JP2006037794A - Cylinder direct injection type spark ignition internal combustion engine - Google Patents

Cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006037794A
JP2006037794A JP2004216747A JP2004216747A JP2006037794A JP 2006037794 A JP2006037794 A JP 2006037794A JP 2004216747 A JP2004216747 A JP 2004216747A JP 2004216747 A JP2004216747 A JP 2004216747A JP 2006037794 A JP2006037794 A JP 2006037794A
Authority
JP
Japan
Prior art keywords
dead center
fuel
top dead
injection
compression top
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004216747A
Other languages
Japanese (ja)
Inventor
Katsuaki Uchiyama
克昭 内山
Hitoshi Ishii
仁 石井
Toshiya Kono
十史弥 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004216747A priority Critical patent/JP2006037794A/en
Priority to CN2005100849620A priority patent/CN1727651B/en
Priority to CNB2005100849616A priority patent/CN100422532C/en
Priority to US11/189,058 priority patent/US7194999B2/en
Priority to DE602005010154T priority patent/DE602005010154D1/en
Priority to EP05016245A priority patent/EP1621748A1/en
Priority to EP05016211A priority patent/EP1621747B1/en
Priority to US11/189,128 priority patent/US7134421B2/en
Publication of JP2006037794A publication Critical patent/JP2006037794A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To prevent worsening of HC and smoke due to adhesion of fuel liquid droplet to a piston 3. <P>SOLUTION: In the warm-up completion state in which the cooling water temperature of an internal combustion engine exceeds 80°C, normal stratified combustion operation and homogeneous combustion operation are performed. In the cool-down state in which the cooling water temperature is 80°C or less, in order to accelerate the activation of a catalytic converter and reduce the quantity of HC discharged, the top dead center injection operation is performed. In the top dead center injection operation, the injection start timing is before the compression top dead center, the injection end timing is after the compression top dead center, and fuel injection is performed extending over the compression top dead center. The ignition timing is after the compression top dead center delayed from the injection start timing by 15° to 20°CA. At the compression top dead center, a piston 3 approaches a fuel injection valve 15, and atomized fuel F collides with the base 16a in the oblique direction still in the high-energy state without little decreasing the speed, so that it is repelled by the base 16a and reflected toward the ignition plug 10 side. The quantity of liquid drops adhering to the base 16a becomes very small so that HC and smoke can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、その噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and more particularly to control of the injection timing and ignition timing.

特許文献1には、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態にあるときに、圧縮行程中に燃料噴射を行い、かつ、点火時期を圧縮上死点よりも遅角させる技術が開示されている。
特開2001−336467号公報
Patent Document 1 discloses that when an exhaust purification catalytic converter is in an unwarmed state lower than an activation temperature, fuel is injected during the compression stroke, and the ignition timing is retarded from the compression top dead center. Technology is disclosed.
JP 2001-336467 A

内燃機関冷機時の触媒の早期活性化を図るべく排気ガス温度を昇温させるとともにHCを低減するためには、点火時期をなるべく大きく遅角させることが望ましいが、点火時期を大幅に遅角すると、燃焼安定度が悪化するため、燃焼安定度の観点から定まるある限界よりも遅角することはできない。上記従来の技術では、特に冷機時のような条件下において、安定した燃焼の確保が難しく、燃焼安定度から定まる点火時期の遅角限界が比較的進み側にあり、十分な点火時期の遅角を実現することができない。   In order to raise the exhaust gas temperature and reduce HC in order to achieve early activation of the catalyst when the internal combustion engine is cold, it is desirable to retard the ignition timing as much as possible, but if the ignition timing is significantly retarded Since the combustion stability deteriorates, it cannot be retarded from a certain limit determined from the viewpoint of combustion stability. In the above-described conventional technology, it is difficult to ensure stable combustion, particularly under conditions such as cold, the ignition timing delay limit determined from the combustion stability is relatively advanced, and the ignition timing is sufficiently retarded. Cannot be realized.

また上記従来技術では、機関冷機時に、ピストンがストロークの半ばにある中途半端な圧縮行程中に燃料噴射を行うので、燃料噴霧が液滴のままピストン頂部に付着しやすくなり、HCやスモークの原因となる。   Further, in the above prior art, when the engine is cooled, the fuel injection is performed during the halfway compression stroke in which the piston is in the middle of the stroke, so that the fuel spray easily adheres to the top of the piston as a droplet, causing HC and smoke. It becomes.

この発明は、筒内に直接燃料を噴射する燃料噴射弁が燃焼室の側部に配置され、ピストン頂部へ向かって斜め下方へ燃料を噴射するように構成されているとともに、略中央部に点火プラグを備えてなる筒内直接噴射式火花点火内燃機関において、所定の運転状態のときに、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、この圧縮上死点付近で噴射された燃料噴霧が、ピストン頂部の面で反射するように、その噴霧方向が設定されていることを特徴としている。   In the present invention, a fuel injection valve for directly injecting fuel into a cylinder is arranged at a side portion of the combustion chamber, and is configured to inject fuel obliquely downward toward the top of the piston. In a direct injection type spark ignition internal combustion engine having a plug, fuel injection is performed in a predetermined operating state so that the injection start timing is before the compression top dead center and the injection end timing is after the compression top dead center. In addition, the ignition is performed after the compression top dead center delayed from the injection start timing, and the fuel spray injected near the compression top dead center is reflected by the surface of the piston top. Thus, the spray direction is set.

望ましくは、上記の燃料噴霧が、ピストン頂部の面に、10°〜50°の角度でもって衝突する。より小さい角度で面に衝突すれば、燃料液滴が面に付着することなく反射する。   Desirably, the fuel spray impinges on the surface of the top of the piston at an angle of 10 ° to 50 °. If it collides with the surface at a smaller angle, the fuel droplets are reflected without adhering to the surface.

例えば、上記ピストン頂部に、緩く湾曲した底面を有する凹部が設けられており、この凹部の底面に燃料噴霧が衝突して反射するようになっている。   For example, a concave portion having a gently curved bottom surface is provided at the top of the piston, and the fuel spray collides with the bottom surface of the concave portion and is reflected.

また本発明では、上記のように圧縮上死点を跨ぐ期間に燃料噴射を行うときに、燃圧を高く補正するようにしてもよい。これにより、燃料液滴はピストン頂部の面により強く衝突し、より確実に反射する。   In the present invention, the fuel pressure may be corrected to be high when fuel injection is performed during the period across the compression top dead center as described above. As a result, the fuel droplets collide more strongly with the top surface of the piston and are more reliably reflected.

また本発明では、圧縮上死点付近で噴射された燃料噴霧が衝突するピストン頂部の面に、撥油性を有するコーティングを施すようにしてもよい。これにより、燃料液滴の付着がより少なくなる。コーティング材料としては、例えばポリ四フッ化エチレン(PTFE)等が用いられる。   In the present invention, an oil-repellent coating may be applied to the surface of the piston top where the fuel spray injected near the compression top dead center collides. This reduces the adhesion of fuel droplets. For example, polytetrafluoroethylene (PTFE) is used as the coating material.

図1は、本発明の燃料噴射期間および点火時期を筒内圧変化とともに例示したものであり、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となる。その間の噴射期間Tの長さは、噴射量に相当する。点火時期ADVは、圧縮上死点(TDC)後であり、噴射開始時期ITSから所定クランク角(例えば15°CA〜20°CA)遅れた時期となる。この遅れ期間Dは、一般に、燃料噴射弁から点火プラグまでの距離に相関する。   FIG. 1 exemplifies the fuel injection period and ignition timing of the present invention together with the in-cylinder pressure change. The injection start timing ITS is before compression top dead center (TDC), and the injection end timing ITE is compression top dead center (TDC). Later. The length of the injection period T during that time corresponds to the injection amount. The ignition timing ADV is after compression top dead center (TDC), and is a timing delayed by a predetermined crank angle (for example, 15 ° CA to 20 ° CA) from the injection start timing ITS. This delay period D generally correlates with the distance from the fuel injection valve to the spark plug.

図2は、内燃機関の1サイクル中のピストンストロークによるピストン位置変化量と燃焼室の体積変化量とを示したものである。図示するように、単位クランク角当たりの変化量は、ストロークの中間位置付近で最も大きく、下死点(BDC)付近ならびに上死点(TDC)付近では、非常に小さい。従って、本発明で燃料噴射を行う圧縮上死点付近は、ピストン位置変化や体積変化が非常に小さく、ピストンの動き等に影響されない安定した場が形成され得る。   FIG. 2 shows the piston position change amount and the combustion chamber volume change amount due to the piston stroke in one cycle of the internal combustion engine. As shown in the figure, the amount of change per unit crank angle is the largest near the middle position of the stroke, and is very small near the bottom dead center (BDC) and near the top dead center (TDC). Therefore, in the vicinity of the compression top dead center where the fuel injection is performed in the present invention, the piston position change and volume change are very small, and a stable field that is not affected by the piston movement or the like can be formed.

また、筒内には、吸気行程において、スワール流やタンブル流といった比較的大きな流れのガス流動が発生し、圧縮行程においても残存しているが、このようなスワール流やタンブル流といった大きな流れは、ピストンが圧縮上死点付近に達して燃焼室が狭小なものとなると、急激に崩壊する。図3は、種々の機関回転数の下での燃焼室内の大きな流れの流速変化を示したものであり、図示するように、回転数に応じた強さのスワール流ないしタンブル流が発生するが、圧縮上死点(360°CA)に達する前に、急激に崩壊する。従って、本発明において圧縮上死点付近で噴射された燃料噴霧は、スワール流やタンブル流のような大きな流れにより動かされることがなく、点火プラグに対し、常に安定した形で噴霧を形成することが可能である。   In the cylinder, a relatively large gas flow such as a swirl flow or a tumble flow is generated in the intake stroke and remains in the compression stroke. However, a large flow such as a swirl flow or a tumble flow is When the piston reaches near the compression top dead center and the combustion chamber becomes narrow, it collapses rapidly. FIG. 3 shows a change in flow velocity of a large flow in the combustion chamber under various engine speeds. As shown in the figure, a swirl flow or a tumble flow having a strength corresponding to the rotation speed is generated. Collapses rapidly before reaching compression top dead center (360 ° CA). Therefore, in the present invention, the fuel spray injected near the compression top dead center is not moved by a large flow such as a swirl flow or a tumble flow, and always forms a spray in a stable manner on the spark plug. Is possible.

一方、上記のスワール流やタンブル流といった比較的大きな流れのエネルギは、その流れの崩壊に伴って、微小な乱れへと遷移する。従って、燃焼室内の微小な乱れは、圧縮上死点の直前に、急激に増大する。図4は、図3に示した流れの崩壊に伴って生じる微小な乱れの強さを、流速に換算していわゆる乱れ流速として示したものであり、図示するように、圧縮上死点直前に、乱れが大きく増加する。このような微小な乱れは、燃焼場の活性化に寄与し、燃焼改善作用が得られる。   On the other hand, the energy of a relatively large flow such as the swirl flow or the tumble flow described above transitions to minute turbulence as the flow collapses. Therefore, the minute disturbance in the combustion chamber increases rapidly just before the compression top dead center. FIG. 4 shows the intensity of the minute turbulence caused by the collapse of the flow shown in FIG. 3 as a so-called turbulent flow rate converted to a flow velocity, and as shown in the figure, immediately before the compression top dead center. , Disturbances increase greatly. Such minute disturbances contribute to the activation of the combustion field, and a combustion improving action is obtained.

つまり、燃料が噴射される圧縮上死点付近での燃焼室内の場は、噴霧を動かしてしまうような大きな流れが存在せず、かつ燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   In other words, the field in the combustion chamber near the compression top dead center where the fuel is injected does not have a large flow that moves the spray, and there are many minute disturbances that activate the combustion, It is a very stable place against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced.

また、上記のように燃料が噴射される圧縮上死点付近では、ピストンは上死点に近く、燃料噴射弁に接近している。従って、燃料噴射弁から噴射された燃料噴霧は、その速度が殆ど減衰せずに高エネルギー状態のままピストン頂部の面に斜め方向から衝突し、ここで弾かれて反射する。つまり、燃料噴霧の速度が大きなことから、付着する液滴量は少なく、大部分が反射する。そのため、燃料液滴の付着によるHCやスモークの悪化が抑制される。   In the vicinity of the compression top dead center where the fuel is injected as described above, the piston is close to the top dead center and is close to the fuel injection valve. Therefore, the fuel spray injected from the fuel injection valve collides with the surface of the top of the piston from an oblique direction while being in a high energy state with almost no damping, and is bounced and reflected here. That is, since the speed of fuel spraying is high, the amount of droplets that adhere is small and most of the light is reflected. Therefore, deterioration of HC and smoke due to the adhesion of fuel droplets is suppressed.

この発明によれば、圧縮上死点を跨ぐように燃料噴射期間を設定し、上死点付近にあるピストンの面に燃料噴霧を斜めに強く衝突させることにより、ピストン頂部への燃料液滴の付着を抑制でき、これに起因したHCやスモークを低減することができる。同時に、点火時期を圧縮上死点よりも大幅に遅角させた状態で安定した燃焼を得ることができ、例えば内燃機関の冷機時に、燃料液滴の付着抑制と相俟ってHC排出量を大幅に低減できるとともに、排気ガス温度を昇温させて触媒の早期活性化を図ることができる。   According to this invention, the fuel injection period is set so as to straddle the compression top dead center, and the fuel spray is strongly and obliquely collided with the surface of the piston near the top dead center. Adhesion can be suppressed, and HC and smoke resulting from this can be reduced. At the same time, stable combustion can be obtained with the ignition timing significantly retarded from the compression top dead center.For example, when the internal combustion engine is cold, the amount of HC emission is reduced in combination with the suppression of fuel droplet adhesion. The catalyst can be greatly reduced, and the exhaust gas temperature can be raised to activate the catalyst early.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図5〜図7は、この発明が適用される筒内直接噴射式火花点火内燃機関の一実施例を示しており、特に、図5,図6は、一つの気筒の構成を示し、図7は機関全体のシステム構成を示している。   5 to 7 show an embodiment of a direct injection type spark ignition internal combustion engine to which the present invention is applied. In particular, FIGS. 5 and 6 show the configuration of one cylinder. Indicates the system configuration of the entire organization.

図5,図6に示すように、シリンダブロック1に形成されたシリンダ2にピストン3が摺動可能に配置されているとともに、シリンダブロック1上面に固定されたシリンダヘッド4と上記ピストン3との間に、燃焼室5が形成されている。上記シリンダヘッド4には、吸気弁6によって開閉される吸気ポート7と、排気弁8によって開閉される排気ポート9と、が形成されている。1つの気筒に対し、一対の吸気弁6と一対の排気弁8とが設けられており、これらの4つの弁に囲まれた燃焼室5天井面中心部に、点火プラグ10が配置されている。また、この実施例では、運転状態によってタンブル流を強化することができるように、吸気ポート7内に、該吸気ポート7内を上下2つの流路に区画する隔壁11が設けられているとともに、その下側の流路を上流端で開閉するタンブル制御弁12が設けられている。当業者には容易に理解できるように、タンブル制御弁12によって下側の流路を閉塞した状態ではタンブル流が強化され、タンブル制御弁12を開いた状態ではタンブル流が弱まる。なお、このタンブル制御弁12は本発明において必ずしも必須のものではなく、また、これに代えて、公知のスワール制御弁を設けるようにしてもよい。   As shown in FIGS. 5 and 6, a piston 3 is slidably disposed in a cylinder 2 formed in the cylinder block 1, and a cylinder head 4 fixed to the upper surface of the cylinder block 1 and the piston 3 A combustion chamber 5 is formed between them. The cylinder head 4 is formed with an intake port 7 that is opened and closed by an intake valve 6 and an exhaust port 9 that is opened and closed by an exhaust valve 8. A pair of intake valves 6 and a pair of exhaust valves 8 are provided for one cylinder, and an ignition plug 10 is disposed at the center of the ceiling surface of the combustion chamber 5 surrounded by these four valves. . Further, in this embodiment, a partition wall 11 is provided in the intake port 7 so as to partition the intake port 7 into two upper and lower flow paths so that the tumble flow can be strengthened depending on the operation state. A tumble control valve 12 that opens and closes the lower flow path at the upstream end is provided. As can be easily understood by those skilled in the art, the tumble flow is strengthened when the lower flow path is closed by the tumble control valve 12, and the tumble flow is weakened when the tumble control valve 12 is opened. The tumble control valve 12 is not necessarily essential in the present invention, and a known swirl control valve may be provided instead.

上記シリンダヘッド4の吸気ポート7の下側、より詳しくは一対の吸気ポート7の中間部の位置には、筒内へ燃料を直接噴射する燃料噴射弁15が配置されている。つまり、この燃料噴射弁15は、燃焼室5の吸気弁6側の側部に位置し、平面図上において図示せぬピストンピンと直交する方向に沿って燃料を噴射するように配置されているとともに、図5の断面図上において、斜め下方を指向して配置されているが、下方への傾斜角は比較的小さく、つまり水平に近い方向へ燃料を噴射する。   A fuel injection valve 15 for directly injecting fuel into the cylinder is disposed below the intake port 7 of the cylinder head 4, more specifically at a position between the pair of intake ports 7. That is, the fuel injection valve 15 is located on the side of the combustion chamber 5 on the intake valve 6 side, and is disposed so as to inject fuel along a direction orthogonal to a piston pin (not shown) on the plan view. In the cross-sectional view of FIG. 5, it is arranged obliquely downward, but the downward inclination angle is relatively small, that is, the fuel is injected in a direction close to the horizontal.

一方、ピストン3の頂部は、ペントルーフ型をなす燃焼室5天井面の凹部に入り込むように凸部形状をなしているとともに、その中央部に、平面図上において略矩形をなす凹部16が形成されている。この凹部16の底面16aは、タンブル流に沿うように、比較的大きな曲率半径の緩い円弧面ないしは円弧に近似した湾曲面をなしている。つまり、上記底面16aは、燃料噴射弁15の噴霧中心線を含むピストンピンに直交する断面では、図5のように緩く湾曲した曲線となり、ピストンピン軸方向の断面では、一定深さの直線状となる。また、平面図上では、略矩形をなす凹部16の一方の側に燃料噴射弁15が臨み、他方の側の上方に点火プラグ10が位置している。   On the other hand, the top portion of the piston 3 has a convex shape so as to enter the concave portion of the ceiling surface of the combustion chamber 5 having a pent roof type, and a concave portion 16 having a substantially rectangular shape in a plan view is formed at the center thereof. ing. The bottom surface 16a of the recess 16 forms a loose arc surface having a relatively large radius of curvature or a curved surface approximating an arc so as to follow the tumble flow. That is, the bottom surface 16a has a gently curved curve as shown in FIG. 5 in a cross section perpendicular to the piston pin including the spray center line of the fuel injection valve 15, and a straight line having a constant depth in the cross section in the piston pin axial direction. It becomes. Further, in the plan view, the fuel injection valve 15 faces one side of the substantially rectangular recess 16 and the spark plug 10 is positioned above the other side.

図7に示すように、この実施例の内燃機関は、例えば直列4気筒機関であり、各気筒の排気ポート9が接続された排気通路21に、排気浄化用の触媒コンバータ22が設けられており、その上流側に、酸素センサ等の空燃比センサ23が配置されている。また、各気筒の吸気ポート7が接続された吸気通路24は、その入口側に、制御信号により開閉される電子制御スロットル弁25を備えている。上記排気通路21と上記吸気通路24との間には、排気還流通路26が設けられており、その途中に、排気還流制御弁27が介装されている。また、各気筒のタンブル制御弁12は、ソレノイドバルブ28を介して導入される吸入負圧により動作する負圧式タンブル制御アクチュエータ29によって、一斉に開閉される構成となっている。   As shown in FIG. 7, the internal combustion engine of this embodiment is, for example, an in-line four-cylinder engine, and a catalytic converter 22 for purifying exhaust gas is provided in an exhaust passage 21 to which an exhaust port 9 of each cylinder is connected. An air-fuel ratio sensor 23 such as an oxygen sensor is disposed on the upstream side. The intake passage 24 to which the intake port 7 of each cylinder is connected is provided with an electronically controlled throttle valve 25 that is opened and closed by a control signal on the inlet side. An exhaust gas recirculation passage 26 is provided between the exhaust passage 21 and the intake air passage 24, and an exhaust gas recirculation control valve 27 is interposed in the middle. Further, the tumble control valves 12 of the respective cylinders are configured to be simultaneously opened and closed by a negative pressure type tumble control actuator 29 that is operated by a suction negative pressure introduced via a solenoid valve 28.

また、上記燃料噴射弁15には、燃料ポンプ31およびプレッシャレギュレータ32によって所定圧力に調圧された燃料が、燃料ギャラリ33を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。また、各気筒の点火プラグ10は、イグニッションコイル34に接続されている。   The fuel injection valve 15 is supplied with the fuel adjusted to a predetermined pressure by the fuel pump 31 and the pressure regulator 32 via the fuel gallery 33. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. The ignition plug 10 of each cylinder is connected to an ignition coil 34.

上記内燃機関の燃料噴射時期や噴射量、点火時期等は、コントロールユニット35によって制御される。このコントロールユニット35には、アクセルペダル踏み込み量を検出するアクセル開度センサ30の検出信号や、クランク角センサ36の検出信号、空燃比センサ23の検出信号、冷却水温を検出する水温センサ37の検出信号、等が入力されている。   The fuel injection timing, injection amount, ignition timing, etc. of the internal combustion engine are controlled by the control unit 35. The control unit 35 includes a detection signal of an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal, a detection signal of a crank angle sensor 36, a detection signal of an air-fuel ratio sensor 23, and a detection of a water temperature sensor 37 that detects a cooling water temperature. Signals, etc. are input.

上記のように構成された内燃機関においては、暖機が完了した後の状態、例えば冷却水温が80℃を越えているときには、通常の成層燃焼運転および均質燃焼運転が行われる。すなわち、低速低負荷側の所定の領域では、通常の成層燃焼運転として、基本的にタンブル制御弁12を閉じた状態の下で、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。なお、この運転モードでは、圧縮上死点前に必ず燃料噴射が終了する。圧縮行程中にピストン3へ向けて噴射された燃料は、凹部16に沿って旋回するタンブル流を利用して点火プラグ10近傍へ集められ、ここで点火される。そのため、平均的な空燃比がリーンとなった成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、基本的にタンブル制御弁12を開いた状態の下で、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点において点火が行われる。この場合は、燃料は筒内で均質な混合気となり、基本的に理論空燃比近傍で運転が行われる。   In the internal combustion engine configured as described above, when the warm-up is completed, for example, when the cooling water temperature exceeds 80 ° C., normal stratified combustion operation and homogeneous combustion operation are performed. That is, in a predetermined region on the low speed and low load side, as a normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, with the tumble control valve 12 basically closed, and the compression is increased. Ignition is performed at the time before dead center. In this operation mode, fuel injection always ends before compression top dead center. The fuel injected toward the piston 3 during the compression stroke is collected in the vicinity of the spark plug 10 using a tumble flow swirling along the recess 16 and ignited there. Therefore, stratified combustion with an average air-fuel ratio lean is realized. In a predetermined region on the high speed and high load side, as a normal homogeneous combustion operation, fuel injection is performed during the intake stroke with the tumble control valve 12 basically open, and before compression top dead center. Ignition is performed at the MBT point. In this case, the fuel becomes a homogeneous air-fuel mixture in the cylinder and is basically operated near the stoichiometric air-fuel ratio.

これに対し、内燃機関の冷却水温が80℃以下のとき、つまり暖機が完了していない状態では、触媒コンバータ22の活性化つまり温度上昇の促進とHC排出量低減のために、上死点噴射運転とする。この上死点噴射運転では、前述した図1に示したように、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となり、圧縮上死点を跨いで燃料噴射が行われる。点火時期ADVは、圧縮上死点(TDC)後となり、噴射開始時期ITSから15°CA〜20°CA遅れた時期に点火される。この遅れ期間の間に、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成するので、確実に着火燃焼に至り、成層燃焼が行われる。このとき、燃料噴射量は、平均的な空燃比が理論空燃比となるように制御される。   On the other hand, when the cooling water temperature of the internal combustion engine is 80 ° C. or lower, that is, when the warm-up is not completed, the top dead center is used to activate the catalytic converter 22, that is, to promote the temperature rise and reduce the HC emission amount. Let it be an injection operation. In the top dead center injection operation, as shown in FIG. 1 described above, the injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is after the compression top dead center (TDC). Fuel injection is performed across the points. The ignition timing ADV is after compression top dead center (TDC), and is ignited at a timing delayed by 15 ° CA to 20 ° CA from the injection start timing ITS. During this delay period, the fuel spray just reaches the vicinity of the spark plug 10 and forms a combustible air-fuel mixture in the vicinity of the spark plug 10, so that ignition combustion is surely performed and stratified combustion is performed. At this time, the fuel injection amount is controlled so that the average air-fuel ratio becomes the stoichiometric air-fuel ratio.

本実施例では、上記の燃料噴射時期は、噴射開始時期ITSが所定のクランク角となるように制御され、噴射終了時期ITEは、この噴射開始時期ITSと燃料噴射量(噴射時間)とによって定まる。なお、燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とが等しくなるように、燃料噴射量に基づき、噴射開始時期ITSと噴射終了時期ITEとを求めるようにすることも可能である。   In this embodiment, the fuel injection timing is controlled so that the injection start timing ITS becomes a predetermined crank angle, and the injection end timing ITE is determined by the injection start timing ITS and the fuel injection amount (injection time). . The injection start timing ITS and the injection end timing ITE are obtained based on the fuel injection amount so that the period before the compression top dead center and the period after the compression top dead center in the fuel injection period are equal. Is also possible.

図8は、上記の圧縮上死点付近で燃料噴射弁15から燃料が噴射されたときのピストン3と燃料噴霧Fとの位置関係を示している。図示するように、ピストン3は上死点付近にまで上昇しており、燃料噴射弁15の噴孔に最接近した状態となる。このとき、燃料噴射弁15の噴孔は、ピストン3頂部の凹部16底面16aに向かっており、燃料噴射弁15から噴射された燃料噴霧Fは、その速度が殆ど減衰せずに高エネルギー状態のまま上記底面16aに斜め方向から衝突する。従って、直進性が高い比較的大きな燃料液滴は、底面16aで弾かれて点火プラグ10側へ反射し、底面16aに付着する液滴量は非常に少なくなる。つまり、ピストン3との距離が短くなることで燃料噴霧Fの速度が大きくなり、表面に付着せずに弾かれやすくなる。しかも、ピストン3が上昇位置にあることから、略円弧形に湾曲した凹部16の中で、比較的吸気弁6寄りの位置に燃料噴霧Fが衝突することになり、底面16aに対する噴霧Fの傾斜角度がより小さくなる。従って、圧縮行程の途中で噴射する場合よりも、むしろ付着する液滴量が少なくなり、燃料液滴の付着によるHCやスモークの悪化が抑制される。ここで、上記燃料噴霧Fが底面16aに衝突する箇所での噴霧Fの底面16aに対する傾斜角度θ(図9参照)は、10°〜50°の範囲内であることが望ましい。なお、上記プレッシャレギュレータ32によって調圧される燃圧を、上記の上死点噴射運転の間、通常の成層燃焼運転や均質燃焼運転のときよりも相対的に高く与えるようにすれば、ピストン3に付着する燃料の割合がより少なくなる。   FIG. 8 shows the positional relationship between the piston 3 and the fuel spray F when fuel is injected from the fuel injection valve 15 near the compression top dead center. As shown in the figure, the piston 3 has risen to the vicinity of the top dead center, and is in a state closest to the injection hole of the fuel injection valve 15. At this time, the injection hole of the fuel injection valve 15 faces the bottom surface 16a of the recess 16 at the top of the piston 3, and the fuel spray F injected from the fuel injection valve 15 is in a high energy state with almost no attenuation of the velocity. It collides with the bottom surface 16a from an oblique direction. Accordingly, relatively large fuel droplets with high straightness are bounced off the bottom surface 16a and reflected toward the spark plug 10, and the amount of droplets adhering to the bottom surface 16a is very small. That is, when the distance to the piston 3 is shortened, the speed of the fuel spray F is increased, and the fuel spray F is easily repelled without adhering to the surface. Moreover, since the piston 3 is in the raised position, the fuel spray F collides with a position relatively close to the intake valve 6 in the concave portion 16 curved in a substantially arc shape, and the spray F on the bottom surface 16a The inclination angle becomes smaller. Therefore, rather than injecting in the middle of the compression stroke, the amount of attached droplets is reduced, and deterioration of HC and smoke due to the attachment of fuel droplets is suppressed. Here, it is desirable that the inclination angle θ (see FIG. 9) of the spray F with respect to the bottom surface 16a at the location where the fuel spray F collides with the bottom surface 16a is within a range of 10 ° to 50 °. If the fuel pressure regulated by the pressure regulator 32 is applied relatively higher during the top dead center injection operation than during the normal stratified combustion operation or homogeneous combustion operation, the piston 3 is given. The proportion of fuel adhering is less.

このように、内燃機関の暖機が完了していない冷機時に圧縮上死点を跨いで燃料噴射を行うことで、冷機時に問題となるピストン3への燃料液滴の付着が抑制され、燃料液滴の付着に起因したHCやスモークの悪化が回避される。また、同時に、大きなガス流動が崩壊して非常に安定した状態となっている場に燃料が噴射されるため、点火時期の大幅な遅角と燃焼安定度の確保とを両立させることが可能となり、排気ガス温度の十分な昇温とHC排出量のさらなる低減とを達成できる。   Thus, by performing fuel injection across the compression top dead center when the internal combustion engine is not warmed up, adhesion of fuel droplets to the piston 3 which is a problem during cold operation is suppressed, and the fuel liquid Deterioration of HC and smoke due to droplet adhesion is avoided. At the same time, the fuel is injected into a place where a large gas flow collapses and is in a very stable state, so that it is possible to achieve both a large retardation of the ignition timing and securing of combustion stability. A sufficient increase in the exhaust gas temperature and a further reduction in the HC emissions can be achieved.

次に、図10は、上死点付近で噴射された燃料噴霧が衝突する凹部16の底面16aに、撥油性を有するコーティング41を施した実施例を示している。コーティング材料としては、例えば、ポリ四フッ化エチレン(PTFE)等のフッ素系材料を用いることができる。なお、底面16a全域にコーティング41を施してもよいが、図示するように、上死点付近で噴射された燃料噴霧が衝突する吸気弁6寄りの範囲のみにコーティングすることも可能である。このように撥油性のコーティング41を施すことで、衝突した燃料液滴の付着はより少なくなる。   Next, FIG. 10 shows an embodiment in which a coating 41 having oil repellency is applied to the bottom surface 16a of the recess 16 where the fuel spray injected near the top dead center collides. As the coating material, for example, a fluorine-based material such as polytetrafluoroethylene (PTFE) can be used. The coating 41 may be applied to the entire bottom surface 16a, but as shown in the drawing, it is also possible to coat only the range near the intake valve 6 where the fuel spray injected near the top dead center collides. By applying the oil-repellent coating 41 in this way, collision of fuel droplets that have collided is reduced.

本発明の燃料噴射期間および点火時期の一例を示した特性図。The characteristic view which showed an example of the fuel-injection period and ignition timing of this invention. サイクル中のピストン位置変化量と体積変化量の特性図。The characteristic figure of the piston position change amount and volume change amount during a cycle. 大きな流れのサイクル中の変化を示す特性図。The characteristic figure which shows the change in the cycle of a big flow. 微小な乱れのサイクル中の変化を示す特性図。The characteristic view which shows the change in the cycle of a minute disturbance. 筒内直接噴射式火花点火内燃機関の一実施例を示す断面図。Sectional drawing which shows one Example of a direct injection type spark ignition internal combustion engine. 同じく平面図。FIG. この内燃機関全体のシステム構成を示す構成説明図。FIG. 2 is a configuration explanatory view showing the system configuration of the entire internal combustion engine. 圧縮上死点付近で噴射された燃料噴霧とピストンとの関係を示す説明図。Explanatory drawing which shows the relationship between the fuel spray injected in the compression top dead center vicinity, and a piston. 噴霧の傾斜角度θの説明図。Explanatory drawing of inclination-angle (theta) of spraying. 凹部の底面にコーティングを施した実施例を示すピストンの平面図。The top view of the piston which shows the Example which gave the coating to the bottom face of a recessed part.

符号の説明Explanation of symbols

3…ピストン
5…燃焼室
10…点火プラグ
16…凹部
16a…底面
15…燃料噴射弁
41…コーティング
DESCRIPTION OF SYMBOLS 3 ... Piston 5 ... Combustion chamber 10 ... Spark plug 16 ... Recessed part 16a ... Bottom 15 ... Fuel injection valve 41 ... Coating

Claims (5)

筒内に直接燃料を噴射する燃料噴射弁が燃焼室の側部に配置され、ピストン頂部へ向かって斜め下方へ燃料を噴射するように構成されているとともに、略中央部に点火プラグを備えてなる筒内直接噴射式火花点火内燃機関において、所定の運転状態のときに、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、この圧縮上死点付近で噴射された燃料噴霧が、ピストン頂部の面で反射するように、その噴霧方向が設定されていることを特徴とする筒内直接噴射式火花点火内燃機関。   A fuel injection valve that directly injects fuel into the cylinder is arranged at the side of the combustion chamber, and is configured to inject fuel obliquely downward toward the top of the piston. In the in-cylinder direct injection spark ignition internal combustion engine, in a predetermined operating state, the fuel injection is performed so that the injection start timing is before the compression top dead center and the injection end timing is after the compression top dead center. In a period spanning the point, ignition is performed after the compression top dead center delayed from the injection start timing, and the fuel spray injected near the compression top dead center is reflected on the surface of the piston top, An in-cylinder direct injection spark ignition internal combustion engine characterized in that the spray direction is set. 上記ピストン頂部に、緩く湾曲した底面を有する凹部が設けられており、この凹部の底面に燃料噴霧が衝突して反射することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 1, wherein a concave portion having a gently curved bottom surface is provided at the top of the piston, and fuel spray collides with the bottom surface of the concave portion and is reflected. organ. 上記のように圧縮上死点を跨ぐ期間に燃料噴射を行うときに、燃圧を高く補正することを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark ignition internal combustion engine according to claim 1 or 2, wherein the fuel pressure is corrected to be high when fuel injection is performed in a period over the compression top dead center as described above. 圧縮上死点付近で噴射された燃料噴霧が衝突するピストン頂部の面に、撥油性を有するコーティングを施したことを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関。   The in-cylinder direct injection spark according to any one of claims 1 to 3, wherein a coating having oil repellency is applied to a surface of a piston top where a fuel spray injected near the compression top dead center collides. Ignition internal combustion engine. 上記の燃料噴霧が、ピストン頂部の面に、10°〜50°の角度でもって衝突することを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関。
The in-cylinder direct injection spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the fuel spray collides with the surface of the top of the piston at an angle of 10 ° to 50 °.
JP2004216747A 2004-07-26 2004-07-26 Cylinder direct injection type spark ignition internal combustion engine Pending JP2006037794A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004216747A JP2006037794A (en) 2004-07-26 2004-07-26 Cylinder direct injection type spark ignition internal combustion engine
CN2005100849620A CN1727651B (en) 2004-07-26 2005-07-25 Direct fuel injection spark ignition internal combustion engine
CNB2005100849616A CN100422532C (en) 2004-07-26 2005-07-25 Combustion control apparatus for direct-injection spark-ignition internal combustion engine
US11/189,058 US7194999B2 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combustion engine
DE602005010154T DE602005010154D1 (en) 2004-07-26 2005-07-26 Internal combustion engine with spark ignition and direct injection
EP05016245A EP1621748A1 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combusion engine
EP05016211A EP1621747B1 (en) 2004-07-26 2005-07-26 Direct fuel injection spark ignition internal combustion engine
US11/189,128 US7134421B2 (en) 2004-07-26 2005-07-26 Direct fuel injection spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216747A JP2006037794A (en) 2004-07-26 2004-07-26 Cylinder direct injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006037794A true JP2006037794A (en) 2006-02-09

Family

ID=35903046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216747A Pending JP2006037794A (en) 2004-07-26 2004-07-26 Cylinder direct injection type spark ignition internal combustion engine

Country Status (2)

Country Link
JP (1) JP2006037794A (en)
CN (2) CN100422532C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196675A (en) * 2009-02-27 2010-09-09 Denso Corp Cylinder direct injection type internal combustion engine and fuel injection valve to be used for the same
JP2012137004A (en) * 2010-12-27 2012-07-19 Nissan Motor Co Ltd Internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101189493B1 (en) * 2010-09-30 2012-10-11 한양대학교 산학협력단 Combustion detecting method of engine
CN105793549B (en) * 2013-10-15 2017-11-21 秘方能源私人有限公司 The fluid atomizing injector of gas auxiliary
FR3059723B1 (en) * 2016-12-05 2020-12-25 Continental Automotive France PROCESS FOR MANAGING THE INJECTION IN A DIESEL TYPE ENGINE
WO2019145592A1 (en) * 2018-01-23 2019-08-01 Wärtsilä Finland Oy Fuel injection arrangement and method of operating piston engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1526288A1 (en) * 1966-09-15 1970-01-29 Daimler Benz Ag Method for injecting a controllable fuel quantity into the compression stroke of an externally ignited internal combustion engine and internal combustion engine for carrying out the method
JPH11294220A (en) * 1998-04-13 1999-10-26 Mitsubishi Electric Corp Fuel injection control device for cylinder injection type internal combustion engine
JP4250856B2 (en) * 2000-05-24 2009-04-08 三菱自動車工業株式会社 In-cylinder internal combustion engine
JP2002276421A (en) * 2001-03-19 2002-09-25 Mazda Motor Corp Control device for cylinder injection engine
EP1245815B1 (en) * 2001-03-30 2006-06-07 Mazda Motor Corporation Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
JP2002339789A (en) * 2001-05-16 2002-11-27 Mazda Motor Corp Control device for spark ignition type direct-injection engine and fuel injection time setting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196675A (en) * 2009-02-27 2010-09-09 Denso Corp Cylinder direct injection type internal combustion engine and fuel injection valve to be used for the same
JP2012137004A (en) * 2010-12-27 2012-07-19 Nissan Motor Co Ltd Internal combustion engine

Also Published As

Publication number Publication date
CN1727651B (en) 2010-05-05
CN1727657A (en) 2006-02-01
CN100422532C (en) 2008-10-01
CN1727651A (en) 2006-02-01

Similar Documents

Publication Publication Date Title
US7104250B1 (en) Injection spray pattern for direct injection spark ignition engines
US20050161021A1 (en) Direct fuel injection/spark ignition engine control device
JP4500790B2 (en) Direct injection engine
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2008151020A (en) Cylinder injection engine having piston with level difference and control device
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2006070863A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
US7134421B2 (en) Direct fuel injection spark ignition internal combustion engine
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2004245204A (en) Fuel injection apparatus for internal combustion engine
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP6402753B2 (en) Combustion chamber structure of direct injection engine
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006070862A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2014156852A (en) Compression ignition engine
JP4207866B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006037792A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4360323B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006090202A (en) Control device of cylinder direct injection spark ignition internal combustion engine
JP2007032378A (en) Control device for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327