JP3948225B2 - In-cylinder direct injection internal combustion engine - Google Patents

In-cylinder direct injection internal combustion engine Download PDF

Info

Publication number
JP3948225B2
JP3948225B2 JP2001177881A JP2001177881A JP3948225B2 JP 3948225 B2 JP3948225 B2 JP 3948225B2 JP 2001177881 A JP2001177881 A JP 2001177881A JP 2001177881 A JP2001177881 A JP 2001177881A JP 3948225 B2 JP3948225 B2 JP 3948225B2
Authority
JP
Japan
Prior art keywords
spray
fuel
air
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177881A
Other languages
Japanese (ja)
Other versions
JP2002371852A (en
Inventor
敬 吉田
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001177881A priority Critical patent/JP3948225B2/en
Publication of JP2002371852A publication Critical patent/JP2002371852A/en
Application granted granted Critical
Publication of JP3948225B2 publication Critical patent/JP3948225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関に関し、特に燃焼室内に燃料噴射弁から直接燃料を噴射する、いわゆる筒内直接噴射式の内燃機関に関する。
【0002】
【従来の技術】
従来の筒内直接噴射式内燃機関では、燃料噴霧をピストン頂面に設けられた窪みに直接噴射することによって噴霧を反射させ、反射させた噴霧をシリンダ内に生成されたタンブル流及びスワール流等の旋回流に乗せることによって混合気を火花点火装置の近傍に集中させ、いわゆる成層運転することが行われている。
【0003】
特に、特開平9−183856号公報では燃料噴霧の流れを燃料噴射弁の分岐部によって分流させ、噴射量の多い方の噴霧をピストン頂面上に設けられた深皿部に当てて反転させ、火花点火装置を通過後に筒内の旋回流に乗せている。噴射量の少ない方の噴霧は旋回流とは反対の方向となるように噴射し、火花点火装置の近傍を通過させるとともに、前述の噴霧の流れと衝突させる。この作用によって火花点火装置の近傍に局所的に過濃混合気領域を形成させ、シリンダ全体としてリーンな空燃比であっても着火燃焼を可能にしている。
【0004】
【発明が解決しようとする課題】
しかし、従来技術の如くピストン頂面に窪みを設けて燃料噴霧を反射させると燃料がピストンに付着することから、未燃HCの排出量が増加する。また、機関の低負荷運転領域においてはシリンダ内の旋回流が弱いことから、火花点火装置の近傍への燃料噴霧の成層化が不十分になるという問題がある。
【0005】
本発明の目的は、機関の低,中負荷運転領域における混合気の成層化を良好に行わせることにより、未燃HCの排出を低減させながら成層燃焼運転領域を拡大させることにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明では、ピストンが往復動する燃焼室内に燃料を直接噴射する燃料噴射弁と、前記燃焼室に装着された火花点火装置と、前記燃焼室に供給される空気流に旋回を与える旋回流形成装置を備えた筒内直接噴射式内燃機関において、当該機関低,中負荷運転領域において、前記燃料噴射弁は燃料噴霧を2方向に噴射し、その一方の噴霧は前記旋回流に対向する速度成分を持ち、また、他方の噴霧は前記旋回流に沿った方向の速度成分を持ち、且つ前記他方の噴霧は前記一方の噴霧の噴霧密度より濃い噴霧密度を有する構成とした。
【0007】
また、前記一方の噴霧が前記空気の旋回流と衝突して前記他方の噴霧の後方に引き続く着火用混合気として火花点火装置の近傍に搬送され、前記空気の旋回流によって先行して搬送された前記他方の噴霧と空気との混合気が燃焼用混合気として着火後の燃焼に寄与する構成とした。
【0008】
【発明の実施の形態】
以下に、この発明の実施の形態について図面を用いて説明する。
【0009】
図1は本発明を実施する筒内直接噴射式内燃機関の構成図である。図1に示すエンジン1は図示しないクランク機構を備え、そのクランク機構に連結されたコンロッド2はシリンダ3内に摺動可能に嵌合しているピストン4の往復運動を回転運動に変換する役割を持つ。シリンダヘッド5によって燃焼室6が構成され、シリンダヘッド5には吸気弁7,排気弁8および燃料噴射弁9,火花点火装置10が装着されている。吸気弁7,排気弁8の上流には吸気ポート11及び排気ポート12が接続されている。また、吸気ポート11のさらに上流にはスワール流生成手段13としてのバタフライバルブを配置してある。エンジン1はピストン4の往復動作によって負圧となる燃焼室6に空気を吸入し、燃焼させる。エンジン1に吸入される空気は空気量センサ14で吸入空気量が計測され、吸入空気量は絞り弁15の開度によって調節される。本実施例では絞り弁15をアクセルペダルの踏量に応じて電子的に動作させる電子制御絞り弁を使用している。エンジン1に供給される燃料は、燃料タンク16内のフィードポンプ17または燃料ポンプ18により加圧され、燃料噴射弁9により燃焼室6に直接噴射される。燃焼室6内に噴射された燃料は燃焼室6内に吸入された空気と混合し火花点火装置10により燃焼が行われる。排気ガスはピストン4の往復動作によって排気弁8から排出され、排気管に設置された三元触媒19,NOx触媒20を通過して排出される。コントロールユニット21において、各種のセンサの出力信号からエンジン1の運転状態を検出し、その検出結果に応じてエンジン1に装着されている電子制御絞り弁15,燃料ポンプ18,燃料噴射弁9,火花点火装置10を制御する。
【0010】
コントロールユニット21には各種のセンサからの信号が入力される。本実施例ではエンジン回転数,吸気圧力,吸気温度,水温,アクセル踏量,吸入空気量が入力されるよう構成した。コントロールユニット21は変速機制御部25,エンジン制御部26,スロットル制御部27,インジェクタ駆動回路28などから構成されている。
【0011】
図2及び図3は本発明の実施例の要部である筒内直接噴射式内燃機関のシリンダの上視図及び図2のA−A断面に対する横断面図である。この内燃機関は図示しない複数のシリンダ3によって構成されており、その上面はシリンダヘッド5によって覆われている。シリンダヘッド5によって構成される燃焼室には、その一方の傾斜面に一対の吸気弁7a,7b(7a,7bをまとめて表現する場合は符号7とする)が、他方の傾斜面には一対の排気弁8a,8b(8a,8bをまとめて表現する場合は符号8とする)が配置されている。吸気弁7及び排気弁8によって囲まれているシリンダヘッド5の略中心位置に火花点火装置10が配置されている。また、シリンダ3内にはピストン4が摺動可能に嵌合されており、その頂面は平面となっている。吸気弁7の上流には吸気ポート11a,11b(11a,11bをまとめて表現する場合は符号11とする)が、排気弁8の下流には排気ポート12a,12b(12a,12bをまとめて表現する場合は符号12とする)がそれぞれ接続されている。吸気ポート11bの上流にはバタフライバルブ形状のスワール流形成手段13が設けられており、そのスワール流形成手段13は内燃機関の運転状態に応じて図示しない駆動機構によって開閉される。
【0012】
燃料噴射弁9は吸気ポート11側のシリンダヘッド下方に配置され、本実施例において上記燃料噴射弁9は吸気弁7a,7bの略中心位置に配置されている。
【0013】
本実施例では絞り弁15をアクセルペダルの踏量に応じて電子的に動作させる電子制御絞り弁を使用しているが、ワイヤで動作させる機械式絞り弁でも同様である。コントロールユニット21にはエンジン回転数,吸気圧力,吸気温度,水温,アクセル踏量,吸入空気量が入力されるよう構成したが、その他の入力信号としては、例えば図示しないクランクシャフトに装着されたクランク角度センサからの信号,排気管内に取り付けられた空燃比センサ22からの信号,排気ガスの温度を検出する温度センサ23からの信号,排気中の酸素濃度を検出するO2センサ24などがある。また、本実施例ではピストン頂面を平面としているが、この他にもピストン頂面にバルブリセスを持つもの、ピストン頂面に緩やかな凹凸部を持つものなど、燃料噴霧を反射させて火花点火装置近傍に燃料噴霧を搬送することを目的とする凹凸部をピストン頂面に持たないピストンであれば良い。
【0014】
次に、実施例の動作について説明する。
【0015】
本実施例の内燃機関では、図4に示すようにエンジン回転数2000rpm 以下の低負荷運転領域,エンジン回転数2000rpm から3000rpm 以下の中負荷運転領域において大きな空燃比で希薄燃焼が可能となる成層燃焼運転を行うことが出来る。この成層燃焼運転時において吸気ポート11b上流に配置されたバタフライバルブ形状のスワール流形成手段13を閉じることによってシリンダ3内にシリンダ3の軸線の周りを旋回するスワール流を生成させることが可能である。吸気ポート11はシリンダ3中心線に直交する略直線状をなしているので、シリンダ3内に効率よくスワール流を生成させることが出来る。
【0016】
図5,図6及び図7は機関の低負荷運転領域におけるシリンダ内の様子をシリンダ上方からの上視図、図5のA−A断面に対する横断面図及びシリンダの斜視図で示したものである。図5に示すように燃料噴射弁9からは2方向に燃料が噴射される。それらを横断面より観察した図6からわかるように、それらの噴射角度はシリンダ3軸線に対してほぼ等しく、圧縮行程後半においてピストン4およびシリンダ3壁面に噴霧が付着しないような噴射時期および燃料圧力で燃料を噴射される。図8は燃料の噴射時期を示している。図5に示すように一方の噴霧29bは燃料噴射弁9の燃料噴射口とシリンダの中心を通る仮想平面に対して吸気ポート11b側に噴射されることで、スワール流30に対向する速度成分が噴霧に与えられる。これによって弱いスワール流30に対する噴霧29bの相対速度が大きくなり、燃料の気化が促進される。スワール流をはじめとする筒内流動に対する燃料噴霧の相対速度と燃料噴霧の気化速度の関係について図9に示す。図9は筒内流動に対する燃料噴霧の相対速度が大きくなるにしたがって、燃料噴霧と筒内流動の間の熱伝達率が大きくなることから、燃料噴霧の気化速度が早くなることを示している。図10に機関の低負荷運転領域における混合気の成層化をシリンダ上方から見た上視図を示す。燃料噴射弁9の燃料噴射口とシリンダの中心を通る仮想平面に対して前記一方の噴霧と反対側に噴射される前記他方の噴霧29aは前記一方の噴霧29bに比べ噴霧密度が高いため前記一方の噴霧29bに先行することが出来、前記他方の噴霧29aと空気との間で摩擦が生じ、燃料噴射弁9から前記他方の噴霧29aの後方に噴流31が発生する(A)。前記他方の噴霧29aと空気との間の摩擦力によって発生する前記他方の噴霧29a後方の噴流31の影響により、前記一方の噴霧29bは火花点火装置10の近傍に搬送される(B)。前記他方の噴霧29aはスワール流30に乗り空気と混合されながら、シリンダ内を周回して火花点火装置10の近傍に搬送された前記一方の噴霧29bから生成された混合気と混合され、成層化された混合気32となる(C)。これら一連の作用によって、シリンダ3内のスワール流などの筒内流動が弱い低負荷運転領域においても混合気の成層化を良好に行うことが出来る。
【0017】
次に、機関の中負荷運転領域における混合気の成層化について説明する。この場合も低負荷運転領域の場合と同様に燃料噴射弁9から2方向に燃料が噴射され、それらを横断面から観察した場合、それらのシリンダ3軸線に対して噴射角度はほぼ等しい。これらの噴霧は機関の低負荷運転領域の場合と同様に、圧縮行程後半においてピストン4およびシリンダ3壁面に噴霧が付着しないような噴射時期および燃料圧力で燃料が噴射される。図11に機関の中負荷運転領域における混合気の成層化をシリンダ上方から見た上視図を示す。前記一方の噴霧29bは燃料噴射弁9の燃料噴射口とシリンダの中心を通る仮想平面に対して吸気ポート11b側に噴射されることで、スワール流30に対向する速度成分が噴霧に与えられる。これによってスワール流30に対する前記一方の噴霧29bとの相対速度が大きくなり、燃料の気化が十分に促進される(A)。その後、対向するスワール流に乗って火花点火装置の近傍に搬送される。これは中負荷運転領域ではスワール流30の強さが低負荷運転領域の場合より強くなっているため、燃料噴射弁9の燃料噴射口とシリンダの中心を通る仮想平面に対して前記一方の噴霧と反対側に噴射される前記他方の噴霧29aと空気との間で摩擦によって生じる前記他方の噴霧29a後方の噴流31の影響よりもスワール流30の影響が大きいためである。また、前記他方の噴霧29aはスワール流30に乗りシリンダ内を周回しながら空気と混合される(B)。その後、火花点火装置の近傍に搬送された前記一方の噴霧29bから生成された混合気と前記他方の噴霧29aから生成された混合気は一体化される(C)。これら一連の作用によって、シリンダ3内のスワール流30を用いて混合気の成層化を効果的に行うことが出来る。
【0018】
上記のような作用を持つ噴霧を生成可能な燃料噴射弁9の全体図を図12に示す。さらに燃料噴射弁9の要部である破線で囲まれたノズル先端形状の縦断面図及び平面図を図13に示す。燃料噴射弁9のノズル先端33にはボール弁34と、ボール弁34に接続されたロッド35と、噴霧に旋回力を与えるスワラー36と、燃料噴射口37と、軸方向溝38と、径方向溝39を有している。ノズル先端33に設けられた燃料噴射口37は左右対称ではなくその一部に切り欠きが設けられている。その切り欠きの凸部側に噴射された噴霧が前記他方の噴霧29aとなり、凹部側に噴射された噴霧が前記一方の噴霧29bとなる。図12に示すように、燃料噴射弁9の燃料噴射口37から噴射される燃料噴霧の形状は燃料噴射口37に切り欠きが設けられているため左右対称にはならずに、噴霧の一部に隙間のある形状となる。シリンダ内を旋回するスワール流は燃料噴霧29bに対向するため、スワール流は燃料噴霧29bの気化を促進しながら、燃料噴霧29b側に出来る燃料噴霧の隙間から燃料噴霧の中心に存在する空洞に到達し、燃料噴霧全体の気化を促進させることが出来る。また、複数の燃料噴射口を有するノズル先端形状であっても同様の作用を得ることが出来る。この場合もノズル先端33は図12中の破線で囲まれている部位であり、そのノズル先端形状の一例の縦断面図及び平面図を図14に示す。燃料噴射弁9のノズル先端にはボール弁34と、ボール弁34に接続されたロッド35と、燃料噴射口37a,37bを有している。燃料噴射口37a側に噴射された噴霧が前記他方の噴霧29aとなり、燃料噴射口37b側に噴射された噴霧が前記一方の噴霧29bとなる。
【0019】
図13に示したシリンダ3に対する燃料噴射弁9の取り付け角度について図
15に示す。図15は燃料噴射弁9の燃料噴射口37とシリンダの中心を通る仮想平面の一方と他方の側とで燃料噴射弁9の燃料噴射口37の突出長さが異なることを示すものである。また、図14に示す燃料噴射弁9の燃料噴射口37aは図15の凸部側、燃料噴射口37bは凹部側となる。
【0020】
本実施例ではフラットピストン4を用いていることから、シリンダ3内に発生したスワール流は上死点付近においてもその流動はほとんど減衰しない。これはピストン頂面に燃料噴霧を反射させて火花点火装置近傍に燃料噴霧を搬送することを目的とする凹凸部を持たないために、上死点付近においてもスワール流が崩壊しないためである。このため火花点火装置10の近傍に誘導された混合気32は成層化された状態を良好に保つことが出来る。図16は本実施例と従来のスワール流強さの比較を示している。従来の筒内直接噴射式内燃機関ではピストン頂面に窪みなどの凹凸を設けることによって混合気の成層化を図っていたために、燃焼室容積が増加すると同時に燃焼室表面積も増加することとなり、圧縮比の低下及び熱損失の増加につながっていた。本発明ではフラットピストンを用いても混合気の成層化が可能であるため、従来方法よりも大きく燃費の向上に寄与することが出来る。この利点は次に述べる機関の全負荷運転領域の場合でも同様である。これらの一連の作用によって成層燃焼運転が可能となり、図17に示すように従来よりも低,中負荷運転領域での成層燃焼運転領域が拡大される。
【0021】
次に、全負荷運転領域等の空燃比が理論混合比より小さい、あるいは理論混合比に近い運転状態の場合について図18を用いて説明する。この場合では、シリンダ3内に均質な混合気を形成させる均質燃焼運転が行われる。スワール流形成手段13は全開状態に制御され、吸気ポート11からシリンダ3内に流入した空気はシリンダ3内にタンブル流40を形成する。
【0022】
燃料は、吸気行程の前半にシリンダ3内に噴射されその燃料はタンブル流によって空気と混合されて気化し、均質混合気となって火花点火装置10によって点火される。また、本発明において燃料を2方向に噴射するために1方向に噴射するよりも噴霧が周囲の空気を巻き込み易くなるので気化が容易となる。この作用によって燃料の気化が促進され、良好な均質混合気を形成することが出来る。
【0023】
なお、実際の内燃機関におけるシリンダ内の旋回流は前記図に示すような純粋なスワール流,タンブル流ではなく、筒内の旋回流はスワール成分とタンブル成分が含まれたものとなることが普通である。このような場合であっても、本発明によって図17に示すように従来よりも低,中負荷運転領域での成層燃焼運転領域が拡大出来る。
【0024】
【発明の効果】
この発明に係る筒内直接噴射式内燃機関の低,中負荷運転領域において機関の低,中負荷運転領域における混合気の成層化を良好に行わせることにより、未燃HCの排出を低減させながら成層燃焼運転領域を拡大させることが出来る。
【図面の簡単な説明】
【図1】本発明の第1実施形態のエンジンシステム図。
【図2】本発明の第1実施形態のエンジンシリンダ上視図。
【図3】本発明の第1実施形態のエンジンシリンダ縦断面図。
【図4】本発明に係る筒内直接噴射式内燃機関の低,中負荷運転領域を示す図。
【図5】本発明に係る筒内直接噴射式内燃機関の低負荷運転時における成層燃焼運転の作用を説明するシリンダの上視図。
【図6】本発明に係る筒内直接噴射式内燃機関の低負荷運転時における成層燃焼運転の作用を説明するシリンダの横断面図。
【図7】本発明に係る筒内直接噴射式内燃機関の低負荷運転時における成層燃焼運転の作用を説明するシリンダの斜視図。
【図8】本発明に係る筒内直接噴射式内燃機関の圧縮行程噴射における噴射時期を示す図。
【図9】筒内流動に対する燃料噴霧の相対速度と燃料噴霧の気化速度の関係を説明する図。
【図10】本発明に係る筒内直接噴射式内燃機関の低負荷運転時における混合気の成層化を説明するシリンダの上視図。
【図11】本発明に係る筒内直接噴射式内燃機関の中負荷運転時における成層燃焼運転の作用を説明するシリンダの上視図。
【図12】本発明に係る燃料噴射弁の全体図。
【図13】本発明に係る燃料噴射弁のノズル形状の一例を示す概略図。
【図14】本発明に係る燃料噴射弁のノズル形状の一例を示す概略図。
【図15】本発明に関わる燃料噴射弁のシリンダへの取り付け角度を示す概略図。
【図16】上死点付近でのスワール流の維持に対する本発明と従来との比較。
【図17】本発明によるリーン運転領域の拡大を示す図。
【図18】本発明に係る筒内直接噴射式内燃機関の高負荷運転時における均質燃焼運転の作用を説明するエンジンシリンダの縦断面図。
【符号の説明】
1…エンジン、3…シリンダ、4…ピストン、5…シリンダヘッド、6…燃焼室、7…吸気弁、8…排気弁、9…燃料噴射弁、10…火花点火装置、11…吸気ポート、12…排気ポート、13…スワール流生成手段、29…燃料噴霧、30…スワール流、31…前記他方の噴霧後方に誘起される噴流、40…タンブル流。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine, and more particularly to a so-called direct injection internal combustion engine in which fuel is directly injected from a fuel injection valve into a combustion chamber.
[0002]
[Prior art]
In a conventional in-cylinder direct injection internal combustion engine, fuel spray is directly injected into a recess provided on the piston top surface to reflect the spray, and the reflected spray is generated in the cylinder, such as a tumble flow and a swirl flow The air-fuel mixture is concentrated in the vicinity of the spark ignition device by being put on the swirling flow of the so-called stratified operation.
[0003]
In particular, in Japanese Patent Application Laid-Open No. 9-183856, the flow of the fuel spray is diverted by the branch portion of the fuel injection valve, the spray with the larger injection amount is applied to the deep dish portion provided on the piston top surface, and reversed. After passing through the spark ignition device, it is put on the swirling flow in the cylinder. The spray with the smaller injection amount is sprayed in the direction opposite to the swirling flow, passes through the vicinity of the spark ignition device, and collides with the above-described spray flow. By this action, a rich mixture region is locally formed in the vicinity of the spark ignition device, and ignition combustion is possible even at a lean air-fuel ratio as a whole cylinder.
[0004]
[Problems to be solved by the invention]
However, if a depression is provided on the top surface of the piston and the fuel spray is reflected as in the prior art, the fuel adheres to the piston, and the amount of unburned HC discharged increases. Further, since the swirl flow in the cylinder is weak in the low load operation region of the engine, there is a problem that the stratification of the fuel spray near the spark ignition device becomes insufficient.
[0005]
An object of the present invention is to expand the stratified combustion operation region while reducing the discharge of unburned HC by favorably stratifying the air-fuel mixture in the low and medium load operation region of the engine.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a fuel injection valve that directly injects fuel into a combustion chamber in which a piston reciprocates, a spark ignition device mounted in the combustion chamber, and an air flow supplied to the combustion chamber. In a cylinder direct injection internal combustion engine having a swirl flow forming device that provides swirl, in the low and medium load operation region of the engine, the fuel injection valve injects fuel spray in two directions, and one of the sprays is A structure having a velocity component opposite to the swirl flow, the other spray having a velocity component in a direction along the swirl flow, and the other spray having a spray density higher than a spray density of the one spray. did.
[0007]
The one spray collides with the swirling flow of the air and is conveyed to the vicinity of the spark igniter as an ignition mixture following the other spray, and is conveyed in advance by the swirling flow of the air. The mixture of the other spray and air contributes to the combustion after ignition as a combustion mixture.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0009]
FIG. 1 is a configuration diagram of a direct injection type internal combustion engine embodying the present invention. An engine 1 shown in FIG. 1 includes a crank mechanism (not shown), and a connecting rod 2 connected to the crank mechanism serves to convert a reciprocating motion of a piston 4 slidably fitted in a cylinder 3 into a rotational motion. Have. A combustion chamber 6 is formed by the cylinder head 5, and an intake valve 7, an exhaust valve 8, a fuel injection valve 9, and a spark ignition device 10 are mounted on the cylinder head 5. An intake port 11 and an exhaust port 12 are connected upstream of the intake valve 7 and the exhaust valve 8. Further, a butterfly valve as the swirl flow generating means 13 is arranged further upstream of the intake port 11. The engine 1 sucks air into the combustion chamber 6 that becomes negative pressure by the reciprocating motion of the piston 4 and burns it. The air sucked into the engine 1 is measured by the air amount sensor 14, and the intake air amount is adjusted by the opening degree of the throttle valve 15. In this embodiment, an electronically controlled throttle valve that electronically operates the throttle valve 15 in accordance with the amount of depression of the accelerator pedal is used. The fuel supplied to the engine 1 is pressurized by the feed pump 17 or the fuel pump 18 in the fuel tank 16 and directly injected into the combustion chamber 6 by the fuel injection valve 9. The fuel injected into the combustion chamber 6 is mixed with the air sucked into the combustion chamber 6 and burned by the spark ignition device 10. The exhaust gas is discharged from the exhaust valve 8 by the reciprocating motion of the piston 4, and is discharged through the three-way catalyst 19 and the NOx catalyst 20 installed in the exhaust pipe. In the control unit 21, the operating state of the engine 1 is detected from the output signals of various sensors, and the electronic control throttle valve 15, the fuel pump 18, the fuel injection valve 9, and the spark mounted on the engine 1 according to the detection results. The ignition device 10 is controlled.
[0010]
Signals from various sensors are input to the control unit 21. In this embodiment, the engine speed, intake pressure, intake temperature, water temperature, accelerator pedal stroke, and intake air amount are input. The control unit 21 includes a transmission control unit 25, an engine control unit 26, a throttle control unit 27, an injector drive circuit 28, and the like.
[0011]
2 and 3 are a top view of a cylinder of a direct injection type internal combustion engine, which is a main part of an embodiment of the present invention, and a cross-sectional view with respect to the AA cross section of FIG. This internal combustion engine is composed of a plurality of cylinders 3 (not shown), and the upper surface thereof is covered with a cylinder head 5. In the combustion chamber constituted by the cylinder head 5, a pair of intake valves 7a and 7b (symbol 7 when 7a and 7b are collectively expressed) is provided on one inclined surface, and a pair is provided on the other inclined surface. Exhaust valves 8a and 8b (reference numeral 8 when 8a and 8b are collectively expressed) are arranged. A spark ignition device 10 is disposed at a substantially central position of the cylinder head 5 surrounded by the intake valve 7 and the exhaust valve 8. A piston 4 is slidably fitted in the cylinder 3, and its top surface is a flat surface. The intake ports 11a and 11b (11 is indicated when 11a and 11b are collectively expressed) are upstream of the intake valve 7, and the exhaust ports 12a and 12b (12a and 12b are collectively expressed downstream of the exhaust valve 8). Are connected to each other). A swirl flow forming means 13 having a butterfly valve shape is provided upstream of the intake port 11b, and the swirl flow forming means 13 is opened and closed by a driving mechanism (not shown) according to the operating state of the internal combustion engine.
[0012]
The fuel injection valve 9 is disposed below the cylinder head on the intake port 11 side. In this embodiment, the fuel injection valve 9 is disposed at a substantially central position of the intake valves 7a and 7b.
[0013]
In this embodiment, an electronically controlled throttle valve that electronically operates the throttle valve 15 in accordance with the amount of depression of the accelerator pedal is used. However, the same applies to a mechanical throttle valve that is operated by a wire. The engine speed, intake pressure, intake air temperature, water temperature, accelerator pedal stroke, and intake air amount are input to the control unit 21. Other input signals include, for example, a crank mounted on a crankshaft (not shown). There are a signal from an angle sensor, a signal from an air-fuel ratio sensor 22 installed in the exhaust pipe, a signal from a temperature sensor 23 for detecting the temperature of exhaust gas, an O 2 sensor 24 for detecting the oxygen concentration in the exhaust gas, and the like. In addition, in this embodiment, the piston top surface is a flat surface, but in addition to this, a spark ignition device that reflects fuel spray, such as one having a valve recess on the piston top surface and one having a gentle uneven portion on the piston top surface. Any piston may be used as long as it does not have an uneven portion on the top surface of the piston for the purpose of conveying fuel spray in the vicinity.
[0014]
Next, the operation of the embodiment will be described.
[0015]
In the internal combustion engine of the present embodiment, as shown in FIG. 4, stratified combustion enables lean combustion at a large air-fuel ratio in a low load operation region where the engine speed is 2000 rpm or less and in a medium load operation region where the engine speed is 2000 rpm to 3000 rpm. You can drive. During this stratified combustion operation, it is possible to generate a swirl flow swirling around the axis of the cylinder 3 in the cylinder 3 by closing the butterfly valve-shaped swirl flow forming means 13 disposed upstream of the intake port 11b. . Since the intake port 11 has a substantially straight shape orthogonal to the center line of the cylinder 3, a swirl flow can be efficiently generated in the cylinder 3.
[0016]
5, 6, and 7 show the inside of the cylinder in the low load operation region of the engine as a top view from above the cylinder, a cross-sectional view taken along the line AA in FIG. 5, and a perspective view of the cylinder. is there. As shown in FIG. 5, fuel is injected in two directions from the fuel injection valve 9. As can be seen from FIG. 6 in which they are observed from a cross section, their injection angles are substantially equal to the cylinder 3 axis, and the injection timing and fuel pressure are such that no spray adheres to the piston 4 and the cylinder 3 wall surface in the latter half of the compression stroke. Then fuel is injected. FIG. 8 shows the fuel injection timing. As shown in FIG. 5, one spray 29 b is injected toward the intake port 11 b with respect to a virtual plane passing through the fuel injection port of the fuel injection valve 9 and the center of the cylinder, so that the speed component facing the swirl flow 30 is generated. Given to spray. As a result, the relative speed of the spray 29b with respect to the weak swirl flow 30 is increased, and the vaporization of the fuel is promoted. FIG. 9 shows the relationship between the relative speed of the fuel spray and the vaporization speed of the fuel spray with respect to the in-cylinder flow including the swirl flow. FIG. 9 shows that as the relative speed of the fuel spray with respect to the in-cylinder flow increases, the heat transfer rate between the fuel spray and the in-cylinder flow increases, so that the vaporization speed of the fuel spray increases. FIG. 10 shows a top view of the stratification of the air-fuel mixture in the low load operation region of the engine as viewed from above the cylinder. Since the other spray 29a injected to the opposite side of the one spray with respect to a virtual plane passing through the fuel injection port of the fuel injection valve 9 and the center of the cylinder has a higher spray density than the one spray 29b, the one The spray 29b can be preceded and friction occurs between the other spray 29a and the air, and a jet 31 is generated from the fuel injection valve 9 behind the other spray 29a (A). Due to the influence of the jet 31 behind the other spray 29a generated by the frictional force between the other spray 29a and the air, the one spray 29b is conveyed in the vicinity of the spark ignition device 10 (B). The other spray 29a rides on the swirl flow 30 and is mixed with the air, and is mixed with the air-fuel mixture generated from the one spray 29b that circulates in the cylinder and is conveyed to the vicinity of the spark igniter 10. (C). By these series of actions, the air-fuel mixture can be stratified well even in a low load operation region where the in-cylinder flow such as the swirl flow in the cylinder 3 is weak.
[0017]
Next, stratification of the air-fuel mixture in the medium load operation region of the engine will be described. Also in this case, fuel is injected in two directions from the fuel injection valve 9 in the same manner as in the low load operation region, and when they are observed from the cross section, the injection angles are substantially equal to the three axes of the cylinders. In the same manner as in the low load operation region of the engine, these sprays are injected with fuel at an injection timing and fuel pressure such that the sprays do not adhere to the piston 4 and cylinder 3 wall surfaces in the latter half of the compression stroke. FIG. 11 shows a top view of the stratification of the air-fuel mixture in the medium load operation region of the engine as viewed from above the cylinder. The one spray 29b is injected toward the intake port 11b with respect to a virtual plane passing through the fuel injection port of the fuel injection valve 9 and the center of the cylinder, so that a velocity component facing the swirl flow 30 is given to the spray. As a result, the relative speed of the swirl flow 30 with respect to the one spray 29b is increased, and fuel vaporization is sufficiently promoted (A). Then, it is transported to the vicinity of the spark igniter on the opposite swirl flow. This is because the strength of the swirl flow 30 is stronger in the medium load operation region than in the low load operation region, so that the one spray is applied to the virtual plane passing through the fuel injection port of the fuel injection valve 9 and the center of the cylinder. This is because the influence of the swirl flow 30 is greater than the influence of the jet 31 behind the other spray 29a caused by friction between the other spray 29a injected to the opposite side to the air. The other spray 29a rides on the swirl flow 30 and is mixed with air while circulating around the cylinder (B). Thereafter, the air-fuel mixture generated from the one spray 29b conveyed near the spark ignition device and the air-fuel mixture generated from the other spray 29a are integrated (C). By these series of actions, the air-fuel mixture can be effectively stratified using the swirl flow 30 in the cylinder 3.
[0018]
FIG. 12 shows an overall view of the fuel injection valve 9 capable of generating the spray having the above action. Furthermore, the longitudinal cross-sectional view and top view of the nozzle tip shape enclosed with the broken line which are the principal parts of the fuel injection valve 9 are shown in FIG. The nozzle tip 33 of the fuel injection valve 9 has a ball valve 34, a rod 35 connected to the ball valve 34, a swirler 36 that gives a turning force to the spray, a fuel injection port 37, an axial groove 38, and a radial direction A groove 39 is provided. The fuel injection port 37 provided at the nozzle tip 33 is not symmetrical and has a notch in a part thereof. The spray sprayed on the convex side of the notch becomes the other spray 29a, and the spray sprayed on the concave side becomes the one spray 29b. As shown in FIG. 12, the shape of the fuel spray injected from the fuel injection port 37 of the fuel injection valve 9 is not symmetrical because the notch is provided in the fuel injection port 37. It becomes a shape with a gap. Since the swirl flow swirling in the cylinder faces the fuel spray 29b, the swirl flow accelerates the vaporization of the fuel spray 29b and reaches the cavity existing in the center of the fuel spray from the gap of the fuel spray formed on the fuel spray 29b side. In addition, vaporization of the entire fuel spray can be promoted. The same effect can be obtained even with a nozzle tip shape having a plurality of fuel injection ports. Also in this case, the nozzle tip 33 is a part surrounded by a broken line in FIG. 12, and FIG. 14 shows a longitudinal sectional view and a plan view of an example of the nozzle tip shape. The nozzle tip of the fuel injection valve 9 has a ball valve 34, a rod 35 connected to the ball valve 34, and fuel injection ports 37a and 37b. The spray injected to the fuel injection port 37a side becomes the other spray 29a, and the spray injected to the fuel injection port 37b side becomes the one spray 29b.
[0019]
FIG. 15 shows the mounting angle of the fuel injection valve 9 with respect to the cylinder 3 shown in FIG. FIG. 15 shows that the projecting length of the fuel injection port 37 of the fuel injection valve 9 differs between one side and the other side of the virtual plane passing through the center of the cylinder and the fuel injection port 37 of the fuel injection valve 9. Further, the fuel injection port 37a of the fuel injection valve 9 shown in FIG. 14 is on the convex side of FIG. 15, and the fuel injection port 37b is on the concave side.
[0020]
In this embodiment, since the flat piston 4 is used, the flow of the swirl flow generated in the cylinder 3 is hardly attenuated even near the top dead center. This is because the swirl flow does not collapse even near the top dead center because there is no uneven portion intended to reflect the fuel spray to the piston top surface and convey the fuel spray near the spark ignition device. For this reason, the air-fuel mixture 32 induced in the vicinity of the spark ignition device 10 can maintain a good stratified state. FIG. 16 shows a comparison between the present embodiment and the conventional swirl strength. In a conventional direct injection internal combustion engine, the air-fuel mixture is stratified by providing depressions and other irregularities on the top surface of the piston, so that the combustion chamber volume increases and the combustion chamber surface area increases. Led to lower ratio and increased heat loss. In the present invention, since the air-fuel mixture can be stratified even when a flat piston is used, it is possible to greatly contribute to an improvement in fuel consumption as compared with the conventional method. This advantage is the same even in the case of the full load operation region of the engine described below. The stratified charge combustion operation becomes possible by these series of actions, and the stratified charge combustion operation region in the low and medium load operation region is expanded as shown in FIG.
[0021]
Next, the operation state in which the air-fuel ratio in the full load operation region or the like is smaller than or close to the theoretical mixture ratio will be described with reference to FIG. In this case, a homogeneous combustion operation for forming a homogeneous air-fuel mixture in the cylinder 3 is performed. The swirl flow forming means 13 is controlled to be fully opened, and the air flowing into the cylinder 3 from the intake port 11 forms a tumble flow 40 in the cylinder 3.
[0022]
The fuel is injected into the cylinder 3 in the first half of the intake stroke, and the fuel is mixed with air by the tumble flow to be vaporized to become a homogeneous mixture and ignited by the spark ignition device 10. Further, in the present invention, since the fuel is injected in two directions, the spray becomes easier to entrain the surrounding air than the case of injecting the fuel in one direction, so that vaporization is facilitated. By this action, fuel vaporization is promoted and a good homogeneous mixture can be formed.
[0023]
In an actual internal combustion engine, the swirl flow in the cylinder is not a pure swirl flow or tumble flow as shown in the above figure, and the swirl flow in the cylinder usually includes a swirl component and a tumble component. It is. Even in such a case, the present invention can expand the stratified combustion operation region in the low and medium load operation region as shown in FIG. 17 according to the present invention.
[0024]
【The invention's effect】
While reducing the emission of unburned HC by favorably stratifying the air-fuel mixture in the low and medium load operation region of the engine in the low and medium load operation region of the direct injection internal combustion engine according to the present invention The stratified combustion operation area can be expanded.
[Brief description of the drawings]
FIG. 1 is an engine system diagram of a first embodiment of the present invention.
FIG. 2 is a top view of the engine cylinder of the first embodiment of the present invention.
FIG. 3 is a longitudinal sectional view of an engine cylinder according to the first embodiment of the present invention.
FIG. 4 is a view showing a low and medium load operation region of the direct injection type internal combustion engine according to the present invention.
FIG. 5 is a top view of a cylinder for explaining the operation of the stratified combustion operation during low load operation of the direct injection internal combustion engine according to the present invention.
FIG. 6 is a cross-sectional view of a cylinder for explaining the operation of stratified combustion operation during low load operation of the direct injection type internal combustion engine according to the present invention.
FIG. 7 is a perspective view of a cylinder for explaining the operation of stratified combustion operation during low load operation of the direct injection internal combustion engine according to the present invention.
FIG. 8 is a view showing an injection timing in a compression stroke injection of the direct injection type internal combustion engine according to the present invention.
FIG. 9 is a diagram for explaining the relationship between the relative speed of fuel spray and the vaporization speed of fuel spray with respect to in-cylinder flow.
FIG. 10 is a top view of a cylinder for explaining the stratification of the air-fuel mixture during low load operation of the direct injection type internal combustion engine according to the present invention.
FIG. 11 is a top view of a cylinder for explaining the operation of the stratified charge combustion operation during a medium load operation of the direct injection type internal combustion engine according to the present invention.
FIG. 12 is an overall view of a fuel injection valve according to the present invention.
FIG. 13 is a schematic view showing an example of a nozzle shape of a fuel injection valve according to the present invention.
FIG. 14 is a schematic view showing an example of a nozzle shape of a fuel injection valve according to the present invention.
FIG. 15 is a schematic view showing an angle of attachment of a fuel injection valve to a cylinder according to the present invention.
FIG. 16 is a comparison between the present invention and the prior art for maintaining swirl flow near top dead center.
FIG. 17 is a diagram showing an enlargement of a lean operation region according to the present invention.
FIG. 18 is a longitudinal sectional view of an engine cylinder for explaining the operation of the homogeneous combustion operation during high load operation of the direct injection type internal combustion engine according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine, 3 ... Cylinder, 4 ... Piston, 5 ... Cylinder head, 6 ... Combustion chamber, 7 ... Intake valve, 8 ... Exhaust valve, 9 ... Fuel injection valve, 10 ... Spark ignition device, 11 ... Intake port, 12 ... exhaust port, 13 ... swirl flow generating means, 29 ... fuel spray, 30 ... swirl flow, 31 ... jet flow induced behind the other spray, 40 ... tumble flow.

Claims (6)

ピストンが往復動する燃焼室内に燃料を直接噴射する燃料噴射弁と、前記燃焼室に装着された火花点火装置と、前記燃焼室に供給される空気流に旋回を与える旋回流形成装置を備えた筒内直接噴射式内燃機関において、
当該機関の低,中負荷運転領域において、
前記燃料噴射弁は燃料噴霧を2方向に噴射し、その一方の噴霧は前記旋回流に対向する速度成分を持ち、また、他方の噴霧は前記旋回流に沿った方向の速度成分を持ち、且つ前記他方の噴霧は前記一方の噴霧の噴霧密度より濃い噴霧密度を有し、
前記一方の噴霧の噴霧角度は前記他方の噴霧の噴霧角度より広角である
ことを特徴とする筒内直接噴射式内燃機関。
A fuel injection valve that directly injects fuel into a combustion chamber in which a piston reciprocates, a spark ignition device mounted in the combustion chamber, and a swirl flow forming device that swirls the air flow supplied to the combustion chamber. In a direct injection internal combustion engine,
In the low and medium load operation area of the engine,
The fuel injection valve injects fuel spray in two directions, one of the sprays having a velocity component opposite to the swirl flow, and the other spray having a velocity component in a direction along the swirl flow; and the other of the spray will have a darker spray density than the spray density of the spray of the one,
The in-cylinder direct injection internal combustion engine, wherein the spray angle of the one spray is wider than the spray angle of the other spray .
請求項1に記載のものにおいて、前記一方の噴霧が前記空気の旋回流と衝突して前記他方の噴霧の後方に引き続く着火用混合気として火花点火装置の近傍に搬送され、前記空気の旋回流によって先行して搬送された前記他方の噴霧と空気との混合気が燃焼用混合気として着火後の燃焼に寄与することを特徴とする筒内直接噴射式内燃機関。  2. The swirl flow of the air according to claim 1, wherein the one spray collides with the swirling flow of air and is conveyed to the vicinity of the spark ignition device as an ignition mixture continuing behind the other spray. An in-cylinder direct injection internal combustion engine characterized in that the air-fuel mixture of the other spray and air previously conveyed by the air contributes to combustion after ignition as a combustion air-fuel mixture. 請求項1に記載のものにおいて、前記他方の噴霧は前記一方の噴霧より噴霧距離が長く、且つ前記他方の噴霧は前記火花点火装置方向に向いていることを特徴とする筒内直接噴射式内燃機関。2. The direct injection internal combustion engine according to claim 1, wherein the other spray has a spray distance longer than that of the first spray, and the second spray is directed toward the spark ignition device. organ. 請求項1に記載のものにおいて、前記一方の噴霧は前記燃焼室の周壁方向に向いており、前記他方の噴霧は点火プラグ方向に向いていることを特徴とする筒内直接噴射式内燃機関。2. The direct injection type internal combustion engine according to claim 1, wherein the one spray is directed toward the peripheral wall of the combustion chamber and the other spray is directed toward the spark plug. 請求項に記載のものにおいて、前記一方の噴霧は前記ピストンの方向に向いており、前記他方の噴霧は点火プラグ方向に向いていることを特徴とする筒内直接噴射式内燃機関。2. The direct injection type internal combustion engine according to claim 1 , wherein the one spray is directed toward the piston and the other spray is directed toward the spark plug. 請求項1ないし5に記載のものにおいて、前記ピストンの上端面がフラットであることを特徴とする筒内直接噴射式内燃機関。  6. The direct injection type internal combustion engine according to claim 1, wherein an upper end surface of the piston is flat.
JP2001177881A 2001-06-13 2001-06-13 In-cylinder direct injection internal combustion engine Expired - Fee Related JP3948225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177881A JP3948225B2 (en) 2001-06-13 2001-06-13 In-cylinder direct injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177881A JP3948225B2 (en) 2001-06-13 2001-06-13 In-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002371852A JP2002371852A (en) 2002-12-26
JP3948225B2 true JP3948225B2 (en) 2007-07-25

Family

ID=19018658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177881A Expired - Fee Related JP3948225B2 (en) 2001-06-13 2001-06-13 In-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3948225B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930365B2 (en) * 2007-12-26 2012-05-16 トヨタ自動車株式会社 In-cylinder direct injection internal combustion engine
JP5257054B2 (en) * 2008-12-24 2013-08-07 マツダ株式会社 Spark ignition direct injection engine
JP5262991B2 (en) * 2009-05-22 2013-08-14 マツダ株式会社 Intake control system for spark ignition direct injection engine
JP6923326B2 (en) * 2016-03-30 2021-08-18 本田技研工業株式会社 Internal combustion engine
JP6642539B2 (en) * 2017-08-25 2020-02-05 マツダ株式会社 Control device for compression ignition engine

Also Published As

Publication number Publication date
JP2002371852A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
US6138639A (en) In-cylinder direct-injection spark-ignition engine
US6725649B2 (en) Control apparatus for a direct-injection, spark-ignition engine
US6341591B1 (en) Direct fuel injection-type spark ignition internal combustion engine
US5979399A (en) Internal combustion engine with spark ignition
JPH10299537A (en) Cylinder injection type spark ignition engine
JP3948225B2 (en) In-cylinder direct injection internal combustion engine
US6267096B1 (en) Three-valve cylinder head system
CN105986877A (en) Internal combustion engine
US7152572B2 (en) Internal combustion engine
EP1316697A1 (en) Cylinder injection type spark ignition engine
JPH02125911A (en) Cylinder direct injection internal combustion engine
JPH09280055A (en) Direct cylinder injection type spark ignition engine
JP2007100547A (en) Reciprocating piston type spark ignition system direct injection engine
CA1194744A (en) Suction system for internal combustion engine
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2513612Y2 (en) Stratified combustion internal combustion engine
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2004316568A (en) Cylinder direct injection type internal combustion engine
JP2005220768A (en) Combustion method for cylinder direct injection engine
JP3787172B2 (en) Vortex chamber diesel engine
JP4082277B2 (en) In-cylinder direct injection CNG engine
JPH06159075A (en) Intake system for engine
KR200174491Y1 (en) The structure of combustion chamber for automotive engines
JP3956539B2 (en) In-cylinder injection spark ignition engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

LAPS Cancellation because of no payment of annual fees