JP2006017062A - Control device for cylinder direct injection type spark ignition internal combustion engine - Google Patents

Control device for cylinder direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2006017062A
JP2006017062A JP2004197533A JP2004197533A JP2006017062A JP 2006017062 A JP2006017062 A JP 2006017062A JP 2004197533 A JP2004197533 A JP 2004197533A JP 2004197533 A JP2004197533 A JP 2004197533A JP 2006017062 A JP2006017062 A JP 2006017062A
Authority
JP
Japan
Prior art keywords
dead center
top dead
injection
compression top
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197533A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishii
仁 石井
Toshiya Kono
十史弥 河野
Masayuki Tomita
全幸 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004197533A priority Critical patent/JP2006017062A/en
Priority to DE602005019932T priority patent/DE602005019932D1/en
Priority to EP05001148A priority patent/EP1559889B1/en
Priority to US11/038,643 priority patent/US7104249B2/en
Priority to CNB2005100063891A priority patent/CN100470034C/en
Publication of JP2006017062A publication Critical patent/JP2006017062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To materialize temperature rise of exhaust gas temperature and reduction of HC emission quantity at a time of cold engine by compatibly achieving great ignition timing delay and stabilization of combustion. <P>SOLUTION: Normal stratified combustion operation and homogeneous combustion operation is performed under a warming up completion condition where cooling water temperature of the internal combustion engine exceeds 80°. Top dead center injection operation is performed to promote activation of a catalyst converter and reduction of HC emission amount under a cold engine condition where cooling water temperature is 80° or less. Injection start timing ITS is before compression top dead center TDC and Injection completion timing ITE is after compression top dead center TDC and fuel injection is performed over compression top dead center in top dead center injection operation. Ignition timing ADV is after compression top dead center and ignition is done at timing delayed from ignition start timing ITS by 15-20°CA. Since swirl flow and tumble flow collapse at compression top dead center and stable condition is formed, combustion stability is improved and great ignition timing delay can be done. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、筒内に燃料を直接に噴射する筒内直接噴射式火花点火内燃機関の制御装置に関し、特に、その噴射時期および点火時期の制御に関する。   The present invention relates to a control device for an in-cylinder direct injection spark ignition internal combustion engine that directly injects fuel into a cylinder, and more particularly to control of injection timing and ignition timing.

特許文献1には、排気浄化用の触媒コンバータが活性温度よりも低い未暖機状態にあるときに、燃料噴射量全体を早期噴射と後期噴射との2回に分割して噴射するものとして、吸気行程中に早期噴射を行うとともに、圧縮行程中に後期噴射を行い、さらに、点火時期をMBT点よりも遅角させる技術が開示されている。
特開2000−45843号公報
In Patent Document 1, when the exhaust gas-purifying catalytic converter is in an unwarmed state lower than the activation temperature, the entire fuel injection amount is divided into two injections, an early injection and a late injection. A technique is disclosed in which early injection is performed during the intake stroke, late injection is performed during the compression stroke, and the ignition timing is retarded from the MBT point.
JP 2000-45843 A

内燃機関冷機時の触媒の早期活性化を図るべく排気ガス温度を昇温させるとともにHCを低減するためには、点火時期をなるべく大きく遅角させることが望ましいが、点火時期を大幅に遅角すると、燃焼安定度が悪化するため、燃焼安定度の観点から定まるある限界よりも遅角することはできない。上記従来の技術では、特に冷機時のような条件下において、安定した燃焼の確保が難しく、燃焼安定度から定まる点火時期の遅角限界が比較的進み側にあり、十分な点火時期の遅角を実現することができない。   In order to raise the exhaust gas temperature and reduce HC in order to achieve early activation of the catalyst when the internal combustion engine is cold, it is desirable to retard the ignition timing as much as possible, but if the ignition timing is significantly retarded Since the combustion stability deteriorates, it cannot be retarded from a certain limit determined from the viewpoint of combustion stability. In the above-described conventional technology, it is difficult to ensure stable combustion, particularly under conditions such as cold, the ignition timing delay limit determined from the combustion stability is relatively advanced, and the ignition timing is sufficiently retarded. Cannot be realized.

この発明は、筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のとき、例えば冷機時アイドル運転のような排気ガス温度の昇温が必要な場合などに、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うことを特徴としている。   The present invention provides a control device for an in-cylinder direct injection spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and that includes an ignition plug. When it is necessary to raise the exhaust gas temperature, such as during operation, fuel injection is performed across the compression top dead center so that the injection start time is before the compression top dead center and the injection end time is after the compression top dead center. The ignition is performed during the period and after compression top dead center delayed from the injection start timing.

例えば、点火時期は、噴射開始時期から15°CA〜20°CA遅れた時期とすることが望ましい。   For example, it is desirable that the ignition timing be delayed by 15 ° CA to 20 ° CA from the injection start timing.

また、燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とがほぼ等しくなるように制御することもできる。   It is also possible to control so that the period before the compression top dead center and the period after the compression top dead center in the fuel injection period are substantially equal.

図1は、本発明の燃料噴射期間および点火時期を筒内圧変化とともに例示したものであり、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となる。その間の噴射期間Tの長さは、噴射量に相当する。点火時期ADVは、圧縮上死点(TDC)後であり、噴射開始時期ITSから所定クランク角(例えば15°CA〜20°CA)遅れた時期となる。この遅れ期間Dは、一般に、燃料噴射弁から点火プラグまでの距離に相関する。   FIG. 1 exemplifies the fuel injection period and ignition timing of the present invention together with the in-cylinder pressure change. The injection start timing ITS is before compression top dead center (TDC), and the injection end timing ITE is compression top dead center (TDC). Later. The length of the injection period T during that time corresponds to the injection amount. The ignition timing ADV is after compression top dead center (TDC), and is a timing delayed by a predetermined crank angle (for example, 15 ° CA to 20 ° CA) from the injection start timing ITS. This delay period D generally correlates with the distance from the fuel injection valve to the spark plug.

図2は、内燃機関の1サイクル中のピストンストロークによるピストン位置変化量と燃焼室の体積変化量とを示したものである。図示するように、単位クランク角当たりの変化量は、ストロークの中間位置付近で最も大きく、下死点(BDC)付近ならびに上死点(TDC)付近では、非常に小さい。従って、本発明で燃料噴射を行う圧縮上死点付近は、ピストン位置変化や体積変化が非常に小さく、ピストンの動き等に影響されない安定した場が形成され得る。   FIG. 2 shows the piston position change amount and the combustion chamber volume change amount due to the piston stroke in one cycle of the internal combustion engine. As shown in the figure, the amount of change per unit crank angle is the largest near the middle position of the stroke, and is very small near the bottom dead center (BDC) and near the top dead center (TDC). Therefore, in the vicinity of the compression top dead center where the fuel injection is performed in the present invention, the piston position change and volume change are very small, and a stable field that is not affected by the piston movement or the like can be formed.

また、筒内には、吸気行程において、スワール流やタンブル流といった比較的大きな流れのガス流動が発生し、圧縮行程においても残存しているが、このようなスワール流やタンブル流といった大きな流れは、ピストンが圧縮上死点付近に達して燃焼室が狭小なものとなると、急激に崩壊する。図3は、種々の機関回転数の下での燃焼室内の大きな流れの流速変化を示したものであり、図示するように、回転数に応じた強さのスワール流ないしタンブル流が発生するが、圧縮上死点(360°CA)に達する前に、急激に崩壊する。従って、本発明において圧縮上死点付近で噴射された燃料噴霧は、スワール流やタンブル流のような大きな流れにより動かされることがなく、点火プラグに対し、常に安定した形で噴霧を形成することが可能である。   In the cylinder, a relatively large gas flow such as a swirl flow or a tumble flow is generated in the intake stroke and remains in the compression stroke. However, a large flow such as a swirl flow or a tumble flow is When the piston reaches near the compression top dead center and the combustion chamber becomes narrow, it collapses rapidly. FIG. 3 shows a change in flow velocity of a large flow in the combustion chamber under various engine speeds. As shown in the figure, a swirl flow or a tumble flow having a strength corresponding to the rotation speed is generated. Collapses rapidly before reaching compression top dead center (360 ° CA). Therefore, in the present invention, the fuel spray injected near the compression top dead center is not moved by a large flow such as a swirl flow or a tumble flow, and always forms a spray in a stable manner on the spark plug. Is possible.

一方、上記のスワール流やタンブル流といった比較的大きな流れのエネルギは、その流れの崩壊に伴って、微小な乱れへと遷移する。従って、燃焼室内の微小な乱れは、圧縮上死点の直前に、急激に増大する。図4は、図3に示した流れの崩壊に伴って生じる微小な乱れの強さを、流速に換算していわゆる乱れ流速として示したものであり、図示するように、圧縮上死点直前に、乱れが大きく増加する。このような微小な乱れは、燃焼場の活性化に寄与し、燃焼改善作用が得られる。   On the other hand, the energy of a relatively large flow such as the swirl flow or the tumble flow described above transitions to minute turbulence as the flow collapses. Therefore, the minute disturbance in the combustion chamber increases rapidly just before the compression top dead center. FIG. 4 shows the intensity of the minute turbulence caused by the collapse of the flow shown in FIG. 3 as a so-called turbulent flow rate converted to a flow velocity, and as shown in the figure, immediately before the compression top dead center. , Disturbances increase greatly. Such minute disturbances contribute to the activation of the combustion field, and a combustion improving action is obtained.

つまり、燃料が噴射される圧縮上死点付近での燃焼室内の場は、噴霧を動かしてしまうような大きな流れが存在せず、かつ燃焼を活発化させる微小な乱れが多く存在し、しかも、ピストンの動きに対し非常に安定した場となる。従って、圧縮上死点よりも遅角した点火時期でもって、安定した燃焼が可能であり、燃焼安定度の上で制限される点火時期の遅角限界が、より遅角側となる。そのため、点火時期の大幅な遅角により、排気ガス温度を大幅に昇温させることができ、かつHC排出量が低減する。   In other words, the field in the combustion chamber near the compression top dead center where the fuel is injected does not have a large flow that moves the spray, and there are many minute disturbances that activate the combustion, It is a very stable place against the movement of the piston. Therefore, stable combustion is possible with the ignition timing retarded from the compression top dead center, and the retard limit of the ignition timing that is limited in terms of combustion stability is on the retard side. For this reason, the exhaust gas temperature can be significantly increased by a large retardation of the ignition timing, and the HC emission amount is reduced.

この発明によれば、点火時期を圧縮上死点よりも大幅に遅角させた状態で安定した燃焼を得ることができ、例えば内燃機関の冷機時に、排気ガス温度を昇温させて触媒の早期活性化を図ることができるとともに、HC排出量の低減が可能となる。   According to the present invention, stable combustion can be obtained in a state where the ignition timing is significantly retarded from the compression top dead center. For example, when the internal combustion engine is cold, the exhaust gas temperature is raised and the catalyst is accelerated. Activation can be achieved and HC emissions can be reduced.

以下、この発明の一実施例を図面に基づいて詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図5〜図7は、この発明が適用される筒内直接噴射式火花点火内燃機関の一実施例を示しており、特に、図5,図6は、一つの気筒の構成を示し、図7は機関全体のシステム構成を示している。   5 to 7 show an embodiment of a direct injection type spark ignition internal combustion engine to which the present invention is applied. In particular, FIGS. 5 and 6 show the configuration of one cylinder. Indicates the system configuration of the entire organization.

図5,図6に示すように、シリンダブロック1に形成されたシリンダ2にピストン3が摺動可能に配置されているとともに、シリンダブロック1上面に固定されたシリンダヘッド4と上記ピストン3との間に、燃焼室5が形成されている。上記シリンダヘッド4には、吸気弁6によって開閉される吸気ポート7と、排気弁8によって開閉される排気ポート9と、が形成されている。1つの気筒に対し、一対の吸気弁6と一対の排気弁8とが設けられており、これらの4つの弁に囲まれた燃焼室5天井面中心部に、点火プラグ10が配置されている。また、この実施例では、運転状態によってタンブル流を強化することができるように、吸気ポート7内に、該吸気ポート7内を上下2つの流路に区画する隔壁11が設けられているとともに、その下側の流路を上流端で開閉するタンブル制御弁12が設けられている。当業者には容易に理解できるように、タンブル制御弁12によって下側の流路を閉塞した状態ではタンブル流が強化され、タンブル制御弁12を開いた状態ではタンブル流が弱まる。   As shown in FIGS. 5 and 6, a piston 3 is slidably disposed in a cylinder 2 formed in the cylinder block 1, and a cylinder head 4 fixed to the upper surface of the cylinder block 1 and the piston 3 A combustion chamber 5 is formed between them. The cylinder head 4 is formed with an intake port 7 that is opened and closed by an intake valve 6 and an exhaust port 9 that is opened and closed by an exhaust valve 8. A pair of intake valves 6 and a pair of exhaust valves 8 are provided for one cylinder, and an ignition plug 10 is disposed at the center of the ceiling surface of the combustion chamber 5 surrounded by these four valves. . Further, in this embodiment, a partition wall 11 is provided in the intake port 7 so as to partition the intake port 7 into two upper and lower flow paths so that the tumble flow can be strengthened depending on the operation state. A tumble control valve 12 that opens and closes the lower flow path at the upstream end is provided. As can be easily understood by those skilled in the art, the tumble flow is strengthened when the lower flow path is closed by the tumble control valve 12, and the tumble flow is weakened when the tumble control valve 12 is opened.

上記シリンダヘッド4の吸気ポート7の下側、より詳しくは一対の吸気ポート7の中間部の位置には、筒内へ燃料を直接噴射する燃料噴射弁15が配置されている。この燃料噴射弁15は、平面図上において図示せぬピストンピンと直交する方向に沿って燃料を噴射するように配置されているとともに、図5の断面図上において、斜め下方を指向して配置されているが、下方への傾斜角は比較的小さく、つまり水平に近い方向へ燃料を噴射する。   A fuel injection valve 15 for directly injecting fuel into the cylinder is disposed below the intake port 7 of the cylinder head 4, more specifically at a position between the pair of intake ports 7. The fuel injection valve 15 is arranged so as to inject fuel along a direction orthogonal to a piston pin (not shown) in the plan view, and is arranged so as to be directed obliquely downward in the sectional view of FIG. However, the downward inclination angle is relatively small, that is, the fuel is injected in a direction close to the horizontal.

一方、ピストン3の頂部は、ペントルーフ型をなす燃焼室5天井面の傾斜に沿った凸部形状をなしているとともに、その中央部に、平面図上において略矩形をなす凹部16が形成されている。この凹部16の底面は、タンブル流に沿うように、所定の曲率半径の円弧面ないしは円弧に近似した湾曲面をなしている。   On the other hand, the top of the piston 3 has a convex shape along the inclination of the ceiling surface of the combustion chamber 5 that forms a pent roof type, and a concave portion 16 having a substantially rectangular shape in plan view is formed at the center. Yes. The bottom surface of the recess 16 forms an arc surface having a predetermined radius of curvature or a curved surface approximating an arc so as to follow the tumble flow.

図7に示すように、この実施例の内燃機関は、例えば直列4気筒機関であり、各気筒の排気ポート9が接続された排気通路21に、排気浄化用の触媒コンバータ22が設けられており、その上流側に、酸素センサ等の空燃比センサ23が配置されている。また、各気筒の吸気ポート7が接続された吸気通路24は、その入口側に、制御信号により開閉される電子制御スロットル弁25を備えている。上記排気通路21と上記吸気通路24との間には、排気還流通路26が設けられており、その途中に、排気還流制御弁27が介装されている。また、各気筒のタンブル制御弁12は、ソレノイドバルブ28を介して導入される吸入負圧により動作する負圧式タンブル制御アクチュエータ29によって、一斉に開閉される構成となっている。   As shown in FIG. 7, the internal combustion engine of this embodiment is, for example, an in-line four-cylinder engine, and a catalytic converter 22 for purifying exhaust gas is provided in an exhaust passage 21 to which an exhaust port 9 of each cylinder is connected. An air-fuel ratio sensor 23 such as an oxygen sensor is disposed on the upstream side. The intake passage 24 to which the intake port 7 of each cylinder is connected is provided with an electronically controlled throttle valve 25 that is opened and closed by a control signal on the inlet side. An exhaust gas recirculation passage 26 is provided between the exhaust passage 21 and the intake air passage 24, and an exhaust gas recirculation control valve 27 is interposed in the middle. Further, the tumble control valves 12 of the respective cylinders are configured to be simultaneously opened and closed by a negative pressure type tumble control actuator 29 that is operated by a suction negative pressure introduced via a solenoid valve 28.

また、上記燃料噴射弁15には、燃料ポンプ31およびプレッシャレギュレータ32によって所定圧力に調圧された燃料が、燃料ギャラリ33を介して供給されている。従って、各気筒の燃料噴射弁15が制御パルスにより開弁することで、その開弁期間に応じた量の燃料が噴射される。また、各気筒の点火プラグ10は、イグニッションコイル34に接続されている。   The fuel injection valve 15 is supplied with the fuel adjusted to a predetermined pressure by the fuel pump 31 and the pressure regulator 32 via the fuel gallery 33. Therefore, when the fuel injection valve 15 of each cylinder is opened by the control pulse, an amount of fuel corresponding to the valve opening period is injected. The ignition plug 10 of each cylinder is connected to an ignition coil 34.

上記内燃機関の燃料噴射時期や噴射量、点火時期等は、コントロールユニット35によって制御される。このコントロールユニット35には、アクセルペダル踏み込み量を検出するアクセル開度センサ30の検出信号や、クランク角センサ36の検出信号、空燃比センサ23の検出信号、冷却水温を検出する水温センサ37の検出信号、等が入力されている。   The fuel injection timing, injection amount, ignition timing, etc. of the internal combustion engine are controlled by the control unit 35. The control unit 35 includes a detection signal of an accelerator opening sensor 30 that detects the amount of depression of an accelerator pedal, a detection signal of a crank angle sensor 36, a detection signal of an air-fuel ratio sensor 23, and a detection of a water temperature sensor 37 that detects a cooling water temperature. Signals, etc. are input.

上記のように構成された内燃機関においては、暖機が完了した後の状態、例えば冷却水温が80℃を越えているときには、通常の成層燃焼運転および均質燃焼運転が行われる。すなわち、低速低負荷側の所定の領域では、通常の成層燃焼運転として、基本的にタンブル制御弁12を閉じた状態の下で、圧縮行程の適宜な時期に燃料噴射が行われ、かつ圧縮上死点前の時期に点火が行われる。なお、この運転モードでは、圧縮上死点前に必ず燃料噴射が終了する。圧縮行程中にピストン3へ向けて噴射された燃料は、凹部16に沿って旋回するタンブル流を利用して点火プラグ10近傍へ集められ、ここで点火される。そのため、平均的な空燃比がリーンとなった成層燃焼が実現される。また、高速高負荷側の所定の領域では、通常の均質燃焼運転として、基本的にタンブル制御弁12を開いた状態の下で、吸気行程中に燃料噴射が行われ、かつ圧縮上死点前のMBT点において点火が行われる。この場合は、燃料は筒内で均質な混合気となり、基本的に理論空燃比近傍で運転が行われる。   In the internal combustion engine configured as described above, when the warm-up is completed, for example, when the cooling water temperature exceeds 80 ° C., normal stratified combustion operation and homogeneous combustion operation are performed. That is, in a predetermined region on the low speed and low load side, as a normal stratified combustion operation, fuel injection is performed at an appropriate time in the compression stroke, with the tumble control valve 12 basically closed, and the compression is increased. Ignition is performed at the time before dead center. In this operation mode, fuel injection always ends before compression top dead center. The fuel injected toward the piston 3 during the compression stroke is collected in the vicinity of the spark plug 10 using a tumble flow swirling along the recess 16 and ignited there. Therefore, stratified combustion with an average air-fuel ratio lean is realized. In a predetermined region on the high speed and high load side, as a normal homogeneous combustion operation, fuel injection is performed during the intake stroke with the tumble control valve 12 basically open, and before compression top dead center. Ignition is performed at the MBT point. In this case, the fuel becomes a homogeneous air-fuel mixture in the cylinder and is basically operated near the stoichiometric air-fuel ratio.

これに対し、内燃機関の冷却水温が80℃以下のとき、つまり暖機が完了していない状態では、触媒コンバータ22の活性化つまり温度上昇の促進とHC排出量低減のために、上死点噴射運転とする。この上死点噴射運転では、前述した図1に示したように、噴射開始時期ITSが圧縮上死点(TDC)前、噴射終了時期ITEが圧縮上死点(TDC)後となり、圧縮上死点を跨いで燃料噴射が行われる。点火時期ADVは、圧縮上死点(TDC)後となり、噴射開始時期ITSから15°CA〜20°CA遅れた時期に点火される。この遅れ期間の間に、燃料噴霧がちょうど点火プラグ10付近に到達し、点火プラグ10付近に可燃混合気を形成するので、確実に着火燃焼に至り、成層燃焼が行われる。このとき、燃料噴射量は、平均的な空燃比が理論空燃比となるように制御される。   On the other hand, when the cooling water temperature of the internal combustion engine is 80 ° C. or lower, that is, when the warm-up is not completed, the top dead center is used to activate the catalytic converter 22, that is, to promote the temperature rise and reduce the HC emission amount. Let it be an injection operation. In the top dead center injection operation, as shown in FIG. 1 described above, the injection start timing ITS is before the compression top dead center (TDC), and the injection end timing ITE is after the compression top dead center (TDC). Fuel injection is performed across the points. The ignition timing ADV is after compression top dead center (TDC), and is ignited at a timing delayed by 15 ° CA to 20 ° CA from the injection start timing ITS. During this delay period, the fuel spray just reaches the vicinity of the spark plug 10 and forms a combustible air-fuel mixture in the vicinity of the spark plug 10, so that ignition combustion is surely performed and stratified combustion is performed. At this time, the fuel injection amount is controlled so that the average air-fuel ratio becomes the stoichiometric air-fuel ratio.

本実施例では、上記の燃料噴射時期は、噴射開始時期ITSが所定のクランク角となるように制御され、噴射終了時期ITEは、この噴射開始時期ITSと燃料噴射量(噴射時間)とによって定まる。なお、燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とが等しくなるように、燃料噴射量に基づき、噴射開始時期ITSと噴射終了時期ITEとを求めるようにすることも可能である。   In this embodiment, the fuel injection timing is controlled so that the injection start timing ITS becomes a predetermined crank angle, and the injection end timing ITE is determined by the injection start timing ITS and the fuel injection amount (injection time). . The injection start timing ITS and the injection end timing ITE are obtained based on the fuel injection amount so that the period before the compression top dead center and the period after the compression top dead center in the fuel injection period are equal. Is also possible.

このように圧縮上死点を跨いで燃料噴射を行い、かつ点火時期を圧縮上死点よりも遅らせることで、点火時期の大幅な遅角と燃焼安定度の確保とを両立させることが可能となり、排気ガス温度の十分な昇温とHC排出量低減とを達成できる。   By thus performing fuel injection across the compression top dead center and delaying the ignition timing from the compression top dead center, it becomes possible to achieve both a large retardation of the ignition timing and ensuring combustion stability. A sufficient increase in exhaust gas temperature and a reduction in HC emissions can be achieved.

図8は、上記のように圧縮上死点を跨いで燃料噴射を行った本実施例の場合と、圧縮上死点前に燃料噴射が終了する従来型の燃料噴射の場合とで、燃焼安定度の上で制限される点火時期の遅角限界を対比して示したものである。すなわち、図示する曲線のように点火時期を遅角させると燃焼安定度が悪化するため、点火時期の遅角は、燃焼安定度の限界によって制限され、かつ若干の余裕を見込んで、実用上は、破線の位置に制限される。ここで、従来型の燃料噴射では、同じ燃焼安定度限界に対し、破線aの位置に遅角が制限される。これに対し、圧縮上死点を跨いで燃料噴射を行う本実施例では、破線bの位置まで遅角することが可能となる。   FIG. 8 shows combustion stability in the case of the present embodiment in which fuel injection is performed across the compression top dead center as described above, and in the case of conventional fuel injection in which fuel injection ends before the compression top dead center. This is a comparison of the retard limit of the ignition timing that is limited above the degree. That is, if the ignition timing is retarded as shown in the curve in the figure, the combustion stability deteriorates. Therefore, the ignition timing retardation is limited by the limit of the combustion stability, and a slight margin is expected in practical use. The position of the broken line is limited. Here, in the conventional fuel injection, the retardation is limited to the position of the broken line a with respect to the same combustion stability limit. On the other hand, in the present embodiment in which fuel injection is performed across the compression top dead center, it is possible to retard to the position of the broken line b.

図9は、点火時期ADVと排気温度との関係を示しており、圧縮上死点よりも点火時期ADVを遅らせることで、より一層の排気温度上昇が可能である。本実施例の点火時期ADVの設定点は、燃焼安定度が悪化する限界となる燃焼安定限界にできるだけ近い点に設定されている。   FIG. 9 shows the relationship between the ignition timing ADV and the exhaust temperature, and the exhaust temperature can be further increased by delaying the ignition timing ADV from the compression top dead center. The set point of the ignition timing ADV in this embodiment is set to a point as close as possible to the combustion stability limit, which is the limit at which the combustion stability deteriorates.

また図10は、点火時期ADVとHC排出量との関係を示しており、圧縮上死点よりも点火時期ADVを遅らせることで、より一層のHC排出量低減が可能である。つまり、混合気が成層化した状態で点火を行うため、未燃燃料が少なくなり、HC排出量が低減する。なお、点火時期ADVを過度に遅角設定すると、燃焼安定度が悪化するのは勿論であるが、噴射した燃料が拡散してしまうため、図示のように、HCも悪化傾向となる。   FIG. 10 shows the relationship between the ignition timing ADV and the HC emission amount. By delaying the ignition timing ADV from the compression top dead center, the HC emission amount can be further reduced. That is, since ignition is performed in a state in which the air-fuel mixture is stratified, unburned fuel is reduced and HC emission is reduced. If the ignition timing ADV is set too late, the combustion stability is naturally deteriorated, but the injected fuel is diffused, so that HC tends to deteriorate as shown in the figure.

図11は、燃料噴射時期IT(燃料噴射開始時期ITS)と点火時期ADVと燃焼安定度との関係を示したものであり、燃料噴射開始時期ITSと点火時期ADVとをパラメータとして、等燃焼安定度線を等高線状に描いてある。図の「IT=ADV」の線は、噴射開始時期ITSと点火時期ADVとが等しい線であり、これよりも上側は、点火時期ADVの方が相対的に遅いことを意味する。一点鎖線mは、点火プラグ10に噴霧が到達するまでの時間差を与えた線を示している。この図に示すように、燃焼安定度は、燃料噴射開始時期ITSを上死点付近とし、かつこれよりも点火時期ADVがある程度遅れたときに、最も高くなる。そして、燃焼安定度が許容レベルの限界となる燃焼安定限界に対応する等燃焼安定度線の内側が、燃焼の成立し得る範囲となる。本実施例では、この範囲内で、最も遅角側となるように点火時期ADVが設定され、かつこの点火時期ADVに対応して燃料噴射開始時期ITSが設定されている。   FIG. 11 shows the relationship between the fuel injection timing IT (fuel injection start timing ITS), the ignition timing ADV, and the combustion stability, and the equal combustion stability using the fuel injection start timing ITS and the ignition timing ADV as parameters. The degree lines are drawn as contour lines. The line “IT = ADV” in the drawing is a line in which the injection start timing ITS and the ignition timing ADV are equal, and the upper side means that the ignition timing ADV is relatively late. An alternate long and short dash line m indicates a line giving a time difference until the spray reaches the spark plug 10. As shown in this figure, the combustion stability is highest when the fuel injection start timing ITS is near top dead center and the ignition timing ADV is delayed to some extent. The inside of the equal combustion stability line corresponding to the combustion stability limit where the combustion stability is the limit of the allowable level is a range where combustion can be established. In this embodiment, the ignition timing ADV is set so as to be the most retarded within this range, and the fuel injection start timing ITS is set corresponding to the ignition timing ADV.

次に、図12および図13は、この発明が適用される内燃機関の異なる実施例を示している。この実施例は、特に、燃料噴射弁15の位置を変更したものであって、いわゆる直上噴射形式として、燃料噴射弁15が、一対の吸気弁6と一対の排気弁8とに囲まれた燃焼室5天井面中心部に配置されており、これに隣接して点火プラグ10が配置されている。上記燃料噴射弁15からは、垂直に近い角度で、より詳しくは点火プラグ10寄りに僅かに傾いた形で、燃料が噴射されるようになっており、その噴霧の一部が点火プラグ10の電極部付近に向かっている。なお、ピストン3頂部は、全体が緩い凹面となっている。また、吸気ポート7には、タンブル流を強化するためにタンブル制御弁12が設けられている。   Next, FIGS. 12 and 13 show different embodiments of the internal combustion engine to which the present invention is applied. In this embodiment, in particular, the position of the fuel injection valve 15 is changed. As a so-called direct injection type, the fuel injection valve 15 is surrounded by a pair of intake valves 6 and a pair of exhaust valves 8. It is arrange | positioned in the center part of the chamber 5 ceiling surface, and the spark plug 10 is arrange | positioned adjacent to this. Fuel is injected from the fuel injection valve 15 at an angle close to vertical, more specifically, slightly inclined toward the spark plug 10, and a part of the spray is injected into the spark plug 10. Heading near the electrode. The top of the piston 3 is a concave surface that is loose as a whole. The intake port 7 is provided with a tumble control valve 12 for enhancing the tumble flow.

このような構成の内燃機関においても、上述した上死点噴射運転が可能である。   Even in the internal combustion engine having such a configuration, the above-described top dead center injection operation is possible.

また、図14に示すように、上記のタンブル制御弁12に代えて、一方の吸気ポート7のみを開閉する周知のスワール制御弁41を設け、これを閉じることによって筒内にスワール流を生成するようにした内燃機関においても、本発明は同様に適用可能である。   Further, as shown in FIG. 14, instead of the tumble control valve 12, a known swirl control valve 41 that opens and closes only one intake port 7 is provided, and by closing this, a swirl flow is generated in the cylinder. The present invention is also applicable to the internal combustion engine configured as described above.

なお、上記各実施例では、必要に応じてタンブル流やスワール流を強化するためのタンブル制御弁やスワール制御弁を具備した例を説明したが、本発明は、このようなガス流動の強化手段を具備しない内燃機関においても、同様に適用することが可能である。   In each of the above embodiments, an example in which a tumble control valve and a swirl control valve for strengthening a tumble flow and a swirl flow are provided as necessary has been described. However, the present invention provides such gas flow strengthening means. The present invention can be similarly applied to an internal combustion engine that does not include the engine.

本発明の燃料噴射期間および点火時期の一例を示した特性図。The characteristic view which showed an example of the fuel-injection period and ignition timing of this invention. サイクル中のピストン位置変化量と体積変化量の特性図。The characteristic figure of the piston position change amount and volume change amount during a cycle. 大きな流れのサイクル中の変化を示す特性図。The characteristic figure which shows the change in the cycle of a big flow. 微小な乱れのサイクル中の変化を示す特性図。The characteristic view which shows the change in the cycle of a minute disturbance. 筒内直接噴射式火花点火内燃機関の一実施例を示す断面図。Sectional drawing which shows one Example of a direct injection type spark ignition internal combustion engine. 同じく平面図。FIG. この内燃機関全体のシステム構成を示す構成説明図。FIG. 2 is a configuration explanatory view showing the system configuration of the entire internal combustion engine. 本実施例の点火時期遅角限界を従来型の燃料噴射のものと対比して示す特性図。The characteristic view which shows the ignition timing retardation limit of a present Example compared with the thing of the conventional type fuel injection. 点火時期と排気温度との関係を示す特性図。The characteristic view which shows the relationship between ignition timing and exhaust gas temperature. 点火時期とHC排出量との関係を示す特性図。The characteristic view which shows the relationship between ignition timing and HC discharge | emission amount. 燃料噴射時期と点火時期と燃焼安定度との関係を示す特性図。The characteristic view which shows the relationship between fuel injection timing, ignition timing, and combustion stability. 筒内直接噴射式火花点火内燃機関の異なる実施例を示す断面図。Sectional drawing which shows the Example from which a cylinder direct injection type spark ignition internal combustion engine differs. 同じく平面図。FIG. スワール制御弁を設けた実施例を示す平面図。The top view which shows the Example which provided the swirl control valve.

符号の説明Explanation of symbols

3…ピストン
5…燃焼室
10…点火プラグ
15…燃料噴射弁
3 ... Piston 5 ... Combustion chamber 10 ... Spark plug 15 ... Fuel injection valve

Claims (5)

筒内に直接燃料を噴射する燃料噴射弁を備えるとともに、点火プラグを備えてなる筒内直接噴射式火花点火内燃機関の制御装置において、所定の運転状態のときに、燃料噴射を、噴射開始時期が圧縮上死点前で噴射終了時期が圧縮上死点後となるように圧縮上死点を跨ぐ期間に行い、かつ、上記噴射開始時期から遅れた圧縮上死点後に点火を行うことを特徴とする筒内直接噴射式火花点火内燃機関の制御装置。   In a control device for a direct injection type spark ignition internal combustion engine that includes a fuel injection valve that directly injects fuel into a cylinder and includes an ignition plug, the fuel injection is performed at an injection start timing in a predetermined operating state. Is performed in a period straddling the compression top dead center so that the injection end timing is after the compression top dead center before the compression top dead center, and ignition is performed after the compression top dead center delayed from the injection start timing. A control device for an in-cylinder direct injection spark ignition internal combustion engine. 所定の運転状態として、排気ガス温度の昇温が要求されたときに、上記の燃料噴射期間および点火時期に制御することを特徴とする請求項1に記載の筒内直接噴射式火花点火内燃機関の制御装置。   2. The direct injection spark ignition internal combustion engine according to claim 1, wherein when the exhaust gas temperature is required to be raised as a predetermined operating state, the fuel injection period and the ignition timing are controlled. Control device. 点火時期が、噴射開始時期から15°CA〜20°CA遅れた時期であることを特徴とする請求項1または2に記載の筒内直接噴射式火花点火内燃機関の制御装置。   3. The control device for a direct injection type spark ignition internal combustion engine according to claim 1, wherein the ignition timing is a timing delayed by 15 ° CA to 20 ° CA from the injection start timing. 燃料噴射期間における圧縮上死点前の期間と圧縮上死点後の期間とがほぼ等しいことを特徴とする請求項1〜3のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。   The control of the direct injection spark ignition internal combustion engine according to any one of claims 1 to 3, wherein a period before the compression top dead center and a period after the compression top dead center in the fuel injection period are substantially equal. apparatus. 平均的な空燃比がほぼ理論空燃比となることを特徴とする請求項1〜4のいずれかに記載の筒内直接噴射式火花点火内燃機関の制御装置。
The control device for a direct injection spark ignition internal combustion engine according to any one of claims 1 to 4, wherein the average air-fuel ratio is substantially the stoichiometric air-fuel ratio.
JP2004197533A 2004-01-28 2004-07-05 Control device for cylinder direct injection type spark ignition internal combustion engine Pending JP2006017062A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004197533A JP2006017062A (en) 2004-07-05 2004-07-05 Control device for cylinder direct injection type spark ignition internal combustion engine
DE602005019932T DE602005019932D1 (en) 2004-01-28 2005-01-20 Control system for a spark-ignition internal combustion engine with direct injection
EP05001148A EP1559889B1 (en) 2004-01-28 2005-01-20 Direct fuel injection/spark ignition engine control device
US11/038,643 US7104249B2 (en) 2004-01-28 2005-01-21 Direct fuel injection/spark ignition engine control device
CNB2005100063891A CN100470034C (en) 2004-01-28 2005-01-28 Direct fuel injection/spark ignition engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197533A JP2006017062A (en) 2004-07-05 2004-07-05 Control device for cylinder direct injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2006017062A true JP2006017062A (en) 2006-01-19

Family

ID=35791571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197533A Pending JP2006017062A (en) 2004-01-28 2004-07-05 Control device for cylinder direct injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006017062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036044A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Internal combustion engine control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036044A (en) * 2007-07-31 2009-02-19 Toyota Motor Corp Internal combustion engine control device

Similar Documents

Publication Publication Date Title
US7104249B2 (en) Direct fuel injection/spark ignition engine control device
JP2002242716A5 (en)
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP4400379B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4492399B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2006250050A (en) Controller of cylinder direct injection type spark ignition internal combustion engine
JP4281647B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4501743B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2007032376A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP4525494B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4311300B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006037794A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006046124A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4155242B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4207866B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4360323B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006017062A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP2006090202A (en) Control device of cylinder direct injection spark ignition internal combustion engine
JP4379279B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4389831B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006070862A (en) Cylinder direct injection type spark ignition internal combustion engine
JP2006046126A (en) Cylinder direct injection type spark ignition internal combustion engine
JP4380481B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2006250006A (en) Controller of cylinder direct injection type spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129