JP2007327464A - Direct injection type spark ignition internal combustion engine - Google Patents

Direct injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2007327464A
JP2007327464A JP2006160850A JP2006160850A JP2007327464A JP 2007327464 A JP2007327464 A JP 2007327464A JP 2006160850 A JP2006160850 A JP 2006160850A JP 2006160850 A JP2006160850 A JP 2006160850A JP 2007327464 A JP2007327464 A JP 2007327464A
Authority
JP
Japan
Prior art keywords
fuel injection
cylinder
fuel
injection valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006160850A
Other languages
Japanese (ja)
Inventor
Takeshi Ashizawa
剛 芦澤
Fumiaki Hattori
文昭 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006160850A priority Critical patent/JP2007327464A/en
Publication of JP2007327464A publication Critical patent/JP2007327464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct injection type spark ignition internal combustion engine capable of surely maintaining a tumble flow up to the latter half of a compression stroke, without causing an intake shortage, in homogeneous combustion. <P>SOLUTION: This direct injection type spark ignition internal combustion engine has at least two first fuel injection valve 1 and second fuel injection valve 2 for directly injecting fuel into a cylinder. In the homogeneous combustion, the tumble flow T turning in the vertical direction in the cylinder by lowering along the exhaust valve side of a cylinder bore, is strengthened by the fuel injected in the vicinity of the intake bottom dead center by at least the two first fuel injection valve and second fuel injection valve. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、筒内噴射式火花点火内燃機関に関する。   The present invention relates to a direct injection spark ignition internal combustion engine.

気筒内に均質混合気を形成し、この均質混合気を圧縮行程末期の点火時期において着火燃焼させる均質燃焼において、気筒内へ供給された吸気により気筒内にタンブル流を形成し、このタンブル流を圧縮行程後半まで持続させることにより、点火時期において気筒内にタンブル流による乱れを存在させることができれば、この乱れによって均質混合気の燃焼速度は高まり、良好な均質燃焼を実現することができる。   In homogeneous combustion in which a homogeneous mixture is formed in the cylinder and this homogeneous mixture is ignited and combusted at the ignition timing at the end of the compression stroke, a tumble flow is formed in the cylinder by the intake air supplied into the cylinder, and this tumble flow is If the turbulence caused by the tumble flow can exist in the cylinder at the ignition timing by maintaining the second half of the compression stroke, the combustion speed of the homogeneous mixture increases due to the turbulence, and good homogeneous combustion can be realized.

タンブル流を圧縮行程末期の点火時期まで持続させるために、吸気ポート内に吸気流制御弁を配置し、この吸気流制御弁によって吸気を吸気ポート上壁に沿わせて気筒内へ供給することにより、気筒内に強いタンブル流を形成する筒内噴射式火花点火内燃機関が提案されている(例えば、特許文献1参照)。   In order to maintain the tumble flow until the ignition timing at the end of the compression stroke, an intake flow control valve is arranged in the intake port, and by this intake flow control valve, intake air is supplied into the cylinder along the upper wall of the intake port. An in-cylinder injection spark ignition internal combustion engine that forms a strong tumble flow in a cylinder has been proposed (see, for example, Patent Document 1).

特開2005−180247JP 2005-180247 A 特開2003−322022JP 2003-320222 A

前述の筒内噴射式火花点火内燃機関において、吸気流制御弁により吸気を吸気ポート上壁に沿わせて気筒内に供給する時には、吸気流制御弁により吸気ポートが絞られることになる。それにより、必要吸気量が比較的少ない時においては、特に問題なく強いタンブル流を気筒内に形成することができるが、必要吸気量が比較的多くなる時においては、吸気流制御弁により吸気ポートを絞ると吸気不足が発生することがあるために、吸気流制御弁によって強いタンブル流を気筒内に形成することはできない。   In the above-described in-cylinder spark ignition internal combustion engine, when intake air is supplied into the cylinder along the upper wall of the intake port by the intake flow control valve, the intake port is throttled by the intake flow control valve. As a result, when the required intake air amount is relatively small, a strong tumble flow can be formed in the cylinder without any problem. However, when the required intake air amount is relatively large, the intake port is controlled by the intake air flow control valve. Since a shortage of intake may occur if the throttle valve is throttled, a strong tumble flow cannot be formed in the cylinder by the intake flow control valve.

従って、本発明の目的は、均質燃焼に際して、吸気不足を発生させることなく、タンブル流を圧縮行程後半まで確実に持続させることができる筒内噴射式火花点火内燃機関を提供することである。   Accordingly, an object of the present invention is to provide a direct injection spark ignition internal combustion engine capable of reliably maintaining a tumble flow until the latter half of the compression stroke without causing a shortage of intake during homogeneous combustion.

本発明による請求項1に記載の筒内噴射式火花点火内燃機関は、気筒内へ直接的に燃料を噴射する少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁を具備し、均質燃焼に際して、シリンダボアの排気弁側に沿って下降して気筒内を縦方向に旋回するタンブル流を、前記少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁により吸気下死点近傍において噴射される燃料によって強めることを特徴とする。   According to a first aspect of the present invention, there is provided an in-cylinder injection spark ignition internal combustion engine comprising at least two first fuel injection valves and second fuel injection valves for directly injecting fuel into a cylinder. The fuel injected by the at least two first fuel injection valves and the second fuel injection valve in the vicinity of the intake bottom dead center is a tumble flow that descends along the exhaust valve side of the cylinder bore and turns in the cylinder in the vertical direction. It is characterized by strengthening.

本発明による請求項2に記載の筒内噴射式火花点火内燃機関は、請求項1に記載の筒内噴射式火花点火内燃機関において、前記第一燃料噴射弁により噴射される燃料は、点火プラグの点火ギャップ内又は点火ギャップ近傍を通過するようにされ、圧縮行程後半に前記第一燃料噴射弁により燃料を噴射することにより、気筒内の一部に形成される可燃混合気内に前記点火プラグの点火ギャップを位置させて成層燃焼を実施することを特徴とする。   The direct injection spark ignition internal combustion engine according to claim 2 of the present invention is the direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel injected by the first fuel injection valve is an ignition plug. The ignition plug is inserted into the combustible mixture formed in a part of the cylinder by injecting fuel by the first fuel injection valve in the latter half of the compression stroke. The stratified charge combustion is carried out by positioning the ignition gap.

本発明による請求項3に記載の筒内噴射式火花点火内燃機関は、請求項2に記載の筒内噴射式火花点火内燃機関において、前記第一燃料噴射弁は気筒上部略中心に配置され、前記点火プラグは前記第一燃料噴射弁の排気弁側近傍に配置され、前記第二燃料噴射弁は気筒上部周囲の吸気弁側に配置され、均質燃焼に際して、前記第二燃料噴射弁は、前記タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側上部へ向けて燃料を噴射することを特徴とする。   The in-cylinder injection spark ignition internal combustion engine according to claim 3 according to the present invention is the in-cylinder injection spark ignition internal combustion engine according to claim 2, wherein the first fuel injection valve is arranged at a substantially upper center of the cylinder, The spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, the second fuel injection valve is disposed on the intake valve side around the cylinder upper portion, and during the homogeneous combustion, the second fuel injection valve is In order to strengthen the tumble flow, fuel is injected toward the exhaust valve side upper part of the cylinder bore in the vicinity of the intake bottom dead center.

本発明による請求項4に記載の筒内噴射式火花点火内燃機関は、請求項3に記載の筒内噴射式火花点火内燃機関において、均質燃焼に際して、吸気下死点近傍における前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射時期を互いに異ならせることを特徴とする。   According to a fourth aspect of the present invention, the direct injection spark ignition internal combustion engine according to the third aspect is the direct injection spark ignition internal combustion engine according to the third aspect, wherein the first fuel injection in the vicinity of the intake bottom dead center during homogeneous combustion. The fuel injection timings of the valve and the second fuel injection valve are different from each other.

本発明による請求項5に記載の筒内噴射式火花点火内燃機関は、請求項2に記載の筒内噴射式火花点火内燃機関において、前記第一燃料噴射弁は気筒上部略中心に配置され、前記点火プラグは前記第一燃料噴射弁の排気弁側近傍に配置され、前記第二燃料噴射弁は気筒上部周囲の排気弁側に配置され、均質燃焼に際して、前記第二燃料噴射弁は、前記タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側に沿ってピストン頂面へ向けて燃料を噴射することを特徴とする。   The in-cylinder injection spark ignition internal combustion engine according to claim 5 according to the present invention is the in-cylinder injection spark ignition internal combustion engine according to claim 2, wherein the first fuel injection valve is arranged at a substantially upper center of the cylinder, The spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, the second fuel injection valve is disposed on the exhaust valve side around the upper part of the cylinder, and during the homogeneous combustion, the second fuel injection valve is In order to strengthen the tumble flow, fuel is injected toward the piston top surface along the exhaust valve side of the cylinder bore in the vicinity of the intake bottom dead center.

本発明による請求項6に記載の筒内噴射式火花点火内燃機関は、請求項1に記載の筒内噴射式火花点火内燃機関において、前記筒内噴射式火花点火内燃機関は吸気二弁式であり、均質燃焼に際して、前記第一燃料噴射弁により吸気下死点近傍において噴射される燃料は一方の吸気弁を介して気筒内に形成された一方のタンブル流を強め、前記第二燃料噴射弁により吸気下死点近傍において噴射される燃料は他方の吸気弁を介して気筒内に形成された他方のタンブル流を強めることを特徴とする。   A direct injection spark ignition internal combustion engine according to claim 6 of the present invention is the direct injection spark ignition internal combustion engine according to claim 1, wherein the direct injection spark ignition internal combustion engine is an intake two-valve type. In the homogeneous combustion, the fuel injected near the intake bottom dead center by the first fuel injection valve strengthens one tumble flow formed in the cylinder via the one intake valve, and the second fuel injection valve Thus, the fuel injected in the vicinity of the intake bottom dead center strengthens the other tumble flow formed in the cylinder via the other intake valve.

本発明による請求項1に記載の筒内噴射式火花点火内燃機関によれば、気筒内へ直接的に燃料を噴射する少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁を具備し、均質燃焼に際して、シリンダボアの排気弁側に沿って下降して気筒内を縦方向に旋回するタンブル流を、少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁により吸気下死点近傍において噴射される燃料により確実に強めるようになっている。それにより、吸気ポートを絞ることなく気筒内に形成されるタンブル流は圧縮行程後半までには消滅するほど弱いものであるが、このようなタンブル流は確実に強められ、タンブル流を圧縮行程後半まで確実に持続させて良好な均質燃焼を実現することができる。   According to the in-cylinder spark-ignition internal combustion engine of the first aspect of the present invention, the in-cylinder spark-ignition internal combustion engine includes at least two first fuel injection valves and second fuel injection valves that directly inject fuel into the cylinder, and is homogeneous During combustion, a tumble flow descending along the exhaust valve side of the cylinder bore and turning vertically in the cylinder is injected in the vicinity of the intake bottom dead center by at least two first fuel injection valves and second fuel injection valves. The fuel is surely strengthened. As a result, the tumble flow formed in the cylinder without restricting the intake port is so weak that it disappears by the latter half of the compression stroke, but such tumble flow is definitely strengthened, and the tumble flow is strengthened in the latter half of the compression stroke. Can be reliably maintained until a good homogeneous combustion is achieved.

本発明による請求項2に記載の筒内噴射式火花点火内燃機関によれば、請求項1に記載の筒内噴射式火花点火内燃機関と同様に、タンブル流は少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁により吸気下死点近傍において噴射される燃料により確実に強められ、良好な均質燃焼を実現することができる。また、第一燃料噴射弁により噴射される燃料は、点火プラグの点火ギャップ内又は点火ギャップ近傍を通過するようにされているために、圧縮行程後半に第一燃料噴射弁によって燃料を噴射することにより、気筒内の一部に形成される可燃混合気内に点火プラグの点火ギャップを位置させることができ、均質燃焼だけでなく成層燃焼も実施することができる。   According to the direct injection spark ignition internal combustion engine according to claim 2 of the present invention, as in the direct injection spark ignition internal combustion engine according to claim 1, the tumble flow is at least two first fuel injection valves. In addition, the fuel is surely strengthened by the fuel injected in the vicinity of the intake bottom dead center by the second fuel injection valve, and good homogeneous combustion can be realized. In addition, since the fuel injected by the first fuel injection valve passes through the ignition gap of the spark plug or in the vicinity of the ignition gap, the fuel is injected by the first fuel injection valve in the latter half of the compression stroke. Thus, the ignition gap of the spark plug can be positioned in the combustible mixture formed in a part of the cylinder, and not only homogeneous combustion but also stratified combustion can be performed.

本発明による請求項3に記載の筒内噴射式火花点火内燃機関によれば、請求項2に記載の筒内噴射式火花点火内燃機関において、第一燃料噴射弁は気筒上部略中心に配置され、点火プラグは第一燃料噴射弁の排気弁側近傍に配置され、第二燃料噴射弁は気筒上部周囲の吸気弁側に配置され、均質燃焼に際して、第二燃料噴射弁は、タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側上部へ向けて燃料を噴射するようになっている。それにより、第二燃料噴射弁により吸気下死点近傍において噴射される燃料によってタンブル流は強められると共に、第一燃料噴射弁により点火プラグの点火ギャップ内又は点火ギャップ近傍を通過するように噴射される燃料は、吸気下死点近傍においてシリンダボアの排気弁側へ向けて斜め下方向に噴射されてタンブル流を強めることができ、請求項2に記載の筒内噴射式火花点火内燃機関と同様な効果を得ることができる。   According to the in-cylinder injection spark ignition internal combustion engine according to claim 3 of the present invention, in the in-cylinder injection spark ignition internal combustion engine according to claim 2, the first fuel injection valve is disposed substantially at the upper center of the cylinder. The spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, the second fuel injection valve is disposed on the intake valve side around the upper part of the cylinder, and the second fuel injection valve enhances the tumble flow during homogeneous combustion. Therefore, fuel is injected toward the exhaust valve side upper part of the cylinder bore in the vicinity of the intake bottom dead center. Accordingly, the tumble flow is strengthened by the fuel injected near the intake bottom dead center by the second fuel injection valve, and the first fuel injection valve is injected so as to pass through or near the ignition gap of the spark plug. The fuel in the vicinity of the intake bottom dead center can be injected obliquely downward toward the exhaust valve side of the cylinder bore to strengthen the tumble flow, and is similar to the direct injection spark ignition internal combustion engine according to claim 2. An effect can be obtained.

本発明による請求項4に記載の筒内噴射式火花点火内燃機関によれば、請求項3に記載の筒内噴射式火花点火内燃機関において、均質燃焼に際して、吸気下死点近傍における第一燃料噴射弁及び第二燃料噴射弁の燃料噴射時期を互いに異ならせるようになっている。第一燃料噴射弁及び第二燃料噴射弁の燃料噴射時期を一致させて二つの噴射燃料が合流すると、合流した噴射燃料の移動に伴って、シリンダボアの排気弁側上部近傍に空気渦が発生し、この空気渦が圧縮行程後半においてタンブル流と衝突することがあり、これでは、噴射燃料により強めたタンブル流が弱められてしまうために、吸気下死点近傍における第一燃料噴射弁及び第二燃料噴射弁の燃料噴射時期を互いに異ならせるようにして、このような空気渦の発生を抑制している。   According to the in-cylinder injection spark ignition internal combustion engine according to claim 4 of the present invention, in the in-cylinder injection spark ignition internal combustion engine according to claim 3, the first fuel in the vicinity of the intake bottom dead center during homogeneous combustion. The fuel injection timings of the injection valve and the second fuel injection valve are made different from each other. When the fuel injection timings of the first fuel injection valve and the second fuel injection valve coincide with each other and the two injected fuels merge, an air vortex is generated near the upper part of the cylinder bore on the exhaust valve side as the merged injected fuel moves. The air vortex may collide with the tumble flow in the latter half of the compression stroke. In this case, since the tumble flow strengthened by the injected fuel is weakened, the first fuel injection valve and the second Generation of such air vortices is suppressed by making the fuel injection timings of the fuel injection valves different from each other.

本発明による請求項5に記載の筒内噴射式火花点火内燃機関によれば、請求項2に記載の筒内噴射式火花点火内燃機関において、第一燃料噴射弁は気筒上部略中心に配置され、点火プラグは第一燃料噴射弁の排気弁側近傍に配置され、第二燃料噴射弁は気筒上部周囲の排気弁側に配置され、均質燃焼に際して、第二燃料噴射弁は、タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側に沿ってピストン頂面へ向けて燃料を噴射するようになっている。それにより、第二燃料噴射弁により吸気下死点近傍において噴射される燃料によってタンブル流は強められると共に、第一燃料噴射弁により点火プラグの点火ギャップ内又は点火ギャップ近傍を通過するように噴射される燃料は、吸気下死点近傍においてシリンダボアの排気弁側へ向けて斜め下方向に噴射されてタンブル流を強めることができ、請求項2に記載の筒内噴射式火花点火内燃機関と同様な効果を得ることができる。   According to the in-cylinder injection spark ignition internal combustion engine according to claim 5 of the present invention, in the in-cylinder injection spark ignition internal combustion engine according to claim 2, the first fuel injection valve is disposed substantially at the upper center of the cylinder. The spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, the second fuel injection valve is disposed on the exhaust valve side around the upper part of the cylinder, and the second fuel injection valve enhances the tumble flow during homogeneous combustion. Therefore, fuel is injected toward the piston top surface along the exhaust valve side of the cylinder bore in the vicinity of the intake bottom dead center. Accordingly, the tumble flow is strengthened by the fuel injected near the intake bottom dead center by the second fuel injection valve, and the first fuel injection valve is injected so as to pass through or near the ignition gap of the spark plug. The fuel in the vicinity of the intake bottom dead center can be injected obliquely downward toward the exhaust valve side of the cylinder bore to strengthen the tumble flow, and is similar to the direct injection spark ignition internal combustion engine according to claim 2. An effect can be obtained.

本発明による請求項6に記載の筒内噴射式火花点火内燃機関によれば、請求項1に記載の筒内噴射式火花点火内燃機関において、筒内噴射式火花点火内燃機関は吸気二弁式であり、均質燃焼に際して、第一燃料噴射弁から吸気下死点近傍において噴射される燃料は一方の吸気弁を介して気筒内に形成された一方のタンブル流を強め、第二燃料噴射弁から吸気下死点近傍において噴射される燃料は他方の吸気弁を介して気筒内に形成された他方のタンブル流を強めるようになっている。それにより、各吸気弁を介して気筒内に形成される二つのタンブル流は、それぞれに噴射燃料により強められ、圧縮行程前半において二つのタンブル流が合流しても圧縮行程後半まで確実に持続し、良好な均質燃焼を実現することができる。   According to the cylinder injection type spark ignition internal combustion engine according to claim 6 of the present invention, in the cylinder injection type spark ignition internal combustion engine according to claim 1, the cylinder injection type spark ignition internal combustion engine is an intake two-valve type. In the homogeneous combustion, the fuel injected from the first fuel injection valve in the vicinity of the intake bottom dead center strengthens one tumble flow formed in the cylinder via the one intake valve, and from the second fuel injection valve. The fuel injected in the vicinity of the intake bottom dead center reinforces the other tumble flow formed in the cylinder via the other intake valve. As a result, the two tumble flows formed in the cylinder via each intake valve are each strengthened by the injected fuel, and even if the two tumble flows merge in the first half of the compression stroke, they are reliably maintained until the second half of the compression stroke. Good homogeneous combustion can be realized.

図1は本発明による筒内噴射式火花点火内燃機関の第一実施形態を示す吸気下死点近傍の概略縦断面図である。同図において、1は気筒上部略中心に配置されて気筒内へ直接的に燃料を噴射するための第一燃料噴射弁であり、2は気筒上部周囲の吸気弁側に配置されて気筒内へ直接的に燃料を噴射するための第二燃料噴射弁であり、3は第一燃料噴射弁1の排気弁側近傍に配置された点火プラグである。また、4はピストンであり、図示されていないが、気筒上部の右側には一対の吸気弁が配置されており、気筒上部の左側には一対の排気弁が配置されている。   FIG. 1 is a schematic longitudinal sectional view in the vicinity of an intake bottom dead center showing a first embodiment of a direct injection spark ignition internal combustion engine according to the present invention. In the figure, reference numeral 1 denotes a first fuel injection valve that is arranged at substantially the center of the cylinder upper part and directly injects fuel into the cylinder, and 2 is arranged on the intake valve side around the cylinder upper part and into the cylinder. Reference numeral 3 denotes a second fuel injection valve for directly injecting fuel, and reference numeral 3 denotes an ignition plug disposed in the vicinity of the exhaust valve side of the first fuel injection valve 1. Reference numeral 4 denotes a piston. Although not shown, a pair of intake valves are arranged on the right side of the upper part of the cylinder, and a pair of exhaust valves are arranged on the left side of the upper part of the cylinder.

本筒内噴射式火花点火内燃機関は、気筒内に理論空燃比よりリーンな均質混合気を形成し、この混合気を点火プラグ3により着火燃焼させる均質燃焼を実施するものである。この均質燃焼のリーン空燃比は、NOX生成量が比較的少なくなるように設定される(例えば、20)。高出力が必要な高回転高負荷時等においては、理論空燃比又はリッチ空燃比での均質燃焼を実施するようにしても良い。また、機関排気系に排気ガスの空燃比がリーンである時にNOXを吸蔵するNOX吸蔵触媒装置が配置されている場合においては、NOX吸蔵触媒装置から吸蔵NOXを放出して還元浄化する時に、燃焼空燃比を設定リッチ空燃比とする均質燃焼が実施される。特に、リーン空燃比での均質燃焼は、点火時期において気筒内に乱れを存在させて燃焼速度を速めないと、所望の機関出力が得られない。それにより、吸気行程において気筒内に供給される吸気によってシリンダボアの排気弁側に沿って下降して吸気弁側に沿って上昇して気筒内を縦方向に旋回するタンブル流T(ピストン頂面のキャビティにより偏向されてシリンダボアの吸気弁側に沿わずに気筒内を上昇することもある)を気筒内に形成し、このタンブル流Tを圧縮行程末期の点火時期まで持続させて点火時期において気筒内に乱れを存在させることが好ましい。 This in-cylinder injection spark ignition internal combustion engine forms a homogeneous air-fuel mixture that is leaner than the stoichiometric air-fuel ratio in a cylinder and performs homogeneous combustion in which this air-fuel mixture is ignited and burned by an ignition plug 3. The lean air-fuel ratio of this homogeneous combustion is set so that the amount of NO x produced is relatively small (for example, 20). For example, when the engine speed is high and the load is high, homogeneous combustion at the stoichiometric air-fuel ratio or rich air-fuel ratio may be performed. Further, when the NO X storing catalyst apparatus for storing the NO X when the air-fuel ratio of the exhaust gas in the engine exhaust system is lean is located, to release the occluded NO X from the NO X storing catalyst apparatus reducing and purifying When performing, homogeneous combustion is performed with the combustion air-fuel ratio set to the set rich air-fuel ratio. In particular, in homogeneous combustion at a lean air-fuel ratio, a desired engine output cannot be obtained unless the combustion speed is increased by causing turbulence in the cylinder at the ignition timing. As a result, in the intake stroke, the tumble flow T (the piston top surface of the piston top surface) descends along the exhaust valve side of the cylinder bore and rises along the intake valve side by the intake air supplied to the cylinder in the intake stroke and turns vertically in the cylinder. The cylinder bore may rise in the cylinder without being along the intake valve side of the cylinder bore), and the tumble flow T is maintained until the ignition timing at the end of the compression stroke. It is preferable to cause disturbance in

しかしながら、シリンダヘッドを厚くして吸気ポートの形状配置を工夫したり、吸気ポート内に吸気流制御弁を設ける等しない限り、一般的に気筒内に形成されるタンブル流は、それほど強いものではなく、減衰により圧縮行程後半までには容易に消滅し、点火時期においてタンブル流により気筒内に乱れを存在させることはできない。それにより、本実施形態においては、吸気行程において気筒内に形成されたタンブル流Tを、吸気下死点近傍、好ましくは、吸気行程末期において第一燃料噴射弁1によりシリンダボアの排気弁側へ向けて斜め下方向に噴射される燃料F1の貫徹力を利用して強めると共に、吸気下死点近傍、好ましくは、吸気行程末期において第二燃料噴射弁2によりシリンダボアの排気弁側上部へ向けて噴射される燃料F2の貫徹力を利用して強めるようにしている。   However, the tumble flow generally formed in the cylinder is not so strong unless the cylinder head is thickened and the shape of the intake port is devised, or the intake flow control valve is provided in the intake port. Due to the damping, it disappears easily by the second half of the compression stroke, and turbulence cannot exist in the cylinder due to the tumble flow at the ignition timing. Thereby, in the present embodiment, the tumble flow T formed in the cylinder in the intake stroke is directed toward the exhaust valve side of the cylinder bore by the first fuel injection valve 1 in the vicinity of the intake bottom dead center, preferably at the end of the intake stroke. In addition, the fuel F1 injected obliquely downward is strengthened by using the penetrating force, and is injected toward the exhaust valve side upper part of the cylinder bore by the second fuel injection valve 2 in the vicinity of the intake bottom dead center, preferably at the end of the intake stroke. The fuel F2 is pierced using the penetration force.

一つの噴射燃料によりタンブル流Tを強める場合には、噴射燃料がタンブル流Tを突き抜けてシリンダボア又はピストン頂面等に衝突しないようにするために、噴射燃料の貫徹力をそれほど強めることはできない。しかしながら、本実施形態のように、機関運転状態に応じて決定される必要燃料量を、第一燃料噴射弁1及び第二燃料噴射弁2により二つに分けて噴射することにより、それぞれの噴射燃料量は少なくなるために、噴射燃料の貫徹力を強くしても、タンブル流Tを突き抜けてシリンダボア又はピストン頂面等に衝突し難くなる。それにより、噴射燃料F1及びF2の貫徹力を、例えば、噴射開始から1ms後の燃料先端が60mm以上に達するように強くして、タンブル流Tを確実に強めることができ、タンブル流を圧縮行程後半まで持続させ、圧縮行程末期の点火時期には気筒内に乱れを存在させることができる。   When the tumble flow T is strengthened by a single injected fuel, the penetration force of the injected fuel cannot be increased so much in order to prevent the injected fuel from penetrating the tumble flow T and colliding with the cylinder bore or the piston top surface. However, as in the present embodiment, the required fuel amount determined according to the engine operating state is divided into two parts by the first fuel injection valve 1 and the second fuel injection valve 2, so that each injection is performed. Since the amount of fuel is reduced, even if the penetration force of the injected fuel is increased, it is difficult to penetrate the tumble flow T and collide with the cylinder bore or the piston top surface. Thereby, the penetration force of the injected fuels F1 and F2 can be increased, for example, so that the tip of the fuel after 1 ms from the start of injection reaches 60 mm or more, and the tumble flow T can be surely increased, and the tumble flow is compressed. It can be maintained until the second half, and the turbulence can exist in the cylinder at the ignition timing at the end of the compression stroke.

本実施形態において、第一燃料噴射弁1及び第二燃料噴射弁2は、例えば、直線スリット状の噴孔を有して比較的厚さの薄い略扇形状に燃料を噴射し、又は、円弧スリット状の噴孔を有して比較的厚さの薄い断面円弧形状の燃料を噴射し(好ましくは上側又は排気弁側を凸として噴射することが好ましい)、噴射燃料F1及びF2の幅方向の中心平面が、タンブル流Tと平行に気筒中心軸線を通る縦平面とほぼ一致するようにされる。この縦平面は図1の断面である。もちろん、燃料噴射弁1は、円形噴孔を有して、燃料を柱状又は円錐状に噴射するものでも良い。また、複数の円形噴孔を直線状又は円弧状に配列して、全体として比較的厚さの薄い略扇形状に燃料を噴射し、又は、全体として比較的厚さの薄い断面円弧形状の燃料を噴射するようにしても良い。   In the present embodiment, the first fuel injection valve 1 and the second fuel injection valve 2 have, for example, a linear slit-shaped injection hole and inject fuel into a substantially thin fan shape or a circular arc. A fuel having a slit-like injection hole and having a relatively thin cross-sectional arc shape is injected (preferably, the upper side or the exhaust valve side is preferably projected as a convex), and the injected fuels F1 and F2 in the width direction are injected. The center plane is made to substantially coincide with a vertical plane passing through the cylinder center axis parallel to the tumble flow T. This vertical plane is a cross section of FIG. Of course, the fuel injection valve 1 may have a circular injection hole and inject fuel in a columnar or conical shape. Further, a plurality of circular injection holes are arranged in a linear or arc shape, and fuel is injected into a substantially fan shape having a relatively thin thickness as a whole, or a fuel having a relatively thin sectional arc shape as a whole. May be injected.

本実施形態において、二つの燃料噴射弁により吸気下死点近傍において気筒内へ燃料を噴射してタンブル流Tを強めるようにしたが、もちろん、三つ以上の燃料噴射弁により吸気下死点近傍において気筒内へ燃料を噴射してタンブル流Tを強めるようにしても良い。また、第一燃料噴射弁1及び第二燃料噴射弁2は、噴射燃料によりタンブル流Tを強めることができれば、任意に配置可能である。   In the present embodiment, the fuel is injected into the cylinder in the vicinity of the intake bottom dead center with the two fuel injection valves to strengthen the tumble flow T. Of course, the vicinity of the intake bottom dead center with the three or more fuel injection valves. In this case, fuel may be injected into the cylinder to strengthen the tumble flow T. The first fuel injection valve 1 and the second fuel injection valve 2 can be arbitrarily arranged as long as the tumble flow T can be strengthened by the injected fuel.

本実施形態においては、第一燃料噴射弁1は気筒上部略中心に配置され、第一燃料噴射弁1から噴射される燃料は、図1に示すように、第一燃料噴射弁1の排気弁側近傍に配置された点火プラグ3の点火ギャップを通過するようにされている(必要に応じて、点火プラグ3は気筒内に大きく突出させられる)。こうして、第一燃料噴射弁1から噴射される燃料が点火プラグ3の点火ギャップ内又は点火ギャップ近傍を通過するようにされていれば、圧縮行程後半において、第一燃料噴射弁1により燃料噴射を実施することにより、噴射燃料は、高圧の気筒内の吸気との摩擦により容易に気化して気筒内の一部に一塊の可燃混合気を形成し、この可燃混合気内に点火プラグ3の点火ギャップを位置させることができる。   In the present embodiment, the first fuel injection valve 1 is disposed substantially at the center of the cylinder upper portion, and the fuel injected from the first fuel injection valve 1 is an exhaust valve of the first fuel injection valve 1 as shown in FIG. The spark plug 3 is arranged so as to pass through an ignition gap of the spark plug 3 disposed in the vicinity of the side (the spark plug 3 is protruded greatly into the cylinder if necessary). Thus, if the fuel injected from the first fuel injection valve 1 passes through the ignition gap of the spark plug 3 or in the vicinity of the ignition gap, the first fuel injection valve 1 performs fuel injection in the second half of the compression stroke. As a result, the injected fuel is easily vaporized by friction with the intake air in the high-pressure cylinder to form a lump of combustible mixture in a part of the cylinder, and the ignition plug 3 is ignited in this combustible mixture. A gap can be positioned.

それにより、本実施形態によれば、圧縮行程末期の点火時期において点火プラグ3により可燃混合気を着火燃焼させる成層燃焼も実施可能となる。成層燃焼は、高い機関出力を発生させることはできないが、均質燃焼に比較して燃料消費を低減することができる。こうして、機関低負荷時には成層燃焼を実施することが好ましい。   Thus, according to the present embodiment, stratified combustion in which the combustible mixture is ignited and combusted by the spark plug 3 at the ignition timing at the end of the compression stroke can be performed. Stratified combustion cannot produce high engine power, but can reduce fuel consumption compared to homogeneous combustion. Thus, it is preferable to perform stratified combustion when the engine is under a low load.

ところで、吸気下死点近傍において、第一燃料噴射弁1及び第二燃料噴射弁2により同時に燃料噴射を実施すると、図2に矢印で示すように、二つの噴射燃料F1及びF2は合流し、合流後の燃料Fは、二つの噴射燃料F1及びF2の噴射方向の違いにより二つの噴射方向からは偏向されて同一方向に移動し、最終的にはシリンダボアの排気弁側に沿って気筒内を下方向に移動してタンブル流を強めることとなる。燃料Fの移動に伴って、摩擦により周囲の空気も移動させられ、シリンダボアの排気弁側上部近傍では、こうして燃料Fと共に移動する空気がシリンダボアとの衝突により偏向されて縦方向に旋回する空気渦Sが形成される。   By the way, when fuel injection is simultaneously performed by the first fuel injection valve 1 and the second fuel injection valve 2 in the vicinity of the intake bottom dead center, the two injected fuels F1 and F2 merge as shown by arrows in FIG. The combined fuel F is deflected from the two injection directions and moves in the same direction due to the difference in the injection directions of the two injected fuels F1 and F2, and finally moves in the cylinder along the exhaust valve side of the cylinder bore. It will move downward and strengthen the tumble flow. As the fuel F moves, the surrounding air is also moved by friction, and in the vicinity of the upper part of the cylinder bore on the exhaust valve side, the air vortex swirling in the vertical direction is deflected by the collision with the cylinder bore in this way. S is formed.

こうして形成される空気渦Sの旋回方向は、タンブル流Tとは逆方向であるために、圧縮行程において、空気渦Sがタンブル流Tと衝突してタンブル流Tを弱めることがある。こうして、噴射燃料により強めたタンブル流Tが空気渦Sとの衝突により弱められれば、タンブル流Tを圧縮行程後半まで持続させて点火時期おいて気筒内に乱れを存在させることができなくなる。それにより、本実施形態では、吸気下死点近傍における第一燃料噴射弁1及び第二燃料噴射弁2の燃料噴射時期を異ならせて一致させないようにし、第一燃料噴射弁1の噴射燃料F1と第二燃料噴射弁2の噴射燃料F2とが合流して移動しないようにしている。例えば、第二燃料噴射弁2の燃料噴射終了後に第一燃料噴射弁1の燃料噴射を開始するようにする。この場合において、第一燃料噴射弁1の燃料噴射終了時期を吸気下死点とすることが好ましい。もちろん、第一燃料噴射弁1の燃料噴射終了時期を吸気下死点直前又は直後としても良い。また、第一燃料噴射弁1の燃料噴射終了後に第二燃料噴射弁2の燃料噴射を開始するようにしても良く、この場合において、第二燃料噴射弁2の燃料噴射終了時期を吸気下死点としても、吸気下死点直前又は直後としても良い。   Since the swirl direction of the air vortex S thus formed is opposite to the tumble flow T, the air vortex S may collide with the tumble flow T and weaken the tumble flow T in the compression stroke. In this way, if the tumble flow T strengthened by the injected fuel is weakened by the collision with the air vortex S, the tumble flow T cannot be continued until the latter half of the compression stroke to cause turbulence in the cylinder at the ignition timing. Accordingly, in the present embodiment, the fuel injection timings of the first fuel injection valve 1 and the second fuel injection valve 2 in the vicinity of the intake bottom dead center are made different from each other so as not to coincide with each other. And the injected fuel F2 of the second fuel injection valve 2 are prevented from joining and moving. For example, the fuel injection of the first fuel injection valve 1 is started after the fuel injection of the second fuel injection valve 2 is completed. In this case, it is preferable that the fuel injection end timing of the first fuel injection valve 1 be the intake bottom dead center. Of course, the fuel injection end timing of the first fuel injection valve 1 may be set immediately before or immediately after the intake bottom dead center. Further, the fuel injection of the second fuel injection valve 2 may be started after the fuel injection of the first fuel injection valve 1 is completed. The point may be just before or just after the intake bottom dead center.

図3は本発明による筒内噴射式火花点火内燃機関の第二実施形態を示す吸気下死点近傍の概略縦断面図である。第一実施形態との違いについてのみ以下に説明する。本実施形態において、第二燃料噴射弁2’は、気筒上部周囲の排気弁側に配置され、吸気下死点近傍においてシリンダボアの排気弁側に沿ってピストン頂面へ向けて燃料F2’を噴射するようになっている。第二燃料噴射弁2’から噴射される燃料F2’は、タンブル流Tによってシリンダボアの排気弁側へ押圧されるために、シリンダボアへの付着を抑制するように、シリンダボアと平行ではなく、図3に示すように、僅かに内側へ向けて噴射されることが好ましい。   FIG. 3 is a schematic longitudinal sectional view in the vicinity of the intake bottom dead center showing a second embodiment of the direct injection spark ignition internal combustion engine according to the present invention. Only differences from the first embodiment will be described below. In the present embodiment, the second fuel injection valve 2 ′ is disposed on the exhaust valve side around the cylinder upper portion, and injects fuel F2 ′ toward the piston top surface along the exhaust valve side of the cylinder bore in the vicinity of the intake bottom dead center. It is supposed to be. Since the fuel F2 ′ injected from the second fuel injection valve 2 ′ is pressed by the tumble flow T toward the exhaust valve side of the cylinder bore, the fuel F2 ′ is not parallel to the cylinder bore so as to suppress adhesion to the cylinder bore. As shown in FIG. 2, it is preferable that the liquid is injected slightly inward.

このような構成によっても、第一燃料噴射弁1から吸気下死点近傍において噴射される燃料F1及び第二燃料噴射弁2’から吸気下死点近傍において噴射される燃料F2’によって良好にタンブル流Tを強めることができる。また、第一実施形態においては、第二燃料噴射弁2は、シリンダボアの排気弁側上部へ向けて燃料F2を噴射するものであるために、噴射燃料F2がシリンダボアへ付着してエンジンオイルを希釈する可能性があるが、本実施形態では、第二燃料噴射弁2’は、ピストン頂面へ向けて燃料F2’を噴射するために、噴射燃料F2’がシリンダボアに付着することはない。   Even with such a configuration, the fuel F1 injected near the intake bottom dead center from the first fuel injection valve 1 and the fuel F2 'injected near the intake bottom dead center from the second fuel injection valve 2 ′ can be tumbled well. The flow T can be strengthened. In the first embodiment, since the second fuel injection valve 2 injects the fuel F2 toward the exhaust valve side upper part of the cylinder bore, the injected fuel F2 adheres to the cylinder bore and dilutes the engine oil. However, in the present embodiment, the second fuel injection valve 2 ′ injects the fuel F2 ′ toward the piston top surface, so that the injected fuel F2 ′ does not adhere to the cylinder bore.

図4は本発明による筒内噴射式火花点火内燃機関の第三実施形態を示す吸気下死点近傍のシリンダヘッドの底面図である。図4において、気筒上部右側の一対の吸気弁51及び52と、気筒上部左側の一対の排気弁61及び62が図示されている。本実施形態では、第一燃料噴射弁1”は、気筒上部の互いに隣接する一方の吸気弁51と一方の排気弁61との間に配置され、第二燃料噴射弁2”は、気筒上部の互いに隣接する他方の吸気弁52と他方の排気弁62との間に配置されている。点火プラグ3”は、一対の排気弁61及び62の間に配置されている。   FIG. 4 is a bottom view of a cylinder head in the vicinity of an intake bottom dead center showing a third embodiment of a cylinder injection type spark ignition internal combustion engine according to the present invention. In FIG. 4, a pair of intake valves 51 and 52 on the upper right side of the cylinder and a pair of exhaust valves 61 and 62 on the left side of the upper part of the cylinder are shown. In the present embodiment, the first fuel injection valve 1 ″ is disposed between one adjacent intake valve 51 and one exhaust valve 61 at the upper part of the cylinder, and the second fuel injection valve 2 ″ is provided at the upper part of the cylinder. It is arranged between the other intake valve 52 and the other exhaust valve 62 adjacent to each other. The spark plug 3 ″ is disposed between the pair of exhaust valves 61 and 62.

吸気二弁式の場合には、吸気行程において、各吸気弁51,52からそれぞれに気筒内へ供給される吸気は、当初、独立して気筒内にタンブル流を形成し、これら二つのタンブル流は圧縮行程前半までには合流して一つのタンブル流となる。しかしながら、吸気下死点近傍において二つのタンブル流は十分に合流していないことがあり、この時には、二つの排気弁61,62の中間及び二つの吸気弁51,52の中間を通る縦平面(図1及び3の断面)近傍は二つのタンブル流の間の空間となり、この縦平面近傍を通過する燃料は、いずれのタンブル流も強めることができない。   In the case of the two-intake type, in the intake stroke, the intake air supplied from the intake valves 51 and 52 to the cylinders initially forms a tumble flow in the cylinder independently, and these two tumble flows Will merge into one tumble flow by the first half of the compression stroke. However, there are cases where the two tumble flows are not sufficiently merged in the vicinity of the intake bottom dead center, and at this time, a vertical plane passing through the middle of the two exhaust valves 61 and 62 and the middle of the two intake valves 51 and 52 ( The vicinity of the cross section in FIGS. 1 and 3 is a space between two tumble flows, and the fuel passing through the vicinity of the vertical plane cannot strengthen any tumble flow.

前述した第一及び第二実施形態では、第一燃料噴射弁及び第二燃料噴射弁から噴射される燃料は、それぞれに幅方向に広がるようにされ、二つのタンブル流が合流していない時にも、二つのタンブル流を同時に強めることができる。しかしながら、各噴射燃料の一部は、前述の縦平面近傍を通過するために、タンブル流を強めるのに使用されていない。   In the first and second embodiments described above, the fuel injected from the first fuel injection valve and the second fuel injection valve is spread in the width direction, respectively, and even when the two tumble flows are not merged. The two tumble streams can be strengthened at the same time. However, a part of each injected fuel passes through the vicinity of the above-described vertical plane and is not used to enhance the tumble flow.

これに対して、本実施形態では、吸気下死点近傍において、第一燃料噴射弁1”からシリンダボアの排気弁側へ向けて斜め下方向に噴射される燃料F1”は、一方の吸気弁51を介して気筒内に形成された一方のタンブル流を強めると共に、第二燃料噴射弁2”からシリンダボアの排気弁側へ向けて斜め下方向に噴射される燃料F2”は、他方の吸気弁52を介して気筒内に形成された他方のタンブル流を強めるようになっており、各噴射燃料のほぼ全てがいずれかのタンブル流を強めるのに使用される。それにより、二つのタンブル流は良好に強められ、圧縮行程前半で合流して圧縮行程後半まで確実に持続し、点火時期においては、気筒内に乱れを確実に存在させることができる。   On the other hand, in the present embodiment, the fuel F1 ″ injected obliquely downward from the first fuel injection valve 1 ″ toward the exhaust valve side of the cylinder bore in the vicinity of the intake bottom dead center is one intake valve 51. The fuel F2 "injected into the cylinder bore from the second fuel injection valve 2" toward the exhaust valve side of the cylinder bore is intensified by the other intake valve 52. The other tumble flow formed in the cylinder is strengthened via the, and almost all of the injected fuel is used to strengthen one of the tumble flows. As a result, the two tumble flows are strengthened well and merged in the first half of the compression stroke and reliably maintained until the latter half of the compression stroke, and the turbulence can be reliably present in the cylinder at the ignition timing.

本実施形態において、第一燃料噴射弁1”及び第二燃料噴射弁2”は、図4に示すように、比較的厚さの薄い略扇形状に燃料を噴射する。このように噴射燃料が幅方向に広がる形状であれば、斜め下方向に噴射される二つの噴射燃料は、いずれも二つの排気弁61及び62の間に配置された点火プラグ3”の点火ギャップ内又は点火ギャップ近傍を通過するようにすることができる。それにより、第一燃料噴射弁1”及び第二燃料噴射弁2”の一方又は両方により、圧縮行程後半において燃料を噴射すれば、前述同様に、成層燃焼も実現することができる。本実施形態においても、第一燃料噴射弁1”及び第二燃料噴射弁2”の噴射燃料の形状は、第一実施形態と同様に選択可能である。   In the present embodiment, the first fuel injection valve 1 "and the second fuel injection valve 2" inject fuel in a substantially fan shape having a relatively small thickness, as shown in FIG. In this way, if the injected fuel spreads in the width direction, the two injected fuels injected obliquely downward are both the ignition gaps of the spark plug 3 ″ disposed between the two exhaust valves 61 and 62. If the fuel is injected in the latter half of the compression stroke by one or both of the first fuel injection valve 1 "and the second fuel injection valve 2", the above-mentioned may be allowed. Similarly, stratified combustion can also be realized. Also in this embodiment, the shape of the injected fuel of the first fuel injection valve 1 "and the second fuel injection valve 2" can be selected in the same manner as in the first embodiment. is there.

また、第一燃料噴射弁1”及び第二燃料噴射弁2”の一方だけの圧縮行程燃料噴射によっても成層燃焼が実現可能であるために、他方の燃料噴射弁からの噴射燃料形状は、幅方向の広がり角度を小さくして、点火プラグ3”の点火ギャップ近傍を通過しないようにしても良い。それにより、第一燃料噴射弁1”及び第二燃料噴射弁2”による吸気下死点近傍の燃料噴射において、二つの噴射燃料F1”及びF2”が互いに衝突することが防止され、二つの噴射燃料F1”及びF2”のそれぞれの貫徹力を、対応するタンブル流を強めるのに有効利用することができる。   Further, since the stratified combustion can be realized also by the compression stroke fuel injection of only one of the first fuel injection valve 1 ″ and the second fuel injection valve 2 ″, the shape of the fuel injected from the other fuel injection valve is The spread angle of the direction may be reduced so that it does not pass near the ignition gap of the spark plug 3 ″. Thereby, the vicinity of the intake bottom dead center by the first fuel injection valve 1 ″ and the second fuel injection valve 2 ″. In this fuel injection, the two injected fuels F1 "and F2" are prevented from colliding with each other, and the penetration force of each of the two injected fuels F1 "and F2" is effectively used to strengthen the corresponding tumble flow. be able to.

本発明による筒内噴射式火花点火内燃機関の第一実施形態を示す吸気下死点近傍の概略縦断面図である。1 is a schematic longitudinal sectional view in the vicinity of an intake bottom dead center showing a first embodiment of a direct injection spark ignition internal combustion engine according to the present invention. 図1の筒内噴射式火花点火内燃機関において、第一燃料噴射弁の噴射燃料と第二燃料噴射弁の噴射燃料とが合流した場合を説明するための図である。FIG. 2 is a diagram for explaining a case where the injected fuel of the first fuel injection valve and the injected fuel of the second fuel injection valve merge in the in-cylinder injection spark ignition internal combustion engine of FIG. 1. 本発明による筒内噴射式火花点火内燃機関の第二実施形態を示す吸気下死点近傍の概略縦断面図である。FIG. 6 is a schematic longitudinal sectional view in the vicinity of an intake bottom dead center showing a second embodiment of a direct injection spark ignition internal combustion engine according to the present invention. 本発明による筒内噴射式火花点火内燃機関の第三実施形態を示す吸気下死点近傍のシリンダヘッドの底面図である。FIG. 6 is a bottom view of a cylinder head in the vicinity of an intake bottom dead center showing a third embodiment of a direct injection spark ignition internal combustion engine according to the present invention.

符号の説明Explanation of symbols

1,1” 第一燃料噴射弁
2,2’,2” 第二燃料噴射弁
3,3” 点火プラグ
T タンブル流
F1,F2,F2’,F1”,F2” 噴射燃料
1, 1 ″ first fuel injection valve 2, 2 ′, 2 ″ second fuel injection valve 3, 3 ″ spark plug T tumble flow F1, F2, F2 ′, F1 ″, F2 ″ injection fuel

Claims (6)

気筒内へ直接的に燃料を噴射する少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁を具備し、均質燃焼に際して、シリンダボアの排気弁側に沿って下降して気筒内を縦方向に旋回するタンブル流を、前記少なくとも二つの第一燃料噴射弁及び第二燃料噴射弁により吸気下死点近傍において噴射される燃料によって強めることを特徴とする筒内噴射式火花点火内燃機関。   At least two first fuel injection valves and second fuel injection valves that inject fuel directly into the cylinder, and in homogeneous combustion, descend along the exhaust valve side of the cylinder bore and turn vertically in the cylinder An in-cylinder injection spark ignition internal combustion engine characterized in that the tumble flow is strengthened by the fuel injected in the vicinity of the intake bottom dead center by the at least two first fuel injection valves and the second fuel injection valve. 前記第一燃料噴射弁により噴射される燃料は、点火プラグの点火ギャップ内又は点火ギャップ近傍を通過するようにされ、圧縮行程後半に前記第一燃料噴射弁により燃料を噴射することにより、気筒内の一部に形成される可燃混合気内に前記点火プラグの点火ギャップを位置させて成層燃焼を実施することを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。   The fuel injected by the first fuel injection valve passes through the ignition gap of the spark plug or in the vicinity of the ignition gap, and injects fuel by the first fuel injection valve in the latter half of the compression stroke, thereby 2. The direct injection spark ignition internal combustion engine according to claim 1, wherein stratified combustion is performed by positioning an ignition gap of the spark plug in a combustible mixture formed in a part of the spark plug. 前記第一燃料噴射弁は気筒上部略中心に配置され、前記点火プラグは前記第一燃料噴射弁の排気弁側近傍に配置され、前記第二燃料噴射弁は気筒上部周囲の吸気弁側に配置され、均質燃焼に際して、前記第二燃料噴射弁は、前記タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側上部へ向けて燃料を噴射することを特徴とする請求項2に記載の筒内噴射式火花点火内燃機関。   The first fuel injection valve is disposed substantially in the center of the cylinder upper portion, the spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, and the second fuel injection valve is disposed on the intake valve side around the cylinder upper portion. 3. In homogeneous combustion, the second fuel injection valve injects fuel toward the exhaust valve side upper part of the cylinder bore in the vicinity of the intake bottom dead center in order to strengthen the tumble flow. The in-cylinder injection spark ignition internal combustion engine described. 均質燃焼に際して、吸気下死点近傍における前記第一燃料噴射弁及び前記第二燃料噴射弁の燃料噴射時期を互いに異ならせることを特徴とする請求項3に記載の筒内噴射式火花点火内燃機関。   4. The direct injection spark ignition internal combustion engine according to claim 3, wherein the fuel injection timings of the first fuel injection valve and the second fuel injection valve in the vicinity of the intake bottom dead center are made different from each other during homogeneous combustion. . 前記第一燃料噴射弁は気筒上部略中心に配置され、前記点火プラグは前記第一燃料噴射弁の排気弁側近傍に配置され、前記第二燃料噴射弁は気筒上部周囲の排気弁側に配置され、均質燃焼に際して、前記第二燃料噴射弁は、前記タンブル流を強めるために、吸気下死点近傍においてシリンダボアの排気弁側に沿ってピストン頂面へ向けて燃料を噴射することを特徴とする請求項2に記載の筒内噴射式火花点火内燃機関。   The first fuel injection valve is disposed substantially at the center of the cylinder upper portion, the spark plug is disposed in the vicinity of the exhaust valve side of the first fuel injection valve, and the second fuel injection valve is disposed on the exhaust valve side around the cylinder upper portion. In the homogeneous combustion, the second fuel injection valve injects fuel toward the piston top surface along the exhaust valve side of the cylinder bore in the vicinity of the intake bottom dead center in order to strengthen the tumble flow. The in-cylinder injection spark ignition internal combustion engine according to claim 2. 前記筒内噴射式火花点火内燃機関は吸気二弁式であり、均質燃焼に際して、前記第一燃料噴射弁により吸気下死点近傍において噴射される燃料は一方の吸気弁を介して気筒内に形成された一方のタンブル流を強め、前記第二燃料噴射弁により吸気下死点近傍において噴射される燃料は他方の吸気弁を介して気筒内に形成された他方のタンブル流を強めることを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関。   The in-cylinder injection spark-ignition internal combustion engine is an intake two-valve type, and during homogeneous combustion, fuel injected near the intake bottom dead center by the first fuel injection valve is formed in the cylinder through one intake valve. One of the tumble flows is strengthened, and the fuel injected near the intake bottom dead center by the second fuel injection valve strengthens the other tumble flow formed in the cylinder via the other intake valve. The in-cylinder injection spark ignition internal combustion engine according to claim 1.
JP2006160850A 2006-06-09 2006-06-09 Direct injection type spark ignition internal combustion engine Pending JP2007327464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160850A JP2007327464A (en) 2006-06-09 2006-06-09 Direct injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160850A JP2007327464A (en) 2006-06-09 2006-06-09 Direct injection type spark ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007327464A true JP2007327464A (en) 2007-12-20

Family

ID=38928074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160850A Pending JP2007327464A (en) 2006-06-09 2006-06-09 Direct injection type spark ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007327464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321585A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2008128180A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2009174449A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Internal combustion engine
US7726282B2 (en) * 2006-08-04 2010-06-01 Toyota Jidosha Kabushiki Kaisha Direct injection spark ignition internal combustion engine and fuel injection method for same
DE102008044243A1 (en) 2008-12-01 2010-06-02 Robert Bosch Gmbh Multi-cylinder internal-combustion engine for motor vehicle, has fuel injecting valves that are designed as multi-hole injecting valves with different fuel flows, where one of valves has less fuel flow in central installation position
JP7505470B2 (en) 2021-10-14 2024-06-25 トヨタ自動車株式会社 Internal combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030441A (en) * 1996-07-18 1998-02-03 Toyota Motor Corp Cylinder fuel injection type spark ignition engine
JP2000130171A (en) * 1998-10-28 2000-05-09 Nissan Motor Co Ltd Direct injection spark ignition type internal combustion engine
JP2003322022A (en) * 2002-04-30 2003-11-14 Toyota Motor Corp Fuel injection control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030441A (en) * 1996-07-18 1998-02-03 Toyota Motor Corp Cylinder fuel injection type spark ignition engine
JP2000130171A (en) * 1998-10-28 2000-05-09 Nissan Motor Co Ltd Direct injection spark ignition type internal combustion engine
JP2003322022A (en) * 2002-04-30 2003-11-14 Toyota Motor Corp Fuel injection control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321585A (en) * 2006-05-30 2007-12-13 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP4582049B2 (en) * 2006-05-30 2010-11-17 トヨタ自動車株式会社 In-cylinder injection spark ignition internal combustion engine
US7726282B2 (en) * 2006-08-04 2010-06-01 Toyota Jidosha Kabushiki Kaisha Direct injection spark ignition internal combustion engine and fuel injection method for same
JP2008128180A (en) * 2006-11-24 2008-06-05 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2009174449A (en) * 2008-01-25 2009-08-06 Toyota Motor Corp Internal combustion engine
JP4506844B2 (en) * 2008-01-25 2010-07-21 トヨタ自動車株式会社 Internal combustion engine
US8479705B2 (en) 2008-01-25 2013-07-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
DE102008044243A1 (en) 2008-12-01 2010-06-02 Robert Bosch Gmbh Multi-cylinder internal-combustion engine for motor vehicle, has fuel injecting valves that are designed as multi-hole injecting valves with different fuel flows, where one of valves has less fuel flow in central installation position
JP7505470B2 (en) 2021-10-14 2024-06-25 トヨタ自動車株式会社 Internal combustion engine

Similar Documents

Publication Publication Date Title
JP4342481B2 (en) In-cylinder injection spark ignition internal combustion engine
JP4722129B2 (en) In-cylinder injection spark ignition internal combustion engine
US6684848B2 (en) Direct-injection spark-ignition engine
JP2007327464A (en) Direct injection type spark ignition internal combustion engine
JP4650126B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JP2008051075A (en) Cylinder injection type spark ignition internal combustion engine
JP4715687B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2009174440A (en) Cylinder injection type spark ignition internal combustion engine
JP4600361B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2009121251A (en) Cylinder injection type spark ignition internal combustion engine
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JP4582049B2 (en) In-cylinder injection spark ignition internal combustion engine
JP2007321619A (en) Cylinder injection type spark ignition internal combustion engine
JP2005351200A (en) Direct-injection spark-ignition internal combustion engine
JP2007146680A (en) Cylinder injection type spark ignition internal combustion engine
JP2007285205A (en) Cylinder injection type spark ignition internal combustion engine
JP2007309277A (en) Cylinder injection type spark ignition internal combustion engine
JP2008019840A (en) Cylinder injection type spark ignition internal combustion engine
JP2007146675A (en) Cylinder injection type spark ignition internal combustion engine
JP2008069697A (en) Cylinder injection type spark ignition internal combustion engine
JP2006112241A (en) Cylinder direct injection type internal combustion engine
JP2007255267A (en) Cylinder injection type spark ignition internal combustion engine
JP2004316568A (en) Cylinder direct injection type internal combustion engine
JP2004019596A (en) Spark ignition type direct-injection engine
JP4840213B2 (en) In-cylinder injection spark ignition internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109