JP3946191B2 - Refrigeration apparatus and control method of refrigeration apparatus - Google Patents

Refrigeration apparatus and control method of refrigeration apparatus Download PDF

Info

Publication number
JP3946191B2
JP3946191B2 JP2003427025A JP2003427025A JP3946191B2 JP 3946191 B2 JP3946191 B2 JP 3946191B2 JP 2003427025 A JP2003427025 A JP 2003427025A JP 2003427025 A JP2003427025 A JP 2003427025A JP 3946191 B2 JP3946191 B2 JP 3946191B2
Authority
JP
Japan
Prior art keywords
pipe
temperature
compressor
refrigerant
bypass pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427025A
Other languages
Japanese (ja)
Other versions
JP2005188771A (en
Inventor
孝 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2003427025A priority Critical patent/JP3946191B2/en
Priority to KR10-2004-0053091A priority patent/KR100539593B1/en
Priority to CNB200410063856XA priority patent/CN1313782C/en
Priority to EP04254258A priority patent/EP1548379B1/en
Priority to DE602004009027T priority patent/DE602004009027T2/en
Publication of JP2005188771A publication Critical patent/JP2005188771A/en
Application granted granted Critical
Publication of JP3946191B2 publication Critical patent/JP3946191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/24Bypassing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、複数の低圧シェル式圧縮機の間で均油が行われる冷凍装置及び冷凍装置の制御方法に関する。   The present invention relates to a refrigeration apparatus in which oil equalization is performed between a plurality of low-pressure shell compressors and a control method for the refrigeration apparatus.

例えば、空気調和機には、複数の室内機に対処できるよう、1台の室外機に複数の圧縮機を備える、いわゆるマルチ形のものがある。
この種空気調和機の室外機に配備される複数の圧縮機としては、可変容量形のものや、それら互いの圧縮機のシェル同士の間で互いにシェル容量が異なっている場合がある。このとき、圧縮機が均油管で連通されていると、高圧側の圧縮機のシェルから低圧側の圧縮機のシェルへオイルが移動してしまう現象が起こる。このとき、圧縮機のシェル内では、貯留オイルが回転部品によって攪拌され、ミスト状の形で存在するため、オイル量が均油管接続口位置よりたとえ下がったとしても、オイルがミスト状の形で移動し続けることとなり、結局、高圧側の圧縮機がオイル不足になる問題がある。
For example, there is a so-called multi-type air conditioner in which a single outdoor unit is provided with a plurality of compressors so as to cope with a plurality of indoor units.
The plurality of compressors provided in the outdoor unit of this type of air conditioner may be of a variable capacity type, or the shell capacities may be different between the shells of the compressors. At this time, if the compressor is communicated with an oil equalizing pipe, a phenomenon occurs in which oil moves from the shell of the high-pressure side compressor to the shell of the low-pressure side compressor. At this time, in the compressor shell, the stored oil is agitated by the rotating parts and exists in the form of a mist, so even if the amount of oil falls below the oil leveling pipe connection position, the oil is in the form of a mist. As a result, the compressor on the high-pressure side will run out of oil.

このようなオイルミストの移動を防止するものとして、複数の圧縮機のシェルを、均油管を介して互いに連通し、かつ、均油管を圧縮機の吐出側の冷媒配管とバイパス管によって接続したものが提案されている(例えば、特許文献1参照)。
特開平04−222354号公報 (第3−5頁、第1図)
In order to prevent such movement of oil mist, the shells of a plurality of compressors communicate with each other via an oil equalizing pipe, and the oil equalizing pipe is connected by a refrigerant pipe and a bypass pipe on the discharge side of the compressor. Has been proposed (see, for example, Patent Document 1).
JP 04-222354 A (page 3-5, FIG. 1)

上記公報に記載された冷凍装置に備えられた均油システムについて簡単に説明すると、冷媒回路中には、複数の圧縮機が互いに並列となるよう、吐出側の冷媒配管と吸込側の冷媒配管にそれぞれ接続されている。それら圧縮機のシェルは、隣り合うもの同士が均油管を介して互いに連通されている。圧縮機の吐出側の冷媒配管は前記均油管に、開閉弁を介装されたバイパス管によって接続されている。   Briefly describing the oil leveling system provided in the refrigeration apparatus described in the above publication, in the refrigerant circuit, a refrigerant pipe on the discharge side and a refrigerant pipe on the suction side are arranged so that a plurality of compressors are arranged in parallel with each other. Each is connected. Adjacent ones of the compressor shells communicate with each other via an oil equalizing pipe. A refrigerant pipe on the discharge side of the compressor is connected to the oil equalizing pipe by a bypass pipe provided with an open / close valve.

この均油システムによれば、通常の冷暖房運転中は、開閉弁を開とし、バイパス管を介して高圧冷媒ガスを均油管に流入させる。これにより、均油管を介した各圧縮機のシェル間のオイルミストの移動を防止し、高圧側の圧縮機のオイル量不足を防止している。
また、長時間運転により、各圧縮機のシェル間のオイル量に偏りが発生した場合には、開閉弁を閉じた状態で複数の圧縮機のうち1台のみの運転を順次行う、いわゆる均油運転を行い、各圧縮機の余剰オイルを均油管を介して順次移動させ、各圧縮機のシェル内のオイル量を適正値に復帰させるようにしている。
According to this oil leveling system, during normal air conditioning operation, the on-off valve is opened, and the high-pressure refrigerant gas flows into the oil leveling pipe via the bypass pipe. Thereby, the movement of the oil mist between the shells of the compressors via the oil equalizing pipe is prevented, and the shortage of the oil amount of the compressor on the high pressure side is prevented.
In addition, when the oil amount between the shells of each compressor is uneven due to long time operation, only one of the plurality of compressors is sequentially operated with the on-off valve closed. The operation is performed, and the surplus oil of each compressor is sequentially moved through the oil equalizing pipe so that the oil amount in the shell of each compressor is returned to an appropriate value.

しかしながら、上記した従来の冷凍装置では、通常の冷暖房運転中に開閉弁が故障等により閉じたままとなると均油管に高圧冷媒ガスが流入せず、均油管に高圧冷媒ガスが流入していない状態で圧縮機の運転を続けていると高圧側の圧縮機内のオイルミストが均油管を通って他方の圧縮機内に移動し、高圧側の圧縮機はオイル量不足により故障する場合があるという問題が存在する。つまり、圧縮機と比べて安価な開閉弁の故障により高価な圧縮機が破損することとなり、開閉弁だけの交換であれば安価且つ容易に行うことができるが、圧縮機を交換するとなると相当の費用と手間がかかることになる。   However, in the above-described conventional refrigeration apparatus, when the on-off valve remains closed due to a failure or the like during normal air conditioning operation, the high pressure refrigerant gas does not flow into the oil equalizing pipe and the high pressure refrigerant gas does not flow into the oil equalizing pipe If the compressor continues to operate, the oil mist in the high-pressure side compressor moves through the oil equalizing pipe into the other compressor, and the high-pressure side compressor may break down due to insufficient oil. Exists. In other words, an expensive compressor is damaged due to a failure of an on-off valve that is cheaper than a compressor, and if only the on-off valve is replaced, it can be carried out inexpensively and easily. It will be expensive and time consuming.

本発明は、上記した従来の問題が考慮されたものであり、開閉弁の故障等した場合等、均油管に高圧冷媒が流入していないことを逸早く検知し、オイルミスト移動を防止して、圧縮機の破損を防止することができる冷凍装置及び冷凍装置の制御方法を提供することを目的としている。   The present invention takes into account the above-described conventional problems, such as when an on-off valve malfunctions, etc., quickly detecting that high-pressure refrigerant has not flowed into the oil equalizing pipe, preventing oil mist movement, An object of the present invention is to provide a refrigeration apparatus and a refrigeration apparatus control method capable of preventing the compressor from being damaged.

請求項1記載の発明は、冷媒回路中に互いに並列に接続されている複数の圧縮機と、該複数の圧縮機の各シェル間を接続する均油管と、前記圧縮機の吐出側の冷媒配管と前記均油管とを接続するバイパス管と、該バイパス管に介装されている開閉弁とが備えられている冷凍装置において、前記開閉弁と前記均油管との間に位置する前記バイパス管には、該バイパス管自体或いは該バイパス管内部の温度を検出する第1の温度センサが設けられ、前記吐出側の冷媒配管には、該冷媒配管内の温度を検出する第2の温度センサが設けられ、前記第1の温度センサによって検出されるバイパス管内温度が、前記第2の温度センサによって検出される冷媒管内温度から所定値を引いた温度よりも低い場合に、前記圧縮機の運転が停止されることを特徴としている。 The invention according to claim 1 is a plurality of compressors connected in parallel in the refrigerant circuit, an oil equalizing pipe connecting between the shells of the plurality of compressors, and a refrigerant pipe on the discharge side of the compressor And a bypass pipe connecting the oil leveling pipe, and an on-off valve interposed in the bypass pipe, the bypass pipe located between the on-off valve and the oil leveling pipe Is provided with a first temperature sensor for detecting the temperature of the bypass pipe itself or the inside of the bypass pipe , and the discharge side refrigerant pipe is provided with a second temperature sensor for detecting the temperature in the refrigerant pipe. And the operation of the compressor is stopped when the temperature in the bypass pipe detected by the first temperature sensor is lower than the temperature obtained by subtracting a predetermined value from the temperature in the refrigerant pipe detected by the second temperature sensor. characterized in that it is It is.

請求項2記載の発明は、冷媒回路中に互いに並列に接続されている複数の圧縮機と、該複数の圧縮機の各シェル間を接続する均油管と、前記圧縮機の吐出側の冷媒配管と前記均油管とを接続するバイパス管と、該バイパス管に介装されている開閉弁とが備えられている冷凍装置の制御方法において、前記圧縮機を駆動させて冷媒を前記冷媒回路中に循環させるとともに、前記圧縮機から吐出された高圧の前記冷媒を前記冷媒配管から前記バイパス管内に流入させ、該開閉弁と前記均油管との間に位置する前記バイパス管自体或いは該バイパス管内部の温度を検出し、且つ、前記吐出側の冷媒配管内の温度を検出し、前記バイパス管内の温度が吐出側の前記冷媒管内の温度から所定値を引いた温度よりも低い場合は前記圧縮機の運転を停止することを特徴としている。 The invention according to claim 2 is a plurality of compressors connected in parallel in the refrigerant circuit, an oil equalizing pipe connecting between the shells of the plurality of compressors, and a refrigerant pipe on the discharge side of the compressor In the control method of a refrigeration apparatus provided with a bypass pipe connecting the oil equalizing pipe and an on-off valve interposed in the bypass pipe, the compressor is driven to bring the refrigerant into the refrigerant circuit While circulating, the high-pressure refrigerant discharged from the compressor flows into the bypass pipe from the refrigerant pipe, and the bypass pipe itself located between the on-off valve and the oil equalizing pipe or inside the bypass pipe When the temperature is detected and the temperature in the refrigerant pipe on the discharge side is detected, and the temperature in the bypass pipe is lower than the temperature obtained by subtracting a predetermined value from the temperature in the refrigerant pipe on the discharge side, the compressor Stop driving It is characterized by a door.

本発明に係る冷凍装置によれば、開閉弁と均油管との間に位置するバイパス管には、バイパス管自体或いはバイパス管内の温度を検出する温度センサが設けられているため、圧縮機から吐出され冷媒配管からバイパス管に流入した高圧の冷媒が、開閉弁を通過して均油管に流入していると、温度センサによって検出される温度は高温となり、バイパス管に流入した高圧の冷媒が開閉弁を通過していないと、温度センサによって検出される温度は常温(低温)となり、これによって、高圧の冷媒が、開閉弁を通過して均油管に流入している確認することができ、オイルミストの移動を確実に防止し、オイル量不足による圧縮機の破損を防止することができる。   According to the refrigeration apparatus according to the present invention, the bypass pipe located between the on-off valve and the oil equalizing pipe is provided with a temperature sensor that detects the temperature in the bypass pipe itself or in the bypass pipe. If the high-pressure refrigerant flowing into the bypass pipe from the refrigerant pipe passes through the on-off valve and flows into the oil equalizing pipe, the temperature detected by the temperature sensor becomes high, and the high-pressure refrigerant flowing into the bypass pipe opens and closes. If it does not pass through the valve, the temperature detected by the temperature sensor will be normal temperature (low temperature), so that it can be confirmed that the high-pressure refrigerant has passed through the on-off valve and flows into the oil equalizing pipe. The mist can be reliably prevented from moving, and the compressor can be prevented from being damaged due to insufficient oil amount.

また、本発明に係る冷凍装置の制御方法によれば、圧縮機を駆動させて冷媒を冷媒回路中に循環させるとともに、圧縮機から吐出された高圧の冷媒を冷媒配管からバイパス管内に流入させ、開閉弁と均油管との間に位置するバイパス管自体或いはバイパス管内部の温度を検出し、バイパス管内温度が圧縮機から吐出された冷媒温度から所定値を引いた温度よりも低い場合は圧縮機の運転を停止するため、開閉弁の故障等により高圧の冷媒が開閉弁を通過していない場合は、圧縮機の運転は停止され、オイルミストの移動を防止してオイル量不足による圧縮機の破損を防止することができる。   Further, according to the control method of the refrigeration apparatus according to the present invention, the compressor is driven to circulate the refrigerant in the refrigerant circuit, and the high-pressure refrigerant discharged from the compressor is caused to flow into the bypass pipe from the refrigerant pipe, If the temperature of the bypass pipe itself or the bypass pipe located between the on-off valve and the oil equalizing pipe is detected and the temperature in the bypass pipe is lower than the temperature obtained by subtracting a predetermined value from the refrigerant temperature discharged from the compressor, the compressor In order to stop the operation of the compressor, if the high-pressure refrigerant does not pass through the on-off valve due to a failure of the on-off valve, the operation of the compressor is stopped to prevent the oil mist from moving and Breakage can be prevented.

以下、本発明に係る冷凍装置及び冷凍装置の制御方法の実施の形態について、図面に基いて説明する。   Embodiments of a refrigeration apparatus and a refrigeration apparatus control method according to the present invention will be described below with reference to the drawings.

図1は空気調和機である冷凍装置1の冷媒回路2を表す回路図である。図1に示すように、冷媒回路2中には、低圧シェル式の第1,第2の圧縮機3,4と、第1の熱交換器5と、膨張弁6と、第2の熱交換器7とが順次介装されている。2台の圧縮機3,4は互いに並列となるよう、吐出配管8と吸込配管9にそれぞれ接続されている。吐出配管8及び吸込配管9の一端は四方弁10を介して冷媒回路2に接続されており、吐出配管8及び吸込配管9の他端は2つに分岐されて第1,第2の圧縮機3,4にそれぞれ接続されている。   FIG. 1 is a circuit diagram showing a refrigerant circuit 2 of a refrigeration apparatus 1 that is an air conditioner. As shown in FIG. 1, in the refrigerant circuit 2, low-pressure shell-type first and second compressors 3, 4, a first heat exchanger 5, an expansion valve 6, and a second heat exchange. A container 7 is sequentially inserted. The two compressors 3 and 4 are respectively connected to the discharge pipe 8 and the suction pipe 9 so as to be parallel to each other. One end of the discharge pipe 8 and the suction pipe 9 is connected to the refrigerant circuit 2 via the four-way valve 10, and the other end of the discharge pipe 8 and the suction pipe 9 is branched into two to provide the first and second compressors. 3 and 4 are connected to each other.

第1,第2の圧縮機3,4の間には第1,第2の圧縮機3,4の各シェル間を接続する均油管11が配管されており、第1,第2の圧縮機3,4のシェル同士は、均油管11を介して互いに連通されている。均油管11は第1,第2の圧縮機3,4のシェルの側面下部に接続されており、第1,第2の圧縮機3,4のシェル内のオイルは均油管11を通って第1,第2の圧縮機3,4のシェルの間を互いに行き来され、第1,第2の圧縮機3,4のシェル内は均油される。   Between the first and second compressors 3 and 4, an oil equalizing pipe 11 is connected to connect the shells of the first and second compressors 3 and 4, and the first and second compressors are connected. The three and four shells communicate with each other through an oil equalizing pipe 11. The oil leveling pipe 11 is connected to the lower part of the side surfaces of the shells of the first and second compressors 3 and 4, and the oil in the shells of the first and second compressors 3 and 4 passes through the oil leveling pipe 11 to the first level. The shells of the first and second compressors 3 and 4 are moved back and forth, and the inside of the shells of the first and second compressors 3 and 4 is leveled.

第2の圧縮機4に接続された吐出配管8と均油管11との間には、吐出配管8と均油管11とを接続するバイパス管12が配管されており、吐出配管8と均油管11とは、バイパス管12を介して連通されている。バイパス管12は吐出配管8や均油管11に比べて径が小さい管で構成されており、バイパス管12の中間には、電磁弁や電動弁等の開閉弁13が介装されている。開閉弁13は開閉されてバイパス管12内を流通する冷媒ガスを調節するものであり、開閉弁13が閉じられていると冷媒ガスは開閉弁13を通過されず、開閉弁13が開けられていると冷媒ガスは開閉弁13を通過される。   Between the discharge pipe 8 connected to the second compressor 4 and the oil leveling pipe 11, a bypass pipe 12 connecting the discharge pipe 8 and the oil leveling pipe 11 is provided, and the discharge pipe 8 and the oil leveling pipe 11 are connected. Is communicated via the bypass pipe 12. The bypass pipe 12 is configured by a pipe having a smaller diameter than the discharge pipe 8 and the oil equalizing pipe 11, and an on-off valve 13 such as an electromagnetic valve or an electric valve is interposed in the middle of the bypass pipe 12. The on-off valve 13 adjusts the refrigerant gas that is opened and closed and flows through the bypass pipe 12. When the on-off valve 13 is closed, the refrigerant gas does not pass through the on-off valve 13 and the on-off valve 13 is opened. If so, the refrigerant gas passes through the on-off valve 13.

また、バイパス管12の中間には、バイパス管12内の温度を検出する熱電対(サーモカップル)やサーミスタ、放射温度計、側温抵抗体等からなる第1の温度センサ14が設けられている。第1の温度センサ14は、開閉弁13と均油管11との間に位置するバイパス管12に設けられており、開閉弁13と均油管11との間に位置するバイパス管12に冷媒ガスが流通していないときは、第1の温度センサ14によって検出される温度は常温となり、冷媒ガスが流通しているときは、第1の温度センサ14によって検出される温度は高温となる。常温は、外気温と同程度であり、通常、0〜35℃程度である。また、高温は、冷媒ガスの温度と同程度であり、通常、60℃〜130℃程度である。   Further, in the middle of the bypass pipe 12, a first temperature sensor 14 including a thermocouple (thermocouple) for detecting the temperature in the bypass pipe 12, a thermistor, a radiation thermometer, a side temperature resistor, and the like is provided. . The first temperature sensor 14 is provided in a bypass pipe 12 positioned between the on-off valve 13 and the oil leveling pipe 11, and refrigerant gas is supplied to the bypass pipe 12 positioned between the on-off valve 13 and the oil leveling pipe 11. When the refrigerant is not circulating, the temperature detected by the first temperature sensor 14 is a normal temperature, and when the refrigerant gas is circulating, the temperature detected by the first temperature sensor 14 is a high temperature. The normal temperature is about the same as the outside temperature, and is usually about 0 to 35 ° C. Moreover, high temperature is comparable as the temperature of refrigerant gas, and is about 60 degreeC-130 degreeC normally.

また、第1,第2の圧縮機3,4にそれぞれ接続されて合流されている吐出配管8には吐出配管8内の温度を検出する第2の温度センサ15が設けられている。第2の温度センサ15は第1の温度センサ14と同様のものからなっている。また、冷凍装置1には、第1,第2の圧縮機3,4の駆動を制御する制御装置16が備えられており、制御装置16は冷凍装置1を操作する操作盤17に電気的に接続されている。操作盤17には、図示せぬタッチパネルが形成されており、このタッチパネルを操作することで、冷凍装置1は冷暖房運転、均油運転、運転停止が行われる。   A discharge pipe 8 connected to and joined to the first and second compressors 3 and 4 is provided with a second temperature sensor 15 for detecting the temperature in the discharge pipe 8. The second temperature sensor 15 is similar to the first temperature sensor 14. In addition, the refrigeration apparatus 1 includes a control device 16 that controls driving of the first and second compressors 3 and 4. The control device 16 is electrically connected to an operation panel 17 that operates the refrigeration apparatus 1. It is connected. A touch panel (not shown) is formed on the operation panel 17, and by operating this touch panel, the refrigeration apparatus 1 performs an air conditioning operation, an oil equalizing operation, and an operation stop.

また、第1,第2の温度センサ14,15及び第1,第2の圧縮機3,4はそれぞれ制御装置16に電気的に接続されており、第1,第2の温度センサ14,15によって検出された温度の情報は制御装置16に伝達され、この情報を受けた制御装置16によって第1,第2の圧縮機3,4は制御される。具体的には、第1の温度センサ14によって検出されたバイパス管内温度Tが、第2の温度センサ15で検出された冷媒温度Tから所定値Aを引いた温度よりも低い場合、制御装置16から第1,第2の圧縮機3,4に停止信号が送られ第1,第2の圧縮機3,4の駆動が停止されるとともに、制御装置16から操作盤17にエラー信号が送られエラー表示が行われる。なお、上記した所定値Aとは、高圧冷媒ガスが流通する過程で熱損失によって低下する温度や誤差を考慮したものであり、その値は例えば10℃程度であり、所定値Aは0℃〜20℃である。 The first and second temperature sensors 14 and 15 and the first and second compressors 3 and 4 are electrically connected to the control device 16, respectively. Is transmitted to the control device 16, and the first and second compressors 3 and 4 are controlled by the control device 16 which has received this information. Specifically, when the temperature T in the bypass pipe detected by the first temperature sensor 14 is lower than the temperature obtained by subtracting the predetermined value A from the refrigerant temperature T 0 detected by the second temperature sensor 15, the control device 16 sends a stop signal to the first and second compressors 3 and 4 to stop driving the first and second compressors 3 and 4, and sends an error signal from the control device 16 to the operation panel 17. Error display. The above-mentioned predetermined value A takes into consideration the temperature and error that decrease due to heat loss in the process of circulating the high-pressure refrigerant gas, and the value is, for example, about 10 ° C., and the predetermined value A is 0 ° C. to 20 ° C.

次に、上記した冷凍装置1の使用方法及び制御方法について説明する。   Next, the usage method and control method of the above-described refrigeration apparatus 1 will be described.

まず、冷暖房運転について説明する。操作盤17のタッチパネルを操作して第1,第2の圧縮機3,4をそれぞれ駆動させ、冷媒回路2に冷媒を循環移動させる。このとき、開閉弁13は開けられており、第2の圧縮機4から吐出管8に吐出された高圧冷媒ガスは、バイパス管12に流入してバイパス管12内を実線矢印方向に流通し、開閉弁13を通過してバイパス管12内から均油管11内に流入する。均油管11内に流入した高圧冷媒ガスは、均油管11内を実線矢印方向に流通し、第1,第2の圧縮機3,4のシェル内にそれぞれ流入する。これによって、均油管11内は高圧となり、低圧の第1,第2の圧縮機3,4のシェル内部に発生するオイルミストが均油管11内に流入すること(オイルミスト移動)を防止できる。   First, the air conditioning operation will be described. The touch panel of the operation panel 17 is operated to drive the first and second compressors 3 and 4, respectively, and the refrigerant is circulated through the refrigerant circuit 2. At this time, the on-off valve 13 is opened, and the high-pressure refrigerant gas discharged from the second compressor 4 to the discharge pipe 8 flows into the bypass pipe 12 and flows through the bypass pipe 12 in the direction of the solid arrow. It passes through the on-off valve 13 and flows into the oil equalizing pipe 11 from the bypass pipe 12. The high-pressure refrigerant gas that has flowed into the oil equalizing pipe 11 circulates in the oil equalizing pipe 11 in the direction of the solid arrow, and flows into the shells of the first and second compressors 3 and 4, respectively. As a result, the oil leveling pipe 11 has a high pressure, and oil mist generated in the shells of the low pressure first and second compressors 3 and 4 can be prevented from flowing into the oil leveling pipe 11 (oil mist movement).

また、冷暖房運転中、開閉弁13が適正に開けられた状態にあることを確認し、冷凍装置1の運転を制御する。具体的には、図2に示すように、第1の温度センサ14で、開閉弁13と均油管11との間に位置するバイパス管12内の温度Tを検出する。また、第2の温度センサ15で、吐出管8内の温度を測定し、第1,第2の圧縮機3,4から吐出された高圧冷媒ガスの温度Tを検出する。そして、これらの温度T,Tの情報を制御装置16に伝達し、バイパス管12内の温度Tが高圧冷媒ガスの温度Tから所定値Aを引いた温度よりも低い場合は、第1,第2の圧縮機3,4をそれぞれ停止させる。バイパス管12内の温度Tが高圧冷媒ガスの温度Tから所定値Aを引いた温度よりも高い場合は、そのまま第1,第2の圧縮機3,4を駆動し続けて冷暖房運転を行う。 Further, during the cooling / heating operation, it is confirmed that the on-off valve 13 is properly opened, and the operation of the refrigeration apparatus 1 is controlled. Specifically, as shown in FIG. 2, the first temperature sensor 14 detects the temperature T in the bypass pipe 12 positioned between the on-off valve 13 and the oil equalizing pipe 11. The second temperature sensor 15 measures the temperature in the discharge pipe 8 and detects the temperature T 0 of the high-pressure refrigerant gas discharged from the first and second compressors 3 and 4. Then, the information on these temperatures T and T 0 is transmitted to the control device 16, and when the temperature T in the bypass pipe 12 is lower than the temperature obtained by subtracting the predetermined value A from the temperature T 0 of the high-pressure refrigerant gas, the first The second compressors 3 and 4 are stopped. When the temperature T in the bypass pipe 12 is higher than the temperature obtained by subtracting the predetermined value A from the temperature T 0 of the high-pressure refrigerant gas, the first and second compressors 3 and 4 are continuously driven to perform the air conditioning operation. .

次に、均油運転について説明する。まず、開閉弁13を閉塞させるとともに第2の圧縮機4を停止させた状態で、第1の圧縮機3を駆動させる。第1の圧縮機3が駆動すると、第1の圧縮機3のシェル内は低圧となり、第1の圧縮機3のシェル内にある余剰オイルは均油管11を通って第2の圧縮機4のシェル内に移動する。次に、開閉弁13を閉塞させたままの状態で、第1の圧縮機3を停止させるとともに第2の圧縮機4を駆動させる。第2の圧縮機4が駆動すると、第2の圧縮機4のシェル内は低圧となり、第2の圧縮機4のシェル内にある余剰オイルは均油管11を通って第1の圧縮機3のシェル内に移動する。このように、第1,第2の圧縮機3,4を交互に駆動させることで、第1,第2の圧縮機3,4の各シェル内のオイル量は均一になる。   Next, the oil leveling operation will be described. First, the first compressor 3 is driven with the on-off valve 13 closed and the second compressor 4 stopped. When the first compressor 3 is driven, the pressure in the shell of the first compressor 3 becomes low, and surplus oil in the shell of the first compressor 3 passes through the oil equalizing pipe 11 and the second compressor 4. Move into the shell. Next, the first compressor 3 is stopped and the second compressor 4 is driven while the on-off valve 13 is closed. When the second compressor 4 is driven, the inside of the shell of the second compressor 4 becomes a low pressure, and surplus oil in the shell of the second compressor 4 passes through the oil equalizing pipe 11 and the first compressor 3. Move into the shell. Thus, by alternately driving the first and second compressors 3 and 4, the amount of oil in each shell of the first and second compressors 3 and 4 becomes uniform.

上記した冷凍装置1によれば、開閉弁13と均油管11との間に位置するバイパス管12には、バイパス管12内の温度を検出する第1の温度センサ14が設けられているため、第2の圧縮機4から吐出され吐出配管8からバイパス管12に流入した高圧冷媒ガスが、開閉弁13を通過して均油管11に流入していると、第1の温度センサ14によって検出される温度Tは高温となり、バイパス管12に流入した高圧冷媒ガスが開閉弁13を通過していないと、第1の温度センサ14によって検出される温度Tは常温(低温)となる。これによって、高圧冷媒ガスが、開閉弁13を通過して均油管11に流入している確認することができ、オイルミストの移動を確実に防止し、オイル量不足による第1,第2の圧縮機3,4の破損を防止することができる。   According to the refrigeration apparatus 1 described above, the bypass pipe 12 positioned between the on-off valve 13 and the oil equalizing pipe 11 is provided with the first temperature sensor 14 that detects the temperature in the bypass pipe 12. When the high-pressure refrigerant gas discharged from the second compressor 4 and flowing into the bypass pipe 12 from the discharge pipe 8 passes through the on-off valve 13 and flows into the oil equalizing pipe 11, it is detected by the first temperature sensor 14. If the high-pressure refrigerant gas that has flowed into the bypass pipe 12 does not pass through the on-off valve 13, the temperature T detected by the first temperature sensor 14 is normal temperature (low temperature). As a result, it can be confirmed that the high-pressure refrigerant gas passes through the on-off valve 13 and flows into the oil equalizing pipe 11, and the movement of the oil mist is reliably prevented, and the first and second compressions due to insufficient oil amount. Damage to the machines 3 and 4 can be prevented.

また、吐出配管8には第2の温度センサ15が設けられているため、第1の温度センサ14によって検出される温度Tと、第1,第2の圧縮機3,4から吐出された高圧冷媒ガスの温度Tを比較することができ、開閉弁13が適正に開ききってなく、適正量の高圧冷媒ガスが通過していない場合でも検知することができる。 Further, since the discharge pipe 8 is provided with the second temperature sensor 15, the temperature T detected by the first temperature sensor 14 and the high pressure discharged from the first and second compressors 3 and 4. The temperature T 0 of the refrigerant gas can be compared, and even when the on-off valve 13 is not properly opened and an appropriate amount of the high-pressure refrigerant gas has not passed, it can be detected.

また、上記した冷凍装置1の制御方法によれば、第1,第2の圧縮機3,4を駆動させて冷媒を冷媒回路2中に循環させるとともに、第2の圧縮機4から吐出された高圧冷媒ガスを吐出配管8からバイパス管12内に流入させ、開閉弁13と均油管11との間に位置するバイパス管12内部の温度Tを検出し、バイパス管12内温度Tが第1,第2の圧縮機3,4から吐出された高圧冷媒ガスの温度Tから所定値Aを引いた温度よりも低い場合は第1,第2の圧縮機3,4の運転を停止するため、開閉弁13の故障等により高圧冷媒ガスが開閉弁13を通過していない場合は、第1,第2の圧縮機3,4の運転は停止され、オイルミストの移動を防止してオイル量不足による第1,第2の圧縮機3,4の破損を防止することができる。 Further, according to the control method of the refrigeration apparatus 1 described above, the first and second compressors 3 and 4 are driven to circulate the refrigerant in the refrigerant circuit 2 and are discharged from the second compressor 4. A high-pressure refrigerant gas is caused to flow into the bypass pipe 12 from the discharge pipe 8, and the temperature T inside the bypass pipe 12 located between the on-off valve 13 and the oil equalizing pipe 11 is detected. When the temperature of the high-pressure refrigerant gas discharged from the second compressors 3 and 4 is lower than the temperature T 0 minus the predetermined value A, the operation of the first and second compressors 3 and 4 is stopped. When the high-pressure refrigerant gas does not pass through the on-off valve 13 due to a failure of the on-off valve 13, the operation of the first and second compressors 3 and 4 is stopped to prevent the oil mist from moving and the amount of oil is insufficient. Can prevent the first and second compressors 3 and 4 from being damaged.

以上、本発明に係る冷凍装置及び冷凍装置の制御方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した実施の形態では、第1の温度センサ14によってバイパス管12内の温度を検出しているが、本発明は、バイパス管12自体の温度を検出してその温度からバイパス管12内の温度を推定し、バイパス管12内に高温の冷媒ガスが流通しているか確認してもよい。   As mentioned above, although embodiment of the control method of the freezing apparatus and freezing apparatus concerning this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably. is there. For example, in the above-described embodiment, the temperature in the bypass pipe 12 is detected by the first temperature sensor 14, but the present invention detects the temperature of the bypass pipe 12 itself and determines the temperature in the bypass pipe 12 from that temperature. It is also possible to estimate whether or not a high-temperature refrigerant gas is circulating in the bypass pipe 12.

また、上記した実施の形態では、冷凍装置1に2台の圧縮機3,4が設けられているが、本発明は、圧縮機が3台以上設けられている場合でもよい。また、上記した実施の形態では、空気調和機である冷凍装置1について説明をしたが、本発明は冷蔵庫や冷凍庫、その他の冷凍装置であってよい。   Moreover, in the above-mentioned embodiment, although the two compressors 3 and 4 are provided in the refrigerating apparatus 1, the case where three or more compressors are provided may be sufficient as this invention. Moreover, although the above-mentioned embodiment demonstrated the refrigeration apparatus 1 which is an air conditioner, this invention may be a refrigerator, a freezer, and another refrigeration apparatus.

本発明に係る冷凍装置の実施の形態を表す回路図である。It is a circuit diagram showing embodiment of the freezing apparatus which concerns on this invention. 本発明に係る冷凍装置の制御手段の実施の形態を表すフローチェート図である。It is a flow chart showing an embodiment of control means of a refrigerating device according to the present invention.

符号の説明Explanation of symbols

1 冷凍装置
2 冷媒回路
3 第1の圧縮機(圧縮機)
4 第2の圧縮機(圧縮機)
8 吐出配管(吐出側の冷媒配管)
11 均油管
12 バイパス管
13 開閉弁
14 第1の温度センサ(温度センサ)

DESCRIPTION OF SYMBOLS 1 Refrigerating device 2 Refrigerant circuit 3 1st compressor (compressor)
4 Second compressor (compressor)
8 Discharge piping (refrigerant piping on the discharge side)
11 Oil Leveling Pipe 12 Bypass Pipe 13 On-off Valve 14 First Temperature Sensor (Temperature Sensor)

Claims (2)

冷媒回路中に互いに並列に接続されている複数の圧縮機と、該複数の圧縮機の各シェル間を接続する均油管と、前記圧縮機の吐出側の冷媒配管と前記均油管とを接続するバイパス管と、該バイパス管に介装されている開閉弁とが備えられている冷凍装置において、
前記開閉弁と前記均油管との間に位置する前記バイパス管には、該バイパス管自体或いは該バイパス管内部の温度を検出する第1の温度センサが設けられ
前記吐出側の冷媒配管には、該冷媒配管内の温度を検出する第2の温度センサが設けられ、
前記第1の温度センサによって検出されるバイパス管内温度が、前記第2の温度センサによって検出される冷媒管内温度から所定値を引いた温度よりも低い場合に、前記圧縮機の運転が停止されることを特徴とする冷凍装置。
A plurality of compressors connected in parallel in the refrigerant circuit, an oil equalizing pipe connecting between the shells of the plurality of compressors, and a refrigerant pipe on the discharge side of the compressor and the oil equalizing pipe are connected. In a refrigeration apparatus comprising a bypass pipe and an on-off valve interposed in the bypass pipe,
The bypass pipe located between the on-off valve and the oil equalizing pipe is provided with a first temperature sensor that detects the temperature of the bypass pipe itself or the bypass pipe ,
The discharge side refrigerant pipe is provided with a second temperature sensor for detecting the temperature in the refrigerant pipe,
The operation of the compressor is stopped when the temperature in the bypass pipe detected by the first temperature sensor is lower than the temperature obtained by subtracting a predetermined value from the temperature in the refrigerant pipe detected by the second temperature sensor. A refrigeration apparatus characterized by that.
冷媒回路中に互いに並列に接続されている複数の圧縮機と、該複数の圧縮機の各シェル間を接続する均油管と、前記圧縮機の吐出側の冷媒配管と前記均油管とを接続するバイパス管と、該バイパス管に介装されている開閉弁とが備えられている冷凍装置の制御方法において、
前記圧縮機を駆動させて冷媒を前記冷媒回路中に循環させるとともに、前記圧縮機から吐出された高圧の前記冷媒を前記冷媒配管から前記バイパス管内に流入させ、
該開閉弁と前記均油管との間に位置する前記バイパス管自体或いは該バイパス管内部の温度を検出し、且つ、吐出側の前記冷媒配管内の温度を検出し、
前記バイパス管内の温度が吐出側の前記冷媒管内の温度から所定値を引いた温度よりも低い場合は前記圧縮機の運転を停止することを特徴とする冷凍装置の制御方法。
A plurality of compressors connected in parallel in the refrigerant circuit, an oil equalizing pipe connecting between the shells of the plurality of compressors, and a refrigerant pipe on the discharge side of the compressor and the oil equalizing pipe are connected. In a control method of a refrigeration apparatus provided with a bypass pipe and an on-off valve interposed in the bypass pipe,
Driving the compressor to circulate the refrigerant in the refrigerant circuit, and causing the high-pressure refrigerant discharged from the compressor to flow into the bypass pipe from the refrigerant pipe,
Detecting the temperature of the bypass pipe itself or the bypass pipe located between the on-off valve and the oil equalizing pipe, and detecting the temperature in the refrigerant pipe on the discharge side;
A control method for a refrigerating apparatus, wherein the operation of the compressor is stopped when the temperature in the bypass pipe is lower than the temperature obtained by subtracting a predetermined value from the temperature in the refrigerant pipe on the discharge side .
JP2003427025A 2003-12-24 2003-12-24 Refrigeration apparatus and control method of refrigeration apparatus Expired - Fee Related JP3946191B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003427025A JP3946191B2 (en) 2003-12-24 2003-12-24 Refrigeration apparatus and control method of refrigeration apparatus
KR10-2004-0053091A KR100539593B1 (en) 2003-12-24 2004-07-08 A refrigerating apparatus and control method thereof
CNB200410063856XA CN1313782C (en) 2003-12-24 2004-07-13 Refrigerating apparatus and control method thereof
EP04254258A EP1548379B1 (en) 2003-12-24 2004-07-15 Refrigerating apparatus and control method thereof
DE602004009027T DE602004009027T2 (en) 2003-12-24 2004-07-15 Cooling device and control method for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427025A JP3946191B2 (en) 2003-12-24 2003-12-24 Refrigeration apparatus and control method of refrigeration apparatus

Publications (2)

Publication Number Publication Date
JP2005188771A JP2005188771A (en) 2005-07-14
JP3946191B2 true JP3946191B2 (en) 2007-07-18

Family

ID=34544964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427025A Expired - Fee Related JP3946191B2 (en) 2003-12-24 2003-12-24 Refrigeration apparatus and control method of refrigeration apparatus

Country Status (5)

Country Link
EP (1) EP1548379B1 (en)
JP (1) JP3946191B2 (en)
KR (1) KR100539593B1 (en)
CN (1) CN1313782C (en)
DE (1) DE602004009027T2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592955B1 (en) * 2005-01-10 2006-06-26 삼성전자주식회사 Refrigerating system and control method for the same
CN100570238C (en) * 2005-08-26 2009-12-16 三菱电机株式会社 Refrigerating air-conditioning
DE102005042926B4 (en) * 2005-09-08 2015-02-05 Krones Aktiengesellschaft Method and device for controlling and regulating a hollow body manufacturing unit
JP4720538B2 (en) * 2006-02-27 2011-07-13 パナソニック株式会社 Cooling and heating system
CN105387559B (en) * 2015-10-28 2018-04-13 珠海格力电器股份有限公司 Air conditioner and its valve state detection method and device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222354A (en) * 1990-12-21 1992-08-12 Daikin Ind Ltd Operation controller for refrigerating equipment
US5634345A (en) * 1995-06-06 1997-06-03 Alsenz; Richard H. Oil monitoring system
EP0838640A3 (en) * 1996-10-28 1998-06-17 Matsushita Refrigeration Company Oil level equalizing system for plural compressors
CN1188218A (en) * 1996-10-28 1998-07-22 松下冷机株式会社 Oil level equalizing system for plural compressors
TWI237682B (en) * 2000-07-07 2005-08-11 Sanyo Electric Co Freezing apparatus
CN2447696Y (en) * 2000-10-17 2001-09-12 江苏春兰电器有限公司 Double-compressor oil-level balancing device
JP3750520B2 (en) * 2000-12-08 2006-03-01 ダイキン工業株式会社 Refrigeration equipment
KR100388675B1 (en) * 2000-12-18 2003-06-25 삼성전자주식회사 Air conditioner having pressure controlling unit and its control method
JP2002242833A (en) * 2001-02-15 2002-08-28 Toshiba Kyaria Kk Refrigerating cycle device
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
DE20115270U1 (en) * 2001-09-15 2001-11-22 Teko Ges Fuer Kaeltetechnik Mb Cooling system and associated circuitry
DE60332823D1 (en) * 2002-04-08 2010-07-15 Daikin Ind Ltd COOLER

Also Published As

Publication number Publication date
DE602004009027T2 (en) 2008-06-19
CN1637361A (en) 2005-07-13
CN1313782C (en) 2007-05-02
KR100539593B1 (en) 2005-12-29
EP1548379A1 (en) 2005-06-29
JP2005188771A (en) 2005-07-14
EP1548379B1 (en) 2007-09-19
DE602004009027D1 (en) 2007-10-31
KR20050065256A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP6120979B2 (en) Air conditioner
KR101917941B1 (en) Air conditioner and control method thereof
WO2013099047A1 (en) Air conditioner
JP3943092B2 (en) Air conditioner and control method thereof
JP6785852B2 (en) Refrigeration cycle equipment
US7380407B2 (en) Multi air conditioning system and method for operating the same
JP6138711B2 (en) Air conditioner
JP2007051825A (en) Air-conditioner
JP5053527B2 (en) Showcase cooling system
JP2013119954A (en) Heat pump hot water heater
JP6545252B2 (en) Refrigeration cycle device
JP2008082654A (en) Failure diagnostic method for refrigerating device, and refrigerating device
KR20070013826A (en) Process for sensing shortage of refrigerant in air conditioner
JP2012083010A (en) Refrigeration cycle device
JP2008241065A (en) Refrigerating device and oil returning method of refrigerating device
JP4575184B2 (en) Air conditioner
JP4562650B2 (en) Air conditioner
JP4274236B2 (en) Air conditioner
JP2004020064A (en) Method for controlling multi-chamber type air conditioner
JP3946191B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
JPWO2018179137A1 (en) Air conditioner
JP2017141970A (en) Cooler and air conditioner
JP4802602B2 (en) Air conditioner
JP5516332B2 (en) Heat pump type hot water heater
JP7000261B2 (en) Combined heat source heat pump device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees