JP4360323B2 - In-cylinder direct injection spark ignition internal combustion engine controller - Google Patents

In-cylinder direct injection spark ignition internal combustion engine controller Download PDF

Info

Publication number
JP4360323B2
JP4360323B2 JP2004368605A JP2004368605A JP4360323B2 JP 4360323 B2 JP4360323 B2 JP 4360323B2 JP 2004368605 A JP2004368605 A JP 2004368605A JP 2004368605 A JP2004368605 A JP 2004368605A JP 4360323 B2 JP4360323 B2 JP 4360323B2
Authority
JP
Japan
Prior art keywords
top dead
dead center
ignition timing
injection
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004368605A
Other languages
Japanese (ja)
Other versions
JP2006177178A (en
Inventor
太朗 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004368605A priority Critical patent/JP4360323B2/en
Priority to EP05016245A priority patent/EP1621748A1/en
Priority to US11/189,058 priority patent/US7194999B2/en
Publication of JP2006177178A publication Critical patent/JP2006177178A/en
Application granted granted Critical
Publication of JP4360323B2 publication Critical patent/JP4360323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/125
    • Y02T10/46

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関に関し、特に、その噴射時期および点火時期の制御に関する。   The present invention relates to an in-cylinder direct injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and more particularly to control of the injection timing and ignition timing.

特許文献1には、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態にあるときに、圧縮行程中に燃料噴射を行い、かつ、点火時期を圧縮上死点よりも遅角させる技術が開示されている。
特開2001−336467号公報
Patent Document 1 discloses that when an exhaust purification catalytic converter is in an unwarmed state lower than an activation temperature, fuel is injected during the compression stroke, and the ignition timing is retarded from the compression top dead center. Technology is disclosed.
JP 2001-336467 A

内燃機関冷機時の触媒の早期活性化を図るべく排気ガス温度を昇温させるとともにHCを低減するためには、点火時期をなるべく大きく遅角させることが望ましいが、点火時期を大幅に遅角すると、燃焼安定度が悪化するため、燃焼安定度の観点から定まるある限界よりも遅角することはできない。特許文献1のような従来の技術では、特に冷機時のような条件下において、安定した燃焼の確保が難しく、燃焼安定度から定まる点火時期の遅角限界が比較的進み側にあり、十分な点火時期の遅角を実現することができない。   In order to raise the exhaust gas temperature and reduce HC in order to achieve early activation of the catalyst when the internal combustion engine is cold, it is desirable to retard the ignition timing as much as possible, but if the ignition timing is significantly retarded Since the combustion stability deteriorates, it cannot be retarded from a certain limit determined from the viewpoint of combustion stability. In the conventional technique such as Patent Document 1, it is difficult to ensure stable combustion, particularly under conditions such as cold, and the retard limit of the ignition timing determined from the combustion stability is relatively advanced, which is sufficient. The ignition timing delay cannot be realized.

本発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば冷機時のような排気ガス温度の昇温が必要な場合などに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うことを特徴としている。そして、特に、上記の点火時期を、機関温度に応じて設定するようにしている。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When it is necessary to raise the exhaust gas temperature, the fuel injection is performed as the top dead center injection operation mode so that the injection start timing is before the compression top dead center and the injection end timing is after the compression top dead center. The ignition is performed in a period straddling the compression top dead center, and ignition is performed after the compression top dead center delayed from the injection start timing. In particular, the ignition timing is set according to the engine temperature.

図1は、本発明の上死点噴射運転モードにおける燃料噴射期間および点火時期を筒内圧変化とともに例示したものであり、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となる。その間の噴射期間Tの長さは、噴射量に相当する。点火時期ADVは、圧縮上死点(TDC)後であり、噴射開始時期ITSから所定クランク角(例えば10°CA〜25°CA)遅れた時期となる。この遅れ期間Dは、一般に、燃料噴射弁から点火プラグまでの距離に相関する。   FIG. 1 illustrates the fuel injection period and ignition timing in the top dead center injection operation mode of the present invention together with the change in the in-cylinder pressure. The injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is After compression top dead center (TDC). The length of the injection period T during that time corresponds to the injection amount. The ignition timing ADV is after compression top dead center (TDC), and is a timing delayed by a predetermined crank angle (for example, 10 ° CA to 25 ° CA) from the injection start timing ITS. This delay period D generally correlates with the distance from the fuel injection valve to the spark plug.

なお、圧縮上死点(TDC)を中心として前半の圧縮上死点前の期間と後半の圧縮上死点後の期間とがほぼ等しくなるように、噴射開始時期ITSおよび噴射終了時期ITEを制御するようにしてもよい。   The injection start timing ITS and the injection end timing ITE are controlled so that the period before the compression top dead center in the first half and the period after the compression top dead center in the second half are substantially equal with the compression top dead center (TDC) as the center. You may make it do.

図2は、内燃機関の1サイクル中のピストンストロークによるピストン位置変化量と燃焼室の体積変化量とを示したものである。図示するように、単位クランク角当たりの変化量は、ストロークの中間位置付近で最も大きく、下死点(BDC)付近ならびに上死点(TDC)付近では、非常に小さい。従って、本発明で燃料噴射を行う圧縮上死点付近は、ピストン位置変化や体積変化が非常に小さく、ピストンの動き等に影響されない安定した場が形成され得る。   FIG. 2 shows the piston position change amount and the combustion chamber volume change amount due to the piston stroke in one cycle of the internal combustion engine. As shown in the figure, the amount of change per unit crank angle is the largest near the middle position of the stroke, and is very small near the bottom dead center (BDC) and near the top dead center (TDC). Therefore, in the vicinity of the compression top dead center where the fuel injection is performed in the present invention, the piston position change and volume change are very small, and a stable field that is not affected by the piston movement or the like can be formed.

また、筒内には、吸気行程において、スワール流やタンブル流といった比較的大きな流れのガス流動が発生し、圧縮行程においても残存しているが、このようなスワール流やタンブル流といった大きな流れは、ピストンが圧縮上死点付近に達して燃焼室が狭小なものとなると、急激に崩壊する。図3は、種々の機関回転数の下での燃焼室内の大きな流れの流速変化を示したものであり、図示するように、回転数に応じた強さのスワール流ないしタンブル流が発生するが、圧縮上死点(360°CA)に達する前に、急激に崩壊する。従って、本発明において圧縮上死点付近で噴射された燃料噴霧は、スワール流やタンブル流のような大きな流れにより動かされることがなく、点火プラグに対し、常に安定した形で噴霧を形成することが可能である。   In the cylinder, a relatively large gas flow such as a swirl flow or a tumble flow is generated in the intake stroke and remains in the compression stroke. However, a large flow such as a swirl flow or a tumble flow is When the piston reaches near the compression top dead center and the combustion chamber becomes narrow, it collapses rapidly. FIG. 3 shows a change in flow velocity of a large flow in the combustion chamber under various engine speeds. As shown in the figure, a swirl flow or a tumble flow having a strength corresponding to the rotation speed is generated. Collapses rapidly before reaching compression top dead center (360 ° CA). Therefore, in the present invention, the fuel spray injected near the compression top dead center is not moved by a large flow such as a swirl flow or a tumble flow, and always forms a spray in a stable manner on the spark plug. Is possible.

一方、上記のスワール流やタンブル流といった比較的大きな流れのエネルギは、その流れの崩壊に伴って、微小な乱れへと遷移する。従って、燃焼室内の微小な乱れは、圧縮上死点の直前に、急激に増大する。図4は、図3に示した流れの崩壊に伴って生じる微小な乱れの強さを、流速に換算していわゆる乱れ流速として示したものであり、図示するように、圧縮上死点直前に、乱れが大きく増加する。このような微小な乱れは、燃焼場の活性化に寄与し、燃焼改善作用が得られる。   On the other hand, the energy of a relatively large flow such as the swirl flow or the tumble flow described above transitions to minute turbulence as the flow collapses. Therefore, the minute disturbance in the combustion chamber increases rapidly just before the compression top dead center. FIG. 4 shows the intensity of the minute turbulence caused by the collapse of the flow shown in FIG. 3 as a so-called turbulent flow rate converted to a flow velocity, and as shown in the figure, immediately before the compression top dead center. , Disturbances increase greatly. Such minute disturbances contribute to the activation of the combustion field, and a combustion improving action is obtained.

つまり、燃料が噴射される圧縮上死点付近での燃焼室内の場は、噴霧を動かしてしまうような大きな流れが存在せず、かつ燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   In other words, the field in the combustion chamber near the compression top dead center where the fuel is injected does not have a large flow that moves the spray, and there are many minute disturbances that activate the combustion, It is a very stable place against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be raised significantly by a large retardation of the ignition timing, and the HC emission amount is reduced.

ここで、上記の燃焼安定度は、機関温度に相関し、基本的に機関温度が低いほど悪化する傾向となる。   Here, the above-mentioned combustion stability correlates with the engine temperature and basically tends to be worse as the engine temperature is lower.

また、上記のように点火時期を大幅に遅角させた上死点噴射運転モードにおいては、同じ燃料量や吸気量に対して、発生するトルクは相対的に小さくなり、他方、この上死点噴射運転モードが一般に行われる機関の冷機時は、機関各部のフリクションが暖機後よりも大きなものとなっているため、フリクションに打ち勝って機関を自立運転させ得るだけのトルク(ストール限界トルク)が得られない場合が起こりうる。つまり燃焼不安定化とは別の要因で、内燃機関が停止してしまう虞がある。上記のフリクションは、機関温度に相関する。   Further, in the top dead center injection operation mode in which the ignition timing is greatly retarded as described above, the generated torque is relatively small for the same fuel amount and intake air amount. When the engine in which the injection operation mode is generally performed is cold, the friction of each part of the engine is larger than that after warming up, so the torque that can overcome the friction and allow the engine to operate independently (stall limit torque) There may be cases where it cannot be obtained. In other words, the internal combustion engine may stop due to a factor different from combustion instability. The above friction correlates with the engine temperature.

そこで、本発明では、上死点噴射運転モードにおける点火時期を、機関温度に応じて設定するようにしている。   Therefore, in the present invention, the ignition timing in the top dead center injection operation mode is set according to the engine temperature.

本発明では、燃焼安定度が所定の燃焼安定度以上となるように、機関温度に応じて上記点火時期を設定する。すなわち、上死点噴射運転モードの燃焼は、後燃えを促進させるものであるため、通常の燃焼に比べて燃焼安定度が低下しやすく、燃焼不安定化の問題があるが、燃焼安定度は、基本的に、冷間始動直後など機関温度が低いときには悪く、燃焼室壁温等の機関温度が高ければ、相対的に燃焼安定度は向上する。従って、機関温度に応じて点火時期を設定することにより、燃焼安定性を確保しつつ点火時期をより遅角側に設定することが可能となる。 In this onset bright, as the degree of combustion stability becomes a predetermined combustion stability more, setting the ignition timing depending on engine temperature. In other words, combustion in the top dead center injection operation mode promotes afterburning, so that combustion stability tends to be lower than normal combustion and there is a problem of instability of combustion, but combustion stability is Basically, it is bad when the engine temperature is low, such as immediately after a cold start, and the combustion stability is relatively improved if the engine temperature such as the combustion chamber wall temperature is high. Therefore, by setting the ignition timing in accordance with the engine temperature, it is possible to set the ignition timing to a more retarded side while ensuring combustion stability.

また本発明では、発生トルクが、温度により変化するストール限界トルクを上回るように、機関温度に応じて上記点火時期を設定する。機関温度が低いほどフリクションが大となり、ストールを生じずに自立運転可能なトルクつまりストール限界トルクが高くなるが、同じ燃料量による上死点噴射運転モードであっても点火時期を進角側へ補正すると、発生トルクが高くなる。従って、ストール限界トルクを上回るように機関温度に応じて点火時期を設定することで、フリクションによるストールないしは回転変動が確実に回避される。 In this onset bright, it generated torque, to exceed the stall limit torque which varies with temperature, setting the ignition timing depending on engine temperature. The lower the engine temperature, the greater the friction, and the higher the torque that can be operated independently without stalling, that is, the stall limit torque, but the ignition timing is advanced even in the top dead center injection operation mode with the same fuel amount. When corrected, the generated torque increases. Therefore, by setting the ignition timing in accordance with the engine temperature so as to exceed the stall limit torque, stall or rotation fluctuation due to friction can be reliably avoided.

すなわち、本発明では、燃焼安定度が所定の燃焼安定度以上となるように、機関温度に応じて求めた第1の点火時期と、発生トルクが、温度により変化するストール限界トルクを上回るように、機関温度に応じて求めた第2の点火時期と、を比較し、進角側の値を点火時期として設定する。従って、上述した燃焼安定性およびストール限界トルクの双方が常に満たされる。 In other words, in the present invention, the first ignition timing determined according to the engine temperature and the generated torque exceed the stall limit torque that varies depending on the temperature so that the combustion stability is equal to or higher than the predetermined combustion stability. Then, the second ignition timing obtained in accordance with the engine temperature is compared, and the advance side value is set as the ignition timing. Therefore, both the above-described combustion stability and stall limit torque are always satisfied.

この発明によれば、点火時期を圧縮上死点よりも大幅に遅角させた状態で安定した燃焼を得ることができ、例えば内燃機関の冷機時に、排気ガス温度を昇温させて触媒の早期活性化を図ることができるとともに、HC排出量の低減が可能となる。そして、点火時期を機関温度に応じて設定することで、燃焼安定性やストール限界トルクを上回るトルクの確保を図りつつ点火時期を十分に遅角させることができ、例えば極低温時における燃焼不安定化やフリクションによる機関の停止を回避することができる。   According to the present invention, stable combustion can be obtained in a state where the ignition timing is significantly retarded from the compression top dead center. For example, when the internal combustion engine is cold, the exhaust gas temperature is raised and the catalyst is accelerated. Activation can be achieved and HC emissions can be reduced. By setting the ignition timing according to the engine temperature, the ignition timing can be sufficiently retarded while ensuring the combustion stability and the torque exceeding the stall limit torque, for example, combustion instability at extremely low temperatures. It is possible to avoid engine stoppage due to complications and friction.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図5〜図7は、この発明が適用される筒内直接噴射式火花点火内燃機関の一実施例を示しており、特に、図5,図6は、一つの気筒の構成を示し、図7は機関全体のシステム構成を示している。   5 to 7 show an embodiment of a direct injection type spark ignition internal combustion engine to which the present invention is applied. In particular, FIGS. 5 and 6 show the configuration of one cylinder. Indicates the system configuration of the entire organization.

図5,図6に示すように、シリンダブロック1に形成されたシリンダ2にピストン3が摺動可能に配置されているとともに、シリンダブロック1上面に固定されたシリンダヘッド4と上記ピストン3との間に、燃焼室5が形成されている。上記シリンダヘッド4には、吸気弁6によって開閉される吸気ポート7と、排気弁8によって開閉される排気ポート9と、が形成されている。1つの気筒に対し、一対の吸気弁6と一対の排気弁8とが設けられており、これらの4つの弁に囲まれた燃焼室5天井面中心部に、点火プラグ10が配置されている。また、この実施例では、運転状態によってタンブル流を強化することができるように、吸気ポート7内に、該吸気ポート7内を上下2つの流路に区画する隔壁11が設けられているとともに、その下側の流路を上流端で開閉するタンブル制御弁12が設けられている。当業者には容易に理解できるように、タンブル制御弁12によって下側の流路を閉塞した状態ではタンブル流が強化され、タンブル制御弁12を開いた状態ではタンブル流が弱まる。なお、このタンブル制御弁12は本発明において必ずしも必須のものではなく、省略することも可能であり、また、これに代えて、公知のスワール制御弁を設けるようにしてもよい。   As shown in FIGS. 5 and 6, a piston 3 is slidably disposed in a cylinder 2 formed in the cylinder block 1, and a cylinder head 4 fixed to the upper surface of the cylinder block 1 and the piston 3 A combustion chamber 5 is formed between them. The cylinder head 4 is formed with an intake port 7 that is opened and closed by an intake valve 6 and an exhaust port 9 that is opened and closed by an exhaust valve 8. A pair of intake valves 6 and a pair of exhaust valves 8 are provided for one cylinder, and an ignition plug 10 is disposed at the center of the ceiling surface of the combustion chamber 5 surrounded by these four valves. . Further, in this embodiment, the intake port 7 is provided with a partition wall 11 that divides the intake port 7 into two upper and lower flow paths so that the tumble flow can be strengthened depending on the operating state. A tumble control valve 12 that opens and closes the lower flow path at the upstream end is provided. As can be easily understood by those skilled in the art, the tumble flow is strengthened when the lower flow path is closed by the tumble control valve 12, and the tumble flow is weakened when the tumble control valve 12 is opened. The tumble control valve 12 is not necessarily essential in the present invention, and can be omitted. Alternatively, a known swirl control valve may be provided.

上記シリンダヘッド4の吸気ポート7の下側、より詳しくは一対の吸気ポート7の中間部の位置には、筒内へ燃料を直接噴射する燃料噴射弁15が配置されている。つまり、この燃料噴射弁15は、燃焼室5の吸気弁6側の側部に位置し、平面図上において図示せぬピストンピンと直交する方向に沿って燃料を噴射するように配置されているとともに、図5の断面図上において、斜め下方を指向して配置されている。但し、下方への傾斜角は比較的小さく、つまり水平に近い方向へ燃料を噴射する。   A fuel injection valve 15 for directly injecting fuel into the cylinder is disposed below the intake port 7 of the cylinder head 4, more specifically at a position between the pair of intake ports 7. That is, the fuel injection valve 15 is located on the side of the combustion chamber 5 on the intake valve 6 side, and is disposed so as to inject fuel along a direction orthogonal to a piston pin (not shown) on the plan view. In the cross-sectional view of FIG. However, the downward inclination angle is relatively small, that is, the fuel is injected in a direction close to the horizontal.

一方、ピストン3の頂部は、ペントルーフ型をなす燃焼室5天井面の傾斜に沿った凸部形状をなしているとともに、その中央部に、平面図上において略矩形をなす凹部16が形成されている。この凹部16の底面は、タンブル流に沿うように、所定の曲率半径の円弧面ないしは円弧に近似した湾曲面をなしている。   On the other hand, the top of the piston 3 has a convex shape along the inclination of the ceiling surface of the combustion chamber 5 that forms a pent roof type, and a concave portion 16 having a substantially rectangular shape in plan view is formed at the center. Yes. The bottom surface of the recess 16 forms an arc surface having a predetermined radius of curvature or a curved surface approximating an arc so as to follow the tumble flow.

図7に示すように、この実施例の内燃機関は、例えば直列4気筒機関であり、各気筒の排気ポート9が接続された排気通路21に、排気浄化用の触媒コンバータ22が設けられており、その上流側に、酸素センサ等の空燃比センサ23が配置されている。また、各気筒の吸気ポート7が接続された吸気通路24は、その入口側に、制御信号により開閉される電子制御スロットル弁25を備えている。上記排気通路21と上記吸気通路24との間には、排気還流通路26が設けられており、その途中に、排気還流制御弁27が介装されている。また、各気筒のタンブル制御弁12は、ソレノイドバルブ28を介して導入される吸入負圧により動作する負圧式タンブル制御アクチュエータ29によって、一斉に開閉される構成となっている。   As shown in FIG. 7, the internal combustion engine of this embodiment is, for example, an in-line four-cylinder engine, and a catalytic converter 22 for purifying exhaust gas is provided in an exhaust passage 21 to which an exhaust port 9 of each cylinder is connected. An air-fuel ratio sensor 23 such as an oxygen sensor is disposed on the upstream side. The intake passage 24 to which the intake port 7 of each cylinder is connected is provided with an electronically controlled throttle valve 25 that is opened and closed by a control signal on the inlet side. An exhaust gas recirculation passage 26 is provided between the exhaust passage 21 and the intake air passage 24, and an exhaust gas recirculation control valve 27 is interposed in the middle. Further, the tumble control valves 12 of the respective cylinders are configured to be simultaneously opened and closed by a negative pressure type tumble control actuator 29 that is operated by a suction negative pressure introduced via a solenoid valve 28.

また、上記燃料噴射弁15には、燃料ポンプ31およびプレッシャレギュレータ32によって所定圧力に調圧された燃料が、燃料ギャラリ33を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。なお、本実施例では、燃圧は常に一定に維持される。また、各気筒の点火プラグ10は、イグニッションコイル34に接続されている。   The fuel injection valve 15 is supplied with the fuel adjusted to a predetermined pressure by the fuel pump 31 and the pressure regulator 32 via the fuel gallery 33. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. In this embodiment, the fuel pressure is always kept constant. The ignition plug 10 of each cylinder is connected to an ignition coil 34.

上記内燃機関の燃料噴射時期や噴射量、噴射率、点火時期等は、コントロールユニット35によって制御される。このコントロールユニット35には、アクセルペダル踏み込み量を検出するアクセル開度センサ30の検出信号や、クランク角センサ36の検出信号、空燃比センサ23の検出信号、冷却水温を検出する水温センサ37の検出信号、等が入力されている。   The fuel injection timing, injection amount, injection rate, ignition timing, etc. of the internal combustion engine are controlled by the control unit 35. The control unit 35 includes a detection signal of an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal, a detection signal of a crank angle sensor 36, a detection signal of an air-fuel ratio sensor 23, and a detection of a water temperature sensor 37 that detects a cooling water temperature. Signals, etc. are input.

上記のように構成された内燃機関においては、暖機が完了した後の状態、例えば冷却水温が80℃を越えているときには、通常の成層燃焼運転および均質燃焼運転が行われる。   In the internal combustion engine configured as described above, when the warm-up is completed, for example, when the cooling water temperature exceeds 80 ° C., normal stratified combustion operation and homogeneous combustion operation are performed.

すなわち、低速低負荷側の所定の領域では、通常の成層燃焼運転モードとして、基本的にタンブル制御弁12を閉じた状態の下で、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。なお、この運転モードでは、圧縮上死点前に必ず燃料噴射が終了する。圧縮行程中にピストン3へ向けて噴射された燃料は、凹部16に沿って旋回するタンブル流を利用して点火プラグ10近傍へ集められ、ここで点火される。そのため、平均的な空燃比がリーンとなった成層燃焼が実現される。   That is, in a predetermined region on the low speed and low load side, as a normal stratified combustion operation mode, fuel injection is performed at an appropriate time in the compression stroke, with the tumble control valve 12 basically closed. Ignition is performed before the top dead center. In this operation mode, fuel injection always ends before compression top dead center. The fuel injected toward the piston 3 during the compression stroke is collected in the vicinity of the spark plug 10 using a tumble flow swirling along the recess 16 and ignited there. Therefore, stratified combustion with an average air-fuel ratio lean is realized.

また、暖機完了後の高速高負荷側の所定の領域では、通常の均質燃焼運転モードとして、基本的にタンブル制御弁12を開いた状態の下で、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点において点火が行われる。この場合は、燃料は筒内で均質な混合気となり、基本的に理論空燃比近傍で運転が行われる。   Further, in a predetermined region on the high speed and high load side after the warm-up is completed, fuel injection is performed during the intake stroke under the condition that the tumble control valve 12 is basically opened as a normal homogeneous combustion operation mode. And ignition is performed at the MBT point before the compression top dead center. In this case, the fuel becomes a homogeneous air-fuel mixture in the cylinder and is basically operated near the stoichiometric air-fuel ratio.

これに対し、内燃機関の冷却水温が80℃以下のとき、つまり暖機が完了していない状態では、触媒コンバータ22の活性化つまり温度上昇の促進とHC排出量低減のために、上死点噴射運転モードとなる。そして、前述した図1に示したように、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となり、圧縮上死点を跨いで燃料噴射が行われる。点火時期ADVは、圧縮上死点(TDC)後となり、噴射開始時期ITSから10°CA〜25°CA遅れた時期に点火される。この遅れ期間の間に、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成するので、確実に着火燃焼に至り、成層燃焼が行われる。このとき、燃料噴射量は、平均的な空燃比が理論空燃比となるように制御される。   On the other hand, when the cooling water temperature of the internal combustion engine is 80 ° C. or lower, that is, when the warm-up is not completed, the top dead center is used to activate the catalytic converter 22, that is, promote the temperature rise and reduce the HC emissions. It becomes the injection operation mode. Then, as shown in FIG. 1 described above, the injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is after the compression top dead center (TDC). Is done. The ignition timing ADV is after compression top dead center (TDC), and is ignited at a timing delayed by 10 ° CA to 25 ° CA from the injection start timing ITS. During this delay period, the fuel spray just reaches the vicinity of the spark plug 10 and forms a combustible air-fuel mixture in the vicinity of the spark plug 10, so that ignition combustion is surely performed and stratified combustion is performed. At this time, the fuel injection amount is controlled so that the average air-fuel ratio becomes the stoichiometric air-fuel ratio.

本実施例では、上記の燃料噴射時期は、噴射開始時期ITSが所定のクランク角となるように制御され、噴射終了時期ITEは、この噴射開始時期ITSと燃料噴射量(噴射時間)とによって定まる。   In this embodiment, the fuel injection timing is controlled so that the injection start timing ITS becomes a predetermined crank angle, and the injection end timing ITE is determined by the injection start timing ITS and the fuel injection amount (injection time). .

前述したように、この上死点噴射運転モードにおいて燃料が噴射される圧縮上死点付近での燃焼室内の場は、大きな流れの崩壊により噴霧を動かしてしまうような大きな流れが存在せず、かつ大きな流れの崩壊に伴い、燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   As described above, the field in the combustion chamber near the compression top dead center where fuel is injected in this top dead center injection operation mode does not have a large flow that causes the spray to move due to the collapse of the large flow, Along with the collapse of the large flow, there are many minute disturbances that activate the combustion, and the field becomes very stable against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be raised significantly by a large retardation of the ignition timing, and the HC emission amount is reduced.

ここで、上記の上死点噴射運転モードにおける点火時期および燃料噴射時期は、さらに、機関温度、例えば冷却水温に基づいて補正される。   Here, the ignition timing and the fuel injection timing in the top dead center injection operation mode are further corrected based on the engine temperature, for example, the coolant temperature.

図8は、その制御の概略を示すフローチャートであって、まずステップ1で、排気温度の上昇が必要な条件か否か、つまり上死点噴射運転モードが必要な条件か否か判定し、YESであればステップ2以降へ進んで上死点噴射運転モードを実行する。上述したように、例えば、冷却水温が80℃を越えていれば、このルーチンは終了し、通常の成層燃焼運転ないし均質燃焼運転を行う。ステップ2では、燃焼安定度が所定の燃焼安定度以上となるように決定される第1の点火時期(点火時期A)と、発生トルクがフリクションに打ち勝って自立運転を維持し得るように決定される第2の点火時期(点火時期B)と、をそれぞれ算出する。これらの点火時期A,Bは、基本的に冷却水温に基づいて求められる。そして、ステップ3で両者を対比し、いずれか進角側の方の値を、ステップ4で点火時期として設定する。そして、ステップ5で、この最終的な点火時期あるいは冷却水温に基づいて、燃料噴射時期(燃料噴射開始時期ITS)を算出・決定する。なお、冷却水温は始動後徐々に上昇するので、冷却水温を繰り返し検出し、最適な点火時期および燃料噴射開始時期を逐次求めるようにしてもよいが、制御の簡略化のために、上死点噴射運転モード開始時の冷却水温(一般には機関始動時の冷却水温)に基づいて初期の点火時期および燃料噴射開始時期を設定し、上死点噴射運転モードの継続の間、この初期値を変えずに用いるようにしてもよい。   FIG. 8 is a flowchart showing an outline of the control. First, in step 1, it is determined whether or not the exhaust gas temperature needs to be increased, that is, whether or not the top dead center injection operation mode is required. YES If so, the process proceeds to step 2 and the top dead center injection operation mode is executed. As described above, for example, if the cooling water temperature exceeds 80 ° C., this routine ends, and a normal stratified combustion operation or homogeneous combustion operation is performed. In step 2, the first ignition timing (ignition timing A) determined so that the combustion stability is equal to or higher than the predetermined combustion stability, and the generated torque are determined to overcome the friction and maintain the autonomous operation. The second ignition timing (ignition timing B) is calculated. These ignition timings A and B are basically determined based on the coolant temperature. Then, in step 3, the two are compared, and one of the values on the advance side is set as the ignition timing in step 4. In step 5, the fuel injection timing (fuel injection start timing ITS) is calculated and determined based on the final ignition timing or cooling water temperature. Note that the coolant temperature gradually rises after the start, so the coolant temperature may be repeatedly detected and the optimum ignition timing and fuel injection start timing may be obtained sequentially, but top dead center for simplification of control. The initial ignition timing and fuel injection start timing are set based on the cooling water temperature at the start of the injection operation mode (generally the cooling water temperature at the engine start), and this initial value is changed during the continuation of the top dead center injection operation mode. You may make it use without.

図9は、燃焼安定度と点火時期との関係を示しており、図中の線L1は、ある冷却水温(機関温度)の下での特性例を示している。図示するように、点火時期を遅角させるほど燃焼安定度は低下し、所定の安定限界よりも遅角させることはできない。従って、線L1と安定限界を示す線との交点によって、ある冷却水温の下での第1の点火時期(点火時期A)が定まる。そして、冷却水温が異なると、線L1に示す特性は変化し、例えば冷却水温が低いと、同じ点火時期に対し燃焼安定度がより低い(図9では上側となる)特性となる。従って、第1の点火時期(点火時期A)は、基本的に、冷却水温に対し、図10に示すような特性となる。なお、前述したステップ2では、基本的に冷却水温に基づいて点火時期Aを求めるのであるが、燃焼安定度に影響する冷却水温以外の他のパラメータ、例えば外気温等をも考慮して点火時期Aを決定することが、より好ましい。   FIG. 9 shows the relationship between the combustion stability and the ignition timing, and a line L1 in the figure shows an example of characteristics under a certain cooling water temperature (engine temperature). As shown in the figure, the combustion stability decreases as the ignition timing is retarded, and cannot be retarded beyond a predetermined stability limit. Therefore, the first ignition timing (ignition timing A) under a certain coolant temperature is determined by the intersection of the line L1 and the line indicating the stability limit. When the cooling water temperature is different, the characteristic indicated by the line L1 changes. For example, when the cooling water temperature is low, the combustion stability is lower (upward in FIG. 9) for the same ignition timing. Therefore, the first ignition timing (ignition timing A) basically has characteristics as shown in FIG. 10 with respect to the coolant temperature. In step 2 described above, the ignition timing A is basically obtained based on the cooling water temperature. However, the ignition timing is also considered in consideration of other parameters other than the cooling water temperature that affect the combustion stability, such as the outside air temperature. More preferably, A is determined.

一方、図11は、機関の発生トルクと点火時期との関係を示しており、図中の線Tfは、ある冷却水温(機関温度)の下で、機関各部のフリクションに打ち勝って自立運転し得る最低限のトルク(ストール限界トルク)を示している。機関発生トルクは、線L2で示すように、点火時期が遅角するほど低下する。従って、この線L2と線Tfとの交点によって、ある冷却水温の下での第2の点火時期(点火時期B)が定まり、これよりも遅角させると、フリクションによりストールが発生する可能性がある。そして、機関各部のフリクション(機械損失)は、図12の上段に示すように冷却水温が低いほど増加するので、上記のストール限界トルクTfは、低温時ほど高くなり、それに伴って、第2の点火時期(点火時期B)の値は、進角側となる。従って、第2の点火時期(点火時期B)は、基本的に、冷却水温に対し、図12の下段に示すような特性となる。なお、前述したステップ2では、基本的に冷却水温に基づいて点火時期Bを求めるのであるが、機関全体のフリクションに関与する補機のON・OFF状態等をも考慮して点火時期Bを決定することが、より好ましい。   On the other hand, FIG. 11 shows the relationship between the generated torque of the engine and the ignition timing, and the line Tf in the figure can overcome the friction of each part of the engine under a certain cooling water temperature (engine temperature) and can operate independently. The minimum torque (stall limit torque) is shown. The engine generated torque decreases as the ignition timing is retarded, as shown by line L2. Therefore, the second ignition timing (ignition timing B) under a certain cooling water temperature is determined by the intersection of the line L2 and the line Tf, and if it is delayed more than this, a stall may occur due to friction. is there. Since the friction (mechanical loss) of each part of the engine increases as the coolant temperature decreases as shown in the upper part of FIG. 12, the stall limit torque Tf increases as the temperature decreases. The value of the ignition timing (ignition timing B) is on the advance side. Therefore, the second ignition timing (ignition timing B) basically has characteristics as shown in the lower part of FIG. 12 with respect to the coolant temperature. In step 2 described above, the ignition timing B is basically determined based on the coolant temperature. However, the ignition timing B is determined in consideration of the ON / OFF state of the auxiliary equipment involved in the friction of the entire engine. It is more preferable to do.

前述したステップ3,4では、点火時期A,Bの中で進角側の方が選択されるため、図9,図11から明らかなように、常に、燃焼安定度の観点からの要求と発生トルクの観点からの要求を同時に満たすことになり、極低温時などにあっても、燃焼の不安定化やストールを生じることがない。   In steps 3 and 4 described above, since the advance side is selected in the ignition timings A and B, as is apparent from FIGS. The requirement from the viewpoint of torque is satisfied at the same time, and even when the temperature is extremely low, combustion instability and stall do not occur.

また、燃料噴射開始時期は、冷却水温に対し図13に示すような特性で設定される。つまり、冷却水温が低いほど、燃料噴射開始時期は進角側へ補正される。従って、冷却水温に応じて点火時期が遅進しても、燃料噴射開始時期から点火時期までに適度な遅れ期間が確保され、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成したころに、点火が行われることになり、確実な着火を確保できる。なお、ステップ4で決定された点火時期に基づいて燃料噴射開始時期を決定するようにしてもよい。   Further, the fuel injection start timing is set with the characteristics shown in FIG. 13 with respect to the coolant temperature. That is, the fuel injection start timing is corrected to the advance side as the coolant temperature is lower. Therefore, even if the ignition timing is delayed according to the coolant temperature, an appropriate delay period is ensured from the fuel injection start timing to the ignition timing, so that the fuel spray just reaches the vicinity of the spark plug 10 and near the spark plug 10. When the combustible air-fuel mixture is formed, ignition is performed, and reliable ignition can be ensured. The fuel injection start timing may be determined based on the ignition timing determined in step 4.

以上、この発明の一実施例を説明したが、この発明は、上記実施例に限定されず、種々の変更が可能である As mentioned above, although one Example of this invention was described, this invention is not limited to the said Example, A various change is possible .

本発明の燃料噴射期間および点火時期の一例を示した特性図。The characteristic view which showed an example of the fuel-injection period and ignition timing of this invention. サイクル中のピストン位置変化量と体積変化量の特性図。The characteristic figure of the piston position change amount and volume change amount during a cycle. 大きな流れのサイクル中の変化を示す特性図。The characteristic figure which shows the change in the cycle of a big flow. 微小な乱れのサイクル中の変化を示す特性図。The characteristic view which shows the change in the cycle of a minute disturbance. 筒内直接噴射式火花点火内燃機関の一実施例を示す断面図。Sectional drawing which shows one Example of a direct injection type spark ignition internal combustion engine. 同じく平面図。FIG. この内燃機関全体のシステム構成を示す構成説明図。FIG. 2 is a configuration explanatory view showing the system configuration of the entire internal combustion engine. 制御の概略を示すフローチャート。The flowchart which shows the outline of control. 燃焼安定度と点火時期との関係を示す特性図。The characteristic view which shows the relationship between combustion stability and ignition timing. 冷却水温に対する点火時期Aの特性を示す特性図。The characteristic view which shows the characteristic of the ignition timing A with respect to cooling water temperature. 発生トルクと点火時期との関係を示す特性図。The characteristic view which shows the relationship between generated torque and ignition timing. 冷却水温に対する機械損失および点火時期Bの特性を示す特性図。The characteristic view which shows the characteristic of the mechanical loss and the ignition timing B with respect to cooling water temperature. 冷却水温に対する燃料噴射時期の特性を示す特性図。The characteristic view which shows the characteristic of the fuel injection timing with respect to cooling water temperature.

符号の説明Explanation of symbols

3…ピストン
5…燃焼室
10…点火プラグ
15…燃料噴射弁
3 ... Piston 5 ... Combustion chamber 10 ... Spark plug 15 ... Fuel injection valve

Claims (2)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、上死点噴射運転モードとして、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うとともに、燃焼安定度が所定の燃焼安定度以上となるように、機関温度に応じて求めた第1の点火時期と、発生トルクが、温度により変化するストール限界トルクを上回るように、機関温度に応じて求めた第2の点火時期と、を比較し、進角側の値を点火時期として設定することを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。 In a control device for a direct injection type spark ignition internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder and having an ignition plug, the top dead center injection operation mode is set in a predetermined operating state. , Fuel injection is performed in a period straddling the compression top dead center such that the injection start time is before the compression top dead center and the injection end time is after the compression top dead center, and the compression top dead is delayed from the injection start time. The ignition is performed after the point, and the first ignition timing determined according to the engine temperature and the generated torque exceed the stall limit torque that varies depending on the temperature so that the combustion stability is equal to or higher than the predetermined combustion stability. And a second ignition timing obtained in accordance with the engine temperature, and a value on the advance side is set as the ignition timing . 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記上死点噴射運転モードを実行することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。 The in-cylinder direct injection spark ignition internal combustion engine according to claim 1, wherein the top dead center injection operation mode is executed when a temperature increase of the exhaust gas is required as the predetermined operation state. Control device.
JP2004368605A 2004-07-26 2004-12-21 In-cylinder direct injection spark ignition internal combustion engine controller Expired - Fee Related JP4360323B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004368605A JP4360323B2 (en) 2004-12-21 2004-12-21 In-cylinder direct injection spark ignition internal combustion engine controller
EP05016245A EP1621748A1 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combusion engine
US11/189,058 US7194999B2 (en) 2004-07-26 2005-07-26 Combustion control apparatus for direct-injection spark-ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004368605A JP4360323B2 (en) 2004-12-21 2004-12-21 In-cylinder direct injection spark ignition internal combustion engine controller

Publications (2)

Publication Number Publication Date
JP2006177178A JP2006177178A (en) 2006-07-06
JP4360323B2 true JP4360323B2 (en) 2009-11-11

Family

ID=36731520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004368605A Expired - Fee Related JP4360323B2 (en) 2004-07-26 2004-12-21 In-cylinder direct injection spark ignition internal combustion engine controller

Country Status (1)

Country Link
JP (1) JP4360323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194999B2 (en) 2004-07-26 2007-03-27 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine

Also Published As

Publication number Publication date
JP2006177178A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
EP3287626B1 (en) Engine control device and engine control method
JP4400379B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4539476B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4375295B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4360323B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4207866B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4379279B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006090202A (en) Control device of cylinder direct injection spark ignition internal combustion engine
JP4729920B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4380481B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006161733A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4428226B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006017062A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006177181A (en) Control device for cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees