JP3787172B2 - Vortex chamber diesel engine - Google Patents

Vortex chamber diesel engine Download PDF

Info

Publication number
JP3787172B2
JP3787172B2 JP09523795A JP9523795A JP3787172B2 JP 3787172 B2 JP3787172 B2 JP 3787172B2 JP 09523795 A JP09523795 A JP 09523795A JP 9523795 A JP9523795 A JP 9523795A JP 3787172 B2 JP3787172 B2 JP 3787172B2
Authority
JP
Japan
Prior art keywords
vortex chamber
nozzle
main
injection port
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09523795A
Other languages
Japanese (ja)
Other versions
JPH08291712A (en
Inventor
直 津戸
繁 福島
恵三 上ノ坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP09523795A priority Critical patent/JP3787172B2/en
Publication of JPH08291712A publication Critical patent/JPH08291712A/en
Application granted granted Critical
Publication of JP3787172B2 publication Critical patent/JP3787172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主燃焼室に噴口を介して連通された渦流室を有するとともにその渦流室に燃料の噴射ノズルが配置された渦流室式ディーゼル機関に関するものである。
【0002】
【従来の技術】
従来の渦流室式ディーゼル機関、主に4サイクルディーゼル機関においては、図4に示すように、シリンダ21内のピストン22とシリンダヘッド23の間の主燃焼室24の上部一側に位置するようにシリンダヘッド23に渦流室25が形成され、この渦流室25から主燃焼室24の中央部に向けて斜めに噴口26が形成され、かつ渦流室25内に燃料を噴射する噴射ノズル27が配置されている。
【0003】
噴口26は通常長円形ないし長方形の断面形状とされており、噴射ノズル27はピストン22の上昇に伴って噴口26から空気が流入して渦流室25内に強い渦流が発生するためにその流入空気の渦流方向に沿って渦流室25の内壁面に向けて燃料を噴射するように配置されている。また、ピストン22の上面には、図5に示すように、噴口26から噴出する主として燃焼ガス及び蒸発した未燃焼ガスと空気の混合ガスを主燃焼室24全体に円滑に拡散・燃焼伝播させるために二葉形状の窪み部28が形成されている。図4、図5において、29はシリンダヘッド23に設けられた一対の排気口、30は排気バルブである。
【0004】
また、特公平2−50295号公報には、通路面積の広い主噴口とその両側の通路面積の狭い一対の溝状の副噴口とをそれらの中心線が互いに平行するように形成した噴口を設け、かつ主噴口はその両端開口がシリンダ中心線方向に重合し、副噴口はその両端開口がシリンダ中心線方向に重合しないようにし、さらに一対の副噴口の中心を結ぶ平面が主噴口の中心線よりもシリンダ半径方向の外側に位置するように構成したものが開示されている。このような構成によると、圧縮行程の初期では空気流の流速が遅いので絞り抵抗の低い主噴口を通って渦流室の中心線に沿う方向で渦流室に空気が流入し、圧縮行程の後期ではシリンダヘッド下面とピストン上面の狭い空間に案内されて渦流室中心線に対して大きく傾斜した方向で主噴口を通って渦流室に空気が流入するととともに、流速の上昇に伴ってシリンダ中心線方向に重合しない副噴口からも渦流室に流入して、空気が渦流室中心線に対して大きく傾斜した方向で流入して渦流を形成し、その結果圧縮行程が進行するにつれて方向が異なる空気流が渦流室に流入することによって混合気形成が促進される。
【0005】
【発明が解決しようとする課題】
しかしながら、図4に示した構成の渦流室25では、小型のディーゼル機関の渦流室25は小さいために、噴射ノズル27から噴射された燃料が渦流にすべて混合されることなく、渦流室の壁面に燃料が付着し、燃料と空気との混合が不十分になり、渦流室内での混合気形成が完全に行われないという問題がある。その結果、急激な燃焼となって燃焼性能が低下するとともに、燃焼音が大きくなり、未燃焼ガスやスモークの排出量が多くなるという問題があった。
【0006】
又、上記特公平2−50295号公報に開示された噴口構造によれば、このような問題をある程度解消できることが考えられるが、圧縮行程初期には空気流が渦流室の中心線方向に流入するので渦流形成能が小さく、圧縮行程後期においても主噴口と副噴口が平行に形成されているので、渦流室中心線に対して大きく傾斜した方向に空気が流入するにしても流入空気の流れがすべて同一方向となるため、混合気形成効果がやはり十分でなく、同様の問題を生じる恐れがある。
【0007】
本発明は、このような従来の問題点に鑑み、十分大きな混合気形成効果が得られ、出力性能が高く、燃焼音が低く、未燃焼ガスやスモークの排出の少ない渦流室式ディーゼル機関を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の渦流室式ディーゼル機関は、ピストンとシリンダヘッドの間の主燃焼室の一側上部に渦流室を配設するとともに渦流室から主燃焼室の中央部に向けて斜めに開口する噴口を形成し、渦流室に燃料を噴射する噴射ノズルを配置した渦流室式ディーゼル機関において、噴口を通路断面積の大きい主噴口とこの主噴口のシリンダ周方向両側に連通させて形成した通路断面積の小さい一対の副噴口とで構成し、噴射ノズルをその軸線が渦流室の略中心を通って主噴口の渦流室側開口端の略中心を通るように配設し、副噴口の軸芯をシリンダ軸芯方向で見て互いに略平行で、かつ、主噴口の軸芯よりもシリンダ軸芯方向に対する傾斜角を大きく設定し、副噴口は渦流室に向けて通路断面積が減少するテーパ状をなしたことを特徴とする。
【0009】
【作用】
本発明によれば、圧縮工程において主燃焼室から噴口を通って渦流室に空気が流入することにより渦流室に渦流が形成され、その状態でピストンが上死点の近傍に到達して噴射ノズルから渦流室に燃料が噴射されると、渦流室の略中心を通って主噴口の略中心に向けて噴射された燃料が主噴口の開口近くで主燃焼室から流入する空気流によって吹き返されることにより渦流室内に拡散して混合気が形成され、さらに主噴口と、この主噴口の周方向両側に連通しシリンダの軸芯方向で見て互いに略平行な一対の副噴口との傾斜角が異なっているために異なった方向の空気流が渦流室に流入するので渦流室全体に混合気形成が効果的に促進され、特にシリンダ軸芯方向に対する傾斜角が大きくかつ渦流室へ向けたテーパ形状にて流速を速める一対の副噴口によって渦流室の壁面に沿う空気流れが圧縮行程の早い時点から形成されているために混合気を渦流室全体に拡散させることができ、従って渦流室全体にわたって混合気形成が完全に行われ、良好な燃焼状態を得ることができる。従って、出力性能が向上し、燃焼音も低くなり、未燃焼ガスやスモークの排出も少なくできる。
【0010】
【実施例】
以下、本発明の一実施例を図1〜図3を参照して説明する。
【0011】
図1において、1はシリンダブロック、2はシリンダ、3はピストン、4はシリンダヘッドである。5はシリンダ2内のピストン3とシリンダヘッド4の間の主燃焼室である。シリンダヘッド4には、主燃焼室5の上部一側に縦長の球形の渦流室6が形成され、かつこの渦流室6から主燃焼室5の中央部に向けて斜めに噴口7が形成されている。渦流室6にはその内部に燃料を噴射する噴射ノズル8が配設されている。9は、噴口7から噴出する主として燃焼ガス及び蒸発した未燃焼ガスと空気の混合ガスを主燃焼室5全体に円滑に拡散・燃焼伝播させるためにピストン3の上面に形成された二葉形状の窪み部であり、10は渦流室6に配設された始動時に着火を助けるためのグロープラグである。
【0012】
噴口7は、図2に詳細に示すように、大きな径aを有して通路断面積の大きい主噴口11と比較的小さな平均径bを有して通路断面積の小さい一対の副噴口12から成るとともに、主噴口11のシリンダ周方向両側に副噴口12を連通させて形成して構成されており、かつ副噴口12の軸芯O2 は主噴口11の軸芯O1 よりもシリンダ軸芯方向に対する傾斜角がθ°だけ大きく設定されている。さらに副噴口12は、噴口7の傾斜方向に沿う面と平行な方向、即ちシリンダ周方向と直交する方向の幅が、主燃焼室5側では副噴口12の中間部での径bよりもα1 だけ大きいb+α1 となり、渦流室6側では中間部での径bよりもα2 だけ小さいb−α2 となるようなテーパ状に形成されている。
【0013】
また、噴射ノズル8はその軸線が渦流室6の略中心Oを通って主噴口11の渦流室6側開口端の略中心Pを通るように配設され、この噴射ノズル8から主噴口11の渦流室6側開口端の略中心Pに向けて燃料を噴射するように構成されている。
【0014】
以上の構成において、シリンダ2内をピストン3が上昇すると、シリンダ2内の空気が圧縮されるとともにそれに伴って噴口7から渦流室6内に空気が流入して渦流室6内に強い渦流が発生する。そして、ピストン3が上死点近傍(例えば上死点の手前20°)に到達すると噴射ノズル8から燃料が噴射される。
【0015】
その際に、燃料が渦流室6の略中心Oを通って主噴口11の略中心Pに向けて噴射されるので、噴射された燃料は主噴口11の開口近くで主燃焼室5から流入する空気流によって強く吹き返されて拡散し、さらに主噴口11と副噴口12の傾斜角が異なっているために渦流室6内に向けて異なった方向に空気が流れるので、吹き返された燃料が渦流室6の全体に拡散され、混合気形成が効果的に促進される。また副噴口12がより渦流室6の壁面に沿う状態に傾斜されるとともにさらに副噴口12が渦流室6に向けてテーパ状に形成されていて通過する空気の流速が速くなるので、渦流室6の壁面に沿う空気流れが圧縮行程の早い時点から強く形成され、混合気を渦流室6全体に効果的に拡散させることができ、従って渦流室6全体にわたって混合気形成が完全に行われ、燃料を渦流室6内の空気を有効利用して燃焼させ易くかつ急激な燃焼となり難く、また上記のように燃料が主噴口11からの高温の空気流に直接当たるために着火遅れも短くなるので、良好な燃焼状態が確実に得られる。
【0016】
こうして、渦流室6で燃料が燃焼することにより、渦流室6の圧力が高くなってその燃焼ガス及び蒸発した未燃焼ガスと空気の混合ガスが噴口7から主燃焼室5の窪み部9に噴出し、さらに主燃焼室5内で引き続いて燃焼し、主燃焼室5の圧力が上昇してピストン3を押し下げる。ピストン3が下死点まで到達すると次に排気行程に入り、ピストン3が上昇を開始するとともに排気バルブが開かれて排気口から燃焼廃ガスが排気され、次に排気バルブが閉じて再びピストン3が下降してシリンダ2内に新気が導入され、その後ピストン3が再び上昇するとシリンダ2内の空気が圧縮されて上記と同様に動作し、以上の動作が交互に繰り返される。
【0017】
本実施例によれば、以上のように渦流室6全体にわたって混合気形成が完全に行われ、良好な燃焼状態を得ることができ、従って出力性能が向上し、燃焼音も低くなり、未燃焼ガスやスモークの排出も少なくできる。また、副噴口12が渦流室6内に向けてテーパするテーパ状に形成されているので、主噴口11に対して副噴口12を傾斜させながら、製造時の型抜きに支障がなく、容易に製造できるという利点もある。
【0018】
図3に同じ燃料噴射量でエンジン回転速度数を変化させた場合のスモークの排出量を示す。図3から、上記特公平2−50295号公報のように主噴口と副噴口を平行に形成した従来例に比較して、本発明によれば低中回転速度域でスモークの発生を大幅に低減でき、特に副噴口をテーパ状に形成した場合に効果が大きいことが分かる。
【0019】
なお、上記実施例の説明では4サイクルディーゼル機関の例を説明したが、本発明は2サイクルディーゼル機関にも適用でき、その場合にも同様の作用効果が得られる。
【0020】
【発明の効果】
本発明の渦流室式ディーゼル機関によれば、以上のように噴射ノズルから渦流室の略中心を通って主噴口の略中心に向けて噴射された燃料が主噴口の開口近くで主燃焼室から主噴口を通って流入する空気流によって吹き返され、さらに主噴口と、この主噴口の周方向両側に連通しシリンダの軸芯方向で見て互いに略平行な一対の副噴口との傾斜角が異なっているために異なった方向に流入空気が流れるので、吹きかえされた燃料が渦流室の全体に拡散されて混合気形成が促進され、更に傾斜角が異なり、かつ渦流室へ向けたテーパ形状にて流速を速める一対の副噴口によって渦流室の壁面に沿う空気流れが圧縮行程の早い時点から形成されるために混合気を一層渦流室全体に拡散させることができ、従って渦流室全体にわたって混合気形成が完全に行われ、また、主噴口から流入する高温の空気流に直接噴射燃料が当たるので点火遅れも短くなるので、良好な燃焼状態を得ることができ、従って、出力性能が向上し、燃焼音も低くなり、未燃焼ガスやスモークの排出も少なくできる。
【図面の簡単な説明】
【図1】本発明の渦流室式ディーゼル機関の一実施例の要部の縦断面図である。
【図2】同実施例の噴口部の詳細縦断面図と同図におけるA〜C方向から見た主噴口と副噴口の形状の説明図である。
【図3】同じ燃料噴射量でエンジン回転速度を変化させたときのスモーク排出量を従来例と本発明を比較して示した図である。
【図4】従来例の渦流室式ディーゼル機関の要部の縦断面図である。
【図5】従来例のピストン上面の平面図である。
【符号の説明】
3 ピストン
4 シリンダヘッド
5 主燃焼室
6 渦流室
7 噴口
8 噴射ノズル
11 主噴口
12 副噴口
[0001]
[Industrial application fields]
The present invention relates to a vortex chamber type diesel engine having a vortex chamber communicated with a main combustion chamber through an injection hole and having a fuel injection nozzle disposed in the vortex chamber.
[0002]
[Prior art]
In a conventional vortex chamber type diesel engine, mainly a four-cycle diesel engine, as shown in FIG. 4, it is positioned on the upper side of the main combustion chamber 24 between the piston 22 and the cylinder head 23 in the cylinder 21. A vortex chamber 25 is formed in the cylinder head 23, an injection port 26 is formed obliquely from the vortex chamber 25 toward the center of the main combustion chamber 24, and an injection nozzle 27 that injects fuel into the vortex chamber 25 is disposed. ing.
[0003]
The injection hole 26 has a generally oval or rectangular cross-sectional shape, and air flows from the injection nozzle 27 to the injection nozzle 27 as the piston 22 rises, and a strong vortex flow is generated in the vortex chamber 25. The fuel is injected toward the inner wall surface of the vortex chamber 25 along the vortex flow direction. Further, as shown in FIG. 5, mainly the combustion gas ejected from the nozzle 26 and the mixed gas of the evaporated unburned gas and air are smoothly diffused and propagated to the entire main combustion chamber 24 on the upper surface of the piston 22. A two-leaf-shaped depression 28 is formed in the two. 4 and 5, 29 is a pair of exhaust ports provided in the cylinder head 23, and 30 is an exhaust valve.
[0004]
Japanese Examined Patent Publication No. 2-50295 is provided with a nozzle hole in which a main nozzle hole with a large passage area and a pair of groove-shaped sub nozzle holes on both sides of the nozzle hole are formed so that their center lines are parallel to each other. In addition, the main nozzle opening is overlapped at both ends of the cylinder in the direction of the cylinder center line, and the auxiliary nozzle is not overlapped at the ends of the cylinder in the direction of the cylinder center line. What is comprised so that it may be located in the outer side of a cylinder radial direction rather than is disclosed. According to such a configuration, since the air flow velocity is low at the early stage of the compression stroke, air flows into the vortex chamber in the direction along the center line of the vortex chamber through the main orifice having a low throttle resistance, and at the later stage of the compression stroke. Air flows into the vortex chamber through the main nozzle in a direction that is largely inclined with respect to the vortex chamber center line guided by a narrow space between the cylinder head lower surface and the piston upper surface, and in the cylinder center line direction as the flow velocity increases. The sub-jets that do not overlap also flow into the vortex chamber, and the air flows in a direction that is largely inclined with respect to the center line of the vortex chamber to form a vortex flow. The mixture formation is promoted by flowing into the chamber.
[0005]
[Problems to be solved by the invention]
However, in the vortex chamber 25 having the configuration shown in FIG. 4, the vortex chamber 25 of the small diesel engine is small, so that the fuel injected from the injection nozzle 27 is not mixed with the vortex flow, and is not mixed with the wall of the vortex chamber. There is a problem that fuel adheres, mixing of the fuel and air becomes insufficient, and the air-fuel mixture is not completely formed in the vortex chamber. As a result, there is a problem that the combustion performance is deteriorated due to rapid combustion, the combustion noise is increased, and the amount of unburned gas and smoke is increased.
[0006]
Further, according to the nozzle structure disclosed in the above Japanese Patent Publication No. 2-50295, it is considered that such a problem can be solved to some extent. However, in the initial stage of the compression stroke, the air flow flows in the direction of the center line of the vortex chamber. Therefore, the vortex forming ability is small, and the main injection port and the sub injection port are formed in parallel even in the later stage of the compression stroke. Since all are in the same direction, the air-fuel mixture formation effect is still not sufficient, and the same problem may occur.
[0007]
In view of such conventional problems, the present invention provides a vortex chamber type diesel engine that can obtain a sufficiently large mixture formation effect, has high output performance, low combustion noise, and low emission of unburned gas and smoke. The purpose is to do.
[0008]
[Means for Solving the Problems]
In the vortex chamber type diesel engine of the present invention, a vortex chamber is disposed on one side upper part of the main combustion chamber between the piston and the cylinder head, and a nozzle opening obliquely from the vortex chamber toward the center of the main combustion chamber is provided. In a vortex chamber type diesel engine having an injection nozzle that injects and injects fuel into the vortex chamber, the injection hole communicates with the main injection port having a large passage cross-sectional area and both sides of the cylinder in the circumferential direction of the main injection port. It is composed of a small pair of sub-injections, and the injection nozzle is arranged so that its axis passes through the approximate center of the vortex chamber and passes through the approximate center of the vortex chamber side opening end of the main injection port. When viewed in the axial direction, they are substantially parallel to each other, and the inclination angle with respect to the cylinder axial direction is set larger than the axial center of the main nozzle, and the secondary nozzle has a tapered shape that reduces the cross-sectional area of the passage toward the vortex chamber. It is characterized by that.
[0009]
[Action]
According to the present invention, in the compression process, air flows from the main combustion chamber through the nozzle hole into the vortex chamber to form a vortex flow in the vortex chamber, and in this state, the piston reaches the top dead center and the injection nozzle When fuel is injected into the vortex chamber from the fuel, the fuel injected toward the approximate center of the main nozzle through the approximate center of the vortex chamber is blown back by the air flow flowing from the main combustion chamber near the opening of the main nozzle As a result, the air-fuel mixture is formed by diffusing in the vortex chamber, and the inclination angle between the main injection port and the pair of sub injection ports that are communicated with both sides of the main injection port in the circumferential direction and are substantially parallel to each other when viewed in the axial direction of the cylinder As a result, air flows in different directions flow into the vortex chamber, so that the mixture formation is effectively promoted throughout the vortex chamber. In particular, the inclination angle with respect to the cylinder axis direction is large and the taper shape toward the vortex chamber pair to increase the flow velocity Te Sub nozzle hole fuel mixture can be diffused throughout the swirl chamber to the air flow along the wall surface of the swirl chamber is formed from early in the compression stroke by, thus mixture formation takes place completely over the swirl chamber A good combustion state can be obtained. Therefore, the output performance is improved, the combustion noise is lowered, and the discharge of unburned gas and smoke can be reduced.
[0010]
【Example】
An embodiment of the present invention will be described below with reference to FIGS.
[0011]
In FIG. 1, 1 is a cylinder block, 2 is a cylinder, 3 is a piston, and 4 is a cylinder head. Reference numeral 5 denotes a main combustion chamber between the piston 3 in the cylinder 2 and the cylinder head 4. In the cylinder head 4, a vertically long spherical vortex chamber 6 is formed on the upper side of the main combustion chamber 5, and an injection hole 7 is formed obliquely from the vortex chamber 6 toward the center of the main combustion chamber 5. Yes. The vortex chamber 6 is provided with an injection nozzle 8 for injecting fuel therein. 9 is a two-leaf-shaped depression formed on the upper surface of the piston 3 in order to smoothly diffuse and propagate the combustion gas ejected from the nozzle 7 and the mixed gas of evaporated unburned gas and air throughout the main combustion chamber 5. Reference numeral 10 denotes a glow plug disposed in the vortex chamber 6 for assisting ignition at start-up.
[0012]
As shown in detail in FIG. 2, the injection hole 7 includes a main injection hole 11 having a large diameter a and a large passage sectional area, and a pair of sub injection holes 12 having a relatively small average diameter b and a small passage sectional area. The sub-injection port 12 is formed on both sides of the main injection port 11 in the circumferential direction of the cylinder, and the axis O 2 of the sub-injection port 12 has a cylinder axis more than the axis O 1 of the main injection port 11. The inclination angle with respect to the direction is set larger by θ °. Further, the width of the sub-injection port 12 in the direction parallel to the surface along the inclination direction of the injection port 7, that is, in the direction orthogonal to the cylinder circumferential direction, is larger than the diameter b at the intermediate portion of the sub-injection port 12 on the main combustion chamber 5 side. It is formed in a taper shape such that b + α 1 which is larger by 1 and b−α 2 which is smaller by α 2 than the diameter b at the intermediate portion on the vortex chamber 6 side.
[0013]
The injection nozzle 8 is disposed such that its axis passes through the approximate center O of the vortex chamber 6 and passes through the approximate center P of the opening end of the main injection port 11 on the vortex flow chamber 6 side. The fuel is injected toward the substantially center P of the opening end on the vortex chamber 6 side.
[0014]
In the above configuration, when the piston 3 moves up in the cylinder 2, the air in the cylinder 2 is compressed, and accordingly, air flows from the nozzle 7 into the vortex chamber 6 and a strong vortex flow is generated in the vortex chamber 6. To do. When the piston 3 reaches near the top dead center (for example, 20 ° before the top dead center), fuel is injected from the injection nozzle 8.
[0015]
At that time, the fuel is injected toward the approximate center P of the main injection port 11 through the approximate center O of the vortex chamber 6, so that the injected fuel flows from the main combustion chamber 5 near the opening of the main injection port 11. Because the air flow strongly blows back and diffuses, and the inclination angles of the main injection hole 11 and the sub injection hole 12 are different, the air flows in different directions toward the vortex flow chamber 6, so that the blown back fuel is swirled. 6, the mixture formation is effectively promoted. Further, the sub-injection port 12 is further inclined along the wall surface of the vortex chamber 6, and the sub-injection port 12 is further tapered toward the vortex chamber 6 so that the flow velocity of the air passing therethrough becomes faster. The air flow along the wall of the vortex is strongly formed from the early stage of the compression stroke, and the air-fuel mixture can be effectively diffused throughout the vortex chamber 6, so that the air-fuel mixture is completely formed throughout the vortex chamber 6, and the fuel The air in the swirl chamber 6 is easily burned by using the air in the vortex chamber 6 and is not easily burnt. Further, since the fuel directly hits the high-temperature air flow from the main nozzle 11 as described above, the ignition delay is shortened. A good combustion state can be reliably obtained.
[0016]
Thus, when the fuel burns in the vortex chamber 6, the pressure of the vortex chamber 6 is increased, and the combustion gas and the evaporated unburned gas / air mixed gas are ejected from the nozzle 7 into the recess 9 of the main combustion chamber 5. Further, combustion continues in the main combustion chamber 5, and the pressure in the main combustion chamber 5 rises to push down the piston 3. When the piston 3 reaches the bottom dead center, the next exhaust stroke starts. The piston 3 starts to rise, and the exhaust valve is opened to exhaust the combustion waste gas from the exhaust port. Next, the exhaust valve is closed and the piston 3 is closed again. Is lowered and fresh air is introduced into the cylinder 2, and then the piston 3 is raised again, the air in the cylinder 2 is compressed and operates in the same manner as described above, and the above operations are repeated alternately.
[0017]
According to the present embodiment, as described above, the air-fuel mixture is completely formed over the entire vortex chamber 6, and a good combustion state can be obtained. Therefore, the output performance is improved, the combustion noise is lowered, and the unburned state Gas and smoke emissions can be reduced. Moreover, since the sub-injection port 12 is formed in a taper shape that tapers into the vortex chamber 6, the sub-injection port 12 is inclined with respect to the main injection port 11, and there is no hindrance to the mold release at the time of manufacture. There is also an advantage that it can be manufactured.
[0018]
FIG. 3 shows the smoke discharge amount when the engine speed is changed with the same fuel injection amount. From FIG. 3, compared with the prior art example in which the main injection port and the sub injection port are formed in parallel as in the above Japanese Patent Publication No. 2-50295, according to the present invention, the generation of smoke is greatly reduced in the low and medium rotation speed range. It can be seen that the effect is particularly great when the sub-inlet is formed in a tapered shape.
[0019]
In the description of the above embodiment, an example of a four-cycle diesel engine has been described. However, the present invention can also be applied to a two-cycle diesel engine, and in this case, the same effect can be obtained.
[0020]
【The invention's effect】
According to the vortex chamber type diesel engine of the present invention, the fuel injected from the injection nozzle through the substantial center of the vortex chamber to the substantial center of the main nozzle as described above from the main combustion chamber near the opening of the main nozzle. The angle of inclination between the main nozzle and a pair of sub nozzles that communicate with both sides of the main nozzle in the circumferential direction and are substantially parallel to each other when viewed in the axial direction of the cylinder is different. Therefore, the inflowing air flows in different directions, so the refueled fuel is diffused throughout the vortex chamber and the mixture formation is promoted, and the inclination angle is different, and the tapered shape toward the vortex chamber The air flow along the wall of the vortex chamber is formed from the early stage of the compression stroke by the pair of secondary nozzles that increase the flow velocity, so that the mixture can be further diffused throughout the vortex chamber. Formation Since the injection fuel is directly applied to the high-temperature air flow flowing in from the main nozzle, the ignition delay is shortened, so that a good combustion state can be obtained, and therefore the output performance is improved and the combustion noise is improved. And the emission of unburned gas and smoke can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of an embodiment of a vortex chamber type diesel engine according to the present invention.
FIG. 2 is a detailed longitudinal sectional view of a nozzle portion of the same embodiment and an explanatory diagram of the shapes of a main nozzle hole and a sub nozzle hole viewed from directions A to C in FIG.
FIG. 3 is a diagram showing the smoke emission amount when the engine speed is changed with the same fuel injection amount in comparison with the conventional example and the present invention.
FIG. 4 is a longitudinal sectional view of a main part of a conventional vortex chamber type diesel engine.
FIG. 5 is a plan view of an upper surface of a piston of a conventional example.
[Explanation of symbols]
3 Piston 4 Cylinder head 5 Main combustion chamber 6 Swirl chamber 7 Injection hole 8 Injection nozzle 11 Main injection port 12 Sub injection port

Claims (1)

ピストンとシリンダヘッドの間の主燃焼室の一側上部に渦流室を配設するとともに渦流室から主燃焼室の中央部に向けて斜めに開口する噴口を形成し、渦流室に燃料を噴射する噴射ノズルを配置した渦流室式ディーゼル機関において、噴口を通路断面積の大きい主噴口とこの主噴口のシリンダ周方向両側に連通させて形成した通路断面積の小さい一対の副噴口とで構成し、噴射ノズルをその軸線が渦流室の略中心を通って主噴口の渦流室側開口端の略中心を通るように配設し、副噴口の軸芯をシリンダ軸芯方向で見て互いに略平行で、かつ、主噴口の軸芯よりもシリンダ軸芯方向に対する傾斜角を大きく設定し、副噴口は渦流室に向けて通路断面積が減少するテーパ状をなしたことを特徴とする渦流室式ディーゼル機関。A vortex chamber is disposed on one side upper part of the main combustion chamber between the piston and the cylinder head, and a nozzle opening obliquely from the vortex chamber toward the center of the main combustion chamber is formed to inject fuel into the vortex chamber. In the vortex chamber type diesel engine in which the injection nozzle is arranged, the nozzle is composed of a main nozzle having a large channel cross-sectional area and a pair of sub nozzles having a small channel cross-sectional area formed by communicating with both sides in the cylinder circumferential direction of the main nozzle. The injection nozzle is disposed so that its axis passes through the approximate center of the vortex chamber and passes through the approximate center of the vortex chamber side opening end of the main injection port, and the axis of the auxiliary injection port is substantially parallel to each other when viewed in the cylinder axis direction. In addition, the vortex chamber type diesel engine is characterized in that the inclination angle with respect to the cylinder axis direction is set larger than the axis axis of the main injection port, and the sub injection port has a tapered shape in which the cross-sectional area of the passage decreases toward the vortex chamber. organ.
JP09523795A 1995-04-20 1995-04-20 Vortex chamber diesel engine Expired - Fee Related JP3787172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09523795A JP3787172B2 (en) 1995-04-20 1995-04-20 Vortex chamber diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09523795A JP3787172B2 (en) 1995-04-20 1995-04-20 Vortex chamber diesel engine

Publications (2)

Publication Number Publication Date
JPH08291712A JPH08291712A (en) 1996-11-05
JP3787172B2 true JP3787172B2 (en) 2006-06-21

Family

ID=14132161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09523795A Expired - Fee Related JP3787172B2 (en) 1995-04-20 1995-04-20 Vortex chamber diesel engine

Country Status (1)

Country Link
JP (1) JP3787172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585300B2 (en) * 2010-08-24 2014-09-10 株式会社豊田自動織機 Sub-chamber gas engine

Also Published As

Publication number Publication date
JPH08291712A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
JP3163906B2 (en) In-cylinder injection spark ignition engine
KR100926660B1 (en) In-cylinder injection spark ignition internal combustion engine
JP3787172B2 (en) Vortex chamber diesel engine
JPH09280055A (en) Direct cylinder injection type spark ignition engine
JP2600275B2 (en) Fuel injection valve
US4116234A (en) Internal combustion engine with an auxiliary combustion chamber
JPS6032929A (en) Combustion chamber of direct-injection type internal- combustion engine
JPH10153121A (en) Auxiliary chamber shape of auxiliary chamber type gas engine
JPH0893599A (en) Fuel injection device for two-cycle engine
WO2020196683A1 (en) Auxiliary chamber-type internal combustion engine
JP3820688B2 (en) In-cylinder direct injection spark ignition engine
JP2971191B2 (en) Combustion chamber of fuel injection type two-cycle engine
JP3198688B2 (en) Internal combustion engine
JP2819055B2 (en) Secondary combustion chamber insulated engine
JPH0519008B2 (en)
JPH10238349A (en) Swirl chamber type diesel engine
JP2526324Y2 (en) Torch ignition device for torch ignition type gas engine
KR930008391B1 (en) Stratified-combustion internal combustion engine
JPH07189699A (en) Direct injection type combustion chamber device for diesel engine
JPH0134656Y2 (en)
JPH0143467Y2 (en)
KR100227905B1 (en) Structure of combustion chamber for direct injection typed internal combustion engines
JP2000303844A (en) Cylinder injection type spark ignition internal combustion engine
JPH09222063A (en) Intake device for internal combustion engine
JPS5968518A (en) Combustion chamber for engine with pre-chamber

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees