細いチェーンなどの動力伝達要素が回され得る。伝動板間の間隔を調整することで、無段式の調整可能性が達成される。ここで動力伝達要素は、対向する伝動板の各々にあるトランスミッション表面に沿って動力閉鎖的に動く。したがって伝動機構の動作の際、動力伝達要素は、伝動板のトランスミッション表面に沿って、トランスミッション表面の内側直径と外側直径との間で上下、あるいは内側から外側またはその逆に動かされる。   Such a continuously variable transmission mechanism is also referred to as a CVT transmission mechanism (Continuously Variable Transmission), for example, at least a pair of transmission surfaces, each essentially having a conical or spherical shape, ie, a deflected transmission surface. A transmission plate is provided. Here, the transmission surface is understood as a surface used for power transmission. The shape of the transmission surface may be deflected or straight in the radial direction of the transmission plate. The transmission plates, which are arranged in pairs with respect to each other, can be adjusted with respect to the distance to each other, between which a power transmission element such as a thin knotted chain can be turned. By adjusting the distance between the transmission plates, a continuously adjustable capability is achieved. Here, the power transmission element moves in a power closed manner along the transmission surface on each of the opposing transmission plates. Thus, during operation of the transmission mechanism, the power transmission element is moved up and down, or from the inside to the outside or vice versa, along the transmission surface of the transmission plate, between the inner and outer diameters of the transmission surface.

ここにおける問題は、伝動板は動力伝達要素に対して、動力伝達要素が滑り抜けることができないほどの力で押圧される必要があることである。スリップは実質的に回避されなければならない。一方で、伝動板から動力伝達要素への動力伝達の際に面に対し不必要に高い押圧を避けるため、伝動板の押圧力を可能な限り小さく保つことが望まれている。それでも伝動板と動力伝達要素との間でスリップが生じてはならない。   The problem here is that the transmission plate needs to be pressed against the power transmission element with such a force that the power transmission element cannot slip through. Slip must be substantially avoided. On the other hand, in order to avoid unnecessarily high pressing on the surface during power transmission from the transmission plate to the power transmission element, it is desired to keep the pressing force of the transmission plate as small as possible. Nevertheless, no slip should occur between the transmission plate and the power transmission element.

無段可変伝動機構におけるこのような伝動板を製造する際にはさらに、伝動板のトランスミッション表面が極めて丈夫であり、かつ可能な限り小さな公差で作られていなければならないという問題がある。本質的に伝動板の高強度は、伝動機構の寿命を可能な限り長くすることを目的としている。伝動機構のスムーズで可能な限り騒音の少ない動作を確実にするために、このような伝動板のトランスミッション表面の凹凸および形状の狂いを避ける必要がある。   When manufacturing such a transmission plate in a continuously variable transmission mechanism, there is a further problem that the transmission surface of the transmission plate must be extremely strong and be made with as little tolerance as possible. In essence, the high strength of the transmission plate is intended to extend the life of the transmission mechanism as much as possible. In order to ensure a smooth and as low noise operation of the transmission mechanism as possible, it is necessary to avoid such irregularities and irregularities in the shape of the transmission surface of the transmission plate.

したがって本発明の課題は、無段可変伝動機構における伝動板を製造するための方法あるいは装置を提供することであり、これにより伝動板と動力伝達要素との間の動力伝達特性を向上させ、寿命を長くし、特に動力伝達要素が滑り抜けることを確実に回避する。   Accordingly, an object of the present invention is to provide a method or an apparatus for manufacturing a transmission plate in a continuously variable transmission mechanism, thereby improving the power transmission characteristics between the transmission plate and the power transmission element, thereby improving the service life. To prevent the power transmission element from slipping through.

この課題は、請求項1に従う特徴を有する製造方法により、あるいは請求項10に従う特徴を有する装置により解決される。本発明の有利な形態および変形例は各々の従属請求項の対象である。   This problem is solved by a manufacturing method having the features according to claim 1 or by an apparatus having the features according to claim 10. Advantageous forms and modifications of the invention are the subject of the respective dependent claims.

本発明に従う伝動板の製造方法では、円錐形または球形のトランスミッション表面を研削する際、研削板と伝動板との間で、工作物スピンドルに対して径方向の相対的な往復運動を行ない、トランスミッション表面上における研削板の研削領域が表面の内側半径と外側半径との間で動くようにする。これによりトランスミッション表面の研削像を意図的に変更できる。円筒研削では一般的な本質的に円形の研削像の代わりに、本発明に従う方法
ではたとえば十字形の研削をもたらすことができる。ここで十字形の研削とは、研削の筋目同士が或る態様で互いに交差する研削像のことである。このように伝動板のトランスミッション表面の表面粗さを意図的に調節することができ、これにより、伝動機構の動作時に動力伝達要素が滑り抜けるのを回避するための最適な条件がもたらされる。表面は必要とされる狭い寸法公差で製造可能であり、必要な強度がある。伝動板の表面粗さを意図的に調節することでスリップ挙動が明らかに向上、あるいはスリップがかなりの程度回避されるので、伝動板の押圧力をさらに減少させることが可能となり、その結果、面に対する押圧およびこれに従い動力伝達時の摩擦もまた減少し、さらにこれに伴い伝動機構の効率が上昇する。したがって、本発明に従い製造された伝動板を有する無段可変伝動機構は最終的に、従来製造の伝動機構と比較して内燃機関の燃料消費の減少をもたらす。
In the method for manufacturing a transmission plate according to the present invention, when grinding a conical or spherical transmission surface, a relative reciprocation in the radial direction with respect to the workpiece spindle is performed between the grinding plate and the transmission plate. The grinding area of the grinding plate on the surface is moved between the inner radius and the outer radius of the surface. Thereby, the grinding image of the transmission surface can be changed intentionally. Instead of the essentially circular grinding image that is common in cylindrical grinding, the method according to the invention can result in, for example, a cruciform grinding. Here, the cross-shaped grinding is a grinding image in which grinding lines intersect with each other in a certain manner. In this way, the surface roughness of the transmission surface of the transmission plate can be intentionally adjusted, thereby providing optimum conditions for avoiding slippage of the power transmission element during operation of the transmission mechanism. The surface can be manufactured with the required narrow dimensional tolerances and has the required strength. By deliberately adjusting the surface roughness of the transmission plate, the slip behavior is clearly improved, or slip is avoided to a considerable extent, so that it is possible to further reduce the transmission plate pressing force. And the friction during power transmission is also reduced accordingly, and the efficiency of the transmission mechanism is increased accordingly. Therefore, a continuously variable transmission mechanism having a transmission plate manufactured according to the present invention ultimately leads to a reduction in fuel consumption of the internal combustion engine compared to a transmission mechanism manufactured in the prior art.

上述のやり方で生じた十字形の研削は以下の利点をもたらす。すなわち伝動板の表面上での担持割合がより高くなるが、なぜならこれは研がれた表面におけるのと類似の「十字形の研削」であるからである。   The cruciform grinding produced in the manner described above provides the following advantages: That is, the loading rate on the surface of the transmission plate is higher because it is a “cruciform grinding” similar to that on a sharpened surface.

傾斜切込研削の際には周辺の研削が生じ、これは幾何学的な陰画の形で正確に整合されなければならず、どのような整合上の形状欠陥も工作物に対して反映される。往復運動によって整合上の形状欠陥は「霧散(verzogen)」され、こうして形状欠陥が工作物上で反映されることがなくなる。さらに十字形の研削は、動力伝達位置における動力伝達に関する利点も提供する。さらに往復研削によって、研削時の工作物の熱負荷が小さくなるが、それは研削板が新たに接触するまでに、工作物が同じ研削位置では再び完全に冷却しているからである。   Peripheral grinding occurs during angled cut grinding, which must be accurately aligned in the form of a geometric negative and any alignment geometry defects are reflected on the workpiece . The reciprocal motion causes the alignment shape defects to be “verzogen”, thus preventing the shape defects from being reflected on the workpiece. Furthermore, the cross-shaped grinding also provides an advantage relating to power transmission at the power transmission position. Furthermore, reciprocal grinding reduces the thermal load on the workpiece during grinding, because the workpiece is completely cooled again at the same grinding position by the time the grinding plate again comes into contact.

本発明の有利な形態に従うと、工作物スピンドルの回転数は往復運動と同調される。これにより、トランスミッション表面上においてあらゆる領域で一様な研削像を生じさせることができる。さらにこれによって、表面粗さを意図的に増大または減少させることができる。これに関連する本発明の有利な一局面では、工作物スピンドルの回転数は、トランスミッション表面上での研削板の径方向の研削位置に依存して変更される。こうして、たとえば工作物スピンドルの回転数を増加または減少、特にあらゆる研削場所で同じ研削条件を達成することにより、トランスミッション表面の全領域で一様の研削像を生じさせることができ、こうして伝動板のあらゆる周囲領域で等しい表面粗さが生じる。これにより、動力伝達要素が伝動板上の異なる位置において異なるスリップ臨界で動作することを回避する。   According to an advantageous embodiment of the invention, the rotational speed of the workpiece spindle is synchronized with the reciprocating movement. Thereby, a uniform grinding image can be generated in all regions on the transmission surface. Furthermore, this can intentionally increase or decrease the surface roughness. In one advantageous aspect of the invention related to this, the rotational speed of the workpiece spindle is varied depending on the radial grinding position of the grinding plate on the transmission surface. Thus, for example, by increasing or decreasing the speed of the workpiece spindle, in particular by achieving the same grinding conditions at every grinding location, it is possible to produce a uniform grinding image over the entire area of the transmission surface and thus the transmission plate. Equal surface roughness occurs in all surrounding areas. This avoids the power transmission element operating at different slip criticalities at different positions on the transmission plate.

本発明のさらなる有利な形態に従うと、往復運動の速度はトランスミッション表面上の研削板の径方向の位置に依存して変更される。外周の方向で減少する往復運動速度により、それぞれの周囲領域によってむらがある研削像が回避される。相対的な往復運動は、研削板または伝動板の行き来する運動によって実行され得る。   According to a further advantageous form of the invention, the speed of the reciprocating movement is varied depending on the radial position of the grinding plate on the transmission surface. Due to the reciprocating speed decreasing in the direction of the outer circumference, a ground image with unevenness in each surrounding area is avoided. Relative reciprocation can be performed by back and forth movement of the grinding plate or transmission plate.

本発明のさらなる有利な形態に従うと、2つの工作物スピンドルが設けられ、2つの伝動板のトランスミッション表面の上にわたって往復運動が実行され得るように工作物スピンドルを互いに対して配置し、これによってただ1つの研削板を有する設備で2つの伝動板を研削する。ここで両方の工作物スピンドルは、両方の伝動板のトランスミッション表面が隣り合って配置されるように調節され、ここで円錐形または球形のトランスミッション表面同士は各々の場合につき一平面にある。本発明の方法に従う設備で2つの伝動板を加工することにより、製造時間の短縮が可能となる。工程時間はおよそ2分の1にされ得る。ここで、それぞれの工作物スピンドル回転数が、長くされた往復行程に適合されることは明らかである。これに関連する本発明の一局面に従うと、球形のジャケット形状のトランスミッション表面を生じさせることができるように、両方の工作物スピンドルは共通の旋回点について旋回可能である。旋回点の位置は球の形状の半径に従って定められる。   According to a further advantageous embodiment of the invention, two workpiece spindles are provided and the workpiece spindles are arranged relative to each other so that a reciprocating movement can be carried out over the transmission surfaces of the two transmission plates. Two transmission plates are ground with equipment having one grinding plate. Here, both workpiece spindles are adjusted so that the transmission surfaces of both transmission plates are arranged next to each other, where the conical or spherical transmission surfaces are in one plane in each case. Manufacturing time can be shortened by processing two transmission plates with equipment according to the method of the present invention. The process time can be approximately halved. Here it is clear that each workpiece spindle speed is adapted to the lengthened reciprocation stroke. According to one aspect of the invention related to this, both workpiece spindles are pivotable about a common pivot point so that a spherical jacket-shaped transmission surface can be produced. The position of the turning point is determined according to the radius of the sphere shape.

無段可変伝動機構における伝動板を製造するための本発明に従う装置は、請求項10に従い、少なくとも1つの工作物スピンドルおよび研削スピンドルを備え、ここで研削の際に、トランスミッション表面に沿って研削板と伝動板との間で、工作物スピンドル軸に対して径方向の相対的な往復運動が実行可能となるように、上記研削スピンドルおよび伝動板を配置する。こうしてこの装置により、トランスミッション表面の研削像に対する意図的な働きかけが可能となる。往復運動により、他では円筒研削で一般的な一様に径方向の研削像の代わりに、表面上に所望の研削像、たとえば十字形の研削、螺旋状に外側へ延びる研削像またはその他の所望の研削像を生じさせることが可能である。こうしてこの装置によって、所望の予め定められた表面粗さを有する伝動板が製造可能となる。相対的な往復運動は、行き来して動くことができる研削板か、または対応して動くことができる伝動板のどちらかで実現されることが好ましい。   The device according to the invention for producing a transmission plate in a continuously variable transmission mechanism comprises, according to claim 10, at least one workpiece spindle and a grinding spindle, wherein during grinding, the grinding plate along the transmission surface The grinding spindle and the transmission plate are arranged in such a way that a relative reciprocation in the radial direction with respect to the workpiece spindle axis can be performed between the transmission plate and the transmission plate. This device thus makes it possible to intentionally act on the ground image of the transmission surface. By reciprocating motion, the desired grinding image on the surface, for example cross-shaped grinding, spirally outward grinding image or other desired, instead of the uniform radial grinding image otherwise common in cylindrical grinding It is possible to produce a ground image. This device thus makes it possible to produce a transmission plate having the desired predetermined surface roughness. The relative reciprocating motion is preferably realized either by a grinding plate that can move back and forth or a transmission plate that can move correspondingly.

本発明の有利な形態に従うと、工作物スピンドルに対して斜めに調整可能な研削スピンドルスライダが設けられる。研削スピンドルスライダによって、研削すべきトランスミッション表面上にわたり研削板を正確かつ高速で行き来するよう動かすことができる。工作物スピンドルに対して斜めに調整が可能であるため、異なる円錐形の伝動板が製造可能となる。   According to an advantageous embodiment of the invention, a grinding spindle slider is provided which can be adjusted obliquely with respect to the workpiece spindle. With the grinding spindle slider, the grinding plate can be moved back and forth accurately and at high speed over the transmission surface to be ground. Since it can be adjusted obliquely with respect to the workpiece spindle, different conical transmission plates can be produced.

本発明のさらなる有利な形態に従うと、この装置は、上記相対的な往復運動を意図的に制御できるようにするための制御機構を備える。これによって、伝動板のトランスミッション表面の予め定められた表面粗さがこの装置で調節可能となるように、往復運動を意図的に変更することができる。これに関連する本発明の一局面に従うと、工作物スピンドルの回転数および往復運動の速度がこの制御機構で変更可能である。このようにして、この装置によりさまざまな表面粗さが製造可能となる。こうしてトランスミッション表面の加工は、用途に関連して、すなわち伝動機構の動作中のスリップ特性および摩擦特性に関してそれぞれ最適化され得る。   According to a further advantageous form of the invention, the device comprises a control mechanism for allowing the relative reciprocation to be intentionally controlled. This makes it possible to intentionally change the reciprocating motion so that a predetermined surface roughness of the transmission surface of the transmission plate can be adjusted with this device. According to one aspect of the invention related thereto, the rotational speed of the workpiece spindle and the speed of the reciprocating movement can be changed by this control mechanism. In this way, various roughnesses can be produced with this device. Thus, the machining of the transmission surface can be optimized in relation to the application, i.e. in terms of slip and friction characteristics during operation of the transmission mechanism.

本発明のさらなる有利な形態に従うと、工作物スピンドルは或る旋回点について旋回可能であり、これにより「球形の」ジャケット形状のトランスミッション表面を製造する。ここで旋回点は、所望のまたは必要とされる撓み半径に応じて定められる。また旋回運動は同時に、相対的な往復運動を生じさせるためにも用いられる。   According to a further advantageous form of the invention, the workpiece spindle is pivotable about a pivot point, thereby producing a “spherical” jacket-shaped transmission surface. Here, the turning point is determined according to the desired or required bending radius. The swiveling motion is also used to produce a relative reciprocating motion at the same time.

本発明のさらなる有利な形態に従うとこの装置は、方向と、互いに対する距離とについて調整可能に配置された2つの工作物スピンドルを備える。これによりこの装置は、同時に2つの伝動板の同時研削加工と、本発明に従う研削時の往復運動の実行とを可能にする。こうして製造時間を減少させることができる。工作物スピンドルが互いへの間隔について調整可能であるため、意図的に働きかけられた表面粗さを有するさまざまな大きさの伝動板も製造可能となる。さらにこれにより円錐角度が調節可能である。これに関連する本発明の一局面に従うと、両方の工作物スピンドルが共通の旋回点について旋回可能である。これによって、球形または撓められたジャケット面のトランスミッション表面を製造することが可能となる。   According to a further advantageous form of the invention, the device comprises two workpiece spindles arranged to be adjustable with respect to direction and distance relative to each other. Thereby, this device makes it possible to simultaneously grind the two transmission plates and to carry out the reciprocating movement during grinding according to the invention. In this way, manufacturing time can be reduced. Since the workpiece spindles can be adjusted with respect to each other, transmission plates of various sizes with an intentionally actuated surface roughness can be produced. This also allows the cone angle to be adjusted. According to one aspect of the invention related to this, both workpiece spindles are pivotable about a common pivot point. This makes it possible to produce a spherical or deflected jacketed transmission surface.

本発明のさらなる有利な形態に従うと、この装置はCNC加工センターの一部である。これにより伝動板は1つの設備内でさらに加工され得る。こうして、研削の前後のさまざまな加工ステップは必要ではなくなる。   According to a further advantageous form of the invention, this device is part of a CNC processing center. Thereby, the transmission plate can be further processed in one facility. Thus, various processing steps before and after grinding are not necessary.

以下に添付の図面を参照して本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1に、本発明に従う研削装置の平面図を概略的に示す。円錐形の表面2を有する伝動板が工作物1として工作物スピンドル3に取付けられる。伝動板1は円錐形のトランスミッション表面2を含み、すなわち伝動板は一方向でのみ撓められている。しかしながら、伝動板1は二方向で撓められた形状を有してもよいことが明らかである。伝動板1の円錐形のトランスミッション表面2を研削するための研削板4が研削スピンドル5に設けられる。表面2の研削の際に研削板4が往復運動を行なうことができるように、研削板4および研削スピンドル5は研削スピンドルスライダ6に設けられる。加えてさらに、工作物スピンドル3の回転数および研削板4の往復運動を制御可能にするための制御機構7が設けられる。伝動板1のトランスミッション表面2の研削加工の際に研削板4は、外側半径2.2と内側半径2.1との間で、表面2上の研削跡同士が交差し合うように行き来して往復する。このようにして表面2上に十字形の研削を生じさせることができる。さらにこの装置によって、伝動板1のトランスミッション表面2の表面粗さに対して意図的な働きかけが可能となる。制御機構7により、特に工作物スピンドル3の回転数、研削板4の往復運動の速度および方向を調節できる。さらなる調節パラメータは従来の研削機械におけるものと同じであり、これにはたとえばX−Y平面における表面2への方向の研削板4の移送などがある。   FIG. 1 schematically shows a plan view of a grinding apparatus according to the present invention. A transmission plate having a conical surface 2 is attached to the workpiece spindle 3 as a workpiece 1. The transmission plate 1 comprises a conical transmission surface 2, i.e. the transmission plate is deflected in only one direction. However, it is clear that the transmission plate 1 may have a shape bent in two directions. A grinding plate 4 for grinding the conical transmission surface 2 of the transmission plate 1 is provided on the grinding spindle 5. The grinding plate 4 and the grinding spindle 5 are provided on the grinding spindle slider 6 so that the grinding plate 4 can reciprocate when grinding the surface 2. In addition, a control mechanism 7 is provided for enabling control of the rotational speed of the workpiece spindle 3 and the reciprocating movement of the grinding plate 4. During grinding of the transmission surface 2 of the transmission plate 1, the grinding plate 4 moves back and forth between the outer radius 2.2 and the inner radius 2.1 so that the grinding marks on the surface 2 intersect each other. Make a round trip. In this way, a cruciform grinding can be produced on the surface 2. Furthermore, this device makes it possible to intentionally act on the surface roughness of the transmission surface 2 of the transmission plate 1. By means of the control mechanism 7, it is possible in particular to adjust the rotational speed of the workpiece spindle 3 and the speed and direction of the reciprocating movement of the grinding plate 4. The further adjustment parameters are the same as in conventional grinding machines, for example the transfer of the grinding plate 4 in the direction to the surface 2 in the XY plane.

図2は、本発明に従う研削装置の第2の実施例を概略的に示し、ここでは先に説明した実施例とは異なり2つの工作物スピンドル3,3′が設けられる。このようにこの装置により、単一の研削板4を有する設備で2つの伝動板1,1′を研削することが可能となる。さらに、円錐形の表面2,2′のそれぞれ半分のジャケット線同士が一平面にあるように、両方の工作物スピンドル3,3′は、伝動板1,1′のトランスミッション表面2,2′の円錐形に対応するよう互いに対して方向付けられる。研削スピンドル5は研削スピンドルスライダ6上に配置され、この研削スピンドルスライダは、一方の伝動板1の表面2の内側半径2.1から他方の伝動板1′の内側半径2.1への往復運動を可能にする。伝動板のトランスミッション表面を研削加工するための製造時間がこうして短縮され得る。   FIG. 2 schematically shows a second embodiment of a grinding device according to the invention, which differs from the previously described embodiment in that two workpiece spindles 3, 3 'are provided. Thus, with this apparatus, it is possible to grind the two transmission plates 1, 1 ′ with equipment having a single grinding plate 4. Furthermore, both workpiece spindles 3, 3 'are arranged on the transmission surfaces 2, 2' of the transmission plates 1, 1 'so that the jacket lines of each half of the conical surfaces 2, 2' are in one plane. Oriented relative to each other to correspond to the conical shape. The grinding spindle 5 is arranged on a grinding spindle slider 6 which reciprocates from the inner radius 2.1 of the surface 2 of one transmission plate 1 to the inner radius 2.1 of the other transmission plate 1 ′. Enable. The manufacturing time for grinding the transmission surface of the transmission plate can thus be reduced.

図3は、図1の研削装置の代替実施例を概略的に示す。ここでは、可動の研削スピンドルスライダ6の代わりに、トランスミッション表面2を研削する際の往復運動は、旋回可能、すなわち行き来するように旋回可能な工作物スピンドル10によって実行される。これによって或る径方向の形状、すなわち球形のトランスミッション表面2が生じ、この表面は、もたらされた十字形の研削のため意図的な表面粗さを有する。旋回点8の位置は球形のジャケット面の撓み半径を定め、好ましくは調整可能である。   FIG. 3 schematically shows an alternative embodiment of the grinding apparatus of FIG. Here, instead of the movable grinding spindle slider 6, the reciprocating movement in grinding the transmission surface 2 is carried out by a work spindle 10 which is pivotable, ie pivotable so as to travel back and forth. This results in a certain radial shape, i.e. a spherical transmission surface 2, which has an intended surface roughness due to the resulting cruciform grinding. The position of the pivot point 8 determines the bending radius of the spherical jacket surface and is preferably adjustable.

図4では、工作物スピンドルが2つある図2の研削機械の代替実施例であって、図3と類似のものを概略的に示す。両方の工作物スピンドル10,10′は共通の旋回点9について旋回可能に配置され、こうして工作物スピンドル10,10′に関する往復運動が実行可能であり、一方で研削板4はY方向で移送される。旋回点9だけでなく旋回角度αもまた調整可能であり、これによって伝動板のさまざまな形状に装置を適合させる。   FIG. 4 schematically shows an alternative embodiment of the grinding machine of FIG. 2 with two workpiece spindles, similar to FIG. Both workpiece spindles 10, 10 ′ are arranged pivotably about a common pivot point 9, so that a reciprocating movement with respect to the workpiece spindles 10, 10 ′ is possible, while the grinding plate 4 is transferred in the Y direction. The Not only the turning point 9 but also the turning angle α can be adjusted, thereby adapting the device to different shapes of the transmission plate.

本発明に従う研削装置の第1の実施例を概略的に示す平面図である。1 is a plan view schematically showing a first embodiment of a grinding apparatus according to the present invention. 工作物スピンドルが2つある、本発明に従う研削装置の第2の実施例を概略的に示す平面図である。FIG. 6 is a plan view schematically showing a second embodiment of a grinding device according to the invention with two workpiece spindles. 図1の実施例に代わる一実施例を概略的に示す平面図である。FIG. 2 is a plan view schematically showing an embodiment instead of the embodiment of FIG. 1. 図2の実施例に代わる一実施例を概略的に示す平面図である。FIG. 3 is a plan view schematically showing an embodiment instead of the embodiment of FIG. 2.

符号の説明Explanation of symbols

1,1′ 伝動板(工作物)、2,2′ トランスミッション表面、2.1 トランス
ミッション表面の内側半径、2.2 トランスミッション表面の外側半径、3,3′ 工作物スピンドル、4 研削板、5 研削スピンドル、6 研削スピンドルスライダ、7 制御機構、8,9 旋回点、10,10′ 旋回可能な工作物スピンドル、α 旋回角度。
1,1 'transmission plate (workpiece), 2,2' transmission surface, 2.1 inner radius of transmission surface, 2.2 outer radius of transmission surface, 3,3 'workpiece spindle, 4 grinding plate, 5 grinding Spindle, 6 grinding spindle slider, 7 control mechanism, 8, 9 swivel point, 10, 10 'swivelable work spindle, α swivel angle.

Claims (14)

無段可変伝動機構における伝動板(1)の製造方法であって、前記伝動機構では、トランスミッション表面(2)を有する少なくとも1対の伝動板(1)が対向して配置され、前記トランスミッション表面は伝動機構の動作時に動力伝達要素と動力閉鎖的に接触し、前記方法は、少なくとも1つの工作物スピンドル(3)および研削板(4)を有する装置によって実行され、前記研削板は少なくとも1つの伝動板(1)のトランスミッション表面(2)を研削するように研削スピンドル(5)の上にわたって駆動され、前記方法は、トランスミッション表面(2)の研削の際、研削板(4)と伝動板(1)との間で、繰返される、工作物スピンドル(3)に対して径方向の相対的な往復運動が行なわれ、研削板の研削領域がトランスミッション表面(2)の内側半径(2.1)と外側半径(2.2)との間で行き来して動き、伝動板(1)が工作物スピンドル(3)によって回転してトランスミッション表面(2)全体が研削され、十字型の研削像を生じさせてトランスミッション表面(2)の表面粗さを所望の程度に調節するように、研削板(4)および伝動板(1)の運動が互いに同調されることを特徴とする、方法。A method of manufacturing a transmission plate (1) in a continuously variable transmission mechanism, wherein at least one pair of transmission plates (1) having a transmission surface (2) are arranged to face each other, and the transmission surface is In power closed contact with the power transmission element during operation of the transmission mechanism, the method is carried out by a device having at least one workpiece spindle (3) and a grinding plate (4), the grinding plate being at least one transmission Driven over the grinding spindle (5) so as to grind the transmission surface (2) of the plate (1), the method being used when grinding the transmission surface (2), the grinding plate (4) and the transmission plate (1) ) In the radial direction relative to the workpiece spindle (3), and the grinding area of the grinding plate is transmitted. Moving back and forth between the inner radius (2.1) and the outer radius (2.2) of the surface (2), the transmission plate (1) is rotated by the workpiece spindle (3) and the transmission surface (2) The movements of the grinding plate (4) and the transmission plate (1) are synchronized with each other so that the whole is ground and a cross-shaped grinding image is produced to adjust the surface roughness of the transmission surface (2) to the desired degree. A method characterized in that. 前記工作物スピンドル(3)の回転数が相対的な往復運動に同調されることを特徴とする、請求項1に記載の方法。The rotational speed of the workpiece spindle (3) is characterized in that it is tuned to the relative reciprocation The method of claim 1. 前記工作物スピンドル(3)の回転数が、トランスミッション表面(2)上での研削板(4)の径方向の研削位置に依存して変更されることを特徴とする、請求項に記載の方法。The rotational speed of the workpiece spindle (3), characterized in that is changed depending on the radial grinding position of the grinding plate (4) on the transmission surface (2) of claim 2 Method. 前記往復運動の速度が、伝動板(1)のトランスミッション表面(2)上での研削板(4)の径方向の位置に依存して変更されることを特徴とする、請求項1に記載の方法。The rate of reciprocation, characterized in transmission plate (1) of the transmission surface (2) on the grinding plate (4) radial position to be changed in dependence of, according to claim 1 Method. 前記伝動板(1)が往復運動を行なうことを特徴とする、請求項1から請求項のいずれかに記載の方法。5. A method according to any one of claims 1 to 4 , characterized in that the transmission plate (1) reciprocates. 前記研削板(4)が往復運動を行なうことを特徴とする、請求項1から請求項のいずれかに記載の方法。Characterized in that the grinding plate (4) makes a reciprocating motion, the method according to any one of claims 1 to 4. 2つの工作物スピンドル(3,3′)が設けられ、2つの伝動板(1,1′)のトランスミッション表面(2,2′)の研削の際に、1つの設備で2つの伝動板(1,1′)を研削するように相対的な往復運動が行なわれることを特徴とする、請求項1から請求項のいずれかに記載の方法。Two workpiece spindles (3, 3 ') are provided, and two transmission plates (1 and 1) are ground in one facility when grinding the transmission surfaces (2, 2') of the two transmission plates (1, 1 '). , wherein the relative reciprocation is performed so as to grind the 1 '), a method according to any one of claims 1 to 6. 前記工作物スピンドル(3,3′)が、球形のジャケット形状のトランスミッション表面(2,2′)を製造するように共通の旋回点について旋回することを特徴とする、請求項に記載の方法。Method according to claim 7 , characterized in that the workpiece spindle (3, 3 ') pivots about a common pivot point so as to produce a spherical jacket-shaped transmission surface (2, 2'). . 円錐形のジャケット形状のトランスミッション表面(2,2′)を製造するように、前記研削板が往復運動を行なうことを特徴とする、請求項に記載の方法。Method according to claim 7 , characterized in that the grinding plate reciprocates so as to produce a conical jacket-shaped transmission surface (2, 2 '). 請求項1から請求項6のいずれかに記載の方法を実行するための、無段可変伝動機構のためのトランスミッション表面を有する伝動板(1)の製造装置であって、前記装置は伝動板(1)を回転駆動する工作物スピンドル(3)および研削のための研削スピンドル(5)によって駆動される研削板(4)を備え、研削スピンドル(5)の中軸が、工作物スピンドル(3)の中軸に対する角度において、水平方向に調整可能であり、研削領域は、研削板(4)と伝動板(1)との間で前記角度を保ちながら動くことができ、
1つの伝動板(1)を各々受けるための2つの工作物スピンドル(3,3′)が設けられ、前記2つの工作物スピンドルが、その方向と、互いに対する旋回角度αに関する間隔とにおいて調整可能に配置され、これにより1つの研削板(4)を用いて研削板(4)と二つの伝動板(1,1′)のトランスミッション表面(2,2′)との間で、工作物スピンドル軸に対して径方向の繰返される相対的な往復運動がもたらされることを特徴とする、装置。
For performing the method as claimed in any one of claims 6 to an apparatus for producing a transmission plate (1) having a transmission surface for a continuously variable variable transmission mechanism, before Symbol apparatus transmitting plate A workpiece spindle (3 ) for rotationally driving (1) and a grinding plate (4) driven by a grinding spindle (5) for grinding, the central axis of the grinding spindle (5) being the workpiece spindle (3) The angle with respect to the central axis can be adjusted in the horizontal direction, and the grinding area can move between the grinding plate (4) and the transmission plate (1) while maintaining the angle,
Two workpiece spindles (3, 3 ') are provided for each receiving one transmission plate (1), the two workpiece spindles being adjustable in their direction and spacing with respect to the swivel angle α relative to each other So that the workpiece spindle shaft is moved between the grinding plate (4) and the transmission surface (2, 2 ') of the two transmission plates (1, 1') using one grinding plate (4). and wherein the relative reciprocation is effected Turkey repeated a radial direction relative apparatus.
前記研削板(4)が行き来して動くことができるように配置されることを特徴とする、請求項10に記載の装置。Device according to claim 10 , characterized in that the grinding plate (4) is arranged so that it can move back and forth. 前記伝動板(1)が行き来して動くことができるように配置されることを特徴とする、請求項10に記載の装置。Device according to claim 10 , characterized in that the transmission plate (1) is arranged to be able to move back and forth. 球形のジャケット形状のトランスミッション表面(2,2′)を製造するために、前記工作物スピンドル(3,3′)が共通の旋回点について旋回可能であることを特徴とする、請求項10に記載の装置。'To produce the work piece spindle (3,3 Transmission surface (2,2)' spherical jacket shape, characterized in that) is pivotable about a common pivot point, according to claim 10 Equipment. CNC加工センターの一部であることを特徴とする、請求項10から請求項13のいずれかに記載の装置。14. Apparatus according to any of claims 10 to 13 , characterized in that it is part of a CNC machining center.
JP2002579170A 2001-04-04 2002-04-03 Method and apparatus for manufacturing transmission plate of continuously variable transmission mechanism Expired - Fee Related JP3949583B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10116807A DE10116807B4 (en) 2001-04-04 2001-04-04 Method and device for producing transmission disks of a continuously variable transmission
PCT/EP2002/003654 WO2002081147A2 (en) 2001-04-04 2002-04-03 Method and device for producing gear plates for a continuously variable gearbox

Publications (2)

Publication Number Publication Date
JP2004532134A JP2004532134A (en) 2004-10-21
JP3949583B2 true JP3949583B2 (en) 2007-07-25

Family

ID=7680375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002579170A Expired - Fee Related JP3949583B2 (en) 2001-04-04 2002-04-03 Method and apparatus for manufacturing transmission plate of continuously variable transmission mechanism

Country Status (12)

Country Link
US (1) US20050170753A1 (en)
EP (1) EP1372906B1 (en)
JP (1) JP3949583B2 (en)
KR (1) KR100816576B1 (en)
CN (1) CN100400231C (en)
AU (1) AU2002312789A1 (en)
BR (1) BR0208687B1 (en)
CZ (1) CZ298796B6 (en)
DE (2) DE10116807B4 (en)
ES (1) ES2269710T3 (en)
RU (1) RU2284891C2 (en)
WO (1) WO2002081147A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041117A1 (en) * 2004-08-24 2006-03-02 Nyffenegger, Ulrich Method and device for grinding a profile of a workpiece
CN102335844A (en) * 2011-10-22 2012-02-01 安庆机床有限公司 Grinding machine for spherical fiducial surface of conical roller
JP5842550B2 (en) 2011-11-08 2016-01-13 日本精工株式会社 Super-finishing device, super-finishing method, and outer ring manufacturing method
CN109386587A (en) * 2017-08-09 2019-02-26 本田技研工业株式会社 The manufacturing method of pulley for continuously variable transmission and pulley for continuously variable transmission
CN107756182A (en) * 2017-10-30 2018-03-06 重庆代发铸造有限公司 Special workpiece sanding apparatus
CN108500817A (en) * 2018-03-29 2018-09-07 宁波鑫神泽汽车零部件有限公司 Auto parts burnishing device
CN111230678A (en) * 2020-03-19 2020-06-05 苏州市职业大学 Precise fine arc grinding mechanism
CN111702610B (en) * 2020-07-07 2021-05-25 中国航发动力股份有限公司 Engine wheel disc annular row special-shaped tongue-and-groove sharp edge treatment method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR674808A (en) * 1928-07-05 1930-02-03 Anciens Etablissements Fetu De Grinding machine according to template
US2040449A (en) * 1931-06-10 1936-05-12 Gen Motors Corp Grinding machine
US2212179A (en) * 1938-12-20 1940-08-20 Martin Joseph Harry Lens grinder
DE844553C (en) * 1945-05-01 1952-07-21 Gottfried Wohlgemuth Adjustment device for cylindrical grinding machine
FR1216177A (en) * 1958-02-14 1960-04-22 Buss Ag Method and device for grinding and polishing the bottoms and lids of containers
CH452384A (en) * 1966-02-18 1968-05-31 Genevoise Instr Physique Grinding machine for cones and cylinders
US3871813A (en) * 1971-10-28 1975-03-18 Danker & Wohlk Inc Mold member for contact lens construction
GB1459068A (en) * 1974-04-24 1976-12-22 Raytheon Co Menufacture of mirrors coat9ng composition
IT1220123B (en) * 1987-11-02 1990-06-06 Dyanex Di Bandelli D & Visinti ROTATING BRUSH FOR SMOOTHING
RO107379B1 (en) * 1990-01-06 1993-11-30 Mecanica Nicolina Exterior and interior spherical surfaces grinding device
JP3402801B2 (en) * 1994-11-22 2003-05-06 本田技研工業株式会社 Movable sheave processing method for pulley device for continuously variable transmission
DE19626609C2 (en) * 1996-07-02 2000-03-09 Boehringer Werkzeugmaschinen Multiple milling on crankshafts
JPH10337643A (en) * 1997-06-06 1998-12-22 Mitsubishi Heavy Ind Ltd Polishing device
US5938516A (en) * 1997-12-17 1999-08-17 Amsted Industries Incorporated Grinding wheel and method for removal of sprues and riser pads from cast railcar wheels
JP2000130527A (en) * 1998-10-30 2000-05-12 Nissan Motor Co Ltd Pulley for v-belt type continuously variable transmission and continuously variable transmission
DE19955818B4 (en) * 1999-01-20 2004-08-05 Nsk Ltd. Method for grinding the tensile surface of a semi-annular disc of a continuously variable transmission
US6474913B2 (en) * 2000-05-31 2002-11-05 Toshiba Kikai Kabushiki Kaisha Tool management system

Also Published As

Publication number Publication date
BR0208687B1 (en) 2011-07-26
RU2003132074A (en) 2005-04-20
EP1372906A2 (en) 2004-01-02
CN1500027A (en) 2004-05-26
WO2002081147B1 (en) 2003-11-27
KR20030093273A (en) 2003-12-06
RU2284891C2 (en) 2006-10-10
CN100400231C (en) 2008-07-09
DE10116807A1 (en) 2002-10-17
WO2002081147A3 (en) 2003-05-01
ES2269710T3 (en) 2007-04-01
WO2002081147A2 (en) 2002-10-17
BR0208687A (en) 2004-08-03
JP2004532134A (en) 2004-10-21
AU2002312789A1 (en) 2002-10-21
DE50207564D1 (en) 2006-08-31
KR100816576B1 (en) 2008-03-24
CZ298796B6 (en) 2008-01-30
CZ20032700A3 (en) 2004-03-17
DE10116807B4 (en) 2007-01-11
EP1372906B1 (en) 2006-07-19
US20050170753A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP3949583B2 (en) Method and apparatus for manufacturing transmission plate of continuously variable transmission mechanism
US6736036B2 (en) Traction drive rotary assembly and process for producing rolling element thereof
US9228609B2 (en) Laser cladding fabrication method
US9873177B2 (en) Machining apparatus
US20090307886A1 (en) Method and Device for Processing Crankshaft and Burnishing Roller for Crankshaft
JP5883535B1 (en) Cutting method for inner or outer peripheral surface of workpiece
US6881126B2 (en) Traction drive rolling element and method of forming the same
JP2000094306A (en) Machining method for cylindrical body-outside diametric surface, and cylindrical body
JP5056591B2 (en) Toroidal continuously variable transmission
US20040092213A1 (en) Grinding machine
JP7021455B2 (en) Processing equipment
JP6050908B1 (en) Cutting method for inner or outer peripheral surface of workpiece
KR102057843B1 (en) Cmp pad conditioner enable to be smoothly tilting
KR200378324Y1 (en) A driver roller for grinder
JPH11300757A (en) Method and apparatus for molding toric recessed shape
JP3466976B2 (en) Method for crowning a sliding member and apparatus used for the method
JPH08300246A (en) Machining unit
JP2019093493A (en) Crank shaft manufacturing method
CN114473633A (en) Self-centering guide device and method for feedback control of clamping force
JPH10184835A (en) Continuously variable transmission
JPH0885020A (en) Deburring device
JP2966955B2 (en) Grinding method and equipment
JP2004190737A (en) Toroidal continuously variable transmission
JP2001328061A (en) Grinding device
JP2011173130A (en) Method of manufacturing toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061127

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees