JP2004316568A - Cylinder direct injection type internal combustion engine - Google Patents

Cylinder direct injection type internal combustion engine Download PDF

Info

Publication number
JP2004316568A
JP2004316568A JP2003112816A JP2003112816A JP2004316568A JP 2004316568 A JP2004316568 A JP 2004316568A JP 2003112816 A JP2003112816 A JP 2003112816A JP 2003112816 A JP2003112816 A JP 2003112816A JP 2004316568 A JP2004316568 A JP 2004316568A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection valve
stratified
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003112816A
Other languages
Japanese (ja)
Inventor
Koji Hiratani
康治 平谷
Isamu Hotta
勇 堀田
Masaaki Kubo
賢明 久保
Kazumichi Itonaga
一路 糸永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003112816A priority Critical patent/JP2004316568A/en
Publication of JP2004316568A publication Critical patent/JP2004316568A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder direct injection type internal combustion engine realizing combustion with good combustion stability and fuel consumption performance, and less exhaust emission regardless of fluctuation of load conditions. <P>SOLUTION: The cylinder direct injection type internal combustion engine is provided with a fuel injection valve 11a with a narrow spray angle generating stratified air-fuel mixture around a spark plug 12 being guided by a cavity 4A formed on a piston crown surface, and a fuel injection valve 11b with the wide spray angle generating the stratified air-fuel mixture around the spark plug 12 being oriented to directly spray the spark plug 12. On a stratified high load operating condition, the stratified air-fuel mixture is generated by the fuel injection valve 11a, and on a stratified low load operating condition, the stratified air-fuel mixture is generated by the fuel injection valve 11b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室内に直接燃料を噴射して点火プラグまわりに成層混合気を生成し成層燃焼を行う成層運転条件を持つ筒内直接噴射式内燃機関に関する。
【0002】
【従来の技術】
従来、筒内直接噴射式内燃機関としては、特許文献1に開示されるものがあった。
【0003】
このものは、燃焼室の中央に、略中空円錐状に燃料を噴射する燃料噴射弁を備えると共に、燃料噴霧が内周壁に鋭角に衝突するキャビティをピストン冠面に形成し、前記キャビティによる誘導でキャビティ上方に成層混合気を生成する構成である。
【0004】
【特許文献1】
特開平11−082028号公報
【0005】
【発明が解決しようとする課題】
ところで、上記従来の筒内直接噴射式内燃機関では、成層混合気の大きさは概ねキャビティの形状によって決められることになるが、成層運転条件における負荷によって要求される成層混合気の大きさが異なる。
【0006】
このため、ある負荷条件で燃焼安定性及び燃費性能が良く、かつ、排気エミションの少ない燃焼を実現させるべくキャビティ形状を決定すると、負荷の異なる成層燃焼において燃焼安定性や燃費性能を悪化させることになってしまう。
【0007】
例えば、高負荷側にキャビティ形状を適合させると、低負荷での成層運転において、点火プラグまわりの成層混合気がリーンとなって、燃焼安定性が悪化して燃費が低下し、逆に、低負荷側にキャビティ形状を適合させると、点火プラグまわりの成層混合気がリッチとなり、スモークや未燃HCが増加する。
【0008】
本発明は上記問題点に鑑みなされたものであり、成層運転における負荷条件が変化しても、点火プラグまわりの成層混合気の空燃比を適正に制御でき、燃焼安定性及び燃費性能が良く、かつ、排気エミションの少ない燃焼を実現できる筒内直接噴射式内燃機関を提供することを目的とする。
【0009】
【課題を解決するための手段】
そのため、本発明に係る筒内直接噴射式内燃機関では、燃焼室内に直接燃料を噴射する燃料噴射弁として、噴霧角が相互に異なる2本の燃料噴射弁を設け、成層運転条件における機関負荷に応じて使用する燃料噴射弁を切り換え成層混合気を生成する構成とした。
【0010】
【発明の効果】
上記構成によると、成層運転の機関負荷条件によって、噴霧角の比較的狭い燃料噴射弁と、噴霧角の比較的広い燃料噴射弁とを使い分けるので、機関負荷条件が異なっても、点火プラグまわりに生成される成層混合気の空燃比を適正に制御することが可能となり、負荷条件が変化しても、燃焼安定性及び燃費性能が良く、かつ、排気エミションの少ない燃焼を実現できる。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は、実施形態における筒内直接噴射式内燃機関の構成図である。
【0012】
この図1において、筒内直接噴射式内燃機関は、点火プラグまわりに成層混合気を生成し成層燃焼を行う成層運転条件を持つ機関であって、燃焼室1と、燃焼室1を形成するシリンダヘッド2と、シリンダブロック3と、ピストン4と、吸気ポート5と、排気ポート6と、吸気弁7と、排気弁8と、吸気弁用カム9と、排気弁用カム10と、燃料噴射弁11a,11bと、点火プラグ12とを備えて構成される。
【0013】
前記燃料噴射弁11a,11bによる燃料噴射及び点火プラグ12による点火は、マイクロコンピュータを含んで構成される機関コントロールユニット13によって制御される。
【0014】
前記燃料噴射弁11a,11bは、共に燃焼室1の中心付近に設置される。
前記燃料噴射弁11aは、成層運転条件のうち比較的高負荷運転条件において使用される噴霧角の狭い燃料噴射弁であって、略棒状の噴霧を形成する複数の噴孔を備え、圧縮行程後半における筒内圧力上昇時にも噴霧形状の変化が小さく、指向性の強いホールノズル噴射弁を用いる。
【0015】
また、燃料噴射弁11aの噴霧角は、点火プラグ12の先端に位置する点火プラグギャップが、噴霧外形線の上方のシリンダヘッド2側に位置するように設定され、更に、圧縮行程後半に設定される噴射時期において、噴霧外形線が後述するピストンキャビティ4Aからはみ出さないように噴霧角が設定される。
【0016】
これにより、燃料噴射弁11aからの燃料噴霧が点火プラグ12に直接かかることがなく、プラグかぶりを防止し、失火のない成層燃焼を実現できると共に、ピストンキャビティ4Aからの燃料のこぼれを防止し、未燃HCが少なく燃費の良い成層燃焼を実現できる。
【0017】
一方、前記燃料噴射弁11bは、成層運転条件のうち比較的低負荷運転条件において使用される噴霧角の広い燃料噴射弁であって、広い噴霧角で噴射するのが容易で、噴霧貫通力が弱く、周囲の空気を取り込み可燃混合気が生成しやすい利点を持つ、針弁が燃焼室側へ変位して開弁する外開き弁を用いる。
【0018】
また、前記燃料噴射弁11bの噴霧外形線がおおよそ点火プラグギャップを指向するよう噴霧角が設定される。
ここで、前記2本の燃料噴射弁11a,11bは、シリンダ軸線に対し,燃料噴射弁11bを取り付ける角度が、燃料噴射弁11aを取り付ける角度と比較して大きく設定される。
【0019】
即ち、燃料噴射弁11aは、シリンダの軸線に略沿って設置され、ピストン冠面に向けて下向きに燃料を噴射するのに対し、燃料噴射弁11bは、燃料噴射弁11aの側方に、中心側に向けて斜めに設置される。
【0020】
また、前記点火プラグ12は、前記燃料噴射弁11aを挟んで、前記燃料噴射弁11bに対向する位置に、中心側に向けて斜めに設置される。
前記ピストン4の冠面には、キャビティ4Aが凹陥形成される。
【0021】
前記キャビティ4Aは、シリンダ軸線に平行な軸を中心とする略円形の開口を形成し、下方に向けて徐々に広がる内周壁4aと、前記燃料噴射弁11aの噴霧が斜めに衝突して噴霧を前記内周壁4aに向けて誘導する、なだらかな凸形状又は平面の底面4cと、前記内周壁4aと底面4cとを滑らかに連続させる湾曲部4bと、から構成され、前記内周壁4aは、燃料噴射弁11aの先端近傍の軸線上の点を指向するように設定される。
【0022】
前記機関コントロールユニット13は、機関負荷を検出する負荷センサ14及び機関回転速度Neを検出する回転センサ15からの信号を入力し、これらセンサの信号に基づいて検出される機関負荷・機関回転速度から、点火プラグまわりに成層混合気を生成し成層燃焼を行う成層運転条件と、均質混合気を生成して均質燃焼を行う均質運転条件とのいずれであるかを判別する(図2参照)。
【0023】
更に、前記成層運転条件は、機関負荷に基づいて成層高負荷運転条件と成層低負荷運転条件とに区別される(図2参照)。
そして、前記均質運転条件では、噴霧角の比較的広い燃料噴射弁11bを用いて吸気行程に燃料を噴射させることで、筒内に均質な混合気を生成し、均質燃焼を行わせる。
【0024】
上記のように、均質運転条件において、均質混合気を生成しやすい噴霧角の広い燃料噴射弁11bを用いることで、燃焼が安定し、かつ、排気エミションの少ない均質燃焼を実現できる。
【0025】
一方、成層運転条件では、圧縮行程において燃料を噴射させることで、点火プラグまわりに成層混合気を生成し成層燃焼を行わせるが、成層高負荷運転条件では、噴霧角の比較的狭い燃料噴射弁11aを用いて燃料を噴射させ、成層低負荷運転条件では、噴霧角の比較的広い燃料噴射弁11bを用いて燃料を噴射させる。
【0026】
図3は、前記成層高負荷運転条件における噴霧及び混合気挙動を示す。
前記燃料噴射弁11aから噴射された燃料噴霧は、まず、キャビティ底面4cに衝突するが、噴霧進行方向と衝突点よりもシリンダ径方向外側の底面4cとがなす角度が鈍角になるよう設定されるから、底面4cに衝突した噴霧は、底面4cに沿ってシリンダ径方向外側に進む。
【0027】
そして、湾曲部4bに到達した噴霧は、滑らかな湾曲部4b及び連続する内周壁4aに誘導されて内周壁4aが指向する方向(燃料噴射弁11aに戻る方向)に進行方向を転じてキャビティ4Aから飛び出すことになり、結果、燃料噴霧は縦方向の旋回流となる。
【0028】
また、前記燃料噴射弁11aは、貫通力の強い棒状の噴霧を噴射するから、強い旋回流を生成でき、しかも、この旋回流は周囲の空気を巻き込むから、キャビティ4A上方に生成される成層混合気は、濃度むらのない均質な混合気となる。
【0029】
従って、たとえ大量の排気還流を行わせる場合であっても、安定した成層燃焼を実現でき、NOxの少ない、かつ、燃費性能に優れた成層燃焼を行わせることができる。
【0030】
図4は、成層低負荷運転条件における噴霧及び混合気挙動を示す。
成層低負荷運転条件においては、ピストンキャビティ4Aを用いず、燃料噴射弁11bから噴射された噴霧が直接点火プラグ12を指向することにより、点火プラグ12まわりに成層混合気を生成する。
【0031】
上記のようにして、燃料噴射弁11bから点火プラグ12付近に直接噴霧を輸送させる構成とし、かつ、広い噴霧角の噴霧を生成でき、噴霧貫通力が弱く、周囲の空気を取り込み可燃混合気が生成しやすい利点を持つ外開き弁を用いる構成とすれば、成層低負荷運転条件において、安定した成層燃焼を行わせることができる。
【0032】
尚、燃料噴射弁11bから点火プラグ12付近に直接噴霧を輸送させる成層低負荷運転条件においては、噴射時期と点火時期との間隔は、ピストンキャビティ4Aを用いて点火プラグまわりに成層混合気を生成させる成層高負荷運転条件と比較すると短くて良い。
【0033】
このため、燃料噴射弁11bに設定される噴射時期は、燃料噴射弁11aに設定される噴射時期と比較して同等から遅角側に設定され、換言すれば、燃料噴射弁11aに設定される噴射時期は、燃料噴射弁11bに設定される噴射時期と比較して同等から進角側に設定される。
【0034】
これにより、成層高負荷運転条件及び成層低負荷運転条件の双方で最適な噴射時期で燃料を噴射させることができる。
図5は、第2の実施形態における機関負荷・機関回転速度と燃焼方式との相関を示す。
【0035】
図5に示す燃焼方式マップは、成層運転条件が、成層高負荷運転条件,成層中負荷運転条件,成層低負荷運転条件の3つに区分される点が、図2に示される前記第1実施形態とは異なる。
【0036】
第2実施形態の成層高負荷運転条件,成層低負荷運転条件では、前記第1実施形態と同様に、噴霧角の狭い燃料噴射弁11a,噴霧角の広い燃料噴射弁11bをそれぞれ単独で用いて成層混合気を生成させるが、前記成層中負荷運転条件においては、燃料噴射弁11a,11bの双方を用いて成層混合気を生成させる。
【0037】
図6は、前記成層中負荷運転条件における噴霧および混合気挙動を示す。
前記第1の実施形態と同様に、燃料噴射弁11aに設定される噴射時期は、燃料噴射弁11bに設定される噴射時期よりも進角側であるため、燃料噴射弁11a,11bの双方を用いて成層混合気を生成させる成層中負荷運転条件においては、まず、燃料噴射弁11aの噴射が先に開始される。
【0038】
ここで、燃料噴射弁11aから噴射された噴霧は、成層高負荷運転条件と同様、噴霧流動により旋回流動を示す混合気を形成するが、成層高負荷運転条件と比較して燃料噴射量が少ないため、旋回流動が弱くなり、ピストンキャビティ4Aの底面付近に混合気塊が形成されやすくなる。
【0039】
前記燃料噴射弁11aの噴射に続き、燃料噴射弁11bの噴射が行われると、燃料噴射弁11bより噴射された噴霧は直接点火プラグ12方向を指向するよう設定されるため、噴射量が微少であっても点火プラグ12付近に成層混合気を生成する。
【0040】
そして、燃料噴射弁11aより噴射されピストンキャビティ4A底面付近に生成される混合気塊と、燃料噴射弁11bより噴射され点火プラグ12付近に生成される混合気塊との2つの混合気塊により、安定かつ排気エミッションの少ない成層燃焼が実現する。
【0041】
図7は、機関負荷と燃料噴射量との関係、及び、成層中負荷運転条件における2本の燃料噴射弁11a,11bの噴射量分担を示す。
この図7に示すように、成層低負荷運転条件から成層中負荷運転条件に移行した直後の負荷においては、全燃料噴射量のうちの大部分を燃料噴射弁11bより噴射する。
【0042】
その後、機関負荷の上昇に伴って全燃料噴射量は増加するが、その中において、燃料噴射弁11bの噴射量を減少させ、相対的に燃料噴射弁11aの燃料噴射量を増加させるようにしてあり、成層中負荷運転条件から成層高負荷運転条件に移行する直前においては、全燃料噴射量のうちの大部分を燃料噴射弁11aより噴射させる。
【0043】
上記のようにして、成層中負荷運転条件での噴射量分担を変化させれば、成層中負荷運転条件において最適な混合気場を生成することができ、安定した成層燃焼を実現できると共に、機関負荷の上昇と共に成層高負荷運転条件における旋回流動を持つ成層混合気が形成しやすくなり、成層高負荷運転条件への移行が速やかに行われる。
【0044】
尚、本実施形態は、2本の吸気弁7と、2本の排気弁8をもつ4弁式内燃機関を想定しているが、吸気弁が2本,排気弁が1本の3弁式内燃機関や、吸気弁1本,排気弁1本の2弁式内燃機関にも本発明を適用可能であり、弁数が少ないと、2本の燃料噴射弁及び1本の点火プラグをシリンダヘッドにレイアウトする自由度が高くなり、本発明で説明した成層燃焼の実現がより容易となる。
【図面の簡単な説明】
【図1】本発明の実施形態における筒内直接噴射式内燃機関の構成図。
【図2】第1の実施形態における運転条件と燃焼方式の相関を示す線図。
【図3】成層高負荷運転条件における噴霧及び混合気挙動を示す状態図。
【図4】成層低負荷運転条件における噴霧及び混合気挙動を示す状態図。
【図5】第2の実施形態における運転条件と燃焼方式の相関を示す線図。
【図6】成層中負荷運転条件における噴霧及び混合気挙動を示す状態図。
【図7】成層中負荷運転条件における2本の燃料噴射弁の噴射分担を示す線図。
【符号の説明】
1…燃焼室
2…シリンダヘッド
3…シリンダブロック
4…ピストン
4A…キャビティ
5…吸気ポート
6…排気ポート
7…吸気弁
8…排気弁
9…吸気弁用カム
10…排気弁用カム
11…燃料噴射弁
12…点火プラグ
13…機関コントロールユニット
14…負荷センサ
15…回転センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an in-cylinder direct injection internal combustion engine having a stratified operation condition in which fuel is directly injected into a combustion chamber to generate a stratified mixture around a spark plug to perform stratified combustion.
[0002]
[Prior art]
Conventionally, as a direct injection type internal combustion engine, there has been one disclosed in Patent Document 1.
[0003]
This is provided with a fuel injection valve that injects fuel in a substantially hollow conical shape at the center of the combustion chamber, and forms a cavity in the piston crown surface where fuel spray collides with the inner peripheral wall at an acute angle, and is guided by the cavity. In this configuration, a stratified mixture is generated above the cavity.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-082028
[Problems to be solved by the invention]
By the way, in the above-described conventional direct injection type internal combustion engine, the size of the stratified mixture is generally determined by the shape of the cavity, but the required size of the stratified mixture varies depending on the load under the stratified operation conditions. .
[0006]
For this reason, if the cavity shape is determined so as to achieve good combustion stability and fuel consumption performance under a certain load condition and to achieve combustion with low exhaust emission, combustion stability and fuel consumption performance are deteriorated in stratified combustion with different loads. turn into.
[0007]
For example, when the cavity shape is adapted to the high load side, in the stratified operation at a low load, the stratified mixture around the ignition plug becomes lean, the combustion stability is deteriorated, and the fuel efficiency is reduced. When the cavity shape is adapted to the load side, the stratified mixture around the ignition plug becomes rich, and smoke and unburned HC increase.
[0008]
The present invention has been made in view of the above problems, and even when the load conditions in the stratified operation change, the air-fuel ratio of the stratified mixture around the ignition plug can be appropriately controlled, and the combustion stability and the fuel efficiency are good. It is another object of the present invention to provide a direct injection internal combustion engine capable of realizing combustion with low exhaust emissions.
[0009]
[Means for Solving the Problems]
Therefore, in the direct injection type internal combustion engine according to the present invention, two fuel injection valves having mutually different spray angles are provided as fuel injection valves for directly injecting fuel into the combustion chamber, and the engine load under stratified operation conditions is reduced. The fuel injection valve used is switched accordingly to generate a stratified mixture.
[0010]
【The invention's effect】
According to the above configuration, the fuel injection valve having a relatively narrow spray angle and the fuel injection valve having a relatively wide spray angle are selectively used depending on the engine load condition of the stratified operation. It is possible to appropriately control the air-fuel ratio of the generated stratified air-fuel mixture, and even if the load condition changes, it is possible to realize combustion with good combustion stability and fuel efficiency and low exhaust emission.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a configuration diagram of a direct injection internal combustion engine according to an embodiment.
[0012]
In FIG. 1, an in-cylinder direct injection internal combustion engine is an engine having stratified operation conditions for generating a stratified mixture around a spark plug and performing stratified combustion, and includes a combustion chamber 1 and a cylinder forming the combustion chamber 1. Head 2, cylinder block 3, piston 4, intake port 5, exhaust port 6, intake valve 7, exhaust valve 8, intake valve cam 9, exhaust valve cam 10, fuel injection valve 11 a and 11 b and a spark plug 12.
[0013]
Fuel injection by the fuel injection valves 11a and 11b and ignition by the spark plug 12 are controlled by an engine control unit 13 including a microcomputer.
[0014]
The fuel injection valves 11 a and 11 b are both installed near the center of the combustion chamber 1.
The fuel injection valve 11a is a fuel injection valve having a narrow spray angle used under a relatively high load operation condition in the stratified operation condition, and has a plurality of injection holes forming a substantially rod-shaped spray. The change in the spray shape is small even when the in-cylinder pressure rises, and a hole nozzle injection valve with high directivity is used.
[0015]
Further, the spray angle of the fuel injection valve 11a is set so that the spark plug gap located at the tip of the spark plug 12 is located on the cylinder head 2 side above the spray outline, and is further set in the latter half of the compression stroke. At the injection timing, the spray angle is set so that the spray outline does not protrude from the piston cavity 4A described later.
[0016]
This prevents the fuel spray from the fuel injection valve 11a from directly spraying on the ignition plug 12, prevents plug fogging, realizes stratified combustion without misfire, and prevents fuel from spilling from the piston cavity 4A. Stratified combustion with low unburned HC and good fuel economy can be realized.
[0017]
On the other hand, the fuel injection valve 11b is a fuel injection valve having a wide spray angle used under relatively low load operation conditions in the stratified operation conditions, and can easily inject at a wide spray angle, and has a low spray penetration force. An external opening valve is used, which is weak and easily takes in the surrounding air and easily generates a combustible air-fuel mixture, and the needle valve is displaced toward the combustion chamber and opened.
[0018]
Further, the spray angle is set such that the spray outline of the fuel injection valve 11b is approximately directed to the spark plug gap.
Here, in the two fuel injection valves 11a and 11b, the angle at which the fuel injection valve 11b is attached to the cylinder axis is set to be larger than the angle at which the fuel injection valve 11a is attached.
[0019]
That is, the fuel injection valve 11a is installed substantially along the axis of the cylinder and injects fuel downward toward the piston crown surface, while the fuel injection valve 11b is located at the center of the side of the fuel injection valve 11a. It is installed diagonally toward the side.
[0020]
The ignition plug 12 is installed obliquely toward the center at a position facing the fuel injection valve 11b with the fuel injection valve 11a interposed therebetween.
A cavity 4 </ b> A is formed in the crown of the piston 4.
[0021]
The cavity 4A forms a substantially circular opening centered on an axis parallel to the cylinder axis, and the spray from the fuel injection valve 11a obliquely collides with the inner peripheral wall 4a that gradually spreads downward and spray from the fuel injection valve 11a. The inner peripheral wall 4a includes a gentle convex or flat bottom surface 4c that is guided toward the inner peripheral wall 4a, and a curved portion 4b that smoothly connects the inner peripheral wall 4a and the bottom surface 4c. It is set so as to point to a point on the axis near the tip of the injection valve 11a.
[0022]
The engine control unit 13 receives signals from a load sensor 14 for detecting an engine load and a rotation sensor 15 for detecting an engine rotation speed Ne, and outputs signals from the engine load and the engine rotation speed detected based on the signals from these sensors. Then, it is determined whether the operation is a stratified operation condition in which a stratified mixture is generated around the spark plug to perform stratified combustion or a homogeneous operation condition in which a homogeneous mixture is generated to perform homogeneous combustion (see FIG. 2).
[0023]
Further, the stratified operation condition is classified into a stratified high load operation condition and a stratified low load operation condition based on the engine load (see FIG. 2).
Then, under the homogeneous operation conditions, the fuel is injected during the intake stroke using the fuel injection valve 11b having a relatively wide spray angle, thereby generating a homogeneous mixture in the cylinder and causing homogeneous combustion.
[0024]
As described above, by using the fuel injection valve 11b having a wide spray angle that easily generates a homogeneous air-fuel mixture under homogeneous operation conditions, homogeneous combustion with stable exhaust emission and low exhaust emission can be realized.
[0025]
On the other hand, in the stratified operation condition, the fuel is injected in the compression stroke to generate a stratified air-fuel mixture around the spark plug to perform stratified combustion. The fuel is injected by using the fuel injection valve 11b having a relatively wide spray angle under the stratified low load operation condition.
[0026]
FIG. 3 shows spray and mixture behavior under the stratified high load operation condition.
The fuel spray injected from the fuel injection valve 11a first collides with the cavity bottom surface 4c, but the angle formed between the spray advancing direction and the bottom surface 4c outside the collision point in the cylinder radial direction is set to be an obtuse angle. Therefore, the spray colliding with the bottom surface 4c advances outward in the cylinder radial direction along the bottom surface 4c.
[0027]
The spray that has reached the curved portion 4b is guided by the smooth curved portion 4b and the continuous inner peripheral wall 4a, and changes its traveling direction in a direction in which the inner peripheral wall 4a is directed (a direction in which the inner peripheral wall 4a returns) to the cavity 4A. , And as a result, the fuel spray becomes a vertical swirling flow.
[0028]
Further, since the fuel injection valve 11a injects a rod-shaped spray having a strong penetrating force, a strong swirling flow can be generated. In addition, since the swirling flow entrains surrounding air, the stratified mixing generated above the cavity 4A is generated. The air becomes a homogeneous mixture without concentration unevenness.
[0029]
Therefore, even if a large amount of exhaust gas is recirculated, stable stratified combustion can be realized, and stratified combustion with low NOx and excellent fuel economy can be performed.
[0030]
FIG. 4 shows spray and mixture behavior under stratified low load operating conditions.
Under the stratified low-load operation condition, the spray injected from the fuel injection valve 11b is directly directed to the ignition plug 12 without using the piston cavity 4A, thereby generating a stratified mixture around the ignition plug 12.
[0031]
As described above, the spray is directly transported from the fuel injection valve 11b to the vicinity of the ignition plug 12, and a spray having a wide spray angle can be generated, the spray penetration force is weak, and the surrounding air is taken in to form a combustible air-fuel mixture. With the configuration using the external opening valve having an advantage of being easily generated, stable stratified combustion can be performed under the stratified low load operation condition.
[0032]
In a stratified low-load operating condition in which spray is directly transported from the fuel injection valve 11b to the vicinity of the ignition plug 12, the interval between the injection timing and the ignition timing is determined by generating a stratified mixture around the ignition plug using the piston cavity 4A. It may be shorter in comparison with the stratified high-load operation condition.
[0033]
For this reason, the injection timing set for the fuel injection valve 11b is set to be equal to the retarded side as compared with the injection timing set for the fuel injection valve 11a, in other words, set for the fuel injection valve 11a. The injection timing is set to a value equal to or advanced from the injection timing set for the fuel injection valve 11b.
[0034]
Thereby, fuel can be injected at the optimal injection timing under both the stratified high load operation condition and the stratified low load operation condition.
FIG. 5 shows a correlation between the engine load / engine speed and the combustion mode in the second embodiment.
[0035]
The combustion mode map shown in FIG. 5 is different from the first embodiment shown in FIG. 2 in that the stratified operation condition is classified into three of a stratified high load operation condition, a stratified medium load operation condition, and a stratified low load operation condition. Different from form.
[0036]
Under the stratified high load operation condition and the stratified low load operation condition of the second embodiment, similarly to the first embodiment, the fuel injection valve 11a having a narrow spray angle and the fuel injection valve 11b having a wide spray angle are used independently. Although a stratified mixture is generated, the stratified mixture is generated using both the fuel injection valves 11a and 11b under the stratified medium load operation condition.
[0037]
FIG. 6 shows the behavior of spray and air-fuel mixture under the above-mentioned stratified medium load operation condition.
As in the first embodiment, the injection timing set for the fuel injection valve 11a is on the more advanced side than the injection timing set for the fuel injection valve 11b, so that both of the fuel injection valves 11a and 11b are switched. In the stratified medium load operation condition in which the stratified mixture is generated by using the fuel injection valve, first, the injection of the fuel injection valve 11a is started first.
[0038]
Here, the spray injected from the fuel injection valve 11a forms an air-fuel mixture showing a swirling flow by the spray flow as in the stratified high-load operation condition, but the fuel injection amount is smaller than in the stratified high-load operation condition. Therefore, the swirling flow is weakened, and an air-fuel mixture is easily formed near the bottom surface of the piston cavity 4A.
[0039]
When the injection of the fuel injection valve 11b is performed following the injection of the fuel injection valve 11a, the spray injected from the fuel injection valve 11b is set to be directly directed to the spark plug 12, so that the injection amount is small. Even if it is present, a stratified mixture is generated in the vicinity of the ignition plug 12.
[0040]
Then, a mixture of fuel and fuel, which is injected from the fuel injection valve 11a and is generated near the bottom surface of the piston cavity 4A, and a mixture of fuel which is injected from the fuel injection valve 11b and generated near the spark plug 12, are two types of gas mixture. Stable stratified combustion with low exhaust emissions is realized.
[0041]
FIG. 7 shows the relationship between the engine load and the fuel injection amount, and the injection amount sharing of the two fuel injection valves 11a and 11b under the stratified medium load operation condition.
As shown in FIG. 7, at the load immediately after the shift from the stratified low load operation condition to the stratified medium load operation condition, most of the total fuel injection amount is injected from the fuel injection valve 11b.
[0042]
Thereafter, the total fuel injection amount increases with an increase in the engine load. In the meantime, the injection amount of the fuel injection valve 11b is reduced, and the fuel injection amount of the fuel injection valve 11a is relatively increased. Yes, just before shifting from the stratified medium load operation condition to the stratified high load operation condition, most of the total fuel injection amount is injected from the fuel injection valve 11a.
[0043]
As described above, by changing the injection amount share under the stratified medium load operation condition, it is possible to generate the optimal mixture field under the stratified medium load operation condition, and realize the stable stratified combustion and the engine. As the load increases, a stratified mixture having a swirling flow under the stratified high-load operation condition is easily formed, and the shift to the stratified high-load operation condition is quickly performed.
[0044]
In this embodiment, a four-valve internal combustion engine having two intake valves 7 and two exhaust valves 8 is assumed, but a three-valve engine having two intake valves and one exhaust valve. The present invention can be applied to an internal combustion engine or a two-valve internal combustion engine having one intake valve and one exhaust valve. If the number of valves is small, two fuel injection valves and one spark plug can be used in the cylinder head. The degree of freedom in layout is increased, and the stratified combustion described in the present invention is more easily realized.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a direct injection type internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a diagram showing a correlation between operating conditions and a combustion method in the first embodiment.
FIG. 3 is a state diagram showing spray and air-fuel mixture behavior under stratified high load operation conditions.
FIG. 4 is a state diagram showing spray and air-fuel mixture behavior under stratified low-load operation conditions.
FIG. 5 is a diagram showing a correlation between operating conditions and a combustion method in a second embodiment.
FIG. 6 is a state diagram showing spray and mixture behavior under a stratified medium load operation condition.
FIG. 7 is a diagram showing injection sharing of two fuel injection valves under a stratified medium load operation condition.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Combustion chamber 2 ... Cylinder head 3 ... Cylinder block 4 ... Piston 4A ... Cavity 5 ... Intake port 6 ... Exhaust port 7 ... Intake valve 8 ... Exhaust valve 9 ... Intake valve cam 10 ... Exhaust valve cam 11 ... Fuel injection Valve 12 ... Spark plug 13 ... Engine control unit 14 ... Load sensor 15 ... Rotation sensor

Claims (14)

燃焼室内に直接燃料を噴射して点火プラグまわりに成層混合気を生成し成層燃焼を行う成層運転条件を持つ筒内直接噴射式内燃機関において、
前記燃焼室内に直接燃料を噴射する燃料噴射弁として、噴霧角が相互に異なる2本の燃料噴射弁を設け、前記成層運転条件における機関負荷に応じて使用する燃料噴射弁を切り換え成層混合気を生成することを特徴とする筒内直接噴射式内燃機関。
In a direct injection type internal combustion engine having a stratified operation condition in which fuel is directly injected into a combustion chamber to generate a stratified mixture around an ignition plug and perform stratified combustion,
As a fuel injection valve for directly injecting fuel into the combustion chamber, two fuel injection valves having mutually different spray angles are provided, and a fuel injection valve to be used is switched according to an engine load under the stratified operation condition, and a stratified fuel-air mixture is switched. An in-cylinder direct injection internal combustion engine characterized by generating.
前記噴霧角の狭い方の燃料噴射弁が、略棒状の噴霧を形成する複数の噴孔を備えることを特徴とする請求項1記載の筒内直接噴射式内燃機関。2. The direct injection internal combustion engine according to claim 1, wherein the fuel injection valve having the narrower spray angle has a plurality of injection holes forming a substantially rod-shaped spray. 前記噴霧角の広い方の燃料噴射弁が、針弁が燃焼室側へ変位して開弁する外開き弁であることを特徴とする請求項1又は2記載の筒内直接噴射式内燃機関。3. The direct injection type internal combustion engine according to claim 1, wherein the fuel injection valve having the wider spray angle is an open-open valve in which a needle valve is displaced toward a combustion chamber and opened. 前記噴霧角の狭い方の燃料噴射弁の噴霧外形線又はその延長線よりも、点火プラグ先端の点火位置が燃焼室の上方に位置するように設定したことを特徴とする請求項1〜3のいずれか1つに記載の筒内直接噴射式内燃機関。4. The fuel injection valve according to claim 1, wherein the ignition position at the tip of the ignition plug is located above the combustion chamber than the spray outline of the fuel injection valve having a smaller spray angle or an extension thereof. An in-cylinder direct injection internal combustion engine according to any one of the preceding claims. 前記噴霧角の広い方の燃料噴射弁の噴霧外形線又はその延長線が、点火プラグ先端の点火位置を指向するように設定したことを特徴とする請求項1〜4のいずれか1つに記載の筒内直接噴射式内燃機関。The spray profile of the fuel injection valve having a wider spray angle or an extension thereof is set so as to point to the ignition position at the tip of the spark plug. In-cylinder direct injection internal combustion engine. 前記2本の燃料噴射弁のうち、噴霧角が広い方の燃料噴射弁の噴霧が、直接点火プラグを指向するよう設定され、噴霧角が狭い方の燃料噴射弁の噴霧は、ピストン冠面に形成されるキャビティに誘導されて点火プラグまわりに成層混合気を生成するよう設定されることを特徴とする請求項1〜5のいずれか1つに記載の筒内直接噴射式内燃機関。Of the two fuel injection valves, the spray of the fuel injection valve having a wider spray angle is set so as to be directly directed to the ignition plug, and the spray of the fuel injection valve having the smaller spray angle is formed on the piston crown surface. The direct injection internal combustion engine according to any one of claims 1 to 5, wherein the direct injection type internal combustion engine is set to generate a stratified air-fuel mixture around the spark plug by being guided to the formed cavity. 前記キャビティが、シリンダ軸線に平行な軸を中心とする略円形の開口と、該開口から下方に向けて徐々に広がる内周壁と、前記噴霧角が狭い方の燃料噴射弁の噴霧が斜めに衝突して噴霧を前記内周壁に向けて誘導する底面と、前記内周壁と底面とを滑らかに連続させる湾曲部と、から構成されることを特徴とする請求項6記載の筒内直接噴射式内燃機関。The cavity has a substantially circular opening centered on an axis parallel to the cylinder axis, an inner peripheral wall that gradually expands downward from the opening, and oblique collision of the spray of the fuel injection valve with the narrower spray angle. 7. The direct injection type internal combustion engine according to claim 6, comprising: a bottom surface that guides the spray toward the inner peripheral wall by applying a pressure; and a curved portion that smoothly connects the inner peripheral wall and the bottom surface. organ. 圧縮行程後半において噴射された噴霧が前記キャビティ内に収まるように、前記噴霧角が狭い方の燃料噴射弁における噴霧角が設定されることを特徴とする請求項6又は7に記載の筒内直接噴射式内燃機関。The in-cylinder direct injection according to claim 6 or 7, wherein the spray angle of the fuel injection valve having the smaller spray angle is set so that the spray injected in the latter half of the compression stroke falls within the cavity. Injection type internal combustion engine. 前記噴霧角が広い方の燃料噴射弁の軸線が、前記噴霧角が狭い方の燃料噴射弁の軸線よりも、シリンダ軸線に対する傾斜角が大きく設定されることを特徴とする請求項1〜8のいずれか1つに記載の筒内直接噴射式内燃機関。The axis of the fuel injection valve having the wider spray angle is set to have a larger inclination angle with respect to the cylinder axis than the axis of the fuel injector having the smaller spray angle. An in-cylinder direct injection internal combustion engine according to any one of the preceding claims. 前記成層運転条件の高負荷側では噴霧角の狭い方の燃料噴射弁を用い、前記成層運転条件の低負荷側では噴霧角の広い方の燃料噴射弁を用いることを特徴とする請求項1〜9のいずれか1つに記載の筒内直接噴射式内燃機関。The fuel injection valve having a smaller spray angle is used on a high load side of the stratified operation condition, and a fuel injection valve having a larger spray angle is used on a low load side of the stratified operation condition. 10. The direct injection internal combustion engine according to any one of items 9 to 9. 前記成層運転条件の高負荷側では噴霧角の狭い方の燃料噴射弁を用い、前記成層運転条件の低負荷側では噴霧角の広い方の燃料噴射弁を用い、前記成層運転条件の中負荷域では、前記2本の燃料噴射弁の双方を用いることを特徴とする請求項1〜9のいずれか1つに記載の筒内直接噴射式内燃機関。On the high load side of the stratified operation condition, a fuel injection valve with a smaller spray angle is used, and on the low load side of the stratified operation condition, a fuel injection valve with a wider spray angle is used. The direct injection internal combustion engine according to any one of claims 1 to 9, wherein both of the two fuel injection valves are used. 前記成層運転条件の中負荷域において、機関負荷が高いほど噴霧角の狭い方の燃料噴射弁が噴射する燃料の割合を大きくし、相対的に噴霧角の広い方の燃料噴射弁が噴射する燃料の割合を小さくすることを特徴とする請求項11記載の筒内直接噴射式内燃機関。In the medium load region of the stratified operation condition, the higher the engine load, the greater the proportion of fuel injected by the fuel injection valve with a smaller spray angle and the greater the fuel injected by the fuel injector with a relatively larger spray angle. The direct injection type internal combustion engine according to claim 11, wherein the ratio of (i) is reduced. 前記噴霧角の狭い方の燃料噴射弁における噴射時期が、噴霧角の広い方の燃料噴射弁における噴射時期よりも、進角側に設定されることを特徴とする請求項1〜12のいずれか1つに記載の筒内直接噴射式内燃機関。The injection timing of the fuel injection valve having a smaller spray angle is set to be more advanced than the injection timing of the fuel injection valve having a larger spray angle. 2. The direct injection internal combustion engine according to claim 1. 前記成層運転条件よりも高負荷側に、筒内の混合気を均質化して均質燃焼を行う均質運転条件を設け、前記均質運転条件において、前記噴霧角の広い方の燃料噴射弁を用いて燃料噴射を行うことを特徴とする請求項1〜13のいずれか1つに記載の筒内直接噴射式内燃機関。On the higher load side than the stratified operation condition, a homogeneous operation condition for homogenizing the air-fuel mixture in the cylinder to perform homogeneous combustion is provided, and in the homogeneous operation condition, the fuel is sprayed using a fuel injection valve having a wider spray angle. The direct injection type internal combustion engine according to any one of claims 1 to 13, wherein injection is performed.
JP2003112816A 2003-04-17 2003-04-17 Cylinder direct injection type internal combustion engine Pending JP2004316568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112816A JP2004316568A (en) 2003-04-17 2003-04-17 Cylinder direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112816A JP2004316568A (en) 2003-04-17 2003-04-17 Cylinder direct injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004316568A true JP2004316568A (en) 2004-11-11

Family

ID=33472922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112816A Pending JP2004316568A (en) 2003-04-17 2003-04-17 Cylinder direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004316568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000907A1 (en) * 2005-06-28 2007-01-04 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
DE102008044243A1 (en) 2008-12-01 2010-06-02 Robert Bosch Gmbh Multi-cylinder internal-combustion engine for motor vehicle, has fuel injecting valves that are designed as multi-hole injecting valves with different fuel flows, where one of valves has less fuel flow in central installation position
CN109154248A (en) * 2016-05-19 2019-01-04 日立汽车系统株式会社 Combustion engine control

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000907A1 (en) * 2005-06-28 2007-01-04 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
JP2007009722A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Direct injection type spark-ignition internal combustion engine
KR100926660B1 (en) 2005-06-28 2009-11-17 도요타 지도샤(주) In-cylinder injection spark ignition internal combustion engine
US7926463B2 (en) 2005-06-28 2011-04-19 Toyota Jidosha Kabushiki Kaisha Cylinder injection type spark ignition internal combustion engine
DE102008044243A1 (en) 2008-12-01 2010-06-02 Robert Bosch Gmbh Multi-cylinder internal-combustion engine for motor vehicle, has fuel injecting valves that are designed as multi-hole injecting valves with different fuel flows, where one of valves has less fuel flow in central installation position
CN109154248A (en) * 2016-05-19 2019-01-04 日立汽车系统株式会社 Combustion engine control
US20190107041A1 (en) * 2016-05-19 2019-04-11 Hitachi Automotive Systems, Ltd. Internal Combustion Engine Control Device

Similar Documents

Publication Publication Date Title
JP4501832B2 (en) Spark ignition direct injection engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
KR20020076347A (en) Incylinder direct injection spark ignition engine
US20100147261A1 (en) Gasoline engine
US20120085316A1 (en) Direct-injection internal combustion engine with injection nozzle
JP2004232583A (en) Cylinder direct injection spark ignition type internal combustion engine
JP3627546B2 (en) Direct cylinder injection spark ignition engine
JP2007327464A (en) Direct injection type spark ignition internal combustion engine
JP2003328759A (en) Direct injection, spark ignition type internal-combustion engine
JPWO2002020957A1 (en) In-cylinder injection spark ignition engine
JP2004316568A (en) Cylinder direct injection type internal combustion engine
JP2007100547A (en) Reciprocating piston type spark ignition system direct injection engine
JP4046055B2 (en) In-cylinder internal combustion engine
JP4055292B2 (en) Direct injection spark ignition internal combustion engine fuel injection control device
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4108806B2 (en) Combustion chamber structure of in-cylinder direct injection spark ignition engine
JPH11210472A (en) Structure of combustion chamber in cylinder injection type spark ignition engine
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4075471B2 (en) In-cylinder direct injection internal combustion engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP5067566B2 (en) In-cylinder injection type spark ignition internal combustion engine
JP4029737B2 (en) Direct-injection spark ignition internal combustion engine
JP4151570B2 (en) In-cylinder internal combustion engine
JP2005140006A (en) Cylinder direct injection internal combustion engine
JP4134735B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device