JP3947274B2 - 給湯器 - Google Patents

給湯器 Download PDF

Info

Publication number
JP3947274B2
JP3947274B2 JP20356297A JP20356297A JP3947274B2 JP 3947274 B2 JP3947274 B2 JP 3947274B2 JP 20356297 A JP20356297 A JP 20356297A JP 20356297 A JP20356297 A JP 20356297A JP 3947274 B2 JP3947274 B2 JP 3947274B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water
amount
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20356297A
Other languages
English (en)
Other versions
JPH1151477A (ja
Inventor
徹哉 佐藤
久恭 渡辺
修一 小野寺
喜久雄 岡本
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP20356297A priority Critical patent/JP3947274B2/ja
Publication of JPH1151477A publication Critical patent/JPH1151477A/ja
Application granted granted Critical
Publication of JP3947274B2 publication Critical patent/JP3947274B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイパス路を設けると共に熱交換器側に水量調節弁を設けて給湯開始時の高温出湯をなくし設定温度の給湯制御を行う給湯器に関する。
【0002】
【従来の技術】
設定温度に応じた湯を給湯する給湯器において、高温出湯は安全性の面から絶対に避けなければならない現象である。一般に、給湯器は、入水温度と入水量及び設定温度から求められるフィードフォワード量により熱量制御と、更に出湯温度と設定温度の偏差に基づくフィードフォワード量による熱量制御を行う。
【0003】
【発明が解決しようとする課題】
ところが、給湯開始時において熱交換器内の水が何らかの要因で高温に暖められていた場合には、上記フィードフォワード制御及びフィードバック制御では高温出湯を防ぐことができない。
【0004】
特に、給湯停止直後に給湯が開始された場合は、熱交換器の持つ熱量により熱交換器内の水が高温になってしまい、再出湯時に高温出湯が発生する。更に、浴槽の追い焚き用の循環路を有する複合機能付きの給湯器において、給湯路と循環路が共通の熱交換器に挿入され小型化を図った一缶二水路型の給湯器がある。かかる給湯器の場合は、追い焚き運転中のバーナ燃焼により同じ熱交換器を通過する給湯路内の水が沸騰温度近くまで上昇することがある。その時に給湯栓が開かれて給湯が開始されると、その高温の湯が出湯される。また、追い焚き中だけでなく、追い焚きが終了した直後や、給湯が終了した直後においても同様に高温出湯の危険がある。
【0005】
かかる給湯開始時における高温出湯を防止する方法は種々提案されているが、未だ満足な高温出湯を防止できる制御方法ではない。特に、上記した一缶二水路方式の給湯器の場合は、追い焚き中の給湯要求時における高温出湯防止は、熱交換器内の湯の温度が非常に高いだけに、より安全性の高い制御方法が望まれる。
【0006】
そこで、本発明の目的は、給湯開始時における高温出湯をより確実に防止すると共に出湯温度をできるだけ設定温度に制御できる給湯器を提供することにある。
【0007】
更に、本発明の目的は、一缶二水路方式の給湯器において給湯開始時における高温出湯を防止すると共に出湯温度をできるだけ設定温度に制御できる給湯器を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的は、本発明によれば、給湯路に熱交換器をバイパスし給湯路の出口に入水をミキシングするバイパス路を設け、更に給湯路に熱交換器の水量を制御する熱交換器側水量調節手段を設け、高温出湯が予想される給湯開始の時に、バイパス路からのミキシングにより熱交換器内の高温の湯の温度を給湯路の出口で低下させると共に、熱交換器側水量調節手段の水量を、給湯路の出口の出湯温度と設定温度との偏差により制御する。これにより、バイパス路からの入水のミキシングにより高温出湯を確実に防止し、同時に熱交換器側水量調節手段により熱交換器からの水量を制御して出湯温度ができるだけ設定温度になる様に制御することができる。更に、本発明では、上記の熱交換器側水量調節手段の水量の偏差によるフィードバック制御は、給湯開始直後は待機して行わず、待機期間後に開始する。このフィードバック制御を待機させることで、給湯開始直後のバイパス路からの入水のミキシングによる出湯温度のアンダーシュートに応答して熱交換器側水量調節手段の高温湯の量が急激に増大して、出湯温度が過大なオーバーシュートを発生するのを確実に防止することができる。
【0009】
本発明では、更に給湯開始後所定時間後には、熱交換器側の水量調節手段の水量を上記の偏差による制御をしながら徐々に増加させ、一方バイパス路に設けたバイパス側水量調節手段の水量を徐々に絞る。そして、やがて、バイパス路は全閉またはそれに近い状態に固定され、熱交換器からの水量も要求される号数に応じて固定的に制御される。
【0010】
また、本発明では、給湯開始後はバーナの熱量制御は固定またはフィードフォワード制御であり、バイパス路側の水量が絞られた後は、熱交換器側の水量が要求号数に固定的に制御され、バーナの熱量はフィードバック制御に移行する。
【0011】
上記の目的を達成する為に、本発明は、熱交換器を通過する給湯路を有する給湯器において、
前記熱交換器をバイパスし、給湯開始時に所定の水量の入水を前記給湯路の出口にミキシングして、前記熱交換器内の高温の湯を該給湯路出口で低下させるバイパス路と、
前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
前記熱交換器側水量調節手段の水量を、前記給湯開始から待機期間後において、前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有することを特徴とする。
【0012】
上記の給湯路の出口の出湯温度は、例えば、前記給湯路の出口に設けられた出湯サーミスタから検出される温度、或いは、前記熱交換器の出口のサーミスタから検出される温度にもとづいて求められる温度である。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態の例を図面に従って説明する。しかしながら、本発明の技術的範囲はその実施の形態に限定されるものではない。
【0014】
図1は、本発明の実施の形態例である給湯器の構成図である。図1に示された給湯器の例は、給湯路10と浴槽24に接続された循環路22とが、共通の熱交換器14を通過する一缶二水路型の給湯器である。本発明は、一缶二水路型の給湯器に限定されるものではないが、本実施の形態例では一例として一缶二水路型の給湯器を例にして説明する。
【0015】
給湯路10には水道から水が供給され、その給湯路10は熱交換器14を通過して給湯栓12につながる。給湯路10は、熱交換器14における給湯路10内の水が、所定の温度以上に保たれるように固定バイパス路16が設けられる。さらに給湯路10には、熱交換器をバイパスする可変バイパス路18が設けられる。可変バイパス路18には、バイパス側水量調節弁G2が設けられ、熱交換器14を通過する給湯路10には、熱交換器側水量調節弁G1が設けられる。また、給湯路10には、熱交換器14と固定バイパス路16を通過する入水量を測定するための入水側フローセンサFS1が設けられる。さらに、給湯路10の出口側には、給湯栓12から流れ出る水量を検出する出口側フローセンサFS2が設けられる。そして、給湯路10には、入水温度を検出する入水サーミスタTinと、熱交換器14における給湯路10内の温度を検出する熱交出口サーミスタToutと、可変バイパス路18からの入水がミキシングされる給湯路10の出口の水温を検出する出湯サーミスタTmixとが設けられる。
【0016】
熱交換器14には、さらに浴槽24に接続された循環路22の配管が通過する。循環路22は、浴槽24に循環金具26の部分で接続される。この循環路22内には、循環ポンプTと浴槽温度を検出する浴槽サーミスタTfとが設けられる。給湯路10の出口部分と循環路22とは、注湯路28によって接続される。注湯路28内に設けた注湯弁M2を開くことによって、給湯路10内の湯が注湯路28及び循環路22を介して浴槽24に注湯される。熱交換器14に熱量を供給する手段として、バーナ20が設けられ、比例弁M1を制御することによって制御された量のガスがバーナ20に供給される。
【0017】
上記した温度センサやフローセンサ及び水量調節弁や比例弁などのアクチュエータは、給湯器内に設けた制御装置30に接続される。センサからの出力が制御装置30に供給され、制御装置30は図示しないメモリに記録された制御プログラムに従って上記アクチュエータをそれぞれ駆動する。
【0018】
図1に示した一缶二水路型の給湯器の場合は、給湯路10と風呂循環路22とが共通の熱交換器14を通過する。従って、風呂側の追い焚き運転を行うためにバーナ20を燃焼すると、給湯路10内の水も同時に燃焼される。従って、追い焚き運転中において、給湯栓12が開かれて給湯要求が出されると、熱交換器内の給湯路10内の高温の湯が給湯栓12から出湯されてしまう。かかる現象は高温出湯と呼ばれ、安全性の面から特に回避されなければならない。高温出湯の問題は、一缶二水路型の給湯器に限らず、通常の給湯器において給湯終了直後に再度給湯が開始された場合にも発生する。同様に、一缶二水路型の給湯器においても、風呂追い焚き運転終了直後や給湯運転終了直後において給湯要求がなされた場合にも、上記高温出湯の問題が生じる。
【0019】
一缶二水路型の給湯器の場合、風呂追い焚き運転では、バーナ20を燃焼させ熱交換器14内の給湯路10に熱量を供給しその熱量が循環路22側に伝熱することで循環路22への熱量供給が行われる。その場合において、熱交換器内の給湯路10内の水は循環していないので、給湯路10内の水が沸騰しないようにバーナ20の運転は間欠運転される。従って、熱交換器内の給湯路10内温度は、沸騰温度近くまで上昇する。このような熱交換器14内の給湯路内温度の上昇は、風呂追い焚き運転中に給湯が開始される時に、高温出湯の問題を招く。
【0020】
図2は、本実施の形態例における給湯開始時の基本的な制御のタイミングチャート図である。図2には、熱交換器14内の給湯路10の水温を検出する熱交出口サーミスタの検出温度Toutと、(2)に熱交換器側水量調節弁G1とバイパス側水量調節弁G2との開閉制御と、(3)に給湯路10の出口側の出湯温度Tmixと、(4)に比例弁M1の制御方法が示される。図2における横軸方向は時間軸を示す。
【0021】
今仮に、風呂追い焚き運転中において、時刻t0に給湯開始要求が出されたとする。図2(1)に示されるとおり、熱交換器14の出口側温度Toutは、時刻t0において給湯開始要求が出されると、急激に高い温度に上昇し、ピーク温度を過ぎてから低下する。この熱交換器の出口側温度Toutのピーク温度は、風呂追い焚き運転中における間欠燃焼制御中の温度に該当する。本実施の形態例では、この高いピーク温度を持つ熱交換器内の湯が、給湯栓12から直接出湯されないように、可変バイパス路18から所定量の入水を熱交換器14からの高温の湯にミキシングする。即ち、図2(2)に示されるとおり、バイパス側水量調節弁G2は、給湯開始時t0から時刻t2までの間ほぼ全開して、十分な量の入水を給湯路10にミキシングする。このバイパス側水量調節弁G2の開度を開く程度は、熱交換器出口の温度Toutのピーク値をキャンセルするに十分な量になる様に制御される。
【0022】
一方、熱交換器側水量調節弁G1は、給湯開始時t0において熱交換器14内の高温の湯が大量に出湯されないように、適切な量にしぼられる。そしてその後、熱交換器側水量調節弁G1は、出湯サーミスタの検出する温度Tmixと要求された設定温度Tsの偏差に従って制御される。即ち、出湯温度Tmixが設定温度Tsになるように、その水量が制御される。より具体的には、出湯温度Tmixが設定温度Tsよりも低い時は、熱交換器側水量調節弁G1はその開度を大きくするように制御され、熱交換器からの高い温度の湯の量が増加される。一方、出湯温度Tmixが設定温度より高い時は、熱交換器側水量調節弁G1の開度はしぼられる方向に制御される。
【0023】
以上のように給湯開始時t0から時刻t2までは、第一にバイパス側水量調節弁からの入水のミキシングにより、出湯温度Tmixが設定温度Tsを上回らないように制御される。第二に、出湯温度Tmixができるだけ設定温度Tsに近づくように、熱交換器側水量調節弁G1の水量が、出湯温度Tmixと設定温度Tsの偏差に基づいて制御される。
【0024】
図2(1)に示されるとおり、熱交換器の出口温度Toutはあるピーク温度を過ぎるとその温度は下降する。それに伴い、出湯温度Tmixが低下するので、熱交換器側水量調節弁G1の開度は、上記出湯温度と設定温度の偏差にしたがってその開度を徐々に開くように制御される。しかし、熱交換器側水量調節弁G1を開いたとしても熱交換器の出口温度Toutの低下により出湯温度Tmixが設定温度Tsを維持できなくなる。そこで、本実施の形態例では、バイパス側水量調節弁の開度を時刻t2からt3に向けて徐々にしぼるよう制御する。やがて時刻t3において、バイパス側水量調節弁G2はほぼ全閉状態になり、一方、熱交換器側水量調節弁G1は、給湯器の要求号数に応じた水量に調節される。従って、熱交換器への流量が少なくて熱交換器の出口温度Toutの低下が緩慢な場合は、熱交換器側水量調節弁G1が全開になってからバイパス側水量調節弁G2が閉じ始めることも起こりうる。
【0025】
本実施の形態例において、バーナ20に接続される比例弁M1のガス量制御は、図2(4)に示されるとおり、給湯開始時t0から時刻t3まではフィードフォワード制御され、バイパス側水量調節弁G2が全閉になった後の時刻t3以降は、通常のフィードフォワードとフィードバックの組み合わせの制御が行われる。給湯開始直後は、比例弁M1からのガス供給量を出来るだけ一定量にし、二つの水量調節弁G1とG2により給湯開始直後の高温出湯防止と出湯温度の設定温度付近への制御を行う。さらに、水量調節弁G1とG2による出湯開始時の制御が終了した後は、通常どおり比例弁M1がフィードフォワード及びフィードバック制御される。
【0026】
図3は、本実施の形態例の詳細な制御のタイミングチャート図である。本実施の形態例において、バイパス側水量調節弁G2及び熱交換器側水量調節弁G1は、ギアモータなどによってその開度がリニアに制御される開閉弁である。従って、水量調節弁G1、G2は、マイクロコンピュータ等によって構成される制御装置30から供給される制御信号G1及びG2によって、その開度が制御される。そこで、図3のタイミングチャート図には、バイパス側水量調節弁G2への制御信号g2と、熱交換器側水量調節弁G1に対する制御信号g1とがそれぞれ示される。図3中に示された時刻t0乃至t3は、図2中に示した時刻t0乃至t3に対応する。
【0027】
図3の場合も、風呂追い焚き運転中に時刻t0において給湯栓12が開かれ給湯要求が出されたとする。給湯栓12が開かれると出口側フローセンサFS2が所定の水量を検出し、給湯要求があったことを制御装置30が検出する。給湯開始時において、可変バイパス路18内に設けられたバイパス側水量調節弁G2は、図3(3)の30にて示されるように比較的大きな開度を維持した状態で待機する。一方、熱交換器側水量調節弁G1は、その開度が比較的閉じられた位置(図中32)で待機する。
【0028】
時刻t0において、給湯が開始されると、前述のとおり熱交換器14の出口温度Toutは急激に上昇する。給湯開始にあたり、制御装置30はバイパス側水量調節弁G2に対し、その開度を開く方向の制御信号g2を供給する。バイパス側水量調節弁G2は、図中30のように比較的開かれた状態で待機しているので、駆動信号g2により短時間で全開の状態になる。そして、その全開の状態が時刻t2まで維持される。この可変バイパス路18からの大量の入水を給湯路出口にミキシングすることにより、熱交換器14からの高温の湯の温度が下げられ、高温出湯が避けられる。
【0029】
一方、給湯開始時t0以降において、熱交換器側水量調節弁G1に対して、出湯温度Tmixと設定温度Tsの偏差に応じた駆動信号g1が供給される。図3(4),(5)に示されるとおり、出湯温度Tmixが設定温度Tsより低い間は、熱交換器側水量調節弁G1を開く方向の駆動信号g1が供給され、また出湯温度Tmixが設定温度Tsを上回る間は、熱交換器側水量調節弁を閉じる駆動信号g1が供給される。駆動信号g1,g2は、例えば制御装置30からパルス幅変調方式によって変調された制御信号である。このパルス幅変調方式による制御信号は、そのデューティ比によって駆動信号の強弱が制御される。従って、図3(2)及び(5)に示した制御信号g2,g1の制御信号は、例えば制御パルス信号の平均電力値を示すものである。
【0030】
上記した熱交換器側水量調節弁G1の開度の制御は、出湯温度Tmixと設定温度Tsの偏差に基づいて行われる。ここで、給湯路10の出口側に図1で示したように出湯サーミスタTmixが設けられる場合は、単純に出湯温度Tmixと設定温度Tsの偏差量に応じて熱交換器側水量調節弁G1への制御信号g1が供給される。あるいは、出湯サーミスタTmixが設けられない場合においても、入水側フローセンサFS1,出口側フローセンサFS2,入水サーミスタTin,熱交出口サーミスタToutからの検出出力に基づいて、出湯温度Tmixが次の式により求められる。
【0031】
【数1】
Figure 0003947274
【0032】
上記の温度Tout2は、固定バイパス路16と熱交換器14からの給湯路10とが合流する位置での温度であり、固定バイパス路16と熱交換器側給湯路との流量比、例えば7対3、によって上記式(3)のごとく求められる。従って、給湯路の出口側の出湯温度Tmixを直接検出する代わりに、熱交換器の出口のサーミスタToutの温度を検出して、上記した演算式に従って出湯温度Tmixを求め、その演算で求めた温度Tmixを設定温度Tsに維持する様に熱交換器側水量調節弁G1の水量を制御することもできる。この場合は、出湯温度Tmixよりも早く変化する熱交換器の出口温度Toutを利用するので、より早い水量制御を行うことが可能になる。
【0033】
図3のタイミングチャート図に戻り、時刻t2において熱交換器14の出口温度Toutがピーク値を過ぎた後、その出口温度Toutは下降していくので、出湯温度Tmixと設定温度Tsの偏差によって制御される熱交換器側水量調節弁G1は、その開度を徐々に大きくするよう制御される。やがて、熱交換器側水量調節弁G1はほぼ全開の状態となる。
【0034】
一方で、出口温度Toutの低下により熱交換器側水量調節弁G1の開度を上げても出湯温度Tmixが設定温度Tsに追従できなくなる。そこで、制御装置30はバイパス側水量調節弁G2に対してそれを閉じる駆動信号g2を供給する。その結果、時刻t2からバイパス側水量調節弁G2はその開度が徐々に絞られ、時刻t3において全閉状態になる。このバイパス側水量調節弁G2を閉じるタイミングt2とそれが完了する時刻t3のタイミング及び駆動速度は、例えば熱交換器の出口温度Toutの減少曲線に応じて、制御装置30により最適値に制御される。理想的には、出湯温度Tmixが設定温度Tsを維持する様にバイパス側水量調節弁G2の閉駆動が開始され、熱交換器の出口温度Toutのピーク値からの下降が終了する時点で、バイパス側水量調節弁G2が全閉状態になることである。時刻t3以後は、熱交換器側水量調節弁G1は、例えば給湯器の要求号数に対応した流量になるようその開度が制御される。
【0035】
時刻t3以降流水がオフになる時刻t4までは、図2において説明したとおり、可変バイパス路18は閉じられ、通常のフィードフォワードとフィードバック制御により比例弁M1が制御され、出湯温度Tmixは設定温度Tsを維持するよう制御される。やがて、給湯栓12が閉じられ流水がオフになると、バイパス側水量調節弁G2は制御信号g2により開かれ、元の状態図中30の位置に復帰して待機する。一方熱交換器側水量調節弁G1も制御信号g1により閉じる方向に駆動され、図中32の状態に復帰し待機する。
【0036】
上記の実施の形態例では、バイパス側水量調節弁G2は、その開度をリニアにに制御できるモータ駆動による開閉弁を利用しているが、このバイパス側水量調節弁G2は、オンオフ動作する例えば電磁弁によっても可能である。その場合は、図3(7)に示されるとおり、給湯開始時t0以降は電磁弁G2は開かれた状態となり、やがて時刻t2より遅れた所定の時刻に閉じられた状態になる。バイパス側水量調節弁G2にオンオフしか制御されない電磁弁が利用される場合は、出湯温度Tmixに多少のオーバーシュートを生じるが、出湯開始直後のごとき大きなオーバーシュートには至らない。
【0037】
[ミキシング開始時の制御例]
図3において説明した実施の形態例では、給湯開始時t0以降において、熱交換器側水量調節弁G1は、出湯温度Tmixと設定温度Tsとの偏差に応じて制御される。その場合、出湯開始直後において高温出湯を防止するという第一の目的を達成するために、バイパス側水量調節弁G2は全開またはそれに近い開度に制御される。そのため給湯開始時t0の直後において、図4(3)の実線に示したように出湯温度Tmixはアンダーシュート34を発生する。このアンダーシュート34に応答して、制御装置30は、熱交換器側水量調節弁G1を開く方向の駆動信号g1を供給する。即ち、図4(4)に35で示されるとおりの駆動信号g1により、熱交換器側水量調節弁G1はその開度を大きくするよう制御される。この熱交換器側水量調節弁G1の駆動により、出湯温度Tmixは、図4(3)の実線に示されるとおり大きなオーバーシュート36を発生する。このオーバーシュート36は、設定温度Tsを大きく超える温度になる場合がある。かかるオーバーシュート36は、給湯開始時の高温出湯を防止するという第一の目的に反する。
【0038】
そこで改良された実施の形態例では、給湯開始t0後の所定時間t10の間は、熱交換器側水量調節弁G1への制御が行われず、その水量調節弁G1の開度は半開の状態で待機される。その結果、図4(3)の破線に示されるとおり、出湯温度Tmixは給湯開始t0後やや大きなアンダーシュート38を発生するが、そのアンダーシュートによって熱交換器側水量調節弁G1の制御は行われないので、出湯温度Tmixのその後発生するオーバーシュート39のピーク温度は、設定温度Tsを大きく超えるものにはならない。
【0039】
上記のとおり、改良された実施の形態例においては、給湯開始直後の期間は熱交換器側水量調節弁G1のフィードバック制御は行われない。それによって、上記した出湯温度Tmixの過大なオーバーシュート36の発生が防止される。
【0040】
上記した熱交換器側水量調節弁G1のフィードバック制御が行われない期間t10は、例えば、出湯温度Tmixがアンダーシュートを発生している時とする。より具体的には、給湯開始時t0から出湯温度1Tmixが最初に設定温度Tsを超える時点t12までとする。即ち、最初のアンダーシュートが発生している間は、熱交換器側水量調節弁G1へのフィードバック制御を行わないことで、図4(3)のオーバーシュート36の発生を防止することができる。ただし、熱交換器側水量調節弁G1のフィードバック制御を開始する時刻は、後述するとおり種々の変形例が考えられる。
【0041】
図5は、ミキシング開始時の別の制御例を示すタイミングチャート図である。図4において、給湯開始時t0から所定の時間t10の間熱交換器側水量調節弁G1のフィードバック制御を行わないことを説明した。このフィードバック制御を行わないで一定の開度で待機する期間t10は、種々の物理量に応じて変更される。
【0042】
第1の例は、熱交換器の出口温度Toutのピーク値に達するまでの時間に応じてフィードバック制御を行わない期間が変更される。即ち、図5(1)の実線に示されるように、熱交換器の出口温度Toutがピーク値に達する時間が短い時は、図5(4)に示されるとおりフィードバック制御を行わない期間t14も短くなる。従って熱交換器側水量調節弁G1へのフィードバック制御は、時刻t15から開始される。
【0043】
一方、図5(1)の破線で示されるとおり、熱交換器の出口温度Toutがピーク値に達する時間が長い場合は、図5(5)に示されるとおり、フィードバック制御を行わない期間t16は上記t14に比べて長くなる。したがって、熱交換器側水量調節弁G1のフィードバック制御は、時刻t17から開始される。その結果、出湯温度Tmixは、図5(3)に示されるとおり、熱交換器の出口温度Toutが急速にピーク値に立ち上がる場合は、出湯温度Tmixは図中40のごとく変化する。一方、熱交換器の出口温度Toutが破線のごとく緩慢に立ち上がる場合は、出湯温度Tmixは破線42のように変化する。上記した熱交換器の出口温度Toutの変化は、熱交出口温度サーミスタから検出される温度Toutを監視することにより検出することができる。
【0044】
一方、入水側フローセンサFS1が検出する流量が大きい場合は、図5(1)の実線のように熱交換器の出口温度Toutは急激に変化する。逆に、入水側フローセンサFS1の流量が少ない場合は、熱交換器の出口温度Toutは、図5(1)の破線のごとく緩慢に立ち上がる。従って、熱交換器側水量調節弁G1のフィードバック制御は、入水側フローセンサFS1の流量が大きい時は、時刻t15のごとく早めに開始し、入水側フローセンサFS1の流量が少ない時は、熱交換器側水量調節弁G1のフィードバック制御は、時刻t17のように遅く開始する。
【0045】
さらに、可変バイパス路18内のバイパス側水量調節弁G2の制御も、熱交換器の出口温度Toutもしくは入水側フローセンサFS1の流量に応じてその開くスピードを可変制御させることが好ましい。即ち、熱交換器の出口温度Toutが急峻にピーク値に立ち上がる場合は、図5(2)の実線44に示されるとおり、バイパス側水量調節弁G2への駆動信号g2のデューティ比を大きくして、その水量調節弁G2を開く速度を大きくする。一方、熱交換器の出口温度Toutが、図5(1)の破線に示す如く緩慢に上昇する場合や、若しくは入水側フローセンサFS1の流量が少ない場合は、バイパス側水量調節弁G2への駆動信号g2のデューティ比を、図5(2)中の破線46の如く小さくし、その開く速度を遅くする。
【0046】
上記したとおり、給湯開始時t0から所定の期間t14もしくはt16の間熱交換器側水量調節弁G1によるフィードバック制御を行わない。従って、図5(3)の破線42に示されるように出湯温度Tmixのアンダーシュートが逆に大きくなりすぎる。そこで、図5(2)の破線46に示されるように、バイパス側水量調節弁G2の開く速度を遅くすることにより、出湯温度Tmixのアンダーシュートを少なくすることができる。すなわち図5(3)の一点鎖線46に示されるとおりである。その場合のバイパス側水量調節弁G2の開閉の状態は、図5(6)に示されるとおりである。水量調節弁G1の開く速度を大きくする場合は、実線44のごとく開度が制御され、その開く速度及び閉じる速度を遅くする場合は、図5(6)中の破線46のごとくその開度が制御される。
【0047】
上記した実施の形態例では、給湯開始時t0以降所定の期間熱交換器側水量調節弁G1のフィードバック制御を行わない。その結果、入水側フローセンサFS1が検出する水量が極端に少ない等の理由により、給湯開始後の熱交換器の出口温度Toutの立ち上がりが非常に緩慢になり、出湯温度Tmixが設定温度Tsまで達しない場合が考えられる。そのような場合、上記したとおり、熱交換器側水量調節弁G1のフィードバック制御が、出湯温度Tmixが設定温度Tsを上回った時点で開始するように制御すると、出湯温度Tmixは設定温度Tsを超えることはなく、上記熱交換器側水量調節弁G1によるフィードバック制御が開始されないことになる。
【0048】
そこで、本実施の形態例の変形例として、制御装置30は、あらかじめ決められた所定の基準時間内に、出湯温度Tmixが設定温度Tsを超えない場合には、強制的に熱交換器側水量調節弁G1フィードバック制御を開始するようにする。そうすることで、上記した最悪の事態を避けることができる。
【0049】
【発明の効果】
以上説明した通り、本発明によれば、給湯開始時における高温出湯を防止することができ、しかもできるだけ出湯温度を設定温度に近づけることができる。更に、一缶二水路型の給湯路において、追い焚き運転中の給湯開始時において、高温出湯を完全に防止することができ、より安全サイドにたった制御を可能にする。
【0050】
更に、本発明によれば、給湯開始時にバイパス路からの大量の入水をミキシングすることにより確実に高温出湯を防止し、更に熱交換器側の流量を出湯温度と設定温度の偏差により制御することで、出湯温度をより設定温度に近づける制御を行うことができる。しかも、その制御により出湯温度が過大なオーバーシュートを発生することはなくなる。
【図面の簡単な説明】
【図1】本発明の実施の形態例である給湯器の構成図である。
【図2】本実施の形態例における給湯開始時の基本的な制御のタイミングチャート図である。
【図3】本実施の形態例の詳細な制御のタイミングチャート図である。
【図4】ミキシング開始時の制御例を示すタイミングチャート図である。
【図5】ミキシング開始時の別の制御例を示すタイミングチャート図である。
【符号の説明】
10 給湯路
14 熱交換器
16 固定バイパス路
18 可変バイパス路
22 循環路
24 浴槽
30 制御装置
G1 熱交換器側水量調節弁
G2 バイパス側水量調節弁

Claims (12)

  1. 熱交換器を通過する給湯路を有する給湯器において、
    前記熱交換器をバイパスし、給湯開始時に所定の水量の入水を前記給湯路の出口にミキシングして、前記熱交換器内の高温の湯を該給湯路出口で低下させるバイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    前記熱交換器側水量調節手段の水量を、前記給湯開始から待機期間経過までの間においては、所定量に維持し、前記給湯開始から待機期間が経過した後において、前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記待機期間は、前記給湯開始後に前記出湯温度が設定温度を上回るまでの期間であることを特徴とする給湯器。
  2. 熱交換器を通過する給湯路を有する給湯器において、
    前記熱交換器をバイパスし、給湯開始時に所定の水量の入水を前記給湯路の出口にミキシングして、前記熱交換器内の高温の湯を該給湯路出口で低下させるバイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    前記熱交換器側水量調節手段の水量を、前記給湯開始から待機期間経過までの間においては、所定量に維持し、前記給湯開始から待機期間が経過した後において、前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記待機期間は、前記給湯開始直後の前記出湯温度がアンダーシュートを発生している時であることを特徴とする給湯器。
  3. 請求項1または2において、前記待機期間は、前記熱交換器内の温度が前記給湯開始後に急激に上昇する場合よりも緩慢に上昇する場合のほうが長いことを特徴とする給湯器。
  4. 請求項1または2において、前記待機期間は、前記給湯路内の流量が前記給湯開始後に多い場合よりも少ない場合のほうが長いことを特徴とする給湯器。
  5. 請求項2乃至のいずれかの請求項において、前記制御部は、前記待機期間が基準時間を超える場合は、前記熱交換器側水量調節手段の水量の制御を開始することを特徴とする給湯器。
  6. 熱交換器を通過する給湯路を有する給湯器において、
    前記熱交換器をバイパスし、給湯開始時に所定の水量の入水を前記給湯路の出口にミキシングして、前記熱交換器内の高温の湯を該給湯路出口で低下させるバイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    前記熱交換器側水量調節手段の水量を、前記給湯開始から待機期間経過までの間においては、所定量に維持し、前記給湯開始から待機期間が経過した後において、前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記バイパス路にバイパス側水量調節手段を有し、前記制御部は、前記給湯開始時に該バイパス側水量調節手段の水量を増加する様に制御し、更に、該水量の増加の速度を、前記給湯路内の流量が多い場合よりも少ない場合に遅くなる様に制御することを特徴とする給湯器。
  7. 熱交換器を通過する給湯路を有する給湯器において、
    前記熱交換器をバイパスし、給湯開始時に所定の水量の入水を前記給湯路の出口にミキシングして、前記熱交換器内の高温の湯を該給湯路出口で低下させるバイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    前記熱交換器側水量調節手段の水量を、前記給湯開始から待機期間経過までの間においては、所定量に維持し、前記給湯開始から待機期間が経過した後において、前記給湯路の 出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記バイパス路にバイパス側水量調節手段を有し、前記制御部は、前記給湯開始時に該バイパス側水量調節手段の水量を増加する様に制御し、更に、該水量の増加の速度を、前記熱交換器内の温度が前記給湯開始後に急激に上昇する場合よりも緩慢に上昇する場合に遅くなる様に制御することを特徴とする給湯器。
  8. 請求項1乃至のいずれかの請求項において、前記バイパス路にバイパス側水量調節手段を有し、前記制御部は、前記給湯開始時に該バイパス側水量調節手段の水量を前記所定の水量に制御し、前記給湯開始後所定時間後に、前記熱交換器側水量調節手段の水量を増加させ、該バイパス側水量調節手段の水量を絞る様に制御することを特徴とする給湯器。
  9. 請求項において、前記熱交換器に熱量を供給する熱量供給手段を更に有し、該熱量供給手段は、前記給湯開始後において、一定の熱量または少なくとも前記入水の温度及び設定温度から求められるフィードフォワード量に基づく熱量に制御され、前記バイパス側水量調節手段の水量が絞られた後において、前記出湯温度と設定温度との差から求められるフィードバック量に基づく熱量に制御されることを特徴とする給湯器。
  10. 請求項1乃至のいずれかの請求項において、前記給湯路は浴槽に接続される循環路と共に共通の熱交換器を通過し、前記給湯開始時は、該循環路に熱量を供給している最中に前記給湯の開始要求が出された時を含むことを特徴とする給湯器。
  11. 共通の熱交換器を通過する給湯路と風呂循環路を有する一缶二水路型の給湯器において、
    固定量の入水を前記熱交換器にバイパスする固定バイパス路と、
    前記熱交換器をバイパスし、入水を前記給湯路の出口にミキシングし、バイパス水量を調節するバイパス側水量調節手段を有する可変バイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    給湯開始後において、前記バイパス側水量調節手段の水量を前記熱交換器内の高温の湯を該給湯路出口で低下させる様に所定水量に制御し、前記給湯開始から待機期間経過までの間においては、前記熱交換器側水量調節手段の水量を所定量に維持し、前記給湯開始から待機期間が経過した後において、前記熱交換器側水量調節手段の水量を前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記待機期間は、前記給湯開始後に前記出湯温度が設定温度を上回るまでの期間であることを特徴とする給湯器。
  12. 共通の熱交換器を通過する給湯路と風呂循環路を有する一缶二水路型の給湯器において、
    固定量の入水を前記熱交換器にバイパスする固定バイパス路と、
    前記熱交換器をバイパスし、入水を前記給湯路の出口にミキシングし、バイパス水量を調節するバイパス側水量調節手段を有する可変バイパス路と、
    前記熱交換器を通過する水量を調節する熱交換器側水量調節手段と、
    給湯開始後において、前記バイパス側水量調節手段の水量を前記熱交換器内の高温の湯を該給湯路出口で低下させる様に所定水量に制御し、前記給湯開始から待機期間経過までの間においては、前記熱交換器側水量調節手段の水量を所定量に維持し、前記給湯開始から待機期間が経過した後において、前記熱交換器側水量調節手段の水量を前記給湯路の出口の出湯温度と設定温度との差に応じて制御する制御部とを有し、
    前記待機期間は、前記給湯開始直後の前記出湯温度がアンダーシュートを発生している時であることを特徴とする給湯器。
JP20356297A 1997-07-29 1997-07-29 給湯器 Expired - Fee Related JP3947274B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20356297A JP3947274B2 (ja) 1997-07-29 1997-07-29 給湯器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20356297A JP3947274B2 (ja) 1997-07-29 1997-07-29 給湯器

Publications (2)

Publication Number Publication Date
JPH1151477A JPH1151477A (ja) 1999-02-26
JP3947274B2 true JP3947274B2 (ja) 2007-07-18

Family

ID=16476199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20356297A Expired - Fee Related JP3947274B2 (ja) 1997-07-29 1997-07-29 給湯器

Country Status (1)

Country Link
JP (1) JP3947274B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7283029B2 (ja) * 2019-10-25 2023-05-30 株式会社ノーリツ 暖房給湯装置

Also Published As

Publication number Publication date
JPH1151477A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
JP3947274B2 (ja) 給湯器
JPH1151479A (ja) 給湯器
JP3816263B2 (ja) 給湯機
JPH1151478A (ja) 給湯器
JP3161165B2 (ja) 給湯装置
JP2004347196A (ja) 給湯システム
JP2921177B2 (ja) 風呂釜付給湯機
JP4682490B2 (ja) 給湯システム
JP3480245B2 (ja) ソーラー給湯機能付き給湯器
JP3922788B2 (ja) 給湯方法および給湯装置
JP3128350B2 (ja) 給湯風呂装置
JP3872864B2 (ja) 給湯燃焼装置
JP4613458B2 (ja) 給湯システム
JP2867758B2 (ja) 給湯器付風呂釜の運転制御方法
JP3195768B2 (ja) 風呂制御装置
JP3859811B2 (ja) 給湯燃焼装置
JP2861521B2 (ja) 給湯器付風呂釜の運転制御方法
JP3822721B2 (ja) 一缶二水路風呂給湯器
JP4215337B2 (ja) 熱供給システム
JP2921198B2 (ja) 給湯器付風呂釜の運転制御方法
JP3880140B2 (ja) 1缶2水路型給湯風呂釜
JP2946862B2 (ja) 給湯器付風呂釜の運転制御方法
JPH10300221A (ja) 給湯燃焼装置
JPH10300222A (ja) 給湯燃焼装置
JPH06249452A (ja) 給湯装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees